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A B S T R A C T

In medical imaging, surface registration is extensively used for performing systematic comparisons between
anatomical structures, with a prime example being the highly convoluted brain cortical surfaces. To obtain a
meaningful registration, a common approach is to identify prominent features on the surfaces and establish a
low-distortion mapping between them with the feature correspondence encoded as landmark constraints. Prior
registration works have primarily focused on using manually labeled landmarks and solving highly nonlinear
optimization problems, which are time-consuming and hence hinder practical applications. In this work, we
propose a novel framework for the automatic landmark detection and registration of brain cortical surfaces
using quasi-conformal geometry and convolutional neural networks. We first develop a landmark detection
network (LD-Net) that allows for the automatic extraction of landmark curves given two prescribed starting
and ending points based on the surface geometry. We then utilize the detected landmarks and quasi-conformal
theory for achieving the surface registration. Specifically, we develop a coefficient prediction network (CP-Net)
for predicting the Beltrami coefficients associated with the desired landmark-based registration and a mapping
network called the disk Beltrami solver network (DBS-Net) for generating quasi-conformal mappings from the
predicted Beltrami coefficients, with the bijectivity guaranteed by quasi-conformal theory. Experimental results
are presented to demonstrate the effectiveness of our proposed framework. Altogether, our work paves a new
way for surface-based morphometry and medical shape analysis.
1. Introduction

Surface registration, the process of finding a 1–1 correspondence
between surfaces, has been extensively studied and widely applied to
various fields in science, engineering, and medicine. For instance, in
medical imaging, surface registration facilitates the comparison be-
tween complicated anatomical shapes for disease analysis [1,2]. To
ensure the accuracy of surface registration, landmarks representing
salient features on the surfaces are frequently used to guide the reg-
istration. For relatively simple shapes like human faces, prominent
features such as the eyes can be easily identified as landmarks. How-
ever, for more complicated shapes such as the highly convoluted brain
cortical surfaces, landmark extraction usually requires manual delin-
eations by medical experts, which makes the task much more time-
consuming. Besides the correspondence between the labeled landmarks,
it is also essential to find an accurate mapping between the overall
surfaces with low distortion, which is traditionally done by solving
some optimization problems [3–6] and is computationally expensive.

Recently, deep learning has emerged as a powerful tool for various
complex tasks. To train a suitable model, a large amount of data are
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usually required. For image registration, it is easy to get millions of
images for training and hence convolutional neural networks (CNNs)
have achieved huge success. By contrast, surface registration is more
complicated as it involves irregular triangular meshes. In particular,
due to the lack of data for training, one usually has to augment datasets
manually and consider more complicated networks.

To overcome the above-mentioned issues, in this paper we pro-
pose a novel framework for solving the automatic landmark detection
and registration problems for brain cortical surfaces by combining
quasi-conformal geometry and CNNs (see Fig. 1 for an overview). The
contributions of our work are as follows:

(i) We apply quasi-conformal geometry and CNNs for mapping
triangular meshes with disk topology.

(ii) Feature landmark curves can be automatically extracted from
the given surfaces based on only the labeled starting and ending
points of them and the surface curvature.

(iii) Beltrami coefficients can be automatically generated based on
the landmark constraints.
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Fig. 1. An overview of our proposed framework. Given a control surface with
prescribed landmarks, we first conformally parameterize it onto the unit disk. Then, for
any given surface, we compute the disk conformal parameterization of it and use the
landmark detection network (LD-Net) to extract the feature landmark curves. We then
use the coefficient prediction network (CP-Net) and the disk Beltrami solver network
(DBS-Net) to register the disk parameterization with that of the control surface, thereby
getting the final registration result between the input surface and the control surface.

(iv) Quasi-conformal mappings can be automatically generated
based on the Beltrami coefficients in real time, thereby yielding
a landmark-based surface registration.

(v) Once the networks are trained separately, the entire framework
can be applied for different input brain surfaces without any
additional training.

2. Related works

Surface parameterization and mapping algorithms have been widely
studied in recent decades [7,8]. In particular, as conformal parameter-
izations preserve the local geometry well and can be applied to various
fields, many conformal parameterization algorithms have been devel-
oped by different research groups [9–12] (see [13] for a survey), with
some works focusing on parameterizing brain cortical surfaces [14–18].

More recently, quasi-conformal theory has been found useful for
surface parameterization with a wide range of applications [19], such
as improving the accuracy of conformal parameterizations and achiev-
ing trade-offs between conformality and other prescribed constraints
2

for more flexible parameterizations and registrations. In [20], Lui et al.
introduced the use of the Beltrami coefficients and established a 1–1
correspondence between Beltrami coefficients and surface diffeomor-
phisms. The Beltrami coefficients capture essential properties of the
mappings and represent them in a simpler space. Based on the Beltrami
coefficients, many efficient conformal and quasi-conformal mapping
methods have been developed [21–24].

Landmark-based registration, which aims to obtain a 1–1 correspon-
dence between surfaces with prescribed feature landmarks, has been
widely studied [25–29]. In particular, there have been multiple works
on using landmark-based quasi-conformal mappings for the analysis
of biomedical shapes including teeth [30,31] and human faces [32,
33]. For the highly-convoluted brain cortical surfaces, earlier methods
primarily focused on landmark-free registration [34–36]. However, it
was shown that landmark-free methods often produce misalignment of
cortical landmarks [37], which hinders the accurate analysis of certain
regions of interest on the cortical surfaces in practice. Therefore, several
landmark-constrained mapping methods for brain cortical surfaces have
been developed over the past few decades [18,38–40].

Convolutional neural networks (CNNs), a powerful tool extensively
studied and used in recent years, perform excellently in imaging sci-
ence. In 1989, backpropagation was introduced to the network training
process and applied to handwritten digit recognition [41]. Nowadays,
with the improvement of GPUs and advanced network structures such
as ResNet [42], researchers are able to train deeper networks to tackle
more complicated problems. Besides the improvement of the network
structures, large training datasets such as ImageNet [43] have facili-
tated the design of more robust networks. More recently, the combi-
nation of quasi-conformal geometry and CNNs has been explored [44,
45]. In particular, Chen et al. [44] developed a network for generat-
ing quasi-conformal maps based on any input Beltrami coefficient for
rectangular images.

In recent decades, there has been a growing interest in apply-
ing networks for surface registration. One common approach is to
treat the surface meshes as graphs and use graph neural networks
(GNNs) [46–49]. Besson et al. [50] used GNNs for analyzing brain
meshes and predicting sex and age. Besides, customized kernels have
also been used to conduct convolutions on the surfaces. In [51,52],
Masci et al. used kernels defined on Riemannian manifolds for learning
shape correspondence. It is also possible to parameterize the surfaces
and perform the network learning in the parameter domain [53–55].
Zhao et al. [56,57] parameterized genus-0 cortical surfaces onto the
sphere and developed methods for diffeomorphic spherical surface
registration using spherical CNNs in both supervised and unsupervised
ways. Cheng et al. [58] developed a learning-based registration frame-
work for cortical surfaces with spherical topology using 2D planar
projection and VoxelMorph [59].

The extraction of feature landmarks from complex anatomical
shapes is a highly challenging problem. In particular, sulci, which are
shallow furrows on the brain surface separating adjacent convolutions,
have been extensively studied in medical analysis. In prior brain
cortical surface mapping works, the sulcal landmarks (feature points
representing the sulci) are usually manually delineated [60–63]. For
the automatic extraction of sulci, existing approaches have used pat-
tern recognition system [64,65], supervised learning [66], geometric
algorithm [67], geodesic curvature flow [68], geodesic path den-
sity map [69], Dense Individualized and Common Connectivity-based
Cortical Landmark (DICCCOL)-based method [70] etc.

3. Mathematical background

3.1. Quasi-conformal theory

Conformal maps are angle-preserving homeomorphisms between
Riemann surfaces. As they may not exist with the presence of land-
mark constraints in general, we consider a generalization of them



Computers in Biology and Medicine 163 (2023) 107185Y. Guo et al.

w
c
l

𝑓

b
m
m

𝐽

w

with bounded conformality distortion known as quasi-conformal maps.
Mathematically, 𝑓 ∶ C → C is quasi-conformal if it satisfies the Beltrami
equation
𝜕𝑓
𝜕�̄�

= 𝜇(𝑧)
𝜕𝑓
𝜕𝑧

, (1)

here 𝜇 ∶ C → C is a complex-valued function called the Beltrami
oefficient with ‖𝜇‖∞ < 1. Infinitesimally, we can also express 𝑓 by its
ocal parameter around a point 𝑝:

(𝑧) ≈ 𝑓 (𝑝) + 𝑓𝑧(𝑝)(𝑧 − 𝑝) + 𝑓�̄�(𝑝)𝑧 − 𝑝

= 𝑓 (𝑝) + 𝑓𝑧(𝑝)((𝑧 − 𝑝) + 𝜇(𝑝)𝑧 − 𝑝),
(2)

from which we can easily see that 𝑓 is conformal around a small
neighborhood of 𝑝 if and only if 𝜇(𝑝) = 0. It also shows that 𝑓 can
e expressed as the sum of 𝑓 (𝑝) and a stretch map (𝑧 − 𝑝) + 𝜇(𝑝)𝑧 − 𝑝
ultiplied by 𝑓𝑧(𝑝), and hence it maps infinitesimal circles to infinitesi-
al ellipses. All the quasi-conformal distortion is caused by 𝜇(𝑝), which

determines the magnitude of stretch or shrinkage of the ellipses.
Given any Beltrami coefficient 𝜇 with ‖𝜇‖∞ < 1, we can find a cor-

responding quasi-conformal mapping satisfying the Beltrami equation
in the distribution sense [71]:

Theorem 1. Suppose 𝜇 ∶ D → C is Lebesgue measurable with ‖𝜇‖∞ < 1.
There is a quasi-conformal homeomorphism 𝜙 from D to itself, which is
in the Sobolev space 𝑊 1,2(D) and satisfies the Beltrami equation (1) in the
distribution sense. Furthermore, by fixing 0 and 1, 𝜙 is uniquely determined.

Given an orientation preserving homeomorphism 𝜙, we can find the
corresponding Beltrami coefficient from (1):

𝜇𝜙 =
𝜕𝜙
𝜕�̄�

∕
𝜕𝜙
𝜕𝑧

. (3)

The Jacobian 𝐽 of 𝜙 is related to 𝜇𝜙 as follows:

(𝜙) =
|

|

|

|

𝜕𝜙
𝜕𝑧

|

|

|

|

2 (

1 − |

|

|

𝜇𝜙
|

|

|

2
)

. (4)

Since 𝜙 is an orientation preserving homeomorphism, 𝐽 (𝜙) > 0 and
|

|

|

𝜇𝜙
|

|

|

< 1 everywhere. Hence, we must have ‖

‖

‖

𝜇𝜙
‖

‖

‖∞
< 1. Theorem 1

indicates that under suitable normalization, every 𝜇 with ‖𝜇‖∞ < 1
is associated with a unique homeomorphism. Therefore, a homeomor-
phism from C or D onto itself can be uniquely determined by its
associated Beltrami coefficient.

3.2. Surface curvature

Curvature is an important quantity in differential geometry for
assessing how a surface deviates from a plane.

We define 𝑁 ∶ 𝑆 → S2 ⊆ R3 to be the normal map giving unit vector
at each point 𝑝. Suppose 𝐶 is a regular curve on 𝑆, 𝑝 is a point on 𝑆 and
𝑘 is the curvature of 𝐶 at 𝑝. We set cos 𝜃 = ⟨𝑛,𝑁⟩, where 𝑁 is the normal
vector to 𝑆 at 𝑝 and 𝑛 is normal to 𝐶. 𝑘𝑛 = 𝑘 cos 𝜃 is called the normal
curvature of 𝐶 at 𝑝. The principal curvatures at 𝑝 are the maximum and
minimum of the normal curvature, denoted as 𝑘1 and 𝑘2 respectively.
The mean curvature at 𝑝 is defined to be 𝐻 = 1

2 (𝑘1 + 𝑘2).

3.3. Linear Beltrami Solver (LBS)

In [72], Lui et al. proposed an efficient method called the Linear
Beltrami Solver (LBS) to reconstruct the associated quasi-conformal
homeomorphism from any given Beltrami coefficient. The method is
outlined below.

Let 𝑀1 and 𝑀2 be two planar domains and 𝜇 = 𝜌+𝑖𝜏, where 𝑖2 = −1,
be a complex-valued function defined on 𝑀1. The LBS method aims to
reconstruct the homeomorphism 𝑓 ∶ 𝑀1 → 𝑀2 associated with the
Beltrami coefficient 𝜇. Let 𝑓 = 𝑢 + 𝑖𝑣. Since
𝜕𝑓

= 1
(

𝜕 − 𝑖 𝜕
)

,
𝜕𝑓

= 1
(

𝜕 + 𝑖 𝜕
)

, (5)
3

𝜕𝑧 2 𝜕𝑥 𝜕𝑦 𝜕�̄� 2 𝜕𝑥 𝜕𝑦
we can derive from (1) that

𝜇(𝑓 ) =

(

𝑢𝑥 − 𝑣𝑦
)

+ 𝑖
(

𝑣𝑥 + 𝑢𝑦
)

(

𝑢𝑥 + 𝑣𝑦
)

+ 𝑖
(

𝑣𝑥 − 𝑢𝑦
) . (6)

We can then represent 𝑢𝑥, 𝑢𝑦 by 𝑣𝑥, 𝑣𝑦 and 𝑣𝑥, 𝑣𝑦 by 𝑢𝑥, 𝑢𝑦 as follows:
{

𝑣𝑦 = 𝛼1𝑢𝑥 + 𝛼2𝑢𝑦,

−𝑣𝑥 = 𝛼2𝑢𝑥 + 𝛼3𝑢𝑦,
and

{

−𝑢𝑦 = 𝛼1𝑣𝑥 + 𝛼2𝑣𝑦,

𝑢𝑥 = 𝛼2𝑣𝑥 + 𝛼3𝑣𝑦,
(7)

where 𝛼1 =
(𝜌−1)2+𝜏2

1−𝜌2−𝜏2 , 𝛼2 = − 2𝜏
1−𝜌2−𝜏2 , 𝛼3 =

(𝜌+1)2+𝜏2

1−𝜌2−𝜏2 . Since ∇ ⋅
(

−𝑣𝑦
𝑣𝑥

)

=

0, we have

∇ ⋅

(

𝐴

(

𝑢𝑥
𝑢𝑦

))

= 0 and ∇ ⋅

(

𝐴

(

𝑣𝑥
𝑣𝑦

))

= 0, (8)

where 𝐴 =
(

𝛼1 𝛼2
𝛼2 𝛼3

)

. By solving the above equations with certain

prescribed boundary constraints, the map 𝑓 can be obtained.
In the discrete case where 𝑀1 is a triangular mesh, we need to

restrict that 𝑓 is piecewise linear on each triangular face 𝑇 , which can
be written as

𝑓 |𝑇 (𝑥, 𝑦) =
[

𝑢|𝑇 (𝑥, 𝑦)
𝑣|𝑇 (𝑥, 𝑦)

]

=
[

𝑎𝑇 𝑥 + 𝑏𝑇 𝑦 + 𝑟𝑇
𝑐𝑇 𝑥 + 𝑑𝑇 𝑦 + 𝑠𝑇

]

. (9)

Hence, the partial derivatives of 𝑓 at each face 𝑇 can be denoted
as 𝐷𝑥𝑓 (𝑇 ) = 𝑎𝑇 + 𝑖𝑐𝑇 and 𝐷𝑦𝑓 (𝑇 ) = 𝑏𝑇 + 𝑖𝑑𝑇 . Now the gradient
∇𝑇 𝑓 ∶= (𝐷𝑥𝑓 (𝑇 ), 𝐷𝑦𝑓 (𝑇 ))𝑡 on 𝑇 can be computed by solving
(

𝑣𝟏 − 𝑣𝟎
𝑣𝟐 − 𝑣𝟎

)

∇𝑇 𝑓 =

(

𝑓 (𝑣𝟏) − 𝑓 (𝑣𝟎)

𝑓 (𝑣𝟐) − 𝑓 (𝑣𝟎)

)

, (10)

where [𝑣𝟎, 𝑣𝟏] and [𝑣𝟎, 𝑣𝟐] are two edges on 𝑇 .
The Beltrami coefficient 𝜇 is also discretized on the triangular faces.

Denote the discretized functions 𝛼1, 𝛼2, 𝛼3 on a face 𝑇 by 𝛼𝑇1 , 𝛼
𝑇
2 , 𝛼

𝑇
3 .

From (7), we have

−𝑑𝑇 = 𝛼𝑇1 𝑎𝑇 + 𝛼𝑇2 𝑏𝑇 ,

𝑐𝑇 = 𝛼𝑇2 𝑎𝑇 + 𝛼𝑇3 𝑏𝑇 ,
and

−𝑏𝑇 = 𝛼𝑇1 𝑐𝑇 + 𝛼𝑇2 𝑑𝑇 ,

𝑎𝑇 = 𝛼𝑇2 𝑐𝑇 + 𝛼𝑇3 𝑑𝑇 .
(11)

Let 𝑇 = [𝑣�⃗�, 𝑣𝑗 , 𝑣�⃗�] and �⃗�𝐼 = 𝑓 (𝑣𝐼 ), where 𝐼 = 𝑖, 𝑗, 𝑘. Suppose
𝑣𝐼 = 𝑔𝐼 + 𝑖ℎ𝐼 and 𝑤𝐼 = 𝑠𝐼 + 𝑖𝑡𝐼 . From (10), we have
[

𝑎𝑇 𝑏𝑇
𝑐𝑇 𝑑𝑇

] [

𝑔𝑗 − 𝑔𝑖 𝑔𝑘 − 𝑔𝑖
ℎ𝑗 − ℎ𝑖 ℎ𝑘 − ℎ𝑖

]

=
[

𝑠𝑗 − 𝑠𝑖 𝑠𝑘 − 𝑠𝑖
𝑡𝑗 − 𝑡𝑖 𝑡𝑘 − 𝑡𝑖

]

. (12)

Thus,
[

𝑎𝑇 𝑏𝑇
𝑐𝑇 𝑑𝑇

]

=

[

𝐴𝑇
𝑖 𝑠𝑖 + 𝐴𝑇

𝑗 𝑠𝑗 + 𝐴𝑇
𝑘 𝑠𝑘 𝐵𝑇

𝑖 𝑠𝑖 + 𝐵𝑇
𝑗 𝑠𝑗 + 𝐵𝑇

𝑘 𝑠𝑘
𝐴𝑇
𝑖 𝑡𝑖 + 𝐴𝑇

𝑗 𝑡𝑗 + 𝐴𝑇
𝑘 𝑡𝑘 𝐵𝑇

𝑖 𝑡𝑖 + 𝐵𝑇
𝑗 𝑡𝑗 + 𝐵𝑇

𝑘 𝑡𝑘

]

, (13)

here
𝐴𝑇
𝑖 =

(

ℎ𝑗 − ℎ𝑘
)

∕2 ⋅ Area(𝑇 ), 𝐵𝑇
𝑖 =

(

𝑔𝑘 − 𝑔𝑗
)

∕2 ⋅ Area(𝑇 ),
𝐴𝑇
𝑗 =

(

ℎ𝑘 − ℎ𝑖
)

∕2 ⋅ Area(𝑇 ), 𝐵𝑇
𝑗 =

(

𝑔𝑖 − 𝑔𝑘
)

∕2 ⋅ Area(𝑇 ),

𝐴𝑇
𝑘 =

(

ℎ𝑖 − ℎ𝑗
)

∕2 ⋅ Area(𝑇 ), 𝐵𝑇
𝑘 =

(

𝑔𝑗 − 𝑔𝑖
)

∕2 ⋅ Area(𝑇 ).
(14)

For each vertex 𝑣𝑖, let 𝑖 be the collection of neighboring faces of 𝑣𝑖.
We can see that
∑

𝑇∈𝑖

𝐴𝑇
𝑖 𝑏𝑇 =

∑

𝑇∈𝑖

𝐵𝑇
𝑖 𝑎𝑇 ;

∑

𝑇∈𝑖

𝐴𝑇
𝑖 𝑑𝑇 =

∑

𝑇∈𝑖

𝐵𝑇
𝑖 𝑐𝑇 . (15)

Substituting (11) into (15), we obtain the following equations:
∑

𝑇∈𝑖

(𝐴𝑇
𝑖 [𝛼

𝑇
1 𝑎𝑇 + 𝛼𝑇2 𝑏𝑇 ] + 𝐵𝑇

𝑖 [𝛼
𝑇
2 𝑎𝑇 + 𝛼𝑇3 𝑏𝑇 ]) = 0, (16)

∑

𝑇∈𝑖

(𝐴𝑇
𝑖 [𝛼

𝑇
1 𝑐𝑇 + 𝛼𝑇2 𝑑𝑇 ] + 𝐵𝑇

𝑖 [𝛼
𝑇
2 𝑐𝑇 + 𝛼𝑇3 𝑑𝑇 ]) = 0. (17)

Therefore, we can solve this linear system to get the 𝑥𝑦-coordinates and
hence the desired mapping 𝑓 .



Computers in Biology and Medicine 163 (2023) 107185Y. Guo et al.

𝜇

Fig. 2. The architecture of the three proposed networks for the automatic landmark detection and surface registration. The network takes the coordinates of 𝑁 pairs of endpoints
of the sulci as the input and generates a landmark-constrained quasi-conformal mapping on the unit disk as the output.
𝑥

3.4. Compression by Fourier approximation

Consider the real and imaginary parts of the Beltrami coefficient
𝜇 as two channels of the image and denote them by 𝜇𝑅 and 𝜇𝐼
respectively. The Fourier transform of 𝜇𝑗 (where 𝑗 = 𝑅 or 𝐼) can be
expressed as

�̂� (𝑚, 𝑛) =
1
𝑁2

𝑁−1
∑

𝑘=0

𝑁−1
∑

𝑙=0
𝜇𝑗 (𝑘, 𝑙)𝑒

−𝑖 2𝜋𝑘𝑚𝑁 𝑒−𝑖
2𝜋𝑙𝑛
𝑁 . (18)

The inverse Fourier transform of �̂�𝑗 can be written as

𝜇𝑗 (𝑝, 𝑞) =
𝑁−1
∑

𝑚=0

𝑁−1
∑

𝑛=0
�̂�𝑗 (𝑚, 𝑛)𝑒

𝑖 2𝜋𝑝𝑚𝑁 𝑒𝑖
2𝜋𝑞𝑛
𝑁 . (19)

In [72], Lui et al. showed that it is possible to compress the Beltrami
coefficients by Fourier approximation while preserving the informa-
tion of homeomorphism and bijectivity. Therefore, keeping only the
low-frequency components is sufficient for capturing the majority of
deformation in our problem.

4. Proposed framework

In this section, we describe our proposed framework for the auto-
matic landmark detection and surface registration in detail.

Suppose the given brain cortical surfaces are simply-connected open
surfaces, i.e. with disk topology. Our strategy is to map them onto
the unit disk using conformal parameterization [73], and then design
three networks for achieving the automatic landmark detection and
registration (see Fig. 2 for an outline): the landmark detection network
(LD-Net), the coefficient prediction network (CP-Net), and the disk
Beltrami solver network (DBS-Net). For the landmark detection, we first
label the starting and ending points of the desired feature curves as
the input of the LD-Net, which extracts the complete landmark curves
based on the mean curvature of the input surface. Then, we take the
output from the LD-Net as the input of the CP-Net for generating a
Beltrami coefficient 𝜇. Finally, we obtain a quasi-conformal mapping
associated with the Beltrami coefficient 𝜇 using the DBS-Net. The
architecture of each network is introduced in the following subsections.
As a remark, here we focus on simply-connected open surfaces so that
we can parameterize them onto the 2D plane and subsequently utilize
mapping solvers and learning methods developed for 2D domains,
thereby largely simplifying the computation of the registration.

4.1. Landmark detection

In this section, we describe our proposed landmark detection net-
work (LD-Net). The aim of LD-Net is to take the starting and ending
points of the desired feature curves as the input and automatically
generate the complete landmark curves along prominent features based
on the mean curvature of each surface.

For each input surface, we compute its mean curvature at every
vertex. We then apply the disk conformal mapping method [73] to
parameterize the surface onto the unit disk. In the visualization of the
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parameterized brain in Fig. 3, the dark regions correspond to the sulci
of a cortical surface and the bright regions correspond to the gyri (the
ridges on the brain surface).

After getting the disk mesh, we label the locations of the endpoints
on it and record their corresponding 𝑥𝑦-coordinates. We then rotate
the mesh and rescale it based on the distance between two points for
normalization (see Fig. 3). In this way, we can generate patches with all
starting and ending points at the same location. Then, we concatenate
the patch with a new channel recording two points by setting the pixel
values of the starting and ending points as 255 and all other pixel
values as 0. In our implementation, the first layer is followed by a batch
normalization layer. Therefore, the concatenated image is equivalent
to a binary image. After passing the concatenated image through the
convolution layers, we reshape it and then pass it through the fully
connected layers, which ultimately generate the 𝑥𝑦-coordinates for the
predicted landmarks.

To explain this procedure, note that if the starting and ending
points are given, the sulcus connecting them should be contained in
a local window and the output should not be affected by any unrelated
information or noise. By zooming in and rotating the mesh, we have the
starting and ending points of all the training data at the same location,
and hence we do not need any additional input of its coordinates for
the prediction process.

Loss Function: For the training of the network, we adopt supervised
learning by generating and augmenting data. The loss function for this
network is as follows:

LD = 𝜁
𝑁
∑

𝑖=1
‖𝑥𝑖 − �̂�𝑖‖

2 + 𝜅
𝑁−1
∑

𝑖=1

|

|

|

‖�̂�𝑖+1 − �̂�𝑖‖
2 − 𝛥𝑥||

|

, (20)

where 𝑁 is the number of output points for the prediction of the
landmark curves, and 𝑥𝑖, �̂�𝑖 are respectively the actual point and the
output point from the network for 𝑖 = 1,… , 𝑁 , 𝛥𝑥 = 1

𝑁−1
∑𝑁−1

𝑖=1 ‖�̂�𝑖+1 −
̂ 𝑖‖2. Here, the first term aims to improve the accuracy of the landmark
prediction, and the second term aims to make the output points more
evenly distributed. 𝜁 and 𝜅 are two weighting parameters.

4.2. Landmark-based quasi-conformal mapping

As described previously, quasi-conformal mappings can be repre-
sented by Beltrami coefficients, and it is easier to generate a 1–1
mapping from the Beltrami coefficients. Therefore, the two main tasks
here are: (1) to generate a quasi-conformal mapping based on any input
Beltrami coefficient in a fast and robust way, and (2) to generate a
Beltrami coefficient that corresponds to a landmark-based registration
to be fed into the mapping method.

4.2.1. Disk Beltrami Solver Network (DBS-Net)
Note that the LBS method [72] involves solving linear systems and

so the computation may be time-consuming if one has to handle a
large set of dense triangular meshes. To overcome this problem, Chen
et al. [44] proposed a method to train a network that can generate
quasi-conformal mappings from Beltrami coefficients more efficiently.
However, their method is only applicable to image registration with
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Fig. 3. The structure of the landmark detection network (LD-Net). We first label the starting and ending point on the parameterized mesh. Next, we rescale and rotate the mesh
so that the starting and ending points are aligned horizontally in a consistent manner and the sulcus connecting them is contained in a local window. The two-color image is
generated from the local patch based on the curvature on each vertex. Then, we concatenate the image with a single channel recording the starting and ending points. The network
takes the concatenated image patch as an input, which passes through the convolution layers and fully connected layers, and finally generates the predicted locations.
Fig. 4. The circle-to-square transformation in our framework.
the data represented using regular grids. To apply this idea to the
parameterized irregular triangular meshes in our case, it is necessary
to develop a new method.

Here we propose the Disk Beltrami Solver Network (DBS-Net) for
generating a quasi-conformal mapping based on any input Beltrami
coefficient on the disk. To make use of CNNs in the disk, we need to
reshape the disk Beltrami coefficients to a square domain. Here, we
consider the following transformation:

𝑥1 =
𝑥0

max{cos 𝜃, sin 𝜃}
, 𝑦1 =

𝑦0
max{cos 𝜃, sin 𝜃}

, (21)

where (𝑥0, 𝑦0), (𝑥1, 𝑦1) are the coordinates of a point in the disk and its
corresponding point in the square, and 𝜃 is the angle of the point in the
polar coordinate system (see Fig. 4).

After transforming the disk Beltrami coefficients, the DBS-Net uses
two routes to determine the inner and boundary coordinates for the
quasi-conformal map separately (see Fig. 5).

Route for the Inner Coordinates: Recall that we can use the
Fourier approximation to get the majority of information from the
Beltrami coefficient 𝜇 by keeping its low-frequency components. In our
work, we keep 2% of the Fourier coefficients of the Beltrami coefficient.
We first apply (18) to obtain the DFT �̂� of 𝜇. We then remove the high
frequency components to get a low-resolution approximation �̂�𝑡𝑐 . Next,
we apply the following equation to imitate the process of computing
the inverse Fourier transform 𝜇𝑡𝑐 of �̂�𝑡𝑐 and obtaining the low-resolution
Beltrami coefficient �̃� associated to the quasiconformal mapping of 𝜇
5

𝑡𝑐
on a coarser spatial domain:

�̃� = 𝑀�̂�𝑡𝑐𝑁 = (�̂�𝑇
𝑡𝑐𝑀

𝑇 )𝑇𝑁, (22)

where 𝑀 and 𝑁 are learnable. We call this process the Domain Trans-
form (DT) process. Finally, we use bilinear interpolation to upsample
and conduct convolution right after the interpolation (see Fig. 6).

While the Fourier approximation can preserve the majority of infor-
mation, some details will still be lost. To overcome this problem, here
we use a shortcut to preserve the detailed information and concatenate
the feature map generated from the shortcut with the one that was
processed after the Fourier approximation. This allows us to process
the data in a more efficient way while also having the details in the
output.

Route for the Boundary Coordinates: To reconstruct a quasi-
conformal map from a Beltrami coefficient, proper boundary conditions
are needed. In our case, we need to restrict the boundary points of the
quasi-conformal map to remain on the boundary of the unit disk. It is
noteworthy that the boundary points are not meant to be fixed. Instead,
we only fix one boundary point to remove the freedom of the global
rotation and allow all the remaining boundary points to move along the
disk boundary to get a low-distortion mapping. To achieve this, here we
design a separate route for determining the boundary coordinates.

More specifically, we consider the angles between different bound-
ary points. Since the calculation of each point involves its neighboring
points and hence is related to every point on the disk, we need the
information of the Beltrami coefficient 𝜇 on every face. Therefore, we
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Fig. 5. The flow of the proposed DBS-Net.
Fig. 6. The convolution for generating the inner coordinates of the quasi-conformal maps.
Fig. 7. The process of obtaining the boundary coordinates of the quasi-conformal maps.
reshape the input 𝜇 to be a column vector after using the FFT and
only keep the low-frequency data. Then, we adopt the MLP to generate
the desired angles, thereby determining the boundary coordinates (see
Fig. 7).

Loss Function: For the training, we use an unsupervised setting by
adopting LBS in computing the loss function.

We first consider replacing 𝑎𝑇 , 𝑏𝑇 , 𝑐𝑇 , 𝑑𝑇 in (16) and (17) with the
expression in (13) to derive the coefficients for every vertex 𝑣𝑖 and all
vertices 𝑣𝑙 adjacent to 𝑣𝑖. We have

𝑐𝑖 =
∑

𝑇∈𝑖

[

𝛼𝑇1
(

𝐴𝑇
𝑖
)2 + 2𝛼𝑇2 𝐴

𝑇
𝑖 𝐵

𝑇
𝑖 + 𝛼𝑇3

(

𝐵𝑇
𝑖
)2] , (23)

where 𝑖 is the collection of neighboring faces of 𝑣𝑖. Note that each
edge is shared by two faces. Denoting the two faces sharing the edge
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[𝑣𝑖, 𝑣𝑙] by 𝑇1, 𝑇2 and the remaining vertices in 𝑇1 and 𝑇2 by 𝑣𝑗 and 𝑣𝑘
respectively, the coefficient 𝑐𝑙 can be expressed as:

𝑐𝑙 =𝛼
𝑇1
1 𝐴𝑇1

𝑖 𝐴𝑇1
𝑗 + 𝛼𝑇12

(

𝐴𝑇1
𝑖 𝐵𝑇1

𝑗 + 𝐴𝑇1
𝑗 𝐵𝑇1

𝑖

)

+ 𝛼𝑇13 𝐵𝑇1
𝑖 𝐵𝑇1

𝑗 +

𝛼𝑇21 𝐴𝑇2
𝑖 𝐴𝑇2

𝑘 + 𝛼𝑇22
(

𝐴𝑇2
𝑖 𝐵𝑇2

𝑘 + 𝐴𝑇2
𝑘 𝐵𝑇2

𝑖

)

+ 𝛼𝑇23 𝐵𝑇2
𝑖 𝐵𝑇2

𝑘 .
(24)

Therefore, we define the following loss function to evaluate the differ-
ence between the generated mapping result and the result produced by
LBS:

LBS = 1
2𝑁2

∑

𝑖
(|𝑐𝑖𝑠𝑖 +

∑

𝑣𝑙∈𝑖

𝑐𝑙𝑠𝑙| + |𝑐𝑖𝑡𝑖 +
∑

𝑣𝑙∈𝑖

𝑐𝑙𝑡𝑙|), (25)

where 𝑠𝑖 and 𝑡𝑖 are 𝑥 and 𝑦 coordinates of 𝑣𝑖 respectively, 𝑁 is the total
number of vertices, and  is the collection of all vertices adjacent to
𝑖
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Fig. 8. The structure of the coefficient prediction network (CP-Net). We first process the input landmark locations through MLP and reshape them into separate channels before
concatenation. Then we apply the transposed convolution and a tanh-type activation function to generate the Beltrami coefficients.
𝑣𝑖. This effectively ensures that the output coordinates satisfy (16) and
(17).

Moreover, note that the quasi-conformality of a mapping does not
change under compositions with conformal maps. With such flexibility,
the vertices in the output mapping tend to cluster around the fixed
boundary point. To overcome this problem and let the boundary points
distribute more evenly on the disk boundary, we introduce another loss
function:

Boundary =
𝑁
∑

𝑖=1

1
𝜃𝑖
, (26)

where 𝑁 is the number of boundary points and 𝜃𝑖 is the angle between
two neighboring boundary points with ∑𝑁

𝑖=1 𝜃𝑖 = 2𝜋. Intuitively, each
1
𝜃𝑖

term effectively prevents any two neighboring boundary points from
being too close to each other, thereby ensuring that the boundary points
will be distributed more evenly over the entire disk boundary.

Altogether, we propose the following combined loss function:

DBSNet = 𝜂LBS + 𝜌Boundary, (27)

where 𝜂, 𝜌 are two nonnegative balancing parameters. Note that if 𝜌 is
too small, DBSNet will be dominated by the first term and the clustering
effect will still be present in the mapping result. By contrast, if 𝜌 is
too large, the second term in DBSNet will significantly constrain the
boundary points. In practice, we find that 𝜂 = 1 and 𝜌 = 10−8 give
satisfactory results. Here, we remark that the magnitude of LBS and
Boundary may not be the same. Specifically, with the 1∕𝜃𝑖 term in
Boundary, its magnitude would be very large if we have a small 𝜃𝑖.
Therefore, while 𝜂 and 𝜌 appear to be largely different in magnitude,
both terms are important.

4.2.2. Coefficient prediction network (CP-Net)
The goal of CP-Net is to take the starting points as the input and

output a Beltrami coefficient 𝜇, which can then be used for generating
the quasi-conformal mapping using the DBS-Net.

Initially, we use the MLP to process the starting points. We separate
the points into groups and use separate MLPs to generate the feature
map in the latent space. After that, we reshape the points into channels
and perform a transposed convolution on them. Recall that for the
DBS-Net, we adopt the bilinear interpolation for upsampling and do
convolution right after that, as the information in the feature map is
enough for us to get the output mapping. By contrast, the coefficient
prediction task involves generating global information from certain
sampled local information, while the reshaped landmark coordinates
do not contain all information we need for the entire disk. To get a
trainable upsampling for generating the Beltrami coefficients, we use
7

the transposed convolution defined by padding and stride to get the
global feature from the local feature. This gives a complex number
output 𝜈(𝑇 ) for each triangle 𝑇 . Finally, we would like to ensure that
the quasi-conformal mappings subsequently generated by the output
Beltrami coefficients of this network are bijective, i.e. there will be no
folding in the resulting mappings. To achieve this, we follow the idea
in [44] and add the following tanh-type activation function  in the
last layer:

𝜇(𝑇 ) =  (𝜈(𝑇 )) = tanh(|𝜈(𝑇 )|)𝑒𝑖 arg(𝜈(𝑇 )). (28)

This ensures that ‖𝜇‖∞ < 1 and hence the mappings are always
bijective. The structure of the CP-Net is shown in Fig. 8.

Loss Function: Recall that |𝜇| measures the quasi-conformal dis-
tortion of a mapping and hence it is desired to be as small as possible.
Therefore, we consider the following term:

𝜇 = 1
𝑁

𝑁
∑

𝑖=1
‖𝜇𝑖‖

2
2, (29)

where 𝑁 is the number of faces. Next, since |∇𝜇| controls the smooth-
ness of the mapping, we consider the following term:

∇𝜇 = 1
𝑁

𝑁
∑

𝑖=1
‖∇𝜇𝑖‖22. (30)

Finally, the landmark mismatch error can be assessed by the following
term:

Landmark = 1
𝑀

𝑀
∑

𝑖=1
‖𝑝𝑖 − �̂�𝑖‖

2
2, (31)

where 𝑀 is the number of landmarks, 𝑝𝑖 is the target location, and �̂�𝑖
is the network output, 𝑖 = 1,… ,𝑀 . By combining (29), (30) and (31),
we have the following loss function:

CP = 𝛼𝜇 + 𝛽∇𝜇 + 𝛾Landmark, (32)

where 𝛼, 𝛽, 𝛾 are nonnegative parameters. Note that for the training
of the CP-Net, we need to have a pre-trained DBS-Net for the data
generation and for producing the ultimate quasi-conformal mappings
from the outputs of the CP-Net. This will be described in Section 5.

5. Experiments

In this section, we describe our implementation of the proposed
framework and present the experimental results. 24 human brain cor-
tical surfaces used in our experiments are reconstructed from Mag-
netic resonance imaging (MRI) images from the Open Access Series
of Imaging Studies (OASIS) [74] using FreeSurfer [75]. Each surface
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Fig. 9. (Left) A brain cortical surface mesh reconstructed from MRI images. (Middle) The disk conformal parameterization of the surface mesh. (Right) A two-color image is then
generated from a local patch of the disk after rotation and rescaling, which is subsequently concatenated with a single channel recording the starting and ending points. The blue
points are the labeled landmarks.
is represented as a triangular mesh consisting of about 45000 vertices
and 90,000 faces, with a cut introduced at the lateral ventricle to make
it simply-connected. Six sulci, including the Central Sulcus (CS), Post-
central Sulcus (PostCS), Superior Frontal Sulcus (SFS), Inferior Frontal
Sulcus (IFS), Superior Temporal Sulcus (STS), and Inferior Temporal
Sulcus (ITS), are used as landmark curves for the registration. For
testing the performance of the landmark detection network, a set of
sulcal landmarks are also manually delineated and verified by medical
experts as the benchmark.

5.1. Training the landmark detection network

Our goal is to ensure that the LD-Net can produce landmark curves
accurately along the sulci. To start with, we need to generate the
training data for landmark detection (see Fig. 9 for a sample). We
first prepare multiple template brains and manually label densely dis-
tributed landmarks along the sulci as the prepared data. The brains
are then parameterized onto the unit disk using the disk conformal
parameterization method in [73]. Then, we randomly select the starting
and ending points on those sulci and generate the local patch and its
corresponding labels by selection or interpolation. More specifically,
after selecting the starting and ending points, we rescale the mesh based
on the distance between the two points and rotate it horizontally, so
that the starting and ending points for different patches are normalized
to be at the same location. Since the sulci of each brain are densely
labeled, we can generate plenty of patches at different places and scales,
which enables us to produce enough data for training.

After getting a well-trained network, we test it on the dataset
with medically verified sulcal landmarks. Some examples are presented
in Fig. 10, from which we can see that the sulci can be accurately
extracted. More quantitatively, we compare our network output and the
medically verified landmarks, and the resulting mean difference and the
standard deviation are 0.0089 and 0.0062 respectively. In Table 1, we
further consider different choices of the parameters in the LD-Net and
assess the landmark error and the landmark distribution. Note that the
aim of LD-Net is to get the detected landmarks and ensure that they
are evenly distributed. If we set 𝜅 as zero, then rigid error, which is
the difference between the outputs and the labels, could be small but
the difference in gaps is large. However, if we set 𝜅 as 0.1, then we
can effectively reduce the difference between gaps while keeping the
rigid error almost unchanged. This demonstrates the effectiveness of
our proposed LD-Net.

5.2. Experiments on disk Beltrami Solver network

5.2.1. Training
At the start of our training for the DBS-Net, we need sufficiently

many Beltrami coefficient data on the disk for training. These data
should be random and should contain as many scenarios as possible.
8

Table 1
The effect of different choices of parameters on the landmark detection network (LD-
Net). Here, the rigid error and the difference between gaps are computed using the
second term in (20).

Parameter Rigid Error Difference between Gaps

(𝜁 , 𝜅) = (1, 0) 5.28 6.12
(𝜁 , 𝜅) = (1, 1) 16.6 4.42
(𝜁 , 𝜅) = (1, 0.1) 5.87 1.78

To achieve this, we also use data from ImageNet [43] to augment the
input Beltrami coefficients. In the augmenting process, we first convert
all images into grayscale images and randomly select one as the real
part and another as the imaginary part. We then smooth them and add
random noise to them. The resulting two-channel image then serves as
the input of DBS-Net, with the value for each pixel used for computing
the LBS term in the loss function (27). Note that with the large number
of images in ImageNet, we can generate a large variety of Beltrami
coefficients for the training process. Consequently, the trained network
can handle any type of data effectively. We can then apply it for brain
cortical surface registration.

Some example outputs of the DBS-Net are shown in Fig. 11, from
which it can be observed that the error in the Beltrami coefficient is
very small. This shows that the DBS-Net is capable of generating quasi-
conformal mappings from the input Beltrami coefficients accurately.
For a more quantitative analysis, we compare the performance of
LBS [72] and our DBS-Net in terms of the error in the norm of the
Beltrami coefficients |𝜇| and the computation time (see Table 2). Since
LBS is used as our training loss, it can be observed that the error
achieved by DBS-Net is not as low as that by LBS directly. Nevertheless,
the computation time of DBS-Net is shorter than that of LBS by over
50%, and the resulting quasi-conformal mapping generated by DBS-
Net is already good enough to be combined with CP-net for disk
registration. Another improvement achieved by DBS-Net is that we only
need to fix one point on the boundary in using DBS-Net, while LBS
requires fixing every point on the boundary. Consequently, DBS-Net is
more flexible than LBS in generating the corresponding quasi-conformal
mappings.

5.2.2. Ablation study
Next, we study the necessity of having the Domain Transform (DT)

process, the shortcut path for the network and the boundary term in
training loss. We first consider replacing the Domain Transform process
with convolution layers and training the network by the same training
method. We call this method DBS-Net (No DT) and test it on the same
dataset. As indicated by the large error in |𝜇| in Table 2, this method
cannot even generate mappings without foldings and hence is unde-
sirable. We also consider using more convolution layers to replace the
Domain Transform process, which we refer to as DBS-Net (No DT2) in
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Fig. 10. Some sample outputs from the landmark detection network (LD-Net). The blue points show the detected landmarks.
Fig. 11. Three sample outputs of the disk Beltrami solver network (DBS-Net) with histograms of the error in the Beltrami coefficient 𝜇.
Table 2
A comparison between the proposed DBS-Net and the linear Beltrami solver (LBS) [72]
and the ablation study of DBS-Net on the test dataset. For each method, the mean error
and standard deviation in the norm of the Beltrami coefficients |𝜇| are recorded. All
experiments were performed on a computer with the Intel CPU i7-11800H processor,
and the time is the average time cost for each input.

Method Mean Error in |𝜇| SD Error in |𝜇| Time (s)

DBS-Net 1.54 × 10−2 8.9 × 10−3 1.57 × 10−2

LBS [72] 5.7 × 10−3 5.9 × 10−3 3.8 × 10−2

DBS-Net (No DT) 4.17 2.86 1.88 × 10−2

DBS-Net (No DT2) 5.14 3.76 2.01 × 10−2

DBS-Net (No Shortcut) 2.43 × 10−1 3.93 × 10−2 1.29 × 10−2

Table 2, to alleviate the influence of the depth of the network. However,
the performance is still unsatisfactory. In addition, we remove the
shortcut in DBS-Net, which we refer to as DBS-Net (No Shortcut), and
train the network by the same training method. As shown in Table 2,
while this method can generate mappings without folding, the error
in |𝜇| is large and hence the performance is unsatisfactory. As for the
boundary term in the loss function, the aim is to prevent the points on
the boundary from concentrating at one part on the disk. In Fig. 12,
we show a sample result from the training without the boundary term
loss. It can be observed that even though the error in the Beltrami
coefficient 𝜇 is small, the output mapping squeezes at a small region,
which is not satisfactory. From the above studies, we can see that
the Domain Transform process, the shortcut path in DBS-Net and the
boundary term in loss function are important for generating satisfactory
quasi-conformal mappings.
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5.3. Training the coefficient prediction network

After getting a well-trained LD-Net for getting the landmark curves
and a well-trained DBS-Net for generating quasi-conformal mappings
based on any input Beltrami coefficients, the remaining step is to train
the CP-Net to generate the Beltrami coefficients from the landmark
constraints.

To achieve this, we first need to prescribe the target positions of
the landmarks. To generate the training data, we randomly choose
two single-channel images and concatenate them to be two-channel
data that acts as the Beltrami coefficient. We then use it as the input
of the DBS-Net to generate a quasi-conformal mapping for perturbing
the landmarks, and take the positions of the perturbed landmarks as
the input of the CP-Net. All landmarks are discretized and reshaped
into one row in the format of (𝑥1, 𝑦1, 𝑥2, 𝑦2,… , 𝑥𝑛, 𝑦𝑛) before passing
through the network. This ensures that there is at least one admissible
mapping without folding, i.e. ‖𝜇‖∞ < 1. We use the distance between
the resulting positions of the input points and the target positions to
calculate the loss function (32). Note that (32) also contains two terms
for the norm of the Beltrami coefficients 𝜇 and ∇𝜇, which suppress the
angle distortion.

5.4. Landmark-based brain cortical surface registration

With all three proposed networks trained, we apply them for
landmark-based brain cortical surface registration. We first conformally
parameterize every brain onto the unit disk using [73] and then apply
the three networks for the landmark-based registration, where one
brain from the dataset is selected as the control brain. As illustrated
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Fig. 12. The left plot shows the output location of the points from the DBS-Net trained without the boundary term. Here, the boundary of the circle is denoted by the dashed
line. The right plot shows the corresponding histogram of the error in the Beltrami coefficient 𝜇.
Table 3
A comparison between our framework with different parameters 𝛼, 𝛽, 𝛾 in (32) and other methods for landmark registration in
24 brain cortical surfaces. For the landmark-constrained optimized harmonic mapping approach [18,73], 𝜆 is the soft landmark
matching parameter in [18]. The mean and standard deviation of the quasi-conformal distortion |𝜇| and the landmark error
𝑒landmark are assessed. It is noteworthy that our method is capable of achieving a smaller quasi-conformal distortion while
maintaining a low landmark error comparable to that obtained using the optimized harmonic map method with a large 𝜆.
Method Mean |𝜇| SD |𝜇| Mean 𝑒landmark SD 𝑒landmark Time (s)

Our method ((𝛼, 𝛽, 𝛾) = (1, 1, 10)) 0.78 × 10−2 0.23 × 10−3 3.71 × 10−2 10.61 × 10−3 0.59
Our method ((𝛼, 𝛽, 𝛾) = (1, 1, 102)) 1.25 × 10−2 1.74 × 10−3 2.03 × 10−2 3.90 × 10−3 0.57
Our method ((𝛼, 𝛽, 𝛾) = (1, 1, 103)) 1.95 × 10−2 3.11 × 10−3 1.96 × 10−2 2.79 × 10−3 0.59
Our method ((𝛼, 𝛽, 𝛾) = (1, 1, 104)) 1.87 × 10−2 2.78 × 10−3 1.14 × 10−2 2.59 × 10−3 0.53
Our method ((𝛼, 𝛽, 𝛾) = (1, 1, 205)) 4.30 × 10−2 5.71 × 10−3 0.62 × 10−2 1.70 × 10−3 0.55
Optimized harmonic map (𝜆 = 0.1) 1.00 × 10−2 2.72 × 10−3 4.10 × 10−2 12.1 × 10−3 7.64
Optimized harmonic map (𝜆 = 0.5) 2.90 × 10−2 8.37 × 10−3 2.24 × 10−2 6.50 × 10−3 14.96
Optimized harmonic map (𝜆 = 1) 3.98 × 10−2 11.5 × 10−3 1.19 × 10−2 3.43 × 10−3 32.58
Optimized harmonic map (𝜆 = 5) 5.16 × 10−2 14.8 × 10−3 0.51 × 10−2 0.39 × 10−3 46.14
TPS [76] 8.31 × 10−2 26.8 × 10−3 9.30 × 10−2 27.2 × 10−3 0.27
QCLR [29] 5.77 × 10−2 16.4 × 10−3 0 0 27.17
in Fig. 1, for every brain, we select the starting and ending points of
each sulcus as the input and obtain the quasi-conformal map on the
unit disk. We then apply the inverse map of the disk parameterization
to map the disk back to the control brain in 3D. This completes the
landmark-based brain registration. As shown in Fig. 13 and Fig. 14,
the mappings match the sulcal landmarks accurately and possess very
low quasi-conformal distortion.

For a more quantitative analysis of all mapping results, we record
the quasi-conformal distortion in terms of the norm of the Beltrami
coefficients |𝜇|, the landmark error and the computational time in
Table 3. It is noteworthy that by setting different training parameters
𝛼, 𝛽, 𝛾, we can achieve a lower landmark error or a lower quasi-
conformal distortion depending on the goal of the task. For comparison,
note that landmark-constrained optimized harmonic mapping methods
have been developed for registering genus-0 brain cortical surfaces [18,
39], while the brain surfaces we handle in our framework are simply-
connected open surfaces. Therefore, here we consider combining the
disk conformal map method [73] with the landmark-constrained opti-
mized harmonic mapping method [18] and compare the performance
of this combined approach with our proposed framework. Specifically,
we first apply the disk conformal map method to map the brain surfaces
onto a unit disk. Then, we solve for the landmark-constrained harmonic
map as in [18], with the original triangular boundary constraint re-
placed with a disk boundary constraint. Finally, we apply the bijectivity
preservation method in [18] to enforce the bijectivity of the map-
ping, which finally gives in the registration result. It can be observed
that our proposed method achieves a significant improvement in the
computational time by over 90% when compared with the optimized
10
harmonic map approach with different soft landmark matching param-
eters 𝜆, while the quasi-conformal distortion and landmark error of the
resulting registrations are comparable with those obtained using the
optimized harmonic map approach. We further compare our method
with the thin-plate spline (TPS) method [76] and the quasi-conformal
landmark registration (QCLR) algorithm [29]. It can be observed that
the TPS method gives a quasi-conformal distortion and a larger land-
mark error when compared to our method. While the QCLR method
can achieve exact landmark matching, it gives a significantly larger
quasi-conformal distortion and is also more computationally expensive.
In Table 4, we further use the t-test to compare the quasi-conformal
distortion and the landmark error obtained using our method and the
other methods for all brains. The results suggest that the improvement
achieved by our method is statistically significant.

Also, in Fig. 15 we analyze the Beltrami coefficients 𝜇 of the
resulting mappings for all brains. The histogram of |𝜇| shows that
our framework achieves a minimal quasi-conformal distortion, with
the majority of the |𝜇| values being close to 0. By taking the average
of |𝜇| for all resulting mappings, we can again see that the quasi-
conformal distortion is minimal in the entire unit disk. We further plot
the standard deviation of |𝜇| evaluated on each triangular face, from
which we can see a relatively large variation in |𝜇| near the landmarks,
while the variation in |𝜇| far away from the landmarks is very small.

6. Discussion and conclusion

In this paper, we have established a framework with three networks
for automatic landmark detection and surface registration of anatomi-
cal shapes with disk topology. Firstly, the LD-Net allows us to efficiently
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Fig. 13. Some sample outputs of the proposed framework. Each column shows one experiment. The first row shows the initial disks produced using disk conformal
parameterization [73] color-coded by the surface curvature, where the green curves are the landmarks detected by the LD-Net and the red ones are the target locations of
the landmarks. The second row shows the quasi-conformal maps on the disk produced by the CP-Net and the DBS-Net, from which it can be observed the landmarks are
well-aligned. The third row shows an alternative representation of the mapping results. The fourth row shows the norm of the Beltrami coefficients |𝜇| on the unit disk. The fifth
row shows the histograms of |𝜇|.
Table 4
A comparison between our method and other methods using the t-test. Here, we record the 𝑝-value of the t-test for the quasi-conformal distortion |𝜇| and the landmark error
𝑒landmark The value in the table is the 𝑝-value. The hypothesis is that 𝐻0: population mean of Dataset1 is equal to Dataset2.

Quasi-conformal distortion |𝜇| Landmark error 𝑒landmark

Dataset1
Dataset2

Optimized
harmonic map

(𝜆 = 1)
QCLR TPS

Optimized
harmonic map

(𝜆 = 1)
QCLR TPS

Our Method
((𝛼, 𝛽, 𝛾) = (1, 1, 102)) 2.95 × 10−11 1.66 × 10−12 4.85 × 10−12 6.27 × 10−10 3.88 × 10−18 2.52 × 10−12

Our Method
((𝛼, 𝛽, 𝛾) = (1, 1, 104)) 3.57 × 10−9 2.61 × 10−11 2.79 × 10−11 0.63 1.44 × 10−16 2.85 × 10−13
extract continuous feature landmarks from highly convoluted surfaces
based on the endpoints of the desired feature curves and the surface
curvature. Then, the CP-Net generates a Beltrami coefficient based on
the detected landmarks. Finally, the DBS-Net, trained in unsupervised
mode, produces a quasi-conformal mapping on the unit disk based
on the generated Beltrami coefficients, which yields the surface reg-
istration result. The mappings produced by our framework possess
low geometric distortion and preserve the bijectivity. Experimental
results have demonstrated the effectiveness of our framework for brain
11
surface registration. More broadly, as our method works for any simply-
connected open surfaces, it can also be applied to other disk-type
structures such as human faces and tooth occlusal surfaces, or any
simply-connected region of interest extracted from arbitrary biomedical
shapes.

For future work, we plan to extend the framework for anatomical
surfaces with other topologies. In particular, with the large number of
prior approaches for surfaces with spherical topology, a natural next
step is to develop a method that can be directly used for registering
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Fig. 14. Examples of 3D brain registration results. Three different brain surfaces are mapped to a template brain surface with or without using our proposed network. Each column
shows the results for one surface. The top row shows three registration results without using our proposed network, where the registered sulcal landmark curves are highlighted
in yellow and the target landmarks are in red. It can be observed that the landmarks are not well-aligned, as a small landmark mismatch on the parameterized planar domain
will already lead to a large landmark mismatch in the final 3D registration result. The bottom row shows the registration results obtained by our framework, with the landmarks
well-aligned.
Fig. 15. Analysis of the Beltrami coefficient 𝜇 of all mappings generated by our framework. The first plot shows the histogram of all face-based |𝜇| values. The second and third
plots show the average value and the standard deviation of |𝜇| evaluated on each triangular face on the unit disk for all mappings.
spherical surfaces and combine it with other tools such as the spher-
ical harmonics and other available functions in FreeSurfer [75] for
biomedical shape analysis.
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