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A Unifying Framework for n-Dimensional Quasi-Conformal Mappings∗
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Abstract. With the advancement of computer technology, there is a surge of interest in effective mapping
methods for objects in higher-dimensional spaces. To establish a one-to-one correspondence between
objects, higher-dimensional quasi-conformal theory can be utilized for ensuring the bijectivity of
the mappings. In addition, it is often desirable for the mappings to satisfy certain prescribed
geometric constraints and possess low distortion in conformality or volume. In this work, we develop
a unifying framework for computing n-dimensional quasi-conformal mappings. More specifically,
we propose a variational model that integrates quasi-conformal distortion, volumetric distortion,
landmark correspondence, intensity mismatch, and volume prior information to handle a large variety
of deformation problems. We further prove the existence of a minimizer for the proposed model
and devise efficient numerical methods to solve the optimization problem. We demonstrate the
effectiveness of the proposed framework using various experiments in two and three dimensions, with
applications to medical image registration, adaptive remeshing, and shape modeling.
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1. Introduction. A fundamental task in imaging science is to find an optimal transforma-
tion of certain given objects. For instance, given a pair of two-dimensional (2D) images, it is
common to search for a mapping that deforms one of the images to match the other image such
that the features of the two images are aligned as much as possible. Traditional mapping meth-
ods use rigid transformations, isotropic or anisotropic scaling, and shear transformations, which
are limited by their degrees of freedom and hence do not yield an accurate registration between
corresponding objects in general. In recent decades, more advanced nonrigid mapping methods
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n-DIMENSIONAL QUASI-CONFORMAL MAPPINGS 961

have been developed, including the thin plate splines method [4], large deformation diffeomor-
phic metric mapping [2, 32], the Demons algorithm [54, 57], etc. (see [28, 71] for more details).
In particular, prescribed landmarks are commonly used to aid the computation of the map-
pings [31, 50]. Area information has also been utilized in the computation of optimal mass trans-
port maps [24, 25, 69] and density-equalizing maps [12, 18, 19]. More recently, quasi-conformal
mappings have become increasingly popular for the development of nonrigid image registra-
tion [34, 55, 64, 65] and surface mapping methods [8, 14, 15, 21, 35, 41, 42, 44, 59, 61, 62, 63, 65],
with applications to geometry processing [9, 13, 16], biological shape analysis [10, 17], and
medical visualization [11, 20, 53, 66]. Specifically, quasi-conformal theory allows one to ensure
the bijectivity and reduce the local geometric distortion of the mappings. However, most of
the abovementioned methods work only for 2D objects embedded in three-dimensional (3D)
Euclidean space but not higher-dimensional shapes. While a few recent works have extended the
computation of quasi-conformal mappings to higher dimensions [37, 46, 47, 48, 68], they primar-
ily focus on the conformal distortion and landmark mismatch but not the volumetric distortion
or any other useful prior information. In this work, we propose a unifying framework for comput-
ing n-dimensional quasi-conformal mappings, which are folding-free quasi-regular mappings in
Rn. Unlike the prior higher-dimensional mapping methods, our proposed framework considers
a variational model that involves not only quasi-conformality and landmark constraints but also
intensity and volumetric information. The existence of a minimizer for the variational model is
theoretically guaranteed. We also introduce a novel use of an exponential term that significantly
simplifies the numerical computation of the optimization problem. Altogether, our proposed
framework can be effectively applied to a wide range of n-dimensional mapping problems.

The organization of the paper is as follows. In section 2, we highlight the contributions of
our work. In section 3, we introduce the mathematical background of our proposed framework.
The detailed formulation of the proposed framework is then explained in section 4. In section 5,
we demonstrate the effectiveness of the proposed framework for different n-dimensional mapping
problems using various synthetic examples. In section 6, we explore the applications of the
proposed framework to medical image registration, adaptive remeshing, and graphics. We
conclude the paper and discuss possible future works in section 7.

2. Contributions. The contributions of our work are as follows:
(i) Our proposed framework takes quasi-conformal distortion, volumetric distortion, land-

mark correspondence, intensity mismatch, and volume prior into consideration, which
allows us to handle a broader class of n-dimensional mapping problems when compared
to the existing methods.

(ii) The existence of the minimizer for our variational model is theoretically guaranteed.
(iii) The bijectivity of the mappings obtained by our framework is also guaranteed.
(iv) The computation of the mappings is more efficient than the prior quasi-conformal

mapping methods.
(v) The proposed framework can be effectively applied to medical image registration,

adaptive remeshing, and graphics.

3. Mathematical background. In this section, we review some basic mathematical concepts
relevant to this work, including 2D and n-dimensional quasi-conformal maps.D
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962 D. ZHANG, G. P. T. CHOI, J. ZHANG, AND L. M. LUI

3.1. 2D quasi-conformal maps. Mathematically, an orientation-preserving homeomor-
phism f(z) : C → C is said to be quasi-conformal if it satisfies the Beltrami equation [38]

(3.1)
∂f

∂z̄
= µ(z)

∂f

∂z

for some complex-valued Lebesgue measurable function µ : C → C satisfying ∥µ∥∞ < 1, where
µ is called the Beltrami coefficient [3] and z = x1 + ix2, x1, x2 ∈ R. Since ∂f

∂z̄ = 1
2(

∂f
∂x1

+ i ∂f
∂x2

)

and ∂f
∂z = 1

2(
∂f
∂x1

− i ∂f
∂x2

), we have

(3.2) |µ(z)|2 =
∥∇f∥2F − 2 det∇f

∥∇f∥2F + 2det∇f
,

where ∇f is the Jacobian of f and ∥ · ∥F represents the Frobenius norm. From (3.2), we
can see that ∥µ(z)∥∞ < 1 ⇐⇒ det∇f > 0, which means that a quasi-conformal mapping
is indeed one-to-one. From µ(z), we can know that the angle of maximal magnification is
arg(µ(z))/2 with magnifying factor |∂f∂z |(1 + |µ(z)|) and the angle of maximal shrinking is the

orthogonal angle (arg(µ(z))− π)/2 with shrinking factor |∂f∂z |(1− |µ(z)|) [34], which means
that the Beltrami coefficient µ represents the local geometric distortion (see Figure 1(a)).
Furthermore, based on the Beltrami coefficient, we can define by Kd the dilatation

(3.3) Kd(f) =
1 + |µ|
1− |µ|

to express the ratio of the largest singular value of the Jacobian of f divided by the smallest
singular value. In addition, if µ(z) = 0, we can get the complex form of the Cauchy–Riemann
equation,

(3.4) i
∂f

∂x1
=

∂f

∂x2
,

which shows that f is a conformal map. From this perspective, quasi-conformal maps are a
generalization of conformal maps.

f

(b)

f

(a)

Figure 1. An illustration of quasi-conformal maps. (a) Under a 2D quasi-conformal map, infinitesimal
circles are mapped to infinitesimal ellipses. (b) Under an n-dimensional quasi-conformal map, infinitesimal
spheres of dimension n− 1 are mapped to infinitesimal ellipsoids of dimension n− 1.D
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n-DIMENSIONAL QUASI-CONFORMAL MAPPINGS 963

3.2. n-dimensional quasi-conformal maps. Since the Beltrami coefficient is only defined
in the complex space, we cannot directly define the n-dimensional quasi-conformal maps by
extending the Beltrami coefficient or the dilatation Kd to the n-dimensional Euclidean space
with n ≥ 3. Nevertheless, one can generalize the notion of conformality distortion for a
diffeomorphism in the n-dimensional space as explained below.

An orientation-preserving mapping f(x) : Rn → Rn is conformal [23, 30] if

(3.5) ∇fT∇f = (det∇f)2/nI,

where ∇f represents the Jacobian of the mapping f and I is the identity matrix. Set
λ1 ≥ · · · ≥ λn > 0 as the eigenvalues of ∇fT∇f . Then by the eigendecomposition of ∇fT∇f ,
it is easy to verify that (3.5) holds if and only if λ1 = · · · = λn. In addition, on one hand, by
the inequality of arithmetic and geometric means,

(3.6)
1

n

n∑
i=1

λi ≥ (Πn
i=1λi)

1/n,

we have

(3.7)
1

n

(
∥∇f∥2F

(det∇f)2/n

)
≥ 1,

since det∇f = (Πn
i=1λi)

1/2 and ∥∇f∥2F =
∑n

i=1 λi. On the other hand, since the equality
holds in (3.6) if and only if λ1 = · · · = λn, based on the above discussion, we can see that

f is conformal if and only if 1
n(

∥∇f∥2F
(det∇f)2/n

) = 1. Hence, the quantity 1
n(

∥∇f∥2F
(det∇f)2/n

) can be

regarded as a measure of how far away f is from a conformal map. In [37], based on this idea,
a generalized conformality distortion K(f) in the n-dimensional space is defined:

(3.8) K(f) :=


1

n

(
∥∇f∥2F

(det∇f)2/n

)
if det∇f > 0,

+∞ otherwise.

Furthermore, for n = 2, it has been pointed out in [68] that

(3.9) K(f) ≤ Kd(f) ≤ 2K(f),

which shows thatK(f) can be used to measure the dilatation of a n-dimensional quasi-conformal
map (see also Figure 1(b)).

4. Proposed framework. In this section, we first introduce our proposed unifying frame-
work for n-dimensional quasi-conformal mappings. We then devise the numerical implementa-
tion for solving the proposed variational model.

4.1. A new framework for n-dimensional deformation. Before introducing our proposed
framework, we first review a related work as the motivation of our proposed framework. As
described in section 3, one can define a generalized conformality distortion K as in (3.8) to
measure how far away a map is from a conformal map in the n-dimensional space. Based on
this term K, Lee, Lam, and Lui proposed a landmark-matching model [37]:D
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964 D. ZHANG, G. P. T. CHOI, J. ZHANG, AND L. M. LUI

(4.1) min
y

∫
Ω
K(y)dx+

α

2

∫
Ω
∥∆y∥2Fdx, s.t. y(pi) = qi, i = 1, . . . ,m,

where y : Rn → Rn is the desired transformation, α > 0 is a positive parameter to balance the
distortion term and the smooth term, and pi and qi are prescribed landmark points. We can see
that minimizing the model (4.1) with a suitable parameter α leads to a smooth transformation
that simultaneously achieves a minimal conformality distortion and satisfies the landmark
constraints. In the 3D case, to solve the model (4.1), an auxiliary variable v is introduced and
an equivalent formulation can be derived:
(4.2)

min
y,v

∫
Ω

∥∇y∥2F
3(detv)2/3

dx+
α

2

∫
Ω
∥∆y∥2Fdx, s.t. v = ∇y, detv > 0, y(pi) = qi, i = 1, . . . ,m.

Then the alternating direction method of multipliers (ADMM) can be employed to solve (4.2).
However, note that the model (4.1) does not incorporate any intensity or volume information
which could improve the accuracy of the mappings in registration problems. In addition, one
subproblem in ADMM for solving (4.2) involves the inequality constraint detv > 0, which
makes solving the problem computationally expensive.

To overcome these two issues, we first propose the following model for computing n-
dimensional quasi-conformal mappings:

min
y,θ

α1

2

∫
Ω
|θ|2dx+ α2

∫
Ω

∥∇y∥2F
n(det∇y)2/n

dx+
α3

2

∫
Ω
∥∆y∥22dx+

α4

2

∫
Ω
(T ◦ y −R)2dx

s.t. det∇y = eθ, y(pi) = qi, i = 1, . . . ,m,

(4.3)

where T : Ω ⊂ Rn → R is the template, R : Ω ⊂ Rn → R is the reference, T ◦y is the deformed
template, and θ is a function from Ω ⊂ Rn to R. When compared to the previous model (4.1),
the model (4.3) contains a new sum of squared differences (SSD). One can also see that the
inequality constraint detv > 0 is converted into an equality constraint by using the exponential
function eθ. Here we also add a regularizer about θ to minimize the volume change because
the geometric meaning of the Jacobian determinant of the transformation represents the ratio
of the change of the volume. Furthermore, if we know the volume prior in some specific region
Ω′, then we can combine this information with model (4.3). This leads to the main proposed
unifying model for n-dimensional quasi-conformal mappings in this paper:

min
y,θ

α1

2

∫
Ω
|θ|2dx+ α2

∫
Ω

∥∇y∥2F
n(det∇y)2/n

dx+
α3

2

∫
Ω
∥∆y∥22dx

+
α4

2

∫
Ω′
(θ − θ̄)2dx+

α5

2

∫
Ω
(T ◦ y −R)2dx

s.t. det∇y = eθ, y(pi) = qi, i = 1, . . . ,m,

(4.4)

where θ̄ is a given function indicating the volume prior in the specific region Ω′.
Next, we prove the existence of the solution for the proposed model (4.4).
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n-DIMENSIONAL QUASI-CONFORMAL MAPPINGS 965

Theorem 4.1. Suppose Ω is bounded and simply connected, T,R are continuous functions
from Ω ⊂ Rn → R, and αi > 0, i = 1, . . . , 5. Let

A := {y ∈ C2(Ω), θ ∈ C0(Ω) :∥θ∥∞ ≤ c1, ∥y∥∞ ≤ c2, ∥∇y∥∞ ≤ c3,

∥∇2y∥∞ ≤ c4,det∇y = eθ,y(pi) = qi, i = 1, . . . ,m}
(4.5)

for some ci > 0, i = 1, . . . , 4. Then the proposed model (4.4) admits a minimizer in A. In fact,
A is compact.

Proof. By the homogeneity lemma, there exists a C∞ mapping y∗ satisfying the landmarks
constraint [32], which is also orientation-preserving. Then we can find the corresponding
θ∗ such that det∇y∗ = eθ

∗
. Here, it is clear that θ∗ belongs to C0(Ω). Hence, by setting

c1 = ∥θ∗∥∞, c2 = ∥y∗∥∞, c3 = ∥∇y∗∥∞, and c4 = ∥∇2y∗∥∞, we have (y∗, θ∗) in A, which
indicates that A is nonempty.

To prove that A is compact, we need to check that A is complete and totally bounded.
Define ∥y∥y := ∥y∥∞+∥∇y∥∞+∥∇2y∥∞ and ∥(y, θ)∥s := ∥θ∥∞+∥y∥y. Let the sequence

{yk, θk}∞k=1 in A be the Cauchy sequence with respect to the norm ∥ · ∥s. Then {θk}∞k=1 is
also a Cauchy sequence. Since Aθ := {θ ∈ C0(Ω) : ∥θ∥ ≤ c1} is complete with respect to ∥ · ∥∞,
there exists θ̄ such that θk → θ̄. Similarly, there exist ȳ,u, and v such that yk → ȳ, ∇yk → u,
and ∇2yk → v, respectively. Furthermore, since ȳ is C2, we have u = ∇ȳ and v = ∇2ȳ. So
Ay := {y ∈ C2(Ω) : ∥y∥∞ ≤ c2, ∥∇y∥∞ ≤ c3, ∥∇2y∥∞ ≤ c4} is complete with respect to ∥ · ∥y.
Hence, we have (yk, θk) → (ȳ, θ̄). In addition, since det∇yk = eθ

k
and yk(pi) = qi, by the

continuity, we have det∇ȳ = eθ̄ and ȳ(pi) = qi, which shows that (ȳ, θ̄) is in A. Hence, A is
complete with respect to the norm ∥ · ∥s.

To show that A is totally bounded, we prove that the product space Ay × Aθ, which
contains A, is totally bounded. Define a regular grid on Ω with edge lengths 1

m1
. Denote

the grid points by {xi}i∈I after re-indexing. We define the set of tent functions on each
grid point by Tm1,n1 = { k

n1
ϕxi}i∈I,1≤k≤n1 . Here, 1

n1
is the length of each interval dividing

[0, 1], and ϕxi is the tent function such that ϕxi(xi) = c1 and ϕxi(xj) = 0 for i ̸= j. Let

Bm1,n1 = {θ̂ ∈ Aθ : θ̂ =
∑

iFi,Fi ∈ Tm1,n1}, which has finitely many elements. In this way,
given any ϵ > 0, we can choose large enough m1, n1 such that for any θ ∈ Aθ, there exists
a θ̂ ∈ Bm1,n1 with ∥θ − θ̂∥∞ < ϵ. Hence, Aθ ⊂ ∪θ̂∈Bm1,n1

Bϵ(θ̂), where Bϵ(θ̂) is the open

ball centering at θ̂ with radius ϵ. Therefore, Aθ is totally bounded. In fact, each element
in Tm1,n1 = { k

n1
ϕxi}i∈I,1≤k≤n1 is a C0 spline. Following this methodology, we can construct

Pm2,n2 containing finite C2 splines such that for given any ϵ > 0 and any y ∈ Ay, for large
enough m2 and n2, there exists a ŷ ∈ Bm2,n2 = {ŷ ∈ Ay : ŷ =

∑
iFi,Fi ∈ Tm2,n2} such that

∥y − ŷ∥y < ϵ. Then we can conclude that Ay is also totally bounded. Hence, for any given
ϵ > 0, by setting m = max{m1,m2} and n = max{n1, n2}, we see that Ay × Aθ is totally
bounded. Since any subset of a totally bounded set is totally bounded, we conclude that A is
totally bounded.

Therefore, A is compact. Since the objective functional in the proposed model (4.4) is
continuous in A, the proposed model admits a minimizer in A.

Note that the proposed unifying model (4.4) contains different components that correspond
to different geometric quantities. By suitably setting the parameters of the components, we canD
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966 D. ZHANG, G. P. T. CHOI, J. ZHANG, AND L. M. LUI

obtain different models that yield different types of n-dimensional quasi-conformal mappings.
Below, we list some possible formulations and explain their usage.

1. Landmark-constrained n-dimensional quasi-conformal mapping. Let α1 =
α4 = α5 = 0. The proposed model (4.4) becomes

min
y,θ

α2

∫
Ω

∥∇y∥2F
n(det∇y)2/n

dx+
α3

2

∫
Ω
∥∆y∥22dx

s.t. det∇y = eθ, y(pi) = qi, i = 1, . . . ,m.

(4.6)

Note that (4.6) is theoretically equivalent to the formulation (4.1) proposed in [37].
However, the use of the exponential function eθ in (4.6) largely simplifies the numerical
implementation and hence leads to a significant improvement in practice when compared
to (4.1) (see section 4.2 for more details).

2. Landmark- and intensity-based n-dimensional quasi-conformal registration.
Let α1 = α4 = 0. The proposed model (4.4) becomes

min
y,θ

α2

∫
Ω

∥∇y∥2F
n(det∇y)2/n

dx+
α3

2

∫
Ω
∥∆y∥22dx+

α5

2

∫
Ω
(T ◦ y −R)2dx

s.t. det∇y = eθ, y(pi) = qi, i = 1, . . . ,m.

(4.7)

The model can be viewed as an extension of [34, 37]. It is a hybrid registration model
based on the intensity information and landmarks, which simultaneously guarantees
the bijectivity of the resulting transformation.

3. n-dimensional quasi-conformal mapping with volume prior and optimized
volumetric distortion. Let α5 = 0 and suppose that there is no landmark. The
proposed model (4.4) becomes

min
y,θ

α1

2

∫
Ω
|θ|2dx+ α2

∫
Ω

∥∇y∥2F
n(det∇y)2/n

dx+
α3

2

∫
Ω
∥∆y∥22dx+

α4

2

∫
Ω′
(θ − θ̄)2dx

s.t. det∇y = eθ.

(4.8)

Note that the resulting transformation will be as volume-preserving as possible because
of the first term, while the specific region Ω′ will change in volume based on the volume
prior.

4. The most general model. In case all components are needed, we can set αi ̸= 0 for
all i = 1, . . . , 5 to keep all terms in the proposed model (4.4) and solve it directly.

Remark 4.2. While the theoretical minimizer in Theorem 4.1 is a global minimizer of the
energy (4.4), in general it may not fully satisfy the prescribed constraints. Note that the
volume prior and intensity constraints can be set arbitrarily, and in some cases they may not
even be compatible with each other and/or the landmark constraints. Therefore, the minimizer
will just give the lowest energy by considering all components and achieving a balance betweenD
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them. If a certain constraint is desired to be more important, we can set a larger weight for it
in the unifying model (4.4). As the weight tends to infinity, the constraint violation for the
corresponding term will go to 0 in the resulting minimizer.

Remark 4.3. One may also be interested in the uniqueness of the solution to the proposed
model (4.4). To analyze it, we can consider the components in the model one by one. Note
that the first term and the fourth term involving θ are invariant under translations and
rotations. The second term involving the generalized conformality distortion is invariant
under Möbius transformations, analogous to the 2D quasi-conformal case. The third term
involving the second-order regularization is invariant under translations, scalings, and rotations.
However, the fifth term and the landmark constraints may not be invariant under translations,
scalings, or rotations. This shows that the Möbius transformation freedom is only in certain
components of the proposed model. If the fitting term and the landmark constraints are
not considered, the solution of the model is not unique, while if we have a general model
with the presence of all components, there may not be any abovementioned freedom in the
solution.

4.2. Implementation. In this section, we devise a numerical method to solve the model
(4.4) using ADMM.

First, we review the main idea of ADMM. Consider the following general optimization
problem:

(4.9) min
u,v

h(u) + g(v) s.t. c(u) = v,

where h : U → R, g : V → R, and c : U → V are three functions. The augmented Lagrangian
function of (4.9) is as follows:

(4.10) L(u, v, λ, ρ) := h(u) + g(v) + ⟨λ, c(u)− v⟩+ ρ

2
∥c(u)− v∥22,

where λ ∈ V is the Lagrange multiplier, ⟨·, ·⟩ is the corresponding inner product, and ρ > 0 is
a penalty parameter. ADMM aims to solve (4.10) using an iterative scheme. In particular, the
kth iteration of ADMM is as follows:

(4.11)



uk+1 := argminu h(u) +
ρ

2

∥∥∥∥c(u)− vk +
λk

ρ

∥∥∥∥2
2

,

vk+1 := argminv g(v) +
ρ

2

∥∥∥∥c(uk+1)− v +
λk

ρ

∥∥∥∥2
2

,

λk+1 := λk + ρ(c(uk+1)− vk+1).

In other words, ADMM first solves for uk+1 by fixing v = vk and then solves for vk+1 by fixing
u = uk+1.

Now, we are ready to apply ADMM to the proposed model (4.4). First, we write the
corresponding augmented Lagrangian function of (4.4):D
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L(y, θ, λ1, λ2, ρ1, ρ2) :=
α1

2

∫
Ω
|θ|2dx+ α2

∫
Ω

∥∇y∥2F
n(eθ)2/n

dx+
α3

2

∫
Ω
∥∆y∥2Fdx(4.12)

+
α4

2

∫
Ω′
(θ − θ̄)2dx+

α5

2

∫
Ω
(T ◦ y −R)2dx

+

∫
Ω
⟨λ1,det∇y − eθ⟩dx+

ρ1
2

∫
Ω
(det∇y − eθ)2dx

+

m∑
i=1

(λi
2)

T (y(pi)− qi) +
ρ2
2

m∑
i=1

|y(pi)− qi|2.

Here, λi
2 is the ith component of λ2. Also, for the second term, we can replace det∇y with eθ,

which helps simplify one subproblem in ADMM without changing the original problem. Hence,
we have the following iterative scheme:
(4.13)

θk+1 := argminθ
α1

2

∫
Ω
|θ|2dx+ α2

∫
Ω

∥∇yk∥2F
n(eθ)2/n

dx+
α4

2

∫
Ω′
(θ − θ̄)2dx

+
ρ1
2

∫
Ω

(
det∇yk − eθ +

λk
1

ρ1

)2

dx,

yk+1 := argminy α2

∫
Ω

∥∇y∥2F
n(eθk+1)2/n

dx+
α3

2

∫
Ω
∥∆y∥2Fdx+

α5

2

∫
Ω
(T ◦ y −R)2dx

+
ρ1
2

∫
Ω

(
det∇y − eθ

k+1
+

λk
1

ρ1

)2

dx+
ρ2
2

m∑
i=1

∣∣∣∣y(pi)− qi +
(λi

2)
k

ρ2

∣∣∣∣ ,
λk+1
1 := λk

1 + ρ1(det∇yk+1 − eθ
k+1

),

(λi
2)

k+1 := (λi
2)

k + ρ2(y
k+1(pi)− qi), i = 1, . . . ,m.

Next, we discretize (4.13) and choose the suitable optimization methods to solve the
resulting finite dimensional optimization subproblems.

4.2.1. Discretization. For simplicity, here we describe the discretization for the case
n = 2, which can be easily extended to other n. Let the domain Ω be [0, 1]2. By using the
standard triangular partition, we divide Ω into 2N2 small triangles and have Ω = ∪2N2

i=1 Ωi.

Let X,Y ∈ R2(N+1)2 be the discretized identity map and discretized transformation on the
nodal grid, respectively. We can then use the piecewise linear function to approximate the
transformation. Let Θ ∈ R2N2

be the discretized θ and Λ ∈ R2N2
be the discretized λ on

each subdomain Ωi, respectively. Set Λ2 ∈ Rm as the discretized λ2 and h as the area of the
standard triangle. For the intensity term, we assume that the intensity values are defined on
the cell-centered grid. Hence, we need to give an averaging matrix P from the nodal grid Y to
the cell-centered grid PY [26, 27]. Then we can set T⃗ (PY ) and R⃗ ∈ RN2

as the discretized
deformed template image and discretized reference image, respectively.

Remark 4.4. Since Y is usually not located exactly at the pixel points, an interpolation
operator is necessary. Here, we choose the cubic spline interpolation [45] to compute T⃗ (PY ).
The linear interpolation cannot be applied because it is not differentiable at grid points.D
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Since the approximated first-order partial derivatives are constants in each subdomain Ωi,
we can construct Ai, l = 1, . . . , 4, as the discrete first-order operator and B as the discrete
Laplace operator [67, 68], namely,

(4.14) ∂x1y1 ≈ A1Y, ∂x2y1 ≈ A2Y, ∂x1y2 ≈ A3Y, ∂x2y2 ≈ A4Y, ∆y ≈ BY.

Hence, by denoting ⊙ as the Hadamard product, we have

(4.15) det∇y ≈ A1Y ⊙A4Y −A2Y ⊙A3Y and ∥∇y∥2F ≈
4∑

l=1

AlY ⊙AlY.

Now, for (4.13), we have the following discretized scheme:
(4.16)

Θk+1 := argminΘ J1(Θ) =
α1h

2
|Θ|22 +

α2h

2
|rk./eΘ|1 +

α4h

2
|I1Θ− Θ̄|22 +

ρ1h

2
|eΘ − sk|22,

Y k+1 := argminY J2(Y ) =
α2h

2

∣∣∣∣∣
(

4∑
l=1

AlY ⊙AlY

)
./eΘ

k+1

∣∣∣∣∣
1

+
α3h

2
|BY |22 +

α5h

2
|T⃗ (PY )− R⃗|22

+
ρ1h

2

∣∣∣∣A1Y ⊙A4Y −A2Y ⊙A3Y − eΘ
k+1

+
Λk
1

ρ1

∣∣∣∣2
2

+
ρ2
2

∣∣∣∣I2Y −Q+
Λ2

ρ2

∣∣∣∣2 ,
Λk+1
1 := Λk

1 + ρ1(A1Y
k+1 ⊙A4Y

k+1 −A2Y
k+1 ⊙A3Y

k+1 − eΘ
k+1

),

Λk+1
2 := Λk

2 + ρ2(I2Y
k+1 −Q),

where rk =
∑4

l=1AlY
k⊙AlY

k, sk = A1Y
k⊙A4Y

k−A2Y
k⊙A3Y

k+
Λk
1

ρ1
, Θ̄ is the discretization

of the prior θ̄, Q is the vectorization of qi, i = 1, . . . ,m, eΘ is a vector whose component is eΘi ,
./ denotes the componentwise division, I1 is the index matrix of the domain Ω′, and I2 is the
index matrix of the landmarks.

4.2.2. Subproblem Θ in (4.16). Now, we consider solving the subproblem Θ in (4.16).
Note that the subproblem Θ in (4.16) is nonconvex because it involves the term |eΘ − sk|22.
Here, we choose the Gauss–Newton method, which picks a symmetric positive definite part
of its full Hessian as the approximated Hessian and then solves the resulting Gauss–Newton
system to obtain a descent search direction.

We first compute the gradient and Hessian of the subproblem Θ in (4.16), respectively:

(4.17)


dΘ = α1hΘ− α2h

2
rk./eΘ + α4hI

T
1 (I1Θ− Θ̄) + ρ1hdiag(e

Θ)(eΘ − sk),

HΘ = α1hI +
α2h

2
diag(rk./eΘ) + α4hI

T
1 I1 + ρ1hdiag(2e

2Θ − eΘ ⊙ sk),

where diag(v) represents a diagonal matrix whose diagonal entries are v. To get a descent
search direction, we choose

(4.18) ĤΘ = α1hI +
α2h

2
diag(rk./eΘ) + α4hI

T
1 I1 + ρ1hdiag(e

2Θ)D
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as the approximated Hessian and the resulting Gauss–Newton system is as follows:

(4.19) ĤΘpΘ = −dΘ.

Then the iterative scheme of the subproblem Θ in (4.16) is

(4.20) Θi+1 = Θi + δiΘp
i
Θ,

where δiΘ is the ith step length obtained by using the Armijo line search [49]. The steps are
summarized in Algorithm 4.1.

Algorithm 4.1 Solving subproblem Θ in (4.16).

Set Θ0 and i = 0; Compute diΘ and Ĥ i
Θ from (4.17) and (4.18);

while stopping criteria is not satisfied do
Solve Ĥ i

Θp
i
Θ = −diΘ;

Update Θi+1 by Armijo line search;
Set i = i+ 1;
Compute diΘ and Ĥ i

Θ from (4.17) and (4.18);
end while

4.2.3. Subproblem Y in (4.16). Here, for the subproblem Y in (4.16), we again use the
Gauss–Newton method. Although the cost of computing the approximated Hessian and solving
a linear system may be expensive, in practice we find that it is still much faster than first-order
methods such as L-BFGS [43]. This is because first-order methods usually require many more
iterations and computing interpolation many times, which can consume a lot of running time.

To implement the Gauss–Newton method, we need to compute the gradient and the
approximated Hessian of subproblem Y in (4.16), respectively:

dY = α2hM
T
1 (1./e

Θk+1
) + α3hB

TBY + α5hP
T T⃗ T

PY (T⃗ (PY )− R⃗)

+ ρ1hM
T
2

(
A1Y ⊙A4Y −A2Y ⊙A3Y − eΘ

k+1
+

Λk
1

ρ1

)
+ ρ2I

T
2 (I2Y −Q+

Λ2

ρ2
),

ĤY = α2hM
T
1 M1 + α3hB

TB + α5hP
T T⃗ T

PY T⃗PY P + ρ1hM
T
2 M2 + ρ2I

T
2 I2,

(4.21)

where T⃗PY is the Jacobian of T⃗ with respect to PY , M1 =
∑4

l=1 diag(AlY )Al, and M2 =
diag(A1Y )A4 + diag(A4Y )A1 − diag(A2Y )A3 − diag(A3Y )A2.

Hence, the iterative scheme of the subproblem Y in (4.16) is

(4.22) Y i+1 = Y i + δiY p
i
Y ,

where piY is solved by the Gauss–Newton system Ĥ i
Y p

i
Y = −diY and δiY is the ith step length

obtained again by using the Armijo line search. The steps are summarized in Algorithm 4.2.

Remark 4.5. The Gauss–Newton method has been successfully used to solve the resulting
optimization problem derived by different image registration models [7, 67]. Note that in [7, 67],
the line search strategy has to satisfy the sufficient descent condition and simultaneouslyD
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Algorithm 4.2 Solving subproblem Y in (4.16).

Set Y 0 and i = 0; Compute diY and Ĥ i
Y from (4.21);

while stopping criteria is not satisfied do
Solve Ĥ i

Y p
i
Y = −diY ;

Update Y i+1 by Armijo line search;
Set i = i+ 1;
Compute diY and Ĥ i

Y from (4.21);
end while

guarantee that the transformation is diffeomorphic under the sense of discretization. However,
in this paper, due to the nonnegative constraint, we only need to focus on the sufficient descent
condition and the diffeomorphic property is ensured by the quadratic penalty term in the
augmented Lagrangian function (4.12).

4.2.4. Summary of ADMM. In sections 4.2.2 and 4.2.3, we have discussed how to use
the Gauss–Newton method to solve the subproblems in the iterative scheme of ADMM (4.16).
Altogether, the procedure of solving the proposed model (4.4) is summarized in Algorithm
4.3. Note that in the standard ADMM, the penalty parameters ρ1 and ρ2 are fixed. Changing
these penalty parameters ρ1 and ρ2 dynamically may heavily affect the convergence rate of
ADMM [5]. In practice, we set E = A1Y ⊙A4Y −A2Y ⊙A3Y − eΘ and enlarge ρ1 by a factor
of 2 if |Ek+1|∞ > 0.95|Ek|∞ and keep ρ2 fixed.

Algorithm 4.3 Solving the proposed model (4.4) by ADMM.

Input T,R, volume prior Θ̄, and landmarks (pi, qi), i = 1, . . . ,m. Set Y 0,Θ0,Λ0
1,Λ

0
2, ρ

0
1, ρ2,

and k = 0; Give parameters αi, i = 1, . . . , 5;
while stopping criteria is not satisfied do
Compute Θk+1 by Algorithm 4.1;
Compute Y k+1 by Algorithm 4.2;
Compute Λk+1

1 by Λk
1 + ρk1(A1Y

k+1 ⊙A4Y
k+1 −A2Y

k+1 ⊙A3Y
k+1 − eΘ

k+1
);

Compute Λk+1
2 by Λk

2 + ρ2(I2Y
k+1 −Q);

if |Ek+1|∞ > 0.95|Ek|∞ then
Update ρk+1

1 = 2ρk1;
else

Update ρk+1
1 = ρk1;

end if
Set k = k + 1;

end while

Note that there are some existing convergence results of ADMM in nonconvex optimiza-
tion [58] but they are not applicable to the proposed Algorithm 4.3 as the equality constraint
in (4.4) is nonlinear. Although the convergence of Algorithm 4.3 cannot be guaranteed in
theory, we can show that Algorithms 4.1 and 4.2, which solve the subproblems in (4.16), are
convergent. To prove this result, we first recall the following lemma.D
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Lemma 4.6 (see [33]). Consider the following unconstrained optimization problem:

(4.23) min
x

f(x),

where f : Rn → R is a twice differentiable function. Let ∇f be Lipschitz continuous with
Lipschitz constant L. Assume that the approximated Hessian matrices Ĥ i are symmetric
positive definite and that there are ξ1 and ξ2 such that κ(Ĥ i) ≤ ξ1, and ∥Ĥ i∥ ≤ ξ2 for all i.
Then either f(xi) is unbounded from below or

(4.24) lim
i→∞

∇f(xi) = 0

and hence any limit point of the sequence of iterates produced by the Gauss–Newton method
with Armijo line search is a stationary point.

In particular, if f(xi) is bounded from below and xil → x∗ is any convergent subsequence
of {xi}, then ∇f(x∗) = 0.

Based on Lemma 4.6, we have the following convergence result about the subproblems in
(4.16).

Theorem 4.7. Assume that T and R are twice differentiable. Let the parameters αl, l =
1, . . . , 5, ρ, and σ be positive. In addition, assume that α3B

TB + ρ2I
T
2 I2 is symmetric positive

definite. Then Algorithms 4.1 and 4.2, which solve the subproblems in (4.16), are globally
convergent.

Proof. For Algorithm 4.1, from (4.18), since each component of rk is nonnegative, it is
obvious that Ĥ i

Θ is symmetric positive definite. In addition, it is also clear that J1(Θ) tends to
infinity when some component of Θ goes to infinity. Hence, the sublevel set {Θ|J1(Θ) ≤ J1(Θ

0)}
can be covered by a compact (closed and bounded) set U1. Then ∇J1(Θ) is Lipschitz continuous
with Lipschitz constant L1, and κ(Ĥ i

Θ) and ∥Ĥ i
Θ∥ for all i have the upper bound under the set

U1, respectively. In addition, 0 is a lower bound of J1(Θ). Therefore, by Lemma 4.6, we have

(4.25) lim
i→∞

∇J1(Θ
i) = 0.

For Algorithm 4.2, since α3B
TB+ σIT2 I2 is assumed to be symmetric positive definite, Ĥ i

Y

for all i in (4.21) is symmetric positive definite. We also have that J2(Y ) tends to infinity when
some component of Y goes to infinity. This is because A1Y ⊙A4Y −A2Y ⊙A3Y represents
the discrete Jacobian determinant and the ratio of change of the area. When Y goes to infinity,
the area will expand to infinity and then A1Y ⊙A4Y −A2Y ⊙A3Y will go to infinity. Hence, a
compact set U2 can cover the sublevel set {Y |J2(Y ) ≤ J2(Y

0)}. Following a similar discussion
in the first part, we can conclude that

(4.26) lim
i→∞

∇J2(Y
i) = 0.

Remark 4.8. In Theorem 4.7, we assume that α3B
TBB + ρ2I

T
2 I2 is symmetric positive

definite, which can be guaranteed when the Dirichlet boundary condition is employed or the
Neumann boundary condition is employed and ρ2 is positive. In addition, we also let theD
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parameters αl, l = 1, . . . , 5, ρ1, and ρ2 be positive. In fact, this requirement can be relaxed to
(1) ρ1 = 0 with no landmarks; (2) α2 = 0 with no fitting term; (3) α4 = 0 with no volume
prior. Theorem 4.7 can still be established under these conditions.

Remark 4.9. While Theorem 4.7 guarantees the global convergence of Algorithms 4.1
and 4.2 for solving the subproblems in (4.16), the global convergence of the entire ADMM
framework (Algorithm 4.3) has not been proved due to the nonlinear equality constraint (4.4).
Nevertheless, we find that the solutions satisfy the KKT conditions in all our experiments. As
the solutions may not be unique, from this point of view, the current approach only finds a
stationary point which may not necessarily be the global optimum.

5. Experiments. In this section, we test the proposed framework (4.4) with several
synthetic examples. The algorithms are implemented in MATLAB R2019a and tested on a
MacBook Pro with a 2.2 GHz Quad-Core Intel Core i7 processor and 16 GB RAM.

5.1. Landmark-constrained n-dimensional quasi-conformal mapping. We first test our
proposed model for landmark-constrained n-dimensional quasi-conformal mappings as described
in (4.6). Here, we set α2 = 1 and α3 = 0.01.

Consider a 2D example with eight prescribed landmarks A,B,C,D,E, F,G,H in the
domain [0, 1] × [0, 1] (see Figure 2(a)). The landmarks are divided into four pairs (A,B),
(C,D), (E,F ), (G,H), and for each pair of landmarks we constrain the points to swap
their positions under the quasi-conformal mapping, which involves a large deformation and
could easily lead to overlaps. Using our proposed model, we can easily achieve a smooth
transformation y that satisfies the landmark constraints (see Figure 2(b)). By computing the
Jacobian determinant det∇y as shown in Figure 2(c), we can see that det∇y is always greater
than 0 and hence the mapping is folding-free.

We then consider a 3D example with eight prescribed landmarks A,B,C,D,E, F,G,H
in the domain [0, 1] × [0, 1] × [0, 1] (see Figure 3(a)). This time, the landmarks are divided
into two groups (A,B,C,D) and (E,F,G,H), and for each group of landmarks we enforce
the points to their neighboring points to form two large-scale twists at two different angles.
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(a) Landmarks (b) Transformation y
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(c) det∇y

Figure 2. An example of landmark-constrained 2D quasi-conformal mapping achieved by our proposed
framework. (a) The corresponding landmarks. (b)–(c) The transformation and the corresponding Jacobian
determinant.D
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(a) (b) (c)

(d) (e) (f)

Figure 3. An example of landmark-constrained 3D quasi-conformal mapping achieved by our proposed
framework. (a) The eight landmarks with their target positions indicated by the arrows. (b) A cross-sectional
view of the transformation y. (c)–(e) Several rotated versions of (b) for visualizing the large 3D deformation
(see also supplementary file M145749 01.mp4 [local/web 5.16MB]). (f) The corresponding Jacobian determinant
det∇y.

As shown in Figure 3(b)–(f), our model is capable of producing a smooth and folding-free 3D
mapping that satisfies the landmark constraints (see also supplementary file M145749 01.mp4
[local/web 5.16MB]).

It is natural to compare the performance of our model with the existing landmark-
constrained n-dimensional quasi-conformal mapping method in [37]. For the algorithm in [37],
to apply ADMM, it introduces an auxiliary variable v such that v = ∇y and then substitutes
v into the denominator of K in (3.8). A comparison between the performance of the proposed
algorithm and the algorithm in [37] is provided in Figure 4, from which it can be observed that
our proposed model outperforms the method [37]. More specifically, note that both algorithms
are capable of achieving a similar final energy. However, for the violation of the equality
constraint, the proposed algorithm only needs about 100 iterations to reach 10−8 with respect
to the infinity norm while the method in [37] requires 2000 iterations and only reaches 10−1 for
the constraint violation. In other words, the proposed method is significantly faster and hence
more practical when compared to the prior method [37]. The main reason for the improvementD
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(b) Energy by [37]
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(c) Violation of equality constraint by the pro-
posed algorithm
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(d) Violation of equality constraint by [37]

Figure 4. Comparison between the proposed algorithm and the algorithm in [37] for landmark-constrained
n-dimensional quasi-conformal mapping. The first row displays the energy generated by the proposed algorithm
(Algorithm 4.3) and the algorithm in [37]. The second row gives the gaps of the equality constraint by these
two algorithms. It is clear that these two algorithms achieve a similar final energy but the proposed algorithm
converges much faster. More specifically, the proposed algorithm only takes about 100 iterations to reach 10−8

for the violation of the equality constraint with respect to the infinity norm, while the prior method in [37]
requires over 2000 iterations and only reaches 10−1 for the constraint violation.

achieved by our method is the use of the exponential term eθ for the Jacobian determinant
of the transformation, which largely simplifies the computation for the energy minimization
problem.

5.2. Landmark- and intensity-based n-dimensional quasi-conformal registration. Next,
we test our proposed model for landmark- and intensity-based n-dimensional quasi-conformal
registration as described in (4.7). Here, we set α2 = 1, α3 = 0.01, and α5 = 104.

Again, we start with a 2D example as shown in Figure 5. In this example, the goal is to
obtain a registration between an “I” shape and a “C” shape (see Figure 5(a)–(b)). In addition
to the intensity of the two letters, six landmarks are prescribed to represent the correspondenceD
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(a) Template with landmarks (b) Reference with landmarks

(c) T (y) with landmarks (d) y with landmarks

0.5

1

1.5

2

2.5

(e) det∇y with landmarks

(f) T (y) without landmarks (g) y without landmarks

0.5

1

1.5

2

2.5

(h) det∇y without landmarks

Figure 5. An example of landmark- and intensity-based 2D quasi-conformal registration achieved by our
proposed framework. The first row gives the template and reference with landmarks. The second and third rows
show the deformed template, the transformation, and the corresponding Jacobian determinant with and without
landmarks, respectively.

between the two shapes. This makes the proposed model (4.7) well-suited for computing the
registration. As shown in Figure 5(c)–(d), the landmark- and intensity-based quasi-conformal
registration model gives a smooth and accurate registration result with the overall shape as
well as the landmarks well-matched. From Figure 5(e), we see that the registration is bijective.D
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(a) (b)

(f) (g) (h)

(c) (d) (e)

Figure 6. An example of landmark- and intensity-based 3D quasi-conformal registration achieved by our
proposed framework. (a) The template with landmarks. (b) The reference with landmarks. (c)–(e) The deformed
template, a cross-sectional view of transformation T (y), and the corresponding Jacobian determinant det∇y
obtained using the landmark- and intensity-based model. (f)–(h) The result obtained using a purely intensity-based
model without landmark constraints.

For comparison, we consider a purely intensity-based registration without any prescribed
landmarks (Figure 5(f)–(h)). It can be observed that while the overall intensity is matched in
the registration result, the corners of the “C” shape are not perfectly matched.

We then consider a 3D analogue of the “I” to “C” problem as shown in Figure 6. This
time, the template shape is a rectangular solid that represents an “I” shape, and the reference
shape is a solid “C” shape. Similar to the 2D case, 12 landmarks are prescribed to represent
the correspondence between the two shapes. Using the proposed model, we can compute
a landmark- and intensity-based 3D quasi-conformal registration between the two shapesD

ow
nl

oa
de

d 
06

/2
8/

22
 to

 1
8.

9.
61

.1
11

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

978 D. ZHANG, G. P. T. CHOI, J. ZHANG, AND L. M. LUI

(Figure 6(c)–(e)). Even for this large deformation problem, our model is capable of producing
a smooth and accurate registration result with the overall shape as well as the landmarks
well-matched, and with bijectivity ensured. On the contrary, if we use a purely intensity-based
model, the mapping will not be able to match the endpoints of the “C” shape perfectly
(see Figure 6(f)–(h)). This demonstrates the strength of the proposed model in combining
landmarks and intensity for producing an accurate registration.

5.3. n-dimensional quasi-conformal mapping with volume prior and optimized volumet-
ric distortion. We now test the proposed model (4.8). In the following experiments, we set
α1 = 1, α2 = 1, α3 = 0.1, and α4 = 105 in (4.8).

As shown in Figure 7(a), here we consider a π-shaped region (denoted as Ω′) in a 2D domain
and set different volume priors for the specific region to produce different deformations. Here,
we use four different volume priors, ln(0.3), ln(0.5), ln(2), and ln(3), with results presented
in Figure 7(b)–(e). For each experiment, the corresponding transformation, the Jacobian
determinant map, and the histogram of the Jacobian determinant are also shown. It can be
observed that in all cases, the transformations are folding-free. The Jacobian determinant
maps also illustrate that the proposed model (4.4) indeed produces the desired transformations
that satisfy the volume priors.

We then test the proposed model using another synthetic example in 3D. For this example,
we again set a volume prior of ln(3) for a specific region in a solid domain (see Figure 8(a)–(b))
and solve the proposed model to obtain a 3D transformation. This results in a deformed
volumetric domain with the specified region is significantly expanded (see Figure 8(c)–(d)).
As shown in the histogram of the Jacobian determinant in Figure 8(e), the quasi-conformal
mapping satisfies the volume prior accurately.

5.4. The most general model. Here, we use a synthetic 3D example to highlight the
advantage of the general model (4.4). As shown in Figure 9(a)–(b), the template and the
reference are both cubes but the reference misses some parts, which represent occlusions. The
eight outermost corner vertices are chosen as the landmarks. Figure 9(c)–(f) shows the mapping
results using different models, from which we can clearly see that the general model (4.4) gives
the best result (Figure 9(c)). More specifically, note that the intensity term helps match the
deformed template and the reference. However, because of the missing part in the reference,
the intensity term may cause some overfitting in matching the two shapes. By introducing the
volume prior, we can prevent such overfitting effectively. Finally, the landmarks are useful for
registering the salient features of the two shapes. As shown in Figure 9(d)–(f), missing any of
these components leads to an unsatisfactory result.

6. Applications. After evaluating the performance of the proposed unifying framework
using the above examples, we explore the applications of the framework in medical imaging,
engineering and graphics.

6.1. Medical image registration. The prior landmark-constrained n-dimensional quasi-
conformal mapping method [37] has been shown to be useful for medical image registration.
Analogously, our proposed framework can be effectively applied to the registration of n-
dimensional medical images. More specifically, given two medical images and some common
prominent features in each of them, we can compute a landmark-matching quasi-conformal
mapping between them using the proposed model in (4.6). In addition, we also incorporate the
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Figure 7. An example of quasi-conformal mapping with volume prior and optimized volumetric distortion in
two dimensions. (a) A 2D domain with a prescribed π-shaped region. (b)–(e) The results with volume prior
θ = ln 0.3, ln 0.5, ln 2, and ln 3 for the specific region Ω′. For each volume prior, the resulting transformation,
the Jacobian determinant map, and its corresponding histograms are shown.
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(a) (b)

(d) (e)

(c)

Figure 8. An adaptive remeshing example in three dimensions. (a) The initial volumetric domain, with the
region for which we specify a volume prior of ln(3) highlighted in red. For better visualization, only a part of
the grid lines are shown. (b) A cross-sectional view of the domain in (a) with all grid lines shown. (c) The
3D quasi-conformal mapping result color-coded with the Jacobian determinant. For better visualization, only a
part of the grid lines are shown. (d) A cross-sectional view of the result in (c) with all grid lines shown. (e) A
histogram of the Jacobian determinant.

intensity information and find a landmark- and intensity-matching quasi-conformal mapping
by using the proposed model in (4.7).

We test (4.6) and (4.7) using lung CT data with 300 pairs of landmarks as shown in
Figure 10(a)–(b), which is freely available from the Deformable Image Registration Laboratory
(www.dir-lab.com). We rescale the data into the size of 128× 128× 128. For the parameters,
we set α2 = 1, α3 = 0.01 for (4.6) and α2 = 1, α3 = 0.01, α5 = 0.1 for (4.7). The registration
results for the two cases are displayed in Figure 10(c)–(d). Both of the registration results
satisfy the landmark constraints, with the landmark mismatch error less than 10−6. This
indicates that both models are capable of matching prescribed landmark features. To better
compare the two registration results, we consider the axial, sagittal, and coronal views as
shown in Figure 11. The reference and the template from the three views are first provided in
Figure 11(a)–(b). We then consider their intensity difference as shown in Figure 11(c) and
quantify the intensity mismatch by defining

(6.1) ReSSD =
∥T (y)−R∥22
∥T −R∥22

× 100%,D
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(a) (b)

(e)

(c)

(f)(d)

Figure 9. An 3D example of quasi-conformal mapping with intensity, volume prior and landmarks. (a) The
template. (b) The reference. (c) The registration result obtained using the general model (4.4). (d)–(f) The
registration result obtained using the models without intensity, volume prior, and landmarks respectively. Here,
the landmarks are the eight corner vertices of the cubes.

where T and R denote the template and reference images, and y is the deformation. This
gives ReSSD = 100% for the original difference (with y = Id). For the registration result
obtained by the landmark-based model (4.6) (Figure 11(d)–(e)), it is clear that the intensity
is not well-matched, with ReSSD = 75.74%. By contrast, for the result obtained by the
landmark- and intensity-based model (4.7) (Figure 11(f)–(g)), it can be observed that the
intensity mismatch is low (with ReSSD = 9.10%). This demonstrates the effectiveness of our
framework for medical image registration.

6.2. Adaptive remeshing. For many applications that involve solving differential equations,
it is crucial to remesh an object in an adaptive manner so that certain parts of it are with a
finer mesh resolution. Using our proposed framework, adaptive remeshing in any n-dimensional
domain can be easily achieved. More specifically, to remesh an object such that different
regions of it have different mesh density, we can set an area/volume prior for each specific
region and utilize the proposed model in (4.8) to find a quasi-conformal transformation.

We illustrate this idea using the examples presented in Figures 7 and 8. After finding the
resulting transformations, the remeshing result can be constructed by inverting them. Figure
12(a)–(d) shows the adaptive remeshing results corresponding to the four volume priors in
Figure 7(b)–(e). We can see that different volume priors can lead to either a finer mesh in
the prescribed region when θ > 0 or a coarser mesh in the prescribed region when θ < 0.
Analogously, we achieve an adaptive remeshing result of a 3D solid domain with a higher
mesh density at the specified region by generating a regular grid and transforming it using the
inverse of the 3D quasi-conformal mapping (see Figure 12(e)).D

ow
nl

oa
de

d 
06

/2
8/

22
 to

 1
8.

9.
61

.1
11

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

982 D. ZHANG, G. P. T. CHOI, J. ZHANG, AND L. M. LUI

(a) (b)

(c) (d)

Figure 10. Registration of 3D lung images. (a) The template image with landmarks. (b) The reference
image with landmarks. (c) The deformed template generated by our proposed model with landmarks only (i.e.,
(4.6)). (d) The deformed template generated by our model with both landmark and intensity considered (i.e.,
(4.7)).

6.3. Deformation-based shape modeling. Mesh deformations are frequently used in
computer graphics for achieving different shape modeling and animation effects [29, 70]. As
our proposed model is capable of producing quasi-conformal mappings in n-dimensional space,
which are smooth and folding-free, it is well-suited for deformation-based shape modeling.

To illustrate this idea, we consider a 3D dragon model adapted from the Stanford 3D
Scanning Repository [1] (Figure 13(a)). Note that the volumetric density-equalizing reference
map method in [19] is capable of producing a magnification of the dragon head by setting
a higher density at a specific region of the volumetric domain. Analogously, by using the
proposed model (4.8) and setting a large volume prior at the head of the dragon, we can
precisely enlarge the head of the dragon as shown in Figure 13(b). Moreover, using the
proposed model (4.6) and setting the corners of the bounding box of the head as rotating
landmarks, we can effectively turn the dragon head as shown in Figure 13(c). It is also possible
to change the position of the head and enlarge various parts of the dragon simultaneously
by using the most general formulation of the proposed model (4.4) (see Figure 13(d)). More
specifically, landmarks are used for controlling the translational effect of the head, and volume
priors are used for enlarging the head and the tail of the dragon. Similarly, one can twist
and shrink the body of the dragon simultaneously (see Figure 13(e)). The above resultsD
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(a) Reference from three views

(b) Template from three views (c) Difference between T and R, ReSSD = 100%

(d) T (y) with landmarks from three views (e) Difference between T (y) and R, ReSSD = 75.74%

(f) T (y) with landmarks and intensity from three views (g) Difference between T (y) and R, ReSSD = 9.10%

Figure 11. Visualization of the 3D lung image registration results via the axial view, sagittal view, and
coronal view. The difference between the reference and the template, and the difference between the reference
and the two registration results are both provided. Note that both registration models (4.6) and (4.7) are capable
of matching the features, and the more advanced model (4.7) with the intensity fidelity term added gives a more
accurate registration.

demonstrate the effectiveness of the proposed framework for producing a large variety of
graphical effects.

7. Conclusion and future works. In this work, we have proposed a unifying framework
for computing n-dimensional quasi-conformal mappings. Specifically, our framework allows for
the consideration of prescribed landmark and intensity information, volume prior, and overall
quasi-conformal and volumetric distortion. By adjusting the weights of different terms in the
proposed energy model, we can easily achieve a large variety of mappings with different effects.

For future work, we plan to employ the proposed framework on other real medical datasets
for disease diagnosis. Another possible future direction is to explore the possibility of combiningD
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(a) (b) (c)

(d) (e)

Figure 12. Adaptive remeshing using our proposed model (4.8). (a)–(d) The adaptive remeshing results
achieved using the transformations in Figure 7(b)–(e), respectively. (e) The adaptive remeshing result achieved
using the transformation in Figure 8.

the framework with machine learning approaches [36] for further improving n-dimensional
image registrations.

Also, note that the volumetric prior considered in the proposed framework is naturally
related to optimal transportation (OT) maps [25, 39, 40, 52, 56]. In particular, conventional
OT maps are guaranteed to satisfy any prescribed volumetric constraints, and if we do not
care about the optimality, there are infinitely many solutions according to Brenier’s polar
decomposition theorem [6]. When compared to the OT maps, our method considers additional
components such as the generalized conformality distortion and the regularization and hence
is likely to produce a smoother mapping which may not be exactly a solution of the discrete
OT problem. Nevertheless, our method involves relatively simpler computation procedures
and hence is likely to be more efficient. As a preliminary experiment, we consider a simple 2D
problem of mapping a given initial Voronoi diagram to a new Voronoi diagram with prescribed
area and compare the performance of our approach and the OT approach in [25, 60]. For
a domain of size 64× 64, our method only takes about 1.5 seconds while the OT approachD
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(a)

(b) (c)

(d) (e)

Figure 13. Deformation-based shape modeling using the proposed framework. (a) The original dragon model
from [1]. (b) A deformed dragon model with the head enlarged. (c) A deformed dragon model with the head
rotated. (d) A deformed dragon model with the head lifted and the head and tail enlarged. (e) A deformed dragon
model with the body twisted and shrunk.

in [25, 60] takes about 4.7 seconds. For a domain of size 128 × 128, our method takes
about 4.5 seconds while the OT approach takes over 30 seconds. This suggests that our
method is likely to be much more efficient than the existing OT approaches. Therefore, our
framework with the volumetric prior may serve as a good initial map for the computation of
OT maps.D
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Another natural next step is to extend the proposed framework for more general n-
dimensional triangulations. Note that the current framework assumes the problem domain
to be regular grids, as images often have a rectangular shape and the computation involves
a differentiable interpolation operator for the deformed template (such as the cubic spline
interpolation). If we only consider volume prior, landmark constraints, and conformal distortion
in searching for an optimal transformation, i.e., by using the proposed model (4.4) without the
intensity fitting term, the finite element method is a good candidate to solve the problem for
more general triangulations. In particular, the key step for the finite element implementation
is to compute the Jacobian determinant of the transformation, which has already been studied
in prior hyperelastic regularization image registration works [22, 51]. We plan to investigate
the extension in detail in our future work.
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