
Supplementary information for “Modular representation and

control of floppy networks”

Siheng Chen, Fabio Giardina, Gary P. T. Choi, L. Mahadevan

S1 Sparse null space decomposition

S1.1 Overview of the algorithm

In this section, we provide the review and development of algorithms for solving the sparse null space
decomposition (SND) [1]. We first introduce the ABS class of algorithms proposed by Abaffy, Broyden
and Spedicato [2, 3]. The ABS class of algorithms are iterative algorithms for solving the linear system
Ax = b where A ∈ Rm×n has full row rank and b ∈ Rm. Let A = [a1, a2, . . . , an], where each ai is an
m × 1 column vector. We start with an arbitrary initial vector x1 ∈ Rn and an arbitrary nonsingular
matrix H1 ∈ Rn×n, e.g. the identity matrix. At the i-th step, suppose we already have a solution of the
first i − 1 equations of Ax = b (denoted as xi) and an an n × n matrix with rows generating the null
space of the first i− 1 rows of A (denoted as Hi, also called the Abaffian matrix). We get xi+1 and Hi+1

from xi and Hi using the formulas below:

xi+1 = xi + αiqi, (S1)

where αi is the step size, qi = HT
i zi, zi is some search vector, and

Hi+1 = Hi −
Hiaiw

T
i Hi

wT
i Hiai

, (S2)

where wi (called the Abaffy’s parameter) satisfies wT
i Hiai 6= 0. By iteratively updating xi and Hi, we

finally obtain xm+1 (a solution of the entire system Ax = b) and Hm+1 (a matrix with rows generating
the null space of the entire matrix A).

Chen et al. [4] proposed a generalization of the ABS algorithms, called the Extended ABS (EABS)
algorithms. The difference between the ABS algorithms and the EABS algorithms is in the procedure of
updating the Abaffian matrices Hi. Unlike the ABS algorithms, the EABS algorithms update Hi by

Hi+1 = GiHi, (S3)

where Gi is a matrix with Gix = 0 if and only if x = λHiai for some λ.
The SND algorithm in [1] utilizes the EABS algorithm to find a sparse null space basis. The idea is

to carefully set the matrices Gi such that they satisfy the requirement in EABS and make the resulting
Hm+1 as sparse as possible. At the i-th iteration, let Am−i = (ai, . . . , am)T and Ãi = Am−iH

T
i . Also,

let rt and cj be the number of nonzero elements in row t and column j in Ãi. The SND algorithm uses

the Markowitz pivot selection criterion [5] and finds the (t, j) entry of Ãi such that (rt − 1)(cj − 1) is
minimal. Using the entry as a pivot element, the algorithm sets Gi to perform an elimination similar
to the Gaussian elimination and obtain Hi+1. In other words, the algorithm selects a nonzero entry
in the current submatrix, and brings it to the position (i, i) by a matrix operation in such a way that
there are as few nonzero entries in the i-th row and i-th column in the resulting Hi+1 as possible. By

1



iteratively updating xi and Hi, the final matrix Hm+1 gives a sparse null space basis. More details of the
computational procedure can be found in [1].

Note that the Markowitz pivoting method used in the SND algorithm is local in the sense that it tries
to minimize the number of nonzero entries at each step separately, without considering the possibility
that some combinations of suboptimal pivots in several steps may further reduce the number of nonzero
entries.

Our mode decomposition problem gives a physical interpretation of the SND algorithm. More specif-
ically, the algorithm looks for the most separated element when selecting the pivot at each iteration and
finally achieves a sparse null space basis. In a physical network, this corresponds to a decomposition of
the floppy modes that maximizes hierarchy and separability.

S1.2 Implementation

The rigidity matrix is constructed from the geometric constraints as described in the main text, and the
fixed nodes constraints described in the Methods. The rows are shuffled every time before applying the
SND method. The resulting mode decomposition might be different each time, so we present the average
results (for example, in main text Fig. 2c and 2f).

S1.3 Comparison with other methods

We provide a more detailed comparison between the SND method (referred to as Method I) and other
methods for generating null space bases. As discussed in the main text, given a matrix A, the MATLAB’s
built-in function null computes an orthonormal basis for the null space of A using the singular value
decomposition (SVD) algorithm (referred to as Method II).

An alternative numerical approach for finding a null space basis for A is to apply the MATLAB’s
null function on the matrix ATA (referred to as Method III). Note that for any x ∈ null(A), we have
ATAx = AT (0) = 0 and hence x ∈ null(ATA). Therefore we have null(A) ⊂ null(ATA). Also, for any
y ∈ null(ATA), we have ATAy = 0⇒ yTATAy = 0⇒ (Ay)T (Ay) = 0⇒ Ay = 0 and hence y ∈ null(A),
which implies that null(ATA) ⊂ null(A). This shows that null(A) = null(ATA). While the two null
spaces are identical, the bases obtained numerically using null(A) and null(ATA) are not necessarily
the same.

Another method for finding a null space basis for A is to use the QR factorization (referred to as
Method IV). By applying the QR factorization on AT , we obtain AT = QR where Q is a m × m
orthogonal matrix and R is a m× n upper triangular matrix. More explicitly, if dim(null(A)) = m− r,
we have

AT = QR =
(
Q1 Q2

)(R1

0

)
, (S4)

where Q1 ∈ Rm×r, Q2 ∈ Rm×(m−r), R1 ∈ Rr×n, and 0 ∈ R(m−r)×n. Now, we have(
R1

0

)
= R = QTQR = QTAT =

(
QT

1 A
T

QT
2 A

T

)
, (S5)

and hence 0 = QT
2 A

T = AQ2. Since Q2 contains exactly m − r columns, it follows that the columns of
Q2 form a null space basis for A.

Fig. 2 in the main text shows the mode decomposition of an example triangular network using the SND
method and the SVD method. Here we adopt a larger network, and compare the mode decomposition
between the above four methods (Fig. S1a–d). Again, the SND produces a decomposition which is easy
to interpret, as the motions are all separated. As noted in the main text, all the representations are
equivalent. Modes in one set of representation can be decomposed into a linear combination of modes
in another set. Here, the modes generated by Method II, III, and IV are decomposed into the modes

2



a

b

c

d

e

f

I II
Method

Method

Method I: SND

Method III: null(RTR)

Method II: SVD

Method IV: QR

III IV

I II III IV

P
P

0

10

20

30

0

20

40

60

Figure S1: Mode decomposition of a 5× 5 network using four different methods. a, The SND
method on rigidity matrix R. b, The SVD method on R. c, The SVD method on RTR. d, The QR
decomposition on R. The modes in methods II-IV are decomposed to linear combination of those in I
and colored accordingly. e, The participation rate P of modes for the four methods and 100 repeats, on
this 5× 5 network. f, The participation rate of modes for the four methods and 100 repeats on networks
with link density ρ = 43/56.

in Method I, and are colored accordingly. All the modes in Method II, III, and IV are not spatially
separating the motion in different areas, thus harder to interpret physically. The participation rate P is
also much lower in method I compared to that in Method II, III, and IV. Fig. S1e shows the distribution
of P for modes calculated from the four methods with the rows of rigidity matrix randomly shuffled 100
times. Fig. S1f shows the distribution of P for modes calculated from the four methods on 100 different
networks with the same link density.

One may also be interested in comparing the computational efficiency of the four above-mentioned
methods. Here we apply the four methods on randomly generated networks with different number of
nodes (denoted by n) for null space basis generation. For each n, we repeat the experiment for 100
times and record the average time taken (denoted by t). Fig. S2 shows the log-log plot of the time
taken for networks with different size, from which it can be observed that SND is the fastest among
all four methods. This shows that SND is not only more advantageous in terms of producing a sparse
representation but also in computational efficiency.

3



5.5 6 6.5 7 7.5
log n

-5

-4

-3

-2

-1

0

1

2

3

4

lo
g 

t

Method I:   SND
Method II:  SVD
Method III: null(RTR)
Method IV: QR

Figure S2: Computational time of null space basis generation using different methods. Here
n is the number of nodes and t is the average time taken (in second) for the 100 randomly generated
networks. For each method, a least-squares line is superimposed using the MATLAB lsline function.

S1.4 Other applications of SND algorithm

S1.4.1 Identify modes in larger networks

The modes in Fig. S1 might be easy to identify through observation. However, in larger networks, it
is more difficult to identify all the modes just by inspecting the structures by eye. In a larger network
constructed in Fig. S3 (inspired by the network in [6]), there are four floppy modes, only one of which
is easy to identify through observation (the rotation of a single node shown in the leftmost figure in
Fig. S3a. By applying the SND protocol to the rigidity matrix, we can identify all four modes, shown in a
hierarchical (left two modes) and spatially separated (right two modes) manner. On the other hand, the
SVD method mixes all these easily-interpretable modes and produce another set of motions (Fig. S3b).

S1.4.2 Mode Classification

It has been proved that, if the rigidity matrix of a network has full rank, the mode is a finite mode [7],
which means that the infinitesimal motion can be extended to a finite amount. An example would be a
horizontal rod with the left end fixed. With 3 constraints and 4 coordinates (the left node x1, y1 and the
right node x2, y2), with both x1 and y1 spatially fixed, we have

R =

 1 0 0 0
0 1 0 0
−1 0 1 0

 , (S6)

which is full rank. The dimension of the null space is 1, and a null space basis vector is (0, 0, 0, 1), which
corresponds to a finite rotation.

4



a

b Method I: SND

Method II: SVD

Figure S3: Identifying modes in a larger network using the SND method and the SVD
method. a, In this larger network, it is more difficult to identify the floppy modes through observation.
Applying the SND method, the four modes are identified in a hierarchical and spatially separated way.
b, The SVD method can also identify four modes, but it is hard to separate out the actuation at different
locations.

However, the opposite is not true. If the rigidity matrix does not have full rank, there are three
possible scenarios listed as follows, and as shown in Fig. S4a.

Infinitesimal mode The mode could be an infinitesimal (but not finite) mode. An example of
this is in Fig. S4b. Assume that the left and the right node are both fixed, and the coordinates are
(x1, y1, x2, y2, x3, y3) from left to right. The rigidity matrix is

R =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 1 0 0 0
0 0 −1 0 1 0

 . (S7)

The rank of this matrix is 5 (less than 6), and the mode is indeed only infinitesimal.

Finite mode An example of the rigidity matrix being not full-rank, but still having a finite mode,
is an over-constrained network with only rotational modes (e.g. the structure in Fig. S4c). There is a
finite rotational mode while the rigidity matrix does not have full rank, because there is a redundant
constraint. There is one diagonal link being redundant.

Both finite and infinitesimal modes It is also possible to create a mixture of the two modes.
Consider the structure in Fig. S4d. The rigidity matrix is still rank-deficient, and the structure has the
two modes shown in Fig. S4b-c, being infinitesimal and finite respectively.

5



a

e

f

g

b c d
Rigidity Matrix

Full
Rank

Finite Both Infinitesimal

Rotation Deformation

Not Full
Rank

Fixed

Figure S4: Mode classification. a, The classification diagram for floppy modes in a mechanical network
based on the rank of rigidity matrices. b, An example network with rank-deficient rigidity matrix and an
infinitesimal mode. c, An example network with rank-deficient rigidity matrix and a finite mode. d, An
example network with rank-deficient rigidity matrix and both finite and infinitesimal modes. e-g, An
example network with 5 modes, identified by hierarchical SND algorithm (see Section S2). e shows the
pure rotational mode of the pentagon (finite, rotation). f shows the infinitesimal mode. g shows the
remaining three modes (finite, deformation).

In addition, the finite modes can be classified as rotation and deformation, depending on whether
there is relative motion between the nodes. The example in Fig. S4c shows the rotation. If we remove
the two diagonal links, there will be an additional deformation mode.

An example To illustrate the idea above, we use a simple example as shown in Fig. S4e. The two blue
nodes are fixed spatially, and all the bonds can rotate freely around joints. If we apply the multi-scale
SND algorithm (see next section), we get the hierarchical representation in Fig. S4e-g.

If we isolate the pentagon and fix the bottom node of the pentagon, the five constraints are independent
and the rigidity matrix has full rank. Therefore, the modes within the pentagon are finite modes (Fig. S4e
and g). The multi-scale SND algorithm yields all the purely rotational mode (Fig. S4e), so all the other
modes are deformation modes (Fig. S4g). Finally, the remaining mode involves the motion of the bottom
center node so we have to consider the bottom two links. The rigidity matrix does not have full rank.
Comparing it with the mode in Fig. S4b, we know that this mode is only an infinitesimal mode.

S2 Multi-scale SND algorithm

S2.1 Identifying bi-connected components

In graph theory, a bi-connected graph is defined as a connected graph where, if any one of the vertices is
removed, the graph remains connected. A bi-connected component of a graph is a maximally bi-connected
subgraph [8]. For example, in Fig. S5a, the graph can be decomposed into 6 bi-connected components,
as shown in Fig. S5b. Within one bi-connected component, the network remains connected after removal
of any vertex. Two bi-connected components are attached to each other at one shared vertex, which is
called cut vertex or articulation point. Removal of any of these cut vertices will result in the increase of
connected components in the network.

6



c d

e f

a b

Fixed

Figure S5: Applying multi-scale SND to identify all modes in a large network with multiple
DOF. a, A simple network with two fixed nodes. b, The bi-connected components in the network. Each
color represents one bi-connected component. Two bi-connected components share at most one node.
c-f, The 14 modes identified by the multi-scale SND algorithm in a network, organized into four groups
for easier interpretation. c, All pure rotation modes. The bi-connected components are shown in the top
left mode. d, All modes concerning the chunk at the center of the network. e, Hierarchical modes at the
bottom left of the network. f, All global (larger) modes.

This definition exactly suits our need to identify sections (subgraphs) which can rotate freely around
the remaining network, since there is at most one joint vertex between any two bi-connected components.
We can apply this concept to identify all the rotational mode before using SND on the subgraphs.

S2.2 Recursive SND algorithm

The procedure for identifying mode representation using multi-scale SND:

(a) Fix two nodes in space.

(b) Identify all the bi-connected components in the graph.

(c) Identify the “base” and the “branches”. The bi-connected component containing the fixed nodes are
the “base” structure, and each set of connected bi-connected components is considered one branch.

7



(For example, in Fig. S5b, the left three bi-connected components (green, yellow, and purple) only
form one branch because they are connected and attached to the base structure (red).)

(d) Add the rotational mode of each branch around the base structure to the collection of all modes.

(e) Apply SND to the “base structure” to find out a set of sparse modes. If any mode in the base
structure involves movement of a cut vertex (connecting vertex to a branch), set the motion of all
the branch nodes to be exactly the same as the cut vertex.

(f) Apply (b)-(d) recursively to all the branches by treating the cut vertex as a fixed node, and identify
all modes in the branch structure.

(g) Add the modes in branches to the full set of modes.

In step (a), since any 2D network has two translation modes and one rotation mode (three rigid body
modes), we can always fix two nodes to freeze these modes and identify the remaining modes associated
with the relative motion. In the end, we can always add the three rigid body modes back to get the
full representation. Adding fixed nodes has the advantage of separating the rigid body modes and the
modes with respect to relative motion within the network. Note that there is no additional randomness
introduced by this multi-scale approach besides the random shuffling of the rigidity matrix when applying
the SND. The modes within a sub-branch might be different from the random shuffling, but it will not
involve any nodes outside that branch.

S2.3 Examples

We demonstrate how the procedure above can be applied on two example networks. The first example is
in Fig. 2d in the main text. The two nodes on the bottom left are fixed. The identification of bi-connected
components separates the left and the right sub-graph. Since the left sub-graph contains the fixed nodes,
the left sub-graph is the base structure and the yellow sub-graph is a branch. Step (c) will thus add the
rotational mode of the branch with respect to the base (mode (1)). Then the algorithm will apply SND
to the base structure, and identify the mode (2). Once the modes in the base structure are identified,
the algorithm repeats the process above to the branch structure. Since there is only one bi-connected
component in the branch, there is no more purely rotational mode. The SND is then applied to identify
the modes (3)-(5), which shows a clear hierarchy. Overall the modes identified by SND agrees with our
intuition (rotation of the right section), and can even outperform human eyes by identifying the floppiness
in a hierarchical manner. Applying SVD directly, in contrast, will result in five modes, each of which
involves the motion of almost all nodes that can possibly move.

The second example is a network with many more modes (Fig. S5, 14 modes). The modes are
organized in a way such that it is easier to interpret. The identification of bi-connected components is
shown in the top left mode in Fig. S5c, where the red sub-graph is the base structure, and the remaining
consists of two branches. Each branch corresponds to one rotational mode (bottom left and bottom right
in Fig. S5c). When this process is applied recursively, the top left branch has a sub-branch consisting of
the pink and yellow edges - corresponding to the rotational mode as shown in Fig. S5c top right. The
next level of recursion identifies the last rotational mode (Fig. S5c, top left).

The remaining modes are identified from applying SND to the base structure. Fig. S5d shows the
modes that only concerns the motion of the center chunk consisting of 6 nodes. Fig. S5e shows a
hierarchical mode decomposition of the modes on the bottom left of the network. Finally, Fig. S5f shows
the bigger and more global modes. Note that if a mode involves the movement of a cut vertex, all the
branch nodes will follow the same movement as the cut vertex. (In Fig. S5f all the top left four nodes
have exactly the same motion as that of the cut vertex.)

8



S3 Motion Primitives

S3.1 Extracting motion primitives

Given a random floppy network in a particular initial state, we define the motion primitives as the
generalized rotations that generate the zero modes obtained using either SND or SVD in that initial
state. Given the node velocities of modes vi ∈ Rn , i ∈ 1, ..., n− r, we seek to generalize them to
arbitrary configurations of the network by transforming the modes into generalized rotations. n is the
number of nodes times the dimension of the problem, r is the rank of the rigidity matrix, N the number of
nodes in the network, m the number of constraints, and x ∈ Rn is a vector containing all positions of the
nodes in the plane. Assume Q(x) ∈ Rn×m is a matrix whose column vectors contain all possible velocities
resulting from rotations of connected nodes in the network, and w ∈ Rm is a vector containing weights
of activation for the rotational mode. The weights that generate mode vi in the initial configuration are
found by

wi = Q†(x0)vi, (S8)

where † denotes the pseudoinverse of the matrix Q. For every state of the network, Q needs to be
updated with the positions of the nodes, however, when multiplied by the weights wi which are only
derived once at t0, the resulting rotations will correspond to the rotations that generated the zero modes
in the initial configuration, i.e. the motion primitives. Note that due to the heuristic nature of SND,
the motion primitives are not unique but depend on the pivot selection and order of rows in the supplied
rigidity matrix.

S3.2 Equations of motion

As above, the positions of each node is given in x ∈ Rn. The equations of motion are then given by

Mẍ = RTλ, (S9)

with M the mass matrix (identity matrix times mass of node if all nodes are equal), R the rigidity matrix,
and λ the constraint forces which are given by

λ = −
(
RM−1RT

)−1
Ṙẋ, (S10)

with Ṙ the time derivative of the rigidity matrix (the rigidity matrix is a function of the node positions
which change over time in the reaching task).

Along with the dynamical state, we integrate a cost function defined as the sum of the square of all
the nodes’ velocities integrated over time

C =

∫ tF

0

ẋT ẋ dt. (S11)

This cost function penalizes unnecessary node motions such that movements that only actuate the relevant
nodes for task completion result in a lower cost. It is also closely related to the kinetic energy in the
system.

S3.3 Control of robot arm using motion primitives

For the robot arm as shown in Fig. 2d in the main text, the goal is to let the two fingers reach a
randomized target location. The initial configuration of the robot arm is randomized as follows: the
whole arm rotates around the base structure, the lower arm rotates around the elbow, and the two
fingers rotate around the wrist all for a certain degree randomly chosen from -15 to 15 degrees. The

9



ba c d

g hfe

#modes

SND

SND SVD

SND SVD

SVD

% %

%

1 4 7
0

20

40

tSVD

t SN
D

Su
c 

ra
te

Su
c 

ra
te

tSVD

t SN
D

0 1 20

1

2

19.1%

45.2%

74.2% 87.9%

10.6%25.7%

0 1 2
x104

x104

0

1

2

0 5 100

5

10

0

50

100

0

50

100

ESVD

E SN
D

Target positionTarget node Fixed

-50 0 50 100 150
-150

-100

-50

0

0 3 6 9

2

5

8

Figure S6: Reaching control using motion primitives from SND and SVD modes. a–d, Grasping
control task of a robot arm. a, In this task the two target nodes are required to reach the target position
within the two circles. b, Comparison of energy cost using motion primitives from SND and SVD among
the successfully completed runs. c, Comparison of total simulation time. d, Comparison of success rate.
e-h, Reaching control task for a random network. e, In each task, a node is required to reach the target
position which follows a 2D normal distribution centered at the node’s original position. f, Comparison
of total simulation time using motion primitives from SND and SVD among successfully completed runs.
g, Histogram of number of modes involved during the actuation process. h, Comparison of success rate.

target location is chosen randomly from a ring formed by two circles: between radius 85 and radius 110
from the base node (the node right below the two fixed nodes), and the ring spans from -45 degrees to 45
degrees from the vertical line. If the target location is too close to the current finger position (less than
50 from the lower finger), another random target location is drawn.

Mode selection The robot is then actuated based on the equations of motion in the previous section.
To choose the mode to actuate at each time step, the modes are first normalized such that they all have
the same infinite norm. If the two finger nodes marked as red in Fig. 2d are A and B, and the target is
O, the optimal mode should be the one that minimizes the sum of the distances d = |OA|+ |OB|. Since
the robot arm has great flexibility to move compared to a more constrained random network, we let each
mode to actuate for 0.2s and choose the mode which will result in the smallest d within the 0.2s.

Simulation This task is repeated 100 times with random initial configuration and target location, and
for each configuration the task is repeated using motion primitives from both SND and SVD. Within
each run, once a mode is chosen, it is actuated for 0.1s. The process stops when the two fingers are close
to the target (d < 7). The actuation time of each mode is calculated as follows: the time is normalized
from 0 (first actuated mode) to 1 (last actuated mode). Each mode thus has a sequence of actuation
time, and the actuation time of a mode is the median of this time sequence.

Results Besides that the cascading activation of SND modes agree with the intuition of actuating an
arm hierarchically, as shown in the main text, using SND as motion primitives also has the advantage

10



of costing less energy: it avoids unnecessary undulation of irrelevant nodes (See Movie S3). Among the
runs where the fingers successfully reach the target, SND costs less energy than SVD in about 74% of the
time (Fig. S6b). In addition, the motion is more coordinated and thus reaches the target easier (higher
success rate among the 100 runs, Fig. S6d) and faster (88% of the time, Fig. S6c).

S3.4 Control of random network using motion primitives

The hierarchical actuation of the simple robotic arm might be obvious for human eyes. Therefore, we test
the control on a random network using the motion primitives. We use the same network as in Section S2.3
where there are 14 DOF. For a randomly chosen node (target node), the task is to reach a target location
nearby. The target location is randomly chosen from a 2D Gaussian distribution with the center being
the location of the target node and width being 0.5. It is possible that when the target is too far from
the node, the chosen node cannot reach the target however the modes are actuated.

The task is repeated for all the 35 nodes that are not fixed, and it is repeated 20 times for each node
(20 random target location).

Mode selection The optimal mode i is chosen such that the distance between the target node and the
target location reduces the fastest. In other words, the mode i∗ is chosen such that

i∗ = argmin
i∈{1,...,14}

|~vij · ~d|, (S12)

where ~vij is the infinitesimal speed of target node j in ith mode, and ~d is the vector pointing from the
target node to the target location.

Simulation The simulation is similar to the one for the robot arm above. After identifying the sequence
of the modes actuated in each run, we also calculate the number of modes involved among the 14 modes.

Results Besides the plot for total energy as shown in the main text, Fig. S6f shows that the simulation
using SND is also faster than that using SVD. Approximately 45% of the time SND is faster, compared
to 19% the other way round (Fig. S6f). Note that due to the fact that the simulation is discretized and
sometimes the target location can be close to the target nodes, the simulation time can be the same for
SVD and SND.

Since SND modes are sparser and more spatially separated, the reaching tasks can involve less modes
than in the case of SVD, as shown in the histogram in Fig. S6g. For very simple reaching tasks (target
location very close to the current location of the target node), it is likely that actuating one mode is
enough for both SVD and SND. For more complicated tasks, the reaching involves less modes with SND
modes than that with SVD modes. In addition, it is also more likely that the reaching task completes
successfully using SND as motion primitives (Fig. S6h).

S4 Network Control

S4.1 Spring network simulation

For the calculation of shear modulus, the rigid bonds are treated as springs with stiffness k = 30 and rest
length l0 = 1.122. There are in total Nx rows and Ny columns of nodes in the network. The nodes in
the top row and the bottom row are fixed. At the beginning of the simulation, the nodes in the top row
are displaced to the right by 8% of the width from top to bottom ((Ny − 1)l0 ×

√
3/2× 0.08).

11



At each time step, the total force on each node is calculated as

Fi = k
∑

j∈G(i)

(lij − l0)(xj − xi)/lij , (S13)

where lij = ||rj − ri|| and G(i) is the set of nodes connected to node i by springs. The node is displaced
by a small amount in the direction of the force (over-damped limit) plus a random noise:

xi,t+1 = xi,t + Fi∆t + ξ, (S14)

where ∆t = 0.0005, and the small random uncorrelated noise ξ is uniformly distributed between −0.001
to +0.001 in both x and y direction. The noise is added to facilitate the equilibrium process. The process
is repeated 20,000 times.

S4.2 Sequential tuning

The sequential tuning process shows the power of the hierarchical representation of floppy modes. By
freezing the biggest modes, the system gets rigid faster than randomly adding links. The detailed proce-
dure of MS protocol is as follows:

(a) Find the set of floppy modes using the SND algorithm.

(b) Find the mode with the largest s.

(c) Within this mode, find the node with the largest infinitesimal displacement.

(d) Connect this node to one of its neighbors. If there are multiple closest neighboring nodes available,
randomly choose one.

(e) (For sequential tuning) Repeat steps (a) to (d) until the network is fully connected.

Fig. 3g-h in the main text only shows the results for 10 networks using the two methods. We apply
this control protocol on 50 networks with random configurations (20% links connected), and repeat 10
times on each network. All the results and the median G values are shown in Fig. S7a.

In step (d), it is easy to identify the closest neighbors of a node since it is a regular triangular network.
However, in the packing-derived network, one needs to set up the neighboring relationship beforehand,
e.g. using a maximum neighboring distance. For the circular network example in Section S5.1, a fixed
threshold is used to determine neighboring relationship.

S4.3 Multi-scale SND

Using multi-scale SND algorithm in the sequential tuning process can improve the efficiency even more.
The step (a) in Section S4.2 is replaced by “Apply multi-scale SND algorithm to identify a set of modes
in the network, with two nodes in the top row and the bottom row randomly selected to be spatially
fixed.” The resulting change of shear modulus suggests that this control protocol allows the network to
achieve rigidity with even fewer number of links (Fig. S7b).

S4.4 Sampling frequency

The sequential tuning process in the main text requires re-calculating the rigidity matrix every time a
link is added. In fact, we can reduce the sampling frequency. Once the modes have been sorted from
the biggest to the smallest, links can be added based on the biggest q modes. Therefore, we add the
following to the step (d) in the procedure above: Repeat for the largest q modes. The results are shown

12



GG

ρρ

a b

d

c

f

g h

e

0.2 0.4 0.6 0.8 1
10-3

10-2

10-1

100

q=2
q=3
q=4
q=5
q=6
q=7
q=8
q=9
q=10
q=11

Random
Efficient

q

Δ

G %

ρ
0.2 0.4 0.6 0.8 1

10-3

10-2

10-1

100

Random
Random Neighbor
Rel. Disp. Neighbor
Best Neighbor

Random
Efficient
Efficient Multi-SND

Random 7x7
Efficient 7x7
Random 25x25
Efficient 25x25

1 3 5 7 9 110

0.2

0.4

0.6

Random

0.2 0.4 0.6 0.8 1

0.8

0.9
Random, Eig>1
Efficient,  Eig>1

G

ρ

ρ

ρ ρ

ρ
0.2 0.4 0.6 0.8 1

10-3

10-2

10-1

100

u=0.5
u=0.1

u=0.9

Random
Efficient

0.2 0.4 0.6 0.8 1
10-3

10-2

10-1

100

G G

0.2 0.4 0.6 0.8 1
10-3

10-2

10-1

100

G

Random 40x40
Efficient 40x40

0.2 0.4 0.6 0.8 1
10-3

10-2

10-1

100

Random
Highest Deg
Lowest Deg

Figure S7: Sequential tuning in triangular networks. a, The change of shear modulus G in the
sequential tuning process (similar to Fig. 3g in the main text), with 10 repeats from 50 random initial
network configurations with 20% links connected. b, The multi-scale SND algorithm is added for com-
parison. c, A batch of q links (instead of one link) are added every time the mode decomposition is
calculated, and the shear modulus is shown for each case. Inset shows the integration of G from ρ = 0.35
to 0.65 for different q. d, Comparison between the best neighbor approach, relative displacement neigh-
bor approach, random neighbor approach, and the random case in the sequential tuning process. e, The
effect of the parameter “u” in the sequential tuning process. f, The percentage of eigenvalues of RTR
larger than 1 among all nonzero eigenvalues in the tuning process for both methods. g, Similar tuning
process for a larger (25×25) network is added for comparison. h, Sequential tuning process with two
heuristic approaches to add links: Always adding links to the highest-degree node or always adding links
to the lowest-degree node.

in Fig. S7c. The tuning result from some intermediate q is better than the original q = 1 case. This
might come from the fact that, since adding a link might not always kill a mode, the q = 1 case might
get stuck in killing one particular mode and waste links during this process.

To quantify the difference between different sampling frequencies, the integration of G with respect

13



to the link density

∆(q) =

∫
G(ρ)dρ (S15)

from ρ = 0.45 to 0.65 is calculated for different q (Fig. S7c inset). For this 7× 7 triangular network, the
optimal sampling frequency is between 3 and 4.

S4.5 Neighbor selection in sequential tuning

In step (d) of the sequential tuning process, instead of adding a link to a randomly chosen neighbor,
it is also possible to find the “best” neighbor to add a link between. To investigate the effect of the
neighbor selection, we apply two approaches. (1) Relative displacement approach: the step (d) in the
process is updated as “connect this node to the neighboring (unconnected) node which has the largest
relative displacement when the mode is activated”. In other words, assume that the current node c has
infinitesimal speed v when the node is activated, find the closest (unconnected) neighboring node j such
that |(xc − xj) · v| is the largest. (2) Best neighbor approach: step (d) is updated as “calculate the
shear modulus after each link from the node to its (unconnected) closest neighbors is added separately.
Pick the link that leads to the largest increase in the shear modulus.” Approach (1) has a very modest
effect in terms of the control efficiency. Approach (2) takes significantly more time as it involves the
spring network simulation until equilibrium. It does improve the tuning efficiency, but the effect is not
significant either (Fig. S7d).

S4.6 Comparison with graph theory-based approaches

In the sequential tuning process, two graph theory-based approaches are implemented in comparison to
the random protocol: (1) Always adding a link between the highest-degree node and one of its neighbors.
(2) Always adding a link between the lowest-degree node and one of its neighbors. Neither of these two
approaches are as good as the random protocol. This can be explained as follows: If links are always
added to highest-degree nodes, the network is being strengthened at already highly-connected areas,
which does not necessarily increase the stiffness overall. If links are always added to lowest-degree nodes,
there are a lot of corner and edge nodes that are connected in the beginning, which do not help increasing
the shear modulus of the network.

S4.7 Algorithm parameter u

We also examine the effect of the parameter u in the sequential tuning process. In the SND algorithm,
u is a parameter used in a process similar to Markowitz’s pivot selection (see equation (6) in [1]). In all
the simulations above, we use u = 0.5. Changing u to be 0.1 or 0.9 does not change the tuning results
significantly (Fig. S7e).

S4.8 Spectral analysis of the dynamical matrix

To further understand the underlying mechanism of efficient rigidification, we perform spectral analysis
to the dynamical matrix

D = RT ΛR, (S16)

where Λ is a diagonal matrix with the diagonal entries corresponding to the stiffness of the springs.
Since we assume equal stiffness in all the links, Λ is simply the identity matrix multiplied by a constant.
The eigenvalues of the dynamic matrix D correspond to the frequencies of the modes. We repeat the
sequential tuning in the main text, and calculate the distribution of eigenvalues of D each time after a
link is added, for both our method and the random method.

14



15mm

R1.25mm

3m
m

.9
4m

m

7.58mm

3m
m

0 2 4 6 8 10
Extension [mm]

0

0.2

0.4

0.6

0.8

1

Lo
ad

 [N
]

bba b

Si
de

 v
ie

w

c

2 cm

Figure S8: Experimental network set-up and test. a, Dimensions of a cell of the cast experimental
network. b, Image of a cast network in the force measurement set-up. c, Load measurement raw data of
a fully-connected 7× 7 network for a maximal displacement of 10%.

When the link density is small, our method is mostly killing the largest zero mode, and this largest zero
mode is more likely to become a low-frequency mode. Plotting the percentage of the mode frequencies
above a threshold (one), we see that the MS protocol indeed builds networks with less high frequency
modes (Fig. S7f). Therefore, a higher participation rate P is enforced in the MS protocol, thus increasing
the shear modulus faster.

Note that the percentage of high-frequency modes (eigenvalues larger than 1) increases when ρ becomes
larger. This comes from there being no floppy modes, and adding additional links makes the network
overall more rigid with higher frequency modes.

S4.9 Validity of MS protocol

MS protocol, designed to rigidify the network, is only valid when the network is under-constrained. Note
that this happens when the link density is below the jamming threshold. Moreover, the link density
should also be below the rigidity transition threshold [9], where the jump happens in the random case.

To see how the system size affects the validity of MS protocol, we apply the similar control process
as in Section S4.2 to a 25×25 and 40×40 network. The gap between the MS protocol and the random
protocol is wider in the larger network, and the jump in shear modulus occurs at lower link density
(Fig. S7g). This comes from the fact that in larger networks, the ratio of boundary nodes over bulk
nodes is smaller, and the transition density is closer to the large network limit ρ = 0.445 [9].

S4.10 Experiments

Physical networks are cast using 3D printed molds and silicone rubber (Dragon SkinTM 30, Young’s
modulus 5.93 × 105 Pa). Each network edge has a length of 15 mm with a width of 3 mm that thins
out towards the node (to 1 mm) to enable space between connecting edges to a node and to minimize
rotational stiffness (see Fig. S8a). Each network is fully connected initially, and we cut connections
sequentially if required by the experimental protocol. Shear forces are measured on an Instron 5566 with
a 10N load cell by clamping the outermost edges of the network along its length with a 3D printed clamp
and applying a displacement (at a rate of 1 mm/s) to one side until a displacement of 10% of the network
length is reached. The occurring shear forces in this process are recorded as shown in Fig. S8b for a
7× 7 network stretched by 10%. A small decrease from the initial slope is observed after 5% stretching
which coincides with the out-of-plane motion of the network. Shear force data used for evaluation is

15



1 2

4

6

8

10

3

5

7

9

Link Link Link Link

30 60 90 120

10-3
10-2
10-1

G

30 60 90 120

10-3
10-2
10-1

G

30 60 90 120

10-3
10-2
10-1

G

30 60 90 120

10-3
10-2
10-1

G

30 60 90 120

10-3
10-2
10-1

G

30 60 90 120

10-3
10-2
10-1

G

30 60 90 120

10-3
10-2
10-1

G

30 60 90 120

10-3
10-2
10-1

G

30 60 90 120

10-3
10-2
10-1

G

30 60 90 120

10-3
10-2
10-1

G

30 60 90 120
10-3
10-2
10-1
100

G

30 60 90 120
10-3
10-2
10-1
100

G

30 60 90 120
10-3
10-2
10-1
100

G
30 60 90 120

10-3
10-2
10-1
100

G

30 60 90 120
10-3
10-2
10-1
100

G

30 60 90 120
10-3
10-2
10-1
100

G

30 60 90 120
10-3
10-2
10-1
100

G

30 60 90 120
10-3
10-2
10-1
100

G

30 60 90 120
10-3
10-2
10-1
100

G

30 60 90 120
10-3
10-2
10-1
100

G

ExperimentNetwork
ID

Network
ID

Simulation Experiment Simulation

SND
Random

Figure S9: The shear modulus of the 10 example networks with different links sequentially
added/removed in both experiments and simulations.

therefore extracted at 3% strain to avoid influence of out-of-plane effects. We tested 10 networks each
with a different edge-removal sequences. The load curves of all 10 fully connected networks were checked
to be nominal before experiments were conducted.

The raw data is shown in Fig. S9. Since the rotational energy plays a role at the small-stretch state,
the shear modulus of the network in the experiment is nonzero even when there is no stretching involved.
The biggest shear modulus we have observed when there should be zero stretch is in Network 8, and the
shear modulus is around 0.01. Therefore, all the shear modulus below 0.01 are set to 0 in Fig. 3 of the
main text.

The sequence of the links added in the experiment is shown in Fig. S10.

S5 Load prediction

S5.1 Generating jamming network

The standard jamming algorithm is used to create the spring network in the load prediction section [10–
12]. Bi-dispersed disks grow until reaching jammed configuration in the confined square, and springs con-
nect the center of disks if the two disks overlap. The network generated this way has higher heterogeneity
compared to the regular triangular network.

16



1 2

4

6

8

10

3

5

7

9

RandomNetwork
ID

Network
ID

MS Random MS
1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38 39

40
41

42
43

44

4546

47

48

49

50

51

52

53

54

5556

57

58

59

60

61

62

63

64

65

66

67

68

69 70

71

72

73 74 75

76

77

7879

80

81

82

83

84

85

86

87

8889

90

91
92

93

94

95

96

1

2

3
4

5 6
78

9

10

11

12

13

14
15

16

17

18

19

20

21

22

23

24

25 26

27
28

2930

31
32 33

34

35

36

37

38

39

4041
42 43

44

45 46

47

48

49

50
51

52

53 54

55

56

57 58
59

60

61

62

63

64
65 66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

12
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

2425

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
45

46

47

48

49

50

51

52
53

54

55

56

57

58

59

60

61

62

63

64

65

66

6768

69
70

71

72

73

74
75

76

77

78

79

80

81

82

83

84

85

8687 88

89

90

91

9293

94

95

96

1

23

45 6
7

89

10

11

12
13

14

15

16

17

18

19

20

21

22

23

24 25

26

27

28

29

30

31

32 33
34 35

36

37

38

3940

41

42

43

44
45

46
47

48

49

50

51

52

53

54

5556

57

58 59

60 61

62

63

64

65

66

67

68
6970

71

72

73

74 75

76

77 78

79

80

81

82
83

84

85

86
87

88

89

90

91

92

93

94
95

96

1

2

3

4

5

6
7

8

9 1011

12

13

1415

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

3637

38

39

40

41

42

43
44

45

46

47

48

49

50

51

5253

54

55
56

57

58

59 6061

62

6364

65

66

67

68

69

7071

72

73

74

75

76

77
78

79

80

81

82

83
84

85

86

87

88

89

90

91

92
93

94

95

96

1

2

34

5

6

7

8

9

10

11

12

13

14

15
16

17
18

19

20

21

22

23

24
25

26
27

28

2930

31

32

33

34

35

36
37

38

39

40

41
42

43

44 45 46

47

48 49

50

51
52

53
54

55

56

57

58

59

60
61

62

63

64

65

66

67

68

69 70
71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94 95

96

1

23

4

5
6

7

8

9

10

11

12

13

1415

16

17

18 19

20

21

22

23

24

25

26
27

28

29

30

31 32

33

34

35

36

37

38

39

4041 42

43

44

45

46

47
48

49

50

51

52

53

54

55

56

57

58

59

60
61

62
63

64

65

66

67

68

69

70

71
72

73

74

75

76

77

78

79

80

81

82

83

84
85

86

87

88

89 90

91

92

93

94

95

96

1

2
34 5

6

7

8

9

10 11

12
13

14
15

16

17

18

19

20

21

22

23

24 25

26

27

28
29

30

31

32

33
34

35
36

37
38

39

40

41

42

43

44

45

46

47

48

49

50

5152
53

54

55
56

57
58

59

60

61 62

63
64

65

66 67

6869

70
71

72

73

74

75

76

77

78

79

80

81

8283

84

85

86

87

88

89

90

91

92

93

94

95

96

1

2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26
27

28

29

30

31

32

33 34

35

36

37

38

39

40

41
42

43

44

45

46

47

48

49

5051

52

5354

55

56

57

5859

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79
80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

1

2

34

5 6

7

8

9

10

11
12

13

14
15

16

17

18

19
20

21
22

23

24

25

26

27

28

29

3031

32

33

34

35
36

37

38

39

40

41

42

43 44
45

46

47

48

4950

515253 54

55

56
57

58

59

60

61

62

63

64

65

66

67

68

69

70
71

72

73

74
75

76

77

78

79

80

81

82 83

84

85

86

87
88

89
9091

92

93

94

95

96

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
17

18

19

20

21 22

23

24

25

26

27

28

29

30

31

32

33
34

35

36

37

38

39

40

41

42

43

44

45
46

47 48

49

50

51
52

53

54

55

5657
58

59

60

61

62

63

64

65

66

67

68

69

70

71

7273

74
75

76

77

78

79

80

81

82

83

84

85

86

8788

89

90

91

92

93

94

95

96

1

2
3

4

5

67

8

9
1011

12

13

14

15

16

17

18

19
20

2122

23

24

25

26
27

28

2930
31

32

33

34

35

36

37

38

39

40

41

42

43

44

4546

47

48
49 50

51

52

53

54

55

56 57

58

59

60

61

62
63

64

65 66

67

68
69

7071

72

73

74

75

76

77

78

79

80 81

82

83

84

85

86

87

88 89

90

91

92

93

94

95

96

1

2

3

4

567

8

9

10

11

12

13

14

15

16

17

18

19

2021

22

23

24

25

26

27
28

29
3031

32

33

34

35

36
37

38

39

40

41

42

43

44 45

46

47

48

49

50

5152

5354
55

56

57

58

59

60
61

62

63

64

65

66

67

68

69

70

7172

73

74

75

76

77

78

79

80

8182

83

84

85

86

87

88

89

90

91

92

93

94

95

96

12 3
45

6
7

8

9

10

11

12
13 14

15

16

17

18
192021

22

23

24

25

26

27

28

29

30

31

32

33
34

35

36

37

38 39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65
66

67

68

69

70

71
72

73
74

75

76

77

78

79

80

81

8283

84

85
86

87

88

89

90

91

92

93

94

95

96 1

2

3

4

56

7

8

9

10

11

12

13
14

15

16

17 18

19
20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

4546

47

4849

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65
66

67

68

69

70

71

72

73

74

75

76

77

78

79 80

81

82

83

84

85 86

87

88

89
90

91

92

93
94

95 96

1

2

3
4

5

6

7

8

910
11

12 13

14
15

16
1718 19

20
21

22
23

2425
26

27

28

29

30 31

32

33

34
35

36

37

38

39

40

41

42 43

44

45

46

47

48

49

50

51

52
53

54

55
56

57

58

59
60

61

62

63

64

65
66

67

68

69
70

71

72
73

74

75 76

77

7879 80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

1

2
34

5

6

7

8

9

10

11

1213

14

15

16

17

18

19

20

21

22

23

24

25

26 27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56
57

58

59

60

61

62

63

64

6566

67

68

6970

71

72

73

74

75 76

77

78

79

80

81

82

83
84

85 86

8788

89

9091
92 93

94

95

96

1

2
3

4 5

6

7
8

9

10

11

1213
14

15 16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

3132

33

34

35

36

37
38

39

40 41
42

43

44

45 46

47

48

49

50

51

52

53

54

5556

57

58
59 60

61

62
63

64

65

66
67

68 69

70

71

72

73

7475 76

77

78

79

80

8182

83

84

85
86

87

88

89

90

91

92

93

94

95
96

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
25

26

27

28

29

30

31
32

33

34

35

36

37 38

39

40

41 42

43

44

45

46

47

48

49

50

51

52

53

54

5556

57

58

59

60

61

6263

64

65

66
67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83
84

85

86

87

88

89

90

91

92

93

94

95
96

1

2

3

4

56

7

8

9

10

11

12

13

14

1516

17

18 19

20
21

22

23

24

25

26

27

28

29 30 31

32

33

34

35

36

37

38

39

40

41
42

4344

45

46

47

48

49

50

51

52

53

54
55

56

57

58

59

60

61

62

63

64

65
66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81 82

83

84

85

86

87

88

8990

91

92

93
94

9596

Initial configuration Added Links

Figure S10: The sequence of the links added to networks (green) in the experiment using the
MS protocol or randomly. The gray links form the initial network configuration.

S5.2 Load prediction

The key step in the load prediction is to find nodes that are involved in smaller modes in the SND
mode representation, and it is less likely for the links between these nodes to bear loads. The intuition
behind it is that, since the modes found by the SND algorithm are spatially separated and hierarchically
represented, the nodes in smaller modes are more likely to be at free ends or have more flexibility (less
interconnected) to accommodate the network deformation. Therefore, when the network is stretched, the
links connecting those at free ends do not need to stretch, and the links connecting the flexible nodes can

17



rotate to accommodate the deformation.
Here we provide more details of the load prediction procedure.

Step 1: Mode decomposition

The first step is to identify how likely these nodes are in smaller modes (free ends or flexible area) or
bigger modes (more interconnected area).

(a) Apply the SND method to find a set of floppy modes. Calculate the size of each mode sj .

(b) Find out all the set of modes Bi that involve the movement of node i.

(c) Repeat (a) and (b) m times. Calculate the globality as

fi =
1

m

m∑
h=1

min
j∈Bh

i

shj ,

where shj is the size of the jth mode in the hth run, and Bh
i is the set of modes in the hth run

involving node i (h = 1, 2, ...,m). If node i is not involved in any mode, fi is set to be 0.

The calculation above assigns a quantity fi for each node i, which characterizes how likely a node is
involved in a larger or smaller mode. For example, a node at a free end is usually involved in a smaller
mode, so the corresponding fi is smaller. m = 50 in the circular network example.

Step 2: Find eligible nodes

The next step is to find the set of nodes that might be connected to links that bear loads. Setting a
threshold t for the globality f , we define the nodes with fi > t (more likely to involve in larger modes)
to be global nodes, and the nodes with fi < t (more likely to involve in smaller modes) as local nodes.
For nodes that are not involved in any modes (fi = 0), they are fixed nodes.

The eligible nodes are the union of global nodes, fixed nodes, and boundary nodes, as these nodes are
believed to be more interconnected, the links among which are more likely to bear loads.

Step 3: Find potential load bearing path

We use the breadth-first search (BFS) from the boundary nodes (with the path only going through “fixed”
and “global” nodes), and find a closest path to another boundary node. The prediction is that the links
along the path are more likely to bear loads. The detailed procedure is as follows:

(a) Start from one of the boundary nodes and do a BFS. A descendent node has to satisfy three
requirements: (1) It is within the set of eligible nodes. (2) It has not been visited. (3) It is
connected to the current search node.

(b) At each layer in the search tree, mark the nodes as visited.

(c) Once one of the descendent nodes is a boundary node, stop the BFS search.

(d) The links along the shortest path between the two boundary nodes are predicted to bear higher
loads. Remove “visited” markers generated in the current run.

(e) Repeat the process above until all the boundary nodes are visited. All the links not predicted to
bear higher loads are predicted to bear less loads.

With the procedure above, all the links are classified to either bear more load or less load (more
stretched or less stretched).

18



a

d e

cb

-5 0 5 10 15
x10-30

5

10

15

Δx

%

4 8 12 16 20

10

20

30

40

x10-3 x10-3es ex

t t
0.3

0.4

0.5

0.6

0.7

0.8

1cm 1cm

4 8 12 16 20

10

20

30

40 0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure S11: Numerical simulation for load prediction. a, The histogram of extension (or compres-
sion) of the springs in the numerical simulation indicates that most of the springs are stretched (blue)
rather than compressed (red) under the boundary stretching. b, The network before stretching, with the
nodes manually marked. c, The network after 11% stretching, with the nodes manually marked. d, The
global fit for optimal prediction accuracy towards the simulation, with both threshold t and es varying
in a range. Brighter color represents higher accuracy. e, A similar plot with the prediction accuracy for
experiment with varying t and ex.

S5.3 Simulation

In the numerical simulation, the network is treated as a spring network with spring stiffness k = 30, and
the rest length l0 is equal to the initial length after the jamming network is generated. The simulation
is similar to the calculation of shear modulus: The boundary nodes are first displaced outwards from
the center by 10%, and the network is equilibrated using the same integration steps as described in
Section S4.1. Since the edge length is about 10 times smaller than that in the triangular network, the
additional noise is reduced to −0.00005 to +0.00005 to facilitate equilibrium.

After the network is equilibrated, set a threshold es. Links with extension larger than es are classified
as “more stretched”, and those with extension smaller than es are classified as “less stretched”. (The
es shown in figures is rescaled by the diameter of the circle and so it is dimensionless.) This binary
classification can be used to compare with the prediction from the infinitesimal approach.

Note that some links might be compressed rather than stretched under the global stretching. However,
the percentage of the links compressed is small (Fig. S11a with the blue color showing the distribution of
links stretching and the red color showing the distribution of links compressed), and so we only consider
the absolute change in the length of the springs.

19



a b
Large e

Large e

Small e

Small e

Prediction

Si
m

ul
at

io
n

60.2% 4.9%

33.0%1.9%

Large e

Large e

Small e

Small e

Prediction

Ex
pe

rim
en

t

44.7% 1.0%

36.9%17.5%

Table S1: The prediction accuracy from the prediction towards the numerical simulation (a)
and the experiment (b). The accuracy is the sum of “true positive” rate (top left number) and “true
negative” rate (bottom right number).

S5.4 Experiments

The circular network is cast using a 3D printed mold and silicone rubber (Dragon SkinTM 30, Young’s
modulus 5.93 × 105 Pa). The physical network diameter is 100 mm and the thickness of an edge is
2.5 mm. The outermost edge of the circular network is glued on a stretchable black spandex cloth which
is uniformly stretched to reach an 11% size increase as shown in Fig. S11b. Network nodes are extracted
and evaluated from image data. The final position of nodes are shown in Fig. S11c.

A similar threshold ex (scaled by the diameter of the circle) is set up to classify the extension of the
links into more stretched or less stretched.

S5.5 Prediction accuracy

Since we have the binary classification of links into either “more stretched” or “less stretched” in the
prediction (from infinitesimal approach), simulation, and experiment, we can calculate the match per-
centage (prediction accuracy) between them. We define the “true positive” rate as the percentage of
links stretched more in both prediction and simulation (or experiment), and “true negative” rate as the
percentage of links stretched less in both prediction and simulation (or experiment). The prediction
accuracy is the sum of the “true positive” rate and the “true negative” rate.

By varying the threshold of the binary classification, we might get different prediction accuracy. In
Fig. 6j and k of the main text, we have already showed the prediction accuracy with t = 12 and varying
threshold es and et in simulation and experiment. It is also possible to vary the threshold t and obtain
an optimal accuracy in the two-dimensional parameter space. Fig. S11d shows the prediction accuracy
between prediction and simulation with varying t and es, and Fig. S11e shows the accuracy between
prediction and experiment with varying t and ex. The highest prediction accuracy is 93.2% when t is
from 9 to 20 and es = 0.0018 for the simulation, and 81.6% when t is between 9 and 20 and ex = 5 for
the experiment (see also Table S1).

S6 Video caption

Movie S1: Actuation of the modes in a 4 × 4 network. The four floppy modes identified by SND and
SVD in Fig. 2 (main text) are actuated in this movie. Since some of the modes are only infinitesimal,
they are actuated with small amplitudes.
Movie S2: Numerical simulation to find the equilibrium length of a network subject to uniform stretch-
ing. For the circular network, the boundary nodes are first displaced outwards from the center by 10%.
The network is then equilibrated using the same integration procedures as described in Section S4.1.
The first 100 integration steps are slowed down because the change in the spring length is faster in the
beginning.

20



Movie S3: Pinching task performed by a robot arm using different motor primitives. The goal is to let
the two fingers (red filled nodes) to reach the target position (red circle). The control process requires
motor primitives, which can derive from either SND or SVD. With the motor primitives from SND the
reaching is faster, more hierarchical (starting from the arm mode and ending with the finger modes), and
more energy efficient (less unnecessary undulations at the end of the arm in the beginning).
Movie S4: Reaching task performed by a random network using different motor primitives. The goal
is to let an arbitrary chosen node in the network to reach a randomly chosen target location near that
node. With motor primitives from SND, the reaching is achieved faster and costs less energy.

References

[1] M. Khorramizadeh and N. Mahdavi-Amiri, “An efficient algorithm for sparse null space basis problem
using abs methods,” Numer. Algorithms, vol. 62, no. 3, pp. 469–485, 2013.

[2] J. Abaffy, C. G. Broyden, and E. Spedicato, “A class of direct methods for linear equations,” Numer.
Math., vol. 45, pp. 361–376, 1984.

[3] J. Abaffy and E. Spedicato, ABS projection algorithms: mathematical techniques for linear and
nonlinear equations. Upper Saddle River, NJ: Prentice-Hall, 1989.

[4] Z. Chen, N. Dang, and Y. Xue, “A general algorithm for underdetermined linear systems,” in
Proceedings of the First International Conference on ABS Algorithms, 1992.

[5] H. M. Markowitz, “The elimination form of the inverse and its application to linear programming,”
Manage. Sci., vol. 3, no. 3, pp. 255–269, 1957.

[6] F. G. Woodhouse, H. Ronellenfitsch, and J. Dunkel, “Autonomous actuation of zero modes in me-
chanical networks far from equilibrium,” Phys. Rev. Lett., vol. 121, no. 17, p. 178001, 2018.

[7] J. Z. Kim, Z. Lu, S. H. Strogatz, and D. S. Bassett, “Conformational control of mechanical networks,”
Nat. Phys., vol. 15, no. 7, pp. 714–720, 2019.

[8] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM J. Comput., vol. 1, no. 2, pp. 146–
160, 1972.

[9] C. P. Broedersz, X. Mao, T. C. Lubensky, and F. C. MacKintosh, “Criticality and isostaticity in
fibre networks,” Nat. Phys., vol. 7, no. 12, p. 983, 2011.

[10] M. Skoge, A. Donev, F. H. Stillinger, and S. Torquato, “Packing hyperspheres in high-dimensional
Euclidean spaces,” Phys. Rev. E, vol. 74, no. 4, p. 041127, 2006.

[11] W. G. Ellenbroek, Z. Zeravcic, W. van Saarloos, and M. van Hecke, “Non-affine response: Jammed
packings vs. spring networks,” Europhys. Lett., vol. 87, no. 3, p. 34004, 2009.

[12] A. J. Liu and S. R. Nagel, “The jamming transition and the marginally jammed solid,” Annu. Rev.
Condens. Matter Phys., vol. 1, no. 1, pp. 347–369, 2010.

21


	Sparse null space decomposition
	Overview of the algorithm
	Implementation
	Comparison with other methods
	Other applications of SND algorithm
	Identify modes in larger networks
	Mode Classification


	Multi-scale SND algorithm
	Identifying bi-connected components
	Recursive SND algorithm
	Examples

	Motion Primitives
	Extracting motion primitives
	Equations of motion
	Control of robot arm using motion primitives
	Control of random network using motion primitives

	Network Control
	Spring network simulation
	Sequential tuning
	Multi-scale SND
	Sampling frequency
	Neighbor selection in sequential tuning
	Comparison with graph theory-based approaches
	Algorithm parameter u
	Spectral analysis of the dynamical matrix
	Validity of MS protocol
	Experiments

	Load prediction
	Generating jamming network
	Load prediction
	Simulation
	Experiments
	Prediction accuracy

	Video caption

