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Kirigami, the art of paper cutting, has become a
paradigm for mechanical metamaterials in recent
years. The basic building blocks of any kirigami
structures are repetitive deployable patterns that
derive inspiration from geometric art forms and
simple planar tilings. Here, we complement these
approaches by directly linking kirigami patterns to
the symmetry associated with the set of 17 repeating
patterns that fully characterize the space of periodic
tilings of the plane. We start by showing how to
construct deployable kirigami patterns using any of
the wallpaper groups, and then design symmetry-
preserving cut patterns to achieve arbitrary size
changes via deployment. We further prove that
different symmetry changes can be achieved by
controlling the shape and connectivity of the tiles and
connect these results to the underlying kirigami-based
lattice structures. All together, our work provides
a systematic approach for creating a broad range
of kirigami-based deployable structures with any
prescribed size and symmetry properties.

1. Introduction
Kirigami, the creative art of paper cutting, has recently
transformed from a beautiful art form into a promising
approach for the science and engineering of shape and
thence function. By introducing architected cuts into
a thin sheet of material, one can achieve deployable
structures with auxetic properties while morphing into
pre-specified shapes. This has led to a number of studies
on the geometry, topology and mechanics of kirigami
structures [1–5]. Most of these studies start with a
relatively simple set of basic building blocks of kirigami
patterns that take the form of triangles [6] or quads [7],
although on occasion they take inspiration from art in

2021 The Author(s) Published by the Royal Society. All rights reserved.
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Table 1. Characterization of the 17 wallpaper groups [15].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rotational reflectional symmetry
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

symmetry yes no
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sixfold p6m p6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fourfold anymirrors at 45◦? p4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

yes: p4m no: p4g
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

threefold any rotation centre offmirrors? p3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

yes: p31m no: p3m1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

twofold any perpendicular reflections? any glide reflection?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

yes: any rotation centre offmirrors? no: pmg yes: pgg no: p2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

yes: cmm no: pmm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

onefold any glide reflection axis offmirrors? any glide reflection?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(none) yes: cm no: pm yes: pg no: p1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the form of ancient Islamic tiling patterns [8], which are periodic. The periodicity of the pattern
allows us to easily scale up the design of a deployable structure without changing its overall
shape. Recently, there have been attempts to explore generalizations of the cut geometry [9,10]
and cut topology [11], moving away from purely periodic deployable kirigami base patterns.
However, it is still unclear how one might explore such base patterns systematically. Since the
deployment of a kirigami structure is largely driven by the local rotation of the tiles, it is natural
to ask what class of symmetries and size changes of the deployed structure can be achieved by
controlling the tile geometry and connectivity.

A natural place to begin in our quest to address this question is to turn to the class of
two-dimensional repetitive patterns that tile the plane, which are characterized by the plane
crystallographic groups (the wallpaper groups) [12]. A remarkable result by Fedorov [13] and
Pólya [14] is that there are exactly 17 distinct wallpaper groups with different properties in terms
of the rotational, reflectional and glide reflectional (i.e. the combination of a reflection over a
line and a translation along the line) symmetries. Furthermore, the crystallographic restriction
theorem tells us that the order of rotational symmetry in any wallpaper group pattern can only
be n = 1, 2, 3, 4, 6. Table 1 lists the 17 wallpaper groups (represented using the crystallographic
notations) with their symmetry properties [15]. While wallpaper groups have started to form the
basis for planar electromagnetic metamaterials [16,17] and topology optimization [18], they do
not seem to have been explored in the context of kirigami-based mechanical metamaterials, with
only a few patterns identified [19]. Here, we remedy this and consider all 17 of the wallpaper
groups for the design of deployable kirigami patterns.

2. Existence of deployable wallpaper group patterns
The first question that naturally arises is whether all 17 wallpaper groups can be used for
designing deployable kirigami patterns. We answer this question by establishing the following
result.

Theorem 2.1. For any group G among the 17 wallpaper groups, there exists a deployable kirigami
pattern in G.

Proof. We prove this result by constructing explicit examples of periodic deployable structures
in all 17 wallpaper groups (figure 1). Key reflection axes, glide reflection axes and rotation centres
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p6m p6 p6 p6m

p4 p4 p4m

p3 p3 p6

pgg pgg cmm

p2 p2 p4

pg pg cm

p1 p1p1 p1 p1pm cm cmcm

pmg pgg p4g

pmm pmg pmgcmm p2 pmm

p3m1 p3 p3p31m p3 p31m

p4g pgg cmmp4m

p6mp31m

p4g p4m

Figure 1. Examples of periodic deployable kirigami patterns in the 17 wallpaper groups. For each example (with the
crystallographic notation in bold), we showaportion of the initial contracted state, an intermediate deployed state and the fully
deployed state. Tiles with different shapes are in different colours. Key reflection axes (red dotted lines), glide reflection axes
(blue dotted lines) and rotation centres (red dots) that can be used for determining their wallpaper group type are highlighted.
(Online version in colour.)

are highlighted and can be used together with table 1 for determining the wallpaper group type
for each of them. The result follows immediately from the existence of these patterns. �

Note that all patterns in figure 1 are rigid deployable, i.e. there is no geometrical frustration
in the deployment of them (see also electronic supplementary material, video S1). More
examples of periodic deployable patterns are given in figure 2. Figure 2a,b shows two rigid-
deployable patterns derived from the p6 example in figure 1. Figure 2c–e shows three rigid-
deployable patterns derived from the standard kagome pattern. Figure 2f –l shows seven patterns
derived from the standard quad pattern. Figure 2m,n shows two rigid-deployable p4g patterns,
with different underlying topologies that lead to different wallpaper group changes under
deployment. Figure 2o shows a rigid-deployable p4 pattern with the same topology as the pattern
in figure 2n. It is noteworthy that not all deployable kirigami patterns are rigid deployable.
Figure 2p shows two bistable p4g and p3m1 Islamic tiling patterns [8], which exhibit geometrical
frustration at the intermediate states of the deployment while being frustration-free at the
contracted and final deployed states. Note that theorem 2.1 focuses on the initial (contracted)
state of deployable kirigami patterns. In fact, from figures 1 and 2, we also have the following
result.
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p3m1 p3m1p3

p2 p2p2

pg pggpg

pg pmgpg

p3 p3p3

p6 p6p6 pg pgpg

p31m p31mp3

pm pgpg

cm pmcm p4g p31m

p4g p1p1

p4g p4p4

p4g p31m

p4 p4p4

p4m p4mp4

p3 p3m1p3

(e)

( f )

(b)

(a)

(c)

(d )

(i)

(k)

(m)

(n)

(o)

(p)

(l)

( j)

(g)

(h)

Figure 2. More examples of periodic deployable patterns. (a,b) Two rigid-deployable patterns derived from the p6 example
in figure 1. (c–e) Three rigid-deployable patterns derived from the standard kagome pattern. (f–l) Seven rigid-deployable
patterns derived from the standard quad pattern. (m) A rigid-deployable p4g pattern consisting of squares and rhombi. Note
that the pattern becomes p1 once deployed. (n) Another rigid-deployable p4g pattern created by breaking the rhombi in (m)
into triangles. This time, the pattern becomes p4 throughout the deployment. (o) A rigid deployable p4 pattern. Note that it
has the same underlying topology as (n). (p) Two bistable Islamic tiling patterns [8] which are not rigid deployable. Geometrical
frustration exists at the intermediate deployments, while the initial and final states shown are frustration-free. Key examples
of the reflection axes (red dotted lines), glide reflection axes (blue dotted lines) and rotation centres (red dots) that can be used
for determining their wallpaper group type are highlighted. (Online version in colour.)

Theorem 2.2. For any wallpaper group G among the 17 wallpaper groups, there exists a deployable
kirigami pattern with its final deployed shape in G.

Proof. We prove the result by explicitly constructing examples of periodic deployable patterns
with final deployed shape in any of the 17 wallpaper groups:

— p6m: see the p6m → p31m → p6m example in figure 1.
— p6: see the p6 → p6 → p6 example in figure 2a.
— p4m: see the p4m → p4g → p4m example in figure 1.
— p4g: see the pmg → pgg → p4g example in figure 1.
— p4: see the p2 → p2 → p4 example in figure 1.
— p31m: see the p31m → p3 → p31m example in figure 2c.
— p3m1: see the p3m1 → p3 → p3m1 example in figure 2d.
— p3: see the p3m1 → p3 → p3 example in figure 1.
— cmm: see the pgg → pgg → cmm example in figure 1.
— pmm: see the cmm → p2 → pmm example in figure 1.
— pmg: see the pg → pg → pmg example in figure 2g.
— pgg: see the pg → pg → pgg example in figure 2h.
— p2: see the p2 → p2 → p2 example in figure 2i.
— cm: see the pg → pg → cm example in figure 1.
— pm: see the cm → cm → pm example in figure 2k.
— pg: see the pg → pg → pg example in figure 2l.
— p1: see the cm → p1 → p1 example in figure 1. �
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S
S

s

S
s

s

s

a
1a

1

(e)

(b)(a)

(c) (d )

Figure 3. Symmetry-preserving expansion. (a) An expansion cut pattern on a square with fourfold rotational symmetry (top
left). The pattern can be refined hierarchically to achieve a larger size change (bottom left). These expansion cut patterns
can be used for augmenting deployable patterns with one-, two- or fourfold rotational symmetry, such as the p4 pattern in
figure 1, to achieve an arbitrary size change while preserving the rotational symmetry (right). (b) An expansion cut pattern on
a regular triangle with threefold rotational symmetry (top left). The pattern can be refined hierarchically to achieve a larger
size change (bottom left). These expansion cut patterns can be used for augmenting deployable patterns with one-, three-
or sixfold rotational symmetry, such as the p6 pattern in figure 1, to achieve an arbitrary size change while preserving the
rotational symmetry (right). (c) Another type of expansion cuts on a p4 pattern produced by placing additional rectangular
units between tiles. The first row shows the contracted, intermediate and fully deployed state of an augmented p4 pattern with
one expansion layer. The second row shows the contracted and deployed state of an augmented p4 pattern with two expansion
layers. (d) An augmented p4m pattern constructed in a similar manner. (e) The top row shows the contracted and deployed
state of a deployable p4 pattern, with the shaded blue regions representing a unit cell and its deployed shape. The bottom row
shows an augmented version of it with one level of ‘ideal’ expansion cuts of infinitesimal width. (Online version in colour.)

3. Size change throughout deployment
After showing the existence of deployable kirigami patterns in all 17 wallpaper groups for both
the contracted and deployed states, it is natural to ask whether some of the wallpaper groups
are more advantageous over the others in terms of deployable kirigami design. In particular, one
may wonder whether the size change of a deployable pattern is limited by its symmetry. It is clear
that the size change is not limited by the reflectional symmetry or the glide reflectional symmetry.
Here, we show that the size change can in fact be arbitrary for any given rotational symmetry:

Theorem 3.1. For any deployable wallpaper group pattern with n-fold rotational symmetry, we can
design an associated pattern with n-fold rotational symmetry and arbitrary size change.

The result is achieved by designing certain expansion methods for augmenting a given pattern
with n-fold symmetry without breaking its symmetry. Two expansion methods are introduced
below (see figure 3; electronic supplementary material, video S2).

(a) Symmetry-preserving expansion cuts
To achieve a significant size change while preserving rotational symmetry, expansion cuts can
be introduced to select rotating units in the pattern. Using a fourfold expansion cut on a square
in a onefold, twofold or fourfold pattern, we can achieve an expansion of the pattern without
changing its rotational symmetry (figure 3a). Using a threefold expansion cut on a triangle in a
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(c)(a)

(b)

Figure 4. More symmetry-preserving expansion cut patterns. (a) An expansion cut pattern that can be introduced on any tile
with sixfold rotational symmetry. The cut pattern achieves an expansion throughout deployment while preserving the sixfold
symmetry of the tile. (b) An expansion cut pattern that can be introduced on any tile with twofold rotational symmetry. The
cut pattern achieves an expansion throughout deployment while preserving the twofold symmetry of the tile. (c) An expansion
cut pattern with twofold rotational symmetry that preserves both the rotational symmetry and reflectional symmetry. The
expansion cut pattern is derived from the pattern in figure 3awith four copies of it placed appropriately to form a pattern that
preserves the reflectional symmetry throughout the deployment. The top row shows the deployment of the pattern with one
level of cuts. The bottom row shows the deployment of the pattern with two levels of cuts. (Online version in colour.)

pattern with onefold, threefold or sixfold rotational symmetry, we can achieve an expansion of
the pattern without changing its rotational symmetry (figure 3b).

While the above expansion cuts are introduced on a square and a triangle only, it is easy to see
that similar expansion cuts can be introduced on any tiles with fourfold and threefold rotational
symmetry, respectively. Figure 4a shows a symmetry-preserving expansion cut pattern that can
be introduced on any sixfold tile (e.g. a regular hexagon). The cut pattern preserves the onefold,
twofold, threefold or sixfold rotational symmetry of the entire kirigami pattern. Figure 4b shows
a symmetry-preserving expansion cut pattern that can be introduced on any twofold tile (e.g. a
rectangle). The cut pattern preserves the onefold or twofold rotational symmetry of the entire
kirigami pattern. It can be observed that, by increasing the level of cuts, we can achieve a larger
size change.

Note that the pattern in figure 3a can be used for augmenting a given periodic deployable
pattern to achieve an arbitrary size change, while the reflectional symmetry of the given pattern
may be lost. Figure 4c shows an expansion cut pattern with twofold rotational symmetry derived
from it. We suitably reflect the pattern to form an expansion cut pattern on a square consisting
of 16 triangles and four squares. Note that the new cut pattern not only has twofold rotational
symmetry but also reflectional symmetry. Therefore, it can be used for augmenting a given
periodic deployable pattern with one- or twofold rotational symmetry while preserving both its
rotational symmetry and reflectional symmetry.

(b) Symmetry-preserving expansion tiles
Another way to design an associated pattern with increased size change is to add rotating units
between adjacent tiles of the original pattern (figure 3c,d). More specifically, we augment a given
deployable pattern by adding thin rectangles between adjacent tiles, which allow for greater
expansion when the pattern is deployed. Analogous to the above-mentioned method, it is possible
to preserve the rotational symmetry of the given pattern by appropriately placing the additional
units. Again, it is possible to preserve the reflectional symmetry of the contracted state or even the
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deployed state of certain patterns using this method (for example, the pattern in figure 3d with an
even number of expansion layers). We remark that this method introduces gaps in the contracted
state of the new pattern.

(c) Analysis of the size change
To quantify the size change achieved by our proposed symmetry-preserving expansions, we
consider the p4 pattern in figure 3e and denote the side length of the larger and smaller squares
in the original pattern as S and s, with s ≤ S. We measure the size change of the pattern upon
deployment by selecting a unit cell in the contracted state and comparing its area with that of
a corresponding unit cell in the deployed state (figure 3e, the shaded regions in the top row). It
is easy to see that the contracted unit cell has area S2 + s2 and the deployed unit cell has area
(S + s)2. Therefore, the base size change ratio is

r0 = (S + s)2

S2 + s2 . (3.1)

This ratio simplifies to 2 when S = s and 9/5 when S = 2s.
Each expansion cut creates a new unit that, upon deployment, rotates to further separate the

original tiles of the base pattern. In the fully deployed state, we let ai be the additional vertical and
horizontal separation introduced by each cut in the ith round of expansion cuts. The expansion
cuts also shave area off the original tiles in order to form the new rotating units. Let bi be the
width that the squares of side length s lose from each cut in the ith round of expansion cuts.

With n rounds of expansion cuts, the unit cell’s area after deployment will be (S + s +
2

∑n
i=1(ai − bi))2 and the size change ratio will be

rn = (S + s + 2
∑n

i=1(ai − bi))2

S2 + s2 . (3.2)

The values of elements in ai and bi depend on the shape and width of the expansion cuts. If we
consider ‘ideal’ expansion cuts of length s and infinitesimal width, then ai = s/

√
2 and bi = 0 for

all i (figure 3e, bottom row). For these ideal cuts, the size change ratio after n rounds of expansion
would be

rn = (S + s + 2n(s/
√

2))2

S2 + s2 = (S + s + √
2ns)2

(S2 + s2)
. (3.3)

This suggests that the size change ratio scales approximately with n2, and we can achieve an
arbitrary size change by choosing a sufficiently large n.

Similarly, one can perform an analysis on the size change of the triangle expansion cut pattern
in figure 3b. We select a unit cell in the contracted state and compare it with the corresponding
units in the deployed and expanded states. Unit cells are represented as shaded areas in figure 5.
Let S be the side length of the hexagons and s be the side length of the triangles; a regular hexagon
will have area (3

√
3/2)S2 and a regular triangle area (

√
3/4)s2.

The contracted state unit cell consists of one hexagon and two triangles, which together have
area (3

√
3/2)S2 + (

√
3/2)s2. The deployed state unit cell has three additional rectangles, each with

area Ss. Then the deployed unit cell area is (3
√

3/2)S2 + (
√

3/2)s2 + 3Ss, and the base size change
ratio is

r0 = 3
√

3S2 + √
3s2 + 6Ss

3
√

3S2 + √
3s2

. (3.4)

For this pattern, expansion cuts as done in figure 3b introduce gaps with an area equivalent to
that of the irregular octagons shown in blue in figure 5b. We assume that expansion cuts are done
in a manner that preserves the equilateral triangle shape of the green tiles.

Let ai be the additional separation the ith round of expansion cuts adds between each pair of
adjacent triangles and hexagons, so each pair’s closest vertices are now cn = ∑n

i=1 ai apart. Let
bi be the side length that each equilateral triangle loses in the ith round of expansion cuts, so
sn = s − ∑n

i=1 bi is the triangle’s remaining side length after n rounds of expansion cuts.
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s
n c

n

S

(b)(a)

Figure 5. Size change in the triangle–hexagon deployment pattern. (a) The contracted and deployed states of the patternwith
no expansion cuts used. The shaded areas represent the unit cell used to calculate the pattern’s size change ratio. (b) On the left,
an image of the triangle–hexagon pattern with one round of expansion cuts deployed. On the right, a close-up of an irregular
octagon formed by deployment of the expansion cuts. The octagon is broken into the smaller triangles and rectangles we use
to determine its area. (Online version in colour.)

Each octagon can be broken into smaller rectangles and triangles, as seen in figure 5: four
30−60−90 triangles of area a2

n
√

3/8, two rectangles of area cnsn/2, two rectangles of area Scn
√

3/2
and a centre rectangle of area Ssn. The triangles are 30−60−90 because maximal deployment
occurs when the triangles and hexagons of the original pattern are as separated as possible. This
occurs when each edge between a triangle vertex and a hexagon vertex bisects both vertex angles.
The octagon’s total area will then be c2

n
√

3/2 + cnsn + Scn
√

3 + Ssn.
After n rounds of expansion cuts, the expanded unit cell consists of a regular hexagon with side

length S, two equilateral triangles with side length sn and three irregular octagons as described
above. This unit cell has area (3

√
3/2)S2 + (

√
3/2)s2

n + 3(c2
n
√

3/2 + cnsn + Scn
√

3 + Ssn). Then the
size change ratio is

rn = 3
√

3S2 + √
3s2

n + 6(c2
n
√

3/2 + cnsn + Scn
√

3 + Ssn)

3
√

3S2 + √
3s2

, (3.5)

where sn = s − ∑n
i=1 bi and cn = ∑n

i=1 ai.
Now, if we consider ‘ideal’ expansion cuts of length s and infinitesimal width, we have ai = s

and bi = 0 for all i. It follows that cn = ns and sn = s. Therefore, with these ideal expansion cuts we
have

rn = 3
√

3S2 + √
3s2 + 6(n2s2

√
3/2 + ns2 + Sns

√
3 + Ss)

3
√

3S2 + √
3s2

, (3.6)

which scales approximately with n2 and is unbounded. This shows that we can achieve an
arbitrary size change using the triangle expansion cut pattern with suitable refinements.

We are now ready to prove theorem 3.1.

Proof of theorem 3.1. As described above, we have explicitly constructed symmetry-preserving
expansion cut patterns for the sixfold, fourfold, threefold and twofold cases; the construction
of an expansion cut pattern for the onefold case is straightforward. Also, we have shown that
an arbitrary size change can be achieved by increasing the number of cuts and making them
arbitrarily thin. For any deployable kirigami pattern with n-fold rotational symmetry in the
contracted state (where n = 1, 2, 3, 4, 6), we have the following cases.

Case (i): There is a centre of n-fold rotation at the centre of a tile in the contracted state. In this
case, we can simply introduce n-fold symmetry-preserving expansion cuts in this tile
as part of a unit cell in the repetitive pattern.

Case (ii): There is a centre of n-fold rotation at either a vertex, the centre of an edge, the centre
of a rift (i.e. a gap that forms when tiles separate during deployment) or the centre of
a void (i.e. a gap in between some tiles) in the contracted state. This implies that there
are n identical tiles around this rotation centre in a unit cell of the repetitive pattern.
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We can then add expansion cuts or expansion tiles for each of the n tiles while keeping
them identical with respect to rotation about the centre.

Thus we can always obtain a deployable pattern with n-fold rotational symmetry and arbitrary
size change. �

We note that the above symmetry-preserving expansion methods also allow us to achieve an
arbitrary perimeter change.

4. Symmetry change throughout deployment
Now, we study how the kirigami patterns change in terms of the wallpaper groups throughout
the deployment. More specifically, what are the possible symmetry changes throughout the
deployment? We have the following result.

Theorem 4.1. Gain, loss and preservation of symmetry are all possible throughout the deployment of a
kirigami pattern.

Proof. We prove this result by noting that, from figures 1 and 6, we can observe different types
of symmetry change as a pattern expands from its contracted state to its deployed state:

— Rotational symmetry gained: pmg → pgg → p4g (permanent).
— Rotational symmetry lost: p4g → pgg → cmm (permanent), p6m → p31m → p6m

(temporal).
— Rotational symmetry preserved: p6 → p6 → p6m.
— Reflectional symmetry gained: pgg → pgg → cmm (permanent).
— Reflectional symmetry lost: p3m1 → p3 → p3 (permanent), p4g → pgg → cmm (temporal).
— Reflectional symmetry preserved: p4m → p4g → p4m.
— Glide reflectional symmetry gained: p1 → p1 → p4m (permanent).
— Glide reflectional symmetry lost: cm → p1 → p1 (permanent), cmm → p2 → pmm

(temporal).
— Glide reflectional symmetry preserved: pg → pg → cm. �

We remark that, although some patterns preserve rotational, reflectional or glide reflectional
symmetry, the rotation centres and reflection axes do not necessarily remain fixed. For instance,
the pattern cmm → p2 → pmm has rotation centres off mirrors at the initial state, while all rotation
centres lie on mirrors at the final deployed state. For the pattern pm → cm → cm, the number
of reflection axes decreases throughout deployment, while the number of glide reflection axes
remains unchanged.

(a) Symmetry change for a fixed cut topology
Note that several pattern examples in figure 1 are with the standard quad kirigami topology,
where unit cells containing four tiles arranged as seen in the p4m example in figure 1 are
connected in a larger grid. It can be observed that, these patterns exhibit onefold, twofold and
fourfold rotational symmetry, and some of them can even achieve a twofold to fourfold rotational
symmetry change (the p2 and pmg examples). Are other rotational symmetry gains possible
for patterns with this topology, such as changes from onefold to twofold or fourfold rotational
symmetry?

Here, we consider a general deployed pattern with the standard quad kirigami topology
and twofold rotational symmetry (figure 6a). Note that for simplicity we use parallelograms
to represent the tiles. These parallelograms can be changed to other shapes so long as the
four vertices where each shape connects to other tiles form parallelograms, and congruent
parallelograms are formed by vertices of the red and blue shape pair and the yellow and green
shape pair. There are three possible cases for where O, a centre of rotation (COR) of the deployed
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p1 p2p1

P

B

C

D

A

O

P
B

CD
O

A

T
Q

S

Q

p31m p1p1
p1 p4mp1

p2 p6mp2

(e)

( f )

(b)(a) (c)

(d )

Figure 6. Exploring possible symmetry changes. (a) A general deployed quad pattern with twofold rotational symmetry. The
parallelograms can be changed in pairs (red and blue or yellow and green) to other shapes whose vertices form parallelograms.
(b) For the case where the centre of rotation (COR) O is at the centre of a rift (i.e. a gap that forms when tiles separate during
deployment) in the deployed state, consider two corresponding points P, Qwithin tiles and denote the two opposite vertices of
the rift byA and C.We can show that�APO∼= �CQO throughout deployment or contraction,which implies that the contracted
pattern is also with twofold rotational symmetry. (c) For the case where the COR O is at the centre of a tile. We remark that the
pattern here should not be thought of as a supercell of b; the parallelograms are just used for simplicity to represent the tiles
and can be changed to other shapes. However, whether a COR is at the centre of either a tile or a rift depends on the tile shapes.
(d) For the case where the COR O is at the intersection point of two tiles, we construct a deployable pattern that achieves a
onefold to twofold symmetry change. (e) Using a variation of the standard quad kirigami topology, we can achieve a onefold
to fourfold symmetry change as well as a gain in reflection. (f ) Introducing floppiness can lead to a large variety of symmetry
changes, such as a twofold to sixfold symmetry gain (p2→ p2→ p6m) or a loss in all symmetries (p31m→ p1→ p1). For
each pattern, tiles with different shapes are in different colours. (Online version in colour.)

state, lies in a general deployed pattern: at the centre of a rift the centre of a tile or a point where
two tiles connect. Below, we show that for the first two cases the pattern’s contracted state must
also have at least twofold rotational symmetry. For the third case, we find an example pattern
whose contracted state has onefold rotational symmetry.

(i) O is at the centre of a rift

In the unit cell containing the rift and its four adjacent tiles, consider any two points P and Q
which lie within tiles and map to each other after a 180◦ rotation around O. Then O is the midpoint
of PQ, and we can construct the congruent triangles shown in figure 6b involving P, Q, O, and
two opposite vertices of the rift A and C. AO = OC because the centre of a parallelogram bisects
its diagonals. Since opposite parallelograms across the rift are congruent, the rift will be a
parallelogram.

The rift changes shape during deployment, but the tiles themselves are rigid, so P and Q are
a fixed translation from A and C, respectively. Then PA = CQ and � PAB = � QCD at any point in
deployment. Throughout deployment the rift remains a parallelogram, so AO = OC and � PAO =
� QCO. Therefore, �APO ∼= �CQO at all stages of deployment.

It follows that O remains a midpoint of PQ, so, in the contracted state, a 180◦ rotation around
O still maps P and Q to each other. Then twofold rotational symmetry is preserved and O
remains a COR for the contracted unit cell. The full pattern is a grid of unit cells, and when
we rotate it around O, each unit cell is rotated right onto another unit cell. As the unit cell has
twofold rotational symmetry, the rotational symmetry of the entire pattern is preserved. Thus, the
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contracted pattern must have twofold rotational symmetry, so a onefold contracted state cannot
deploy to a twofold or fourfold state in this case.

(ii) O is at the centre of a tile

As shown in figure 6c, we now consider the outlined unit cell centred at O. Within this cell,
by choosing two points P and Q which map to each other through 180◦ rotation, constructing
congruent triangles and applying the argument from case (i), we can again see that, as the angles
change through deployment, P and Q remain a 180◦ rotation around O apart. Therefore, the unit
cell retains twofold rotational symmetry around O. Once again, O also remains a COR for the full
pattern owing to its grid structure. This shows that a onefold contracted state cannot deploy to a
twofold or fourfold state in this case.

(iii) O is at the intersection point of two tiles

As shown in figure 6d, we construct an explicit example of a deployable pattern with a onefold
contracted state and a twofold deployed state (p1 → p1 → p2). Note that for this case fourfold
symmetry is not possible in the deployed state as a 90◦ rotation maps a tile to a rift.

We conclude that, for patterns with the standard quad kirigami topology, onefold to fourfold
rotational symmetry gain is not possible, and that onefold to twofold gain is possible only in case
(iii). This type of analysis offers a systematic way to understand how deployment affects pattern
symmetry.

(b) Symmetry change by controlling the cut topology
Note that the above analysis has only focused on the standard quad kirigami topology. If we
consider other cut topologies, we can achieve a larger variety of symmetry changes. For instance,
using a variation of the standard quad kirigami topology, one can achieve a pattern with a onefold
to fourfold symmetry change and a gain in reflectional symmetry (figure 6e).

For the patterns we have considered so far, each tile has at least two vertices connected to
vertices of neighbouring tiles, and so the motions of all tiles are interrelated. However, one can
also consider changing the underlying topology of certain kirigami patterns such that some of
the tiles have only one vertex connected to another tile, thereby increasing the floppiness of
the patterns. Figure 6f shows two patterns with floppy rhombus or triangle tiles. During and
after deployment, these floppy tiles have only one vertex’s position determined and are free
to rotate around that fixed vertex. The p2 → p2 → p6m pattern exhibits a twofold to sixfold
symmetry change and a gain in reflectional symmetry, while the p31m → p1 → p1 pattern loses
all symmetries throughout deployment.

(c) Analysis of the possible symmetry changes
Now, we present a more detailed analysis of the possible symmetry changes in terms of the gain,
loss and preservation of reflectional, glide reflectional and rotational symmetries.

(i) Gain of symmetry

Rotational symmetry. In §4a, we have explored the possible rotational symmetry gain for quad
patterns. In fact, by considering more general periodic deployable patterns (possibly with floppy
tiles), we can show that an n-fold to m-fold rotational symmetry gain is possible for any n, m ∈
{1, 2, 3, 4, 6} with n|m and m > n:

— 1 → 2: see the p1 → p1 → p2 example in figure 6d, and the patterns in figure 2g,h.
— 2 → 4: see the pmg → pgg → p4g example and the p2 → p2 → p4 example in figure 1.
— 3 → 6: see the p3 → p3 → p6 example in figure 1.
— 1 → 3: see the p1 → p1 → p31m example in figure 7a.
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p1 p31mp1

p1 p6mp1(b)

(a)

Figure 7. More examples of deployable kirigami patterns with rotational symmetry gain throughout deployment. (a) A p1→
p1→ p31m example derived from the example in figure 6f, with the shape of the triangles modified. Deployment of a unit cell
is shown on the left, and deployment of a larger pattern section is shown on the right. (b) A p1→ p1→ p6m example derived
from the example in figure 6f, with the geometry of the pattern and the connectivity of the triangles modified. Deployment of
a unit cell is shown on the left, and deployment of a larger pattern section is shown on the right. (Online version in colour.)

— 2 → 6: see the p2 → p2 → p6m example in figure 6f.
— 1 → 4: see the p1 → p1 → p4m example in figure 6e.
— 1 → 6: see the p1 → p1 → p6m example in figure 7b.

Reflectional symmetry. Gain of reflectional symmetry can be observed for all n = 1, 2, 3, 4, 6:

— n = 6: see the p6 → p6 → p6m example in figure 1.
— n = 4: see the p4 → p4 → p4m example in figure 1.
— n = 3: see the p3 → p3 → p3m1 example in figure 2b.
— n = 2: see the pgg → pgg → cmm example in figure 1.
— n = 1: see the pg → pg → pmg example in figure 2g.

Glide reflectional symmetry. Gain of glide reflectional symmetry can be observed for all n =
1, 2, 3, 4, 6:

— n = 6: see the p6 → p6 → p6m example in figure 1.
— n = 4: see the p4 → p4 → p4m example in figure 1.
— n = 3: see the p3 → p3 → p3m1 example in figure 2b.
— n = 2: see the p2 → p2 → p6m example in figure 6f.
— n = 1: see the p1 → p1 → p31m example in figure 7a.

(ii) Loss of symmetry

We can see that an m-fold to n-fold rotational symmetry loss is possible for any n, m ∈ {1, 2, 3, 4, 6}
with n|m and m > n:

— 2 → 1: see the cmm → p1 → p1 example in figure 8a.
— 4 → 2: see the p4m → pmm → pmm example in figure 8b and the p4m → pmg → pmg

example in figure 8c.
— 6 → 3: see the p6m → p3 → p3 example in figure 8d.
— 3 → 1: see the p31m → p1 → p1 example in figure 6f.
— 6 → 2: see the p6m → pmg → pmm example in figure 8e.
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p4m pmgpmg

cmm p1p1

p4m pmmpmm

p6m p3p3

p6m pmmpmg

p6m p1p1

(e)

( f )

(b)

(a)

(c)

(d)

Figure 8. More examples of deployable kirigami patterns with rotational symmetry lost throughout deployment. (a) A
cmm→ p1→ p1 example derived from the standard quad pattern. (b) A p4m→ pmm→ pmm example derived from the
standard quad pattern. (c) A p4m→ pmg→ pmg example derived from the standard quad pattern. (d) A p6m→ p3→ p3
example derived from the standard kagome pattern. (e) A p6m→ pmg→ pmmexample derived from the standard kagome
pattern. (f ) A p6m→ p1→ p1 example derived from the standard kagome pattern. (Online version in colour.)

— 4 → 1: see the p4g → p1 → p1 example in figure 9f.
— 6 → 1: see the p6m → p1 → p1 example in figure 8f.

Loss of reflectional and glide reflectional symmetries can be easily achieved by breaking the
connectivity of the tiles (see §5 for a more detailed discussion).

(iii) Preservation of symmetry

It can be observed that preservation of n-fold rotational symmetry throughout deployment is
possible for all n = 1, 2, 3, 4, 6:

— n = 6: see the p6 → p6 → p6m example in figure 1.
— n = 4: see the p4m → p4g → p4m example in figure 1, and the p4m → p4 → p4m example

in figure 2f.
— n = 3: see the p31m → p3 → p31m example in figure 1, and the p3m1 → p3 → p3m1

example in figure 2d.
— n = 2: see the cmm → p2 → pmm and pgg → pgg → cmm examples in figure 1.
— n = 1: see the cm → p1 → p1 and pm → cm → cm examples in figure 1.

Preservation of reflectional and glide reflectional symmetries can also be observed (see the
p6m → p31m → p6m and p4m → p4g → p4m examples in figure 1).

Furthermore, it is possible to design periodic deployable patterns with n-fold rotational
symmetry that stay in the same wallpaper group throughout deployment:

— n = 6: see the p6 → p6 → p6 example in figure 2a.
— n = 4: see the p4 → p4 → p4 example in figure 2o.
— n = 3: see the p3 → p3 → p3 example in figure 2e.
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— n = 2: see the p2 → p2 → p2 example in figure 2i.
— n = 1: see the p1 → p1 → p1 example in figure 1.

(d) Summary of possible symmetry changes
From the above results on the gain, loss and preservation of rotational symmetry, we have the
following theorem.

Theorem 4.2. For any n, m ∈ {1, 2, 3, 4, 6} with m ≥ n and n|m, it is possible to design a deployable
kirigami pattern that achieves an n-fold to m-fold rotational symmetry change throughout deployment, and
a pattern that achieves an m-fold to n-fold rotational symmetry change throughout deployment.

Proof. For any such (m, n), we have already constructed an explicit example of a deployable
kirigami pattern with the desired rotational symmetry change as listed above. �

Similarly, from the above results on the gain, loss and preservation of reflectional and glide
reflectional symmetry, we have the following theorems.

Theorem 4.3. For any n = 1, 2, 3, 4, 6, it is possible to design a deployable kirigami pattern with n-
fold rotational symmetry that achieves any target reflectional symmetry change (gain/loss/preservation)
throughout deployment.

Theorem 4.4. For any n = 1, 2, 3, 4, 6, it is possible to design a deployable kirigami pattern with n-fold
rotational symmetry that achieves any target glide reflectional symmetry change (gain/loss/preservation)
throughout deployment.

5. Lattice representations
Observing the close relationship between the wallpaper group of a periodic deployable kirigami
pattern and its underlying topology, we analyse different patterns in terms of their lattice
representations (figure 9). In the lattice representation, each tile is represented by a node. An
edge between two nodes exists if their corresponding tiles are connected to each other. Here,
we introduce a cyclic notation for the lattice representation of a periodic kirigami pattern.
Starting from a tile with the lowest connectivity, we denote a1 as its number of neighbours. We
then consider all neighbours of the tile and choose the one with the lowest connectivity, and
denote its number of neighbours as a2. We continue the process until the sequence repeats (i.e.
a1, a2, . . . , ak, a1, a2, . . .), and use (a1, a2, . . . , ak, a1) to represent the lattice. We remark that, while
each sequence does not necessarily correspond to a unique lattice structure, it helps us understand
the connectivity of any given periodic deployable kirigami pattern. Below, we analyse three lattice
types we observed in periodic deployable kirigami patterns (see figure 10 for more examples).

(a) Regular lattice
Note that the only regular polygons that can tile the plane are the triangle, square and hexagon.
Therefore, the only regular lattices are (4, 4) (figure 9a), (3, 3) (figure 9b) and (6, 6) (figure 9c).
Note that the regular (4, 4) lattice and the regular (3, 3) lattice correspond to the standard quad
kirigami topology and the standard kagome kirigami topology, both of which are deployable.
On the contrary, the rigidity of the triangles (3-cycles) in the regular (6, 6) lattice prevents it from
being deployable.

(b) Augmented lattice
Another type of lattice we observed can be viewed as an augmented version of the regular
lattice, with certain tiles inserted in a rotationally symmetric way. One example is the topology
of the p6 pattern in figure 1, which is a deployable (3, 6, 3) lattice. Interestingly, the two
symmetry-preserving expansion methods we introduced in figure 3 provide us with a systematic
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(e) ( f )

(b)(a) (c) (d )

Figure 9. Lattice representations of kirigami patterns. (a) The regular (4, 4) lattice representing the standard quad topology
(e.g. the p4m, p4g, pmg patterns in figure 1), with each tile connected to exactly four adjacent tiles. (b) The regular (3, 3) lattice
representing the standard kagome topology (e.g. the p6m, p3m1 and p3 patterns in figure 1). (c) The regular (6, 6) lattice. Note
that the triangles in it make the structure rigid. (d) Using the expansion cuts introduced in figure 3, we can turn a deployable
structure with the regular (4, 4) lattice into another deployable structure with a (2, 4, 2) lattice. (e) Using the expansion tiles
introduced in figure 3, we can turn the triangles in a rigid lattice into another polygon, thereby producing novel deployable
patterns with a (2, 6, 2) lattice (left) or a (2, 4, 2) lattice (right). Both examples shown here are p6m→ p6→ p6. (f ) Breaking
certain connections in a given lattice yields a onefold deployable structure with another lattice representation. The example
shown here is a p4g→ p1→ p1 pattern with a (1, 3, 4, 3, 1) lattice (see also the p31m pattern in figure 6f with a (2, 4, 4, 2)
lattice). (Online version in colour.)

(b)(a)

Figure 10. More deployable lattice structures. (a) The topology of the p6 pattern in figure 1 is a deployable (3, 6, 3) lattice.
(b) The topology of the p4g and p4 patterns in figure 2n,o is a deployable (2, 4, 2) lattice. (Online version in colour.)

way of creating a new symmetric augmented lattice from any given deployable pattern. For
instance, the expansion cuts allow us to turn the regular (4, 4) lattice into another deployable
structure with a (2, 4, 2) lattice (figure 9d) while preserving the fourfold rotational symmetry
of the lattice. The expansion tiles also effectively add vertices along the edges of the rigid
triangles in a given lattice, thereby turning them into other polygons and making the structure
deployable, with the rotational symmetry preserved. Figure 9e shows an example of turning
a rigid (6, 6) lattice into a deployable (2, 6, 2) lattice (top), and an example of turning a rigid
(4, 4) lattice into a deployable (2, 4, 2) lattice (bottom). This shows that the expansion methods
are useful not only geometrically but also mechanically for the design of deployable kirigami
patterns.
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p6p6m

p4m p4g p4

p31m p3m1 p3

cmm pmm pmg pgg p2

cm pm pg p1

sixfold

fourfold

threefold

twofold

onefold

with reflection without reflection

Figure 11. The graph G̃ of possible group changes observed in the patterns we have identified. The group change of each
example pattern considered in this paper is represented using one distinct colour. For instance, the red arrows from p6m to
p31m and from p31m to p6m correspond to the p6m→ p31m→ p6m standard kagome pattern in figure 1, and the orange
arrow from p6 to p6m corresponds to the p6→ p6→ p6m pattern in figure 1. We remark that G̃ is only a subgraph ofG, the
graph of all possible group changes. (Online version in colour.)

(c) Trimmed lattice
By removing certain connections in the lattice of a given kirigami pattern, we can break the
symmetry of the lattice and hence achieve a large variety of changes in the rotational, reflectional
or glide reflectional symmetries throughout deployment. For instance, one can obtain a floppy
(1, 3, 4, 3, 1) lattice as shown in figure 9f and a floppy (2, 4, 4, 2) lattice as shown in the p31m pattern
in figure 6f, which lose all symmetries throughout deployment. This shows that it is possible to
create a kirigami pattern in any wallpaper group G with the deployment path G → p1 → p1.
Using a trimmed lattice with carefully designed tile geometries, it is also possible to achieve a
symmetry gain such as the twofold to sixfold rotational symmetry gain in the floppy p2 pattern
in figure 6f.

6. Graph of possible symmetry changes
One can consider the space of the 17 wallpaper groups as a directed graph G = (V , E), where the
vertex set V consists of the 17 nodes representing the 17 wallpaper groups, and the directed edge
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set E consists of directed arrows indicating all possible group changes throughout deployment
of the kirigami patterns. Based on the patterns we have identified in this paper, we construct a
subgraph G̃ = (V , Ẽ) of G where Ẽ are obtained from the patterns we have identified (figure 11). It
is easy to see that G̃ is connected, which suggests that G is also connected.

By theorem 2.1, the out-degree of any vertex in G is at least 1, which is evident from the graph
G̃. Similarly, by theorem 2.2, the in-degree of any vertex in G is at least 1. We can easily see that
each wallpaper group in the graph G̃ is the endpoint of some paths.

By the floppy lattice construction introduced above, the in-degree of p1 in G should be exactly
17. Note that in the graph G̃ in figure 11 we have omitted all G → p1 → p1 changes except for
those explicitly described in the figures in this paper.

7. Discussion
The ability to control the size, perimeter and symmetry changes makes kirigami, long a paradigm
for art, an inspiration for the mathematical development of ideas linking (discrete) geometry,
topology and analysis, and alluring as the basis for technology in such instances as the design
of energy-storing devices [20], electromagnetic antennae [21,22] etc. Our work has explored the
connection between kirigami and the symmetry associated with the planar wallpaper groups. We
have shown that it is possible to create deployable patterns using all of the 17 wallpaper groups,
and further studied the size change, symmetry change and lattice structure of these patterns.
Many of the results regarding the existence of deployable patterns and the possible symmetry
changes in this work are obtained by explicitly constructing different examples. Going beyond
the existence of deployable kirigami patterns, the expansion cut method leads to arbitrary size
changes, while the expansion tile method creates voids in between some tiles in the contracted
state.

A natural limitation of planar periodic deployable patterns is in their rotational symmetry,
with the possible orders of rotation being n = 1, 2, 3, 4, 6 only. A class of planar tessellations closely
related to the wallpaper groups are the aperiodic quasi-crystal patterns [23] that can also tile
the plane. While lacking translational symmetry, quasi-crystal patterns can exhibit rotational
symmetry not found in any wallpaper group patterns. Natural next steps include the possibility
of using patterns that do not have any voids in the contracted state, creating deployable structures
based on quasi-crystal patterns and extending our study of symmetries of deployable patterns to
three dimensions for the design of structural assemblies [24].
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