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1 Deployable planar tessellations

In the main text we focused on generalized kirigami patterns derived from the quad kirigami
tessellations. Here, we consider a wider range of deployable planar tessellations.

It is well known that the only regular polygons that can tile the plane are triangle, square
and hexagon. In fact, all of them can be used to produce deployable planar tessellations, such
that the deployed configurations of them also tile the plane.

The triangle kirigami tessellation, also known as the kagome tessellation, is a floppy auxetic
pattern with six triangles surrounding a single node. As shown in Figure S1a, by introducing
cuts along the six edges incident to every interior node, we can make the triangle tessellation
deployable.

As introduced in the main text, the quad kirigami tessellation is a four-fold auxetic pattern
with four quads surrounding a single node. As shown in Figure S1b, by introducing cuts along
the four edges incident to every interior node, we can make the quad tessellation deployable.

The design of a deployable hexagon tessellation is slightly different. While hexagons can
tile the plane, it is impossible to simply introduce cuts along their edges to form a deployable
pattern. The reason is that all interior nodes of a regular hexagonal tiling are of degree 3, and
hence no matter how cuts are introduced along the three edges incident to a node, the faces will
either become fully disconnected or not deployable. One way to design a deployable hexagon
tessellation is to leave one hexagonal hole surrounded by six regular hexagonal faces. With
the introduction of such holes, it becomes possible for us to introduce cuts along the edges
alternatively to get a deployable hexagon tessellation, as illustrated in Figure S1c.

Besides the deployable tessellations based on regular polygons, we can also generalize more
complex multiple-cell deployable tessellations using our approach. We consider two multiple-cell
kirigami patterns derived from Islamic decorative tilings [1], as shown in Figure S1d,e. Both
patterns have unique, singular deployed configurations.

To simplify the computation, we only consider kirigami tessellations which are rectangular.
In other words, the tessellations are formed by duplicating one of the unit cells shown in Figure
S1 by m× n times, where m is the number of duplications along the horizontal direction and n
is the number of duplications along the vertical direction.

2 Constrained optimization in the deployed space

Denote the fully deployed configuration of a standard kirigami pattern by D, and the target
boundary shape together with its interior by S. Our inverse design approach produces a
generalized kirigami pattern that approximates ∂S upon deployment by suitably deforming D,
and the key step is to solve a constrained optimization problem. In the main text, we discussed
the formulation of the constrained optimization problem with a focus on the quad kirigami
pattern. Here, we discuss the formulations with the other base patterns that we mentioned
above.

Note that the objective function, the boundary shape matching constraints and the non-
overlap constraints are the same for all base tessellations. Readers are referred to the main
text for a description of them. Below, we focus on the contractibility constraints and the extra
constraints.
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Figure S1: Five deployable patterns that we consider. a, A triangle kirigami tessellation.
b, A quad kirigami tessellation. c, A hexagon kirigami tessellation. d,e, Two multiple-cell
Islamic kirigami tessellations. Corresponding edge pairs are connected by red dotted lines, and
angles involved in the angle constraints are highlighted in blue.
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2.1 Contractibility constraints for different generalized kirigami pat-
terns

2.1.1 Generalized kirigami patterns derived from planar tessellations without
holes

For the generalized triangle and multiple-cell Islamic kirigami patterns, the contractibility
constraints are the same as the ones for the quad pattern. More specifically, for a valid deployed
configuration of a generalized kirigami pattern derived from such tessellations, the following two
contractibility constraints should be satisfied in the deployed space:

(i) Edge length constraints: For every pair of edges with edge lengths a, b in the deployed
space that correspond to the same cut, we should have

a2 − b2 = 0. (S1)

The edge pairs are connected by red dotted lines in Figure S1.

(ii) Angle sum constraints: For every set of angles in the deployed space that correspond to
an interior node, their sum should be 2π:∑

i

θi = 2π, (S2)

where θi are angles in the deployed space highlighted in blue in Figure S1.

2.1.2 Generalized kirigami patterns derived from planar tessellations with holes

For generalized kirigami patterns derived from base patterns with holes, such as the hexagon
kirigami pattern in Figure S1c, the contractibility constraints are slightly different. For the
hexagon kirigami pattern, we have the following contractibility constraints:

(i) Edge length constraints: For every pair of edges with length a, b in the deployed space that
correspond to the same cut, we should have

a2 − b2 = 0. (S3)

The edge pairs are connected by red dotted lines in Figure S1c.

(ii) One-ring angle sum constraints: For the hexagon kirigami pattern, every hexagonal hole
is surrounded by six hexagons. As the angle sum of an n-sided polygon is (n− 2)π, the
six angles of the hexagonal hole should add up to 4π. Note that the explementary angles
of them can be expressed using the twelve angles in the hexagonal one-ring highlighted in
blue in Figure S1c. Therefore, in a valid deployed configuration of a generalized hexagon
kirigami pattern, we should have

6× 2π −
12∑
i=1

θi = 4π ⇔
12∑
i=1

θi = 8π, (S4)

where θi are the angles in the deployed space highlighted in blue in Figure S1c.

(iii) Diagonal consistency constraints: The ring angle sum constraints are insufficient to
guarantee that the one-ring hexagonal faces form a closed loop, as there is no control on
the edge lengths of the hexagonal holes. To ensure the closed loop condition, we impose
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the diagonal consistency constraints which involve the edge lengths of the hexagonal holes.
As depicted in Figure S2, at every hole enclosed by six hexagonal faces, we should have

d21 − d22 = 0,
d23 − d24 = 0,
d25 − d26 = 0,

(S5)

where each pair {d1, d2}, {d3, d4}, {d5, d6} refers to a diagonal of the hole calculated in
two ways. More explicitly, we have

d2i =
(
ai − bi sin νi

sin(µi+νi)

)2
+
(
ci − ci sinµi

sin(µi+νi)

)2
+ 2

(
ai − bi sin νi

sin(µi+νi)

)(
ci − ci sinµi

sin(µi+νi)

)
cos(µi + νi),

(S6)
where

µi = 2π − γi − ηi (S7)

and
νi = 2π − φi − ψi. (S8)

Note that all the edge lengths ai, bi, ci and the angles γi, ηi, φi, ψi are information in the
deployed space. Therefore, the diagonal consistency constraints can be imposed in our
constrained optimization problem, which takes place in the deployed space.

While the above constraints are discussed in the setting of hexagon kirigami patterns, similar
constraints can be established for other kirigami patterns with holes.

2.2 Extra constraints for achieving different effects

Besides the boundary shape matching constraints, the contractibility constraints and the non-
overlap constraints, we can impose extra constraints to further control the shape of the generalize
kirigami patterns. Below, we discuss a number of possible extra constraints for each tessellation,
which lead to different interesting effects on the resulting generalized kirigami patterns.

2.2.1 Regular boundary angle sum constraints for generalized kagome kirigami
patterns

We consider enforcing the generalized kagome patterns to be a rectangle up to a small zig-zag
effect on the left and the right boundaries, at which the angle sum is desired to be a multiple
of π/3. To achieve this, we impose the following regular boundary angle sum constraints. For
each boundary node, we denote the number of faces adjacent to it by k and the angles by
ζ1, ζ2, . . . , ζk. We enforce

k∑
i=1

ζi =
kπ

3
. (S9)

In other words, the angle sum at the top and the bottom boundary nodes is π, and the angle
sum at the left and the right boundary nodes is either 2π/3 or 4π/3. The two corner nodes on
the left will have angle sum 2π/3, and the two corner nodes on the right will have angle π/3.

2.2.2 Rectangular and square boundary constraints for generalized quad kirigami
patterns

As mentioned in the main text, we can enforce the boundary of the generalized quad kirigami
pattern to be either a rectangle or even a square. To achieve this, we impose the following extra
constraints:
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Figure S2: An illustration of the diagonal consistency constraints for the generalized
hexagon kirigami patterns. Each row shows how the length of a diagonal of the hexagonal
hole can be calculated in two ways using the angles and edge lengths in the deployed space.

(i) Boundary angle constraints: For every set of two angles ζ1, ζ2 in the deployed configuration
that correspond to the same boundary node in the kirigami pattern, we enforce

ζ1 + ζ2 = π. (S10)

For the four angles ξ1, ξ2, ξ3, ξ4 in the deployed configuration that correspond to four
corner angles in the kirigami pattern, we enforce

ξ1 = ξ2 = ξ3 = ξ4 =
π

2
. (S11)

These constraints ensure that the deployed configuration corresponds to a rectangular
generalized kirigami pattern.

(ii) Equal boundary length constraints: On top of the above constraints, we can further enforce
the width and the height of the generalized kirigami pattern to be equal in length, making
a square generalized kirigami pattern. To achieve this, denote the edges in the deployed
configuration which correspond to the top boundary edges in the kirigami pattern by
~eTi , i = 1, . . . ,m, and those in the deployed configuration which correspond to the right
boundary edges in the kirigami pattern by ~eRj

, j = 1, . . . , n. We enforce

‖~eT1‖+ ‖~eT2‖+ · · ·+ ‖~eTm‖ = ‖~eR1‖+ ‖~eR2‖+ · · ·+ ‖~eRn‖. (S12)
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2.2.3 Regular angle constraints for generalized hexagon kirigami patterns

For the generalized hexgaon kirigami patterns, we consider further regularizing their shapes by
enforcing the following regular angle constraints. For each angle θ in the deployed configuration,
we enforce

θ =
2π

3
. (S13)

Note that the choice of 2π/3 is compatible with the one-ring angle sum constraints (S4). Even
with such restrictions on all angles, we are able to obtain generalized hexagon kirigami patterns
that match different shapes upon deployment.

2.2.4 Regular shape constraints for generalized multiple-cell Islamic kirigami pat-
terns

Because of the more complicated geometry of the faces in the multiple-cell Islamic patterns,
we impose a few extra constraints to regularize the shape of the generalized kirigami patterns
produced.

(i) Non-self-intersecting constraints: Unlike the triangle, quad and hexagon patterns, the
two multiple-cell Islamic patterns involve polygonal faces which are thinner and with a
larger number of sides. To avoid those faces from having self-intersection, we can enforce
inequality constraints similar to the non-overlap constraints introduced in the main text.
In this case, we use the nodes on such faces to form vectors and enforce that the cross
product is consistent with the face normal.

(ii) Regular angle constraints:

(a) For the four-fold Islamic pattern shown in Figure S1d, note that it contains four
sharp corners for each I-shaped face. To avoid the corners from being squeezed in
the generalized four-fold Islamic kirigami patterns, for each of such angles θ in the
deployed space we enforce that

θ =
π

4
. (S14)

(b) For the hex Islamic pattern shown in Figure S1e, we note that each of the longer
sides consists of three nodes, which form an angle of π. To preserve this feature in
the generalized hex Islamic kirigami pattern, we enforce that all such straight lines in
the deployed configuration of the generalized patterns remain to be straight lines, i.e.
the angle sum equals π. Also, note that for this pattern there is no control on the
boundary angles. To regularize them, we enforce that all the boundary angles remain
unchanged in the deployed configuration of the generalized patterns.

2.3 Initial guess in the deployed space

Note that an initial guess in the deployed space is needed for solving the constrained optimization
problem. There are many available options for the initial guess, and below are four choices that
we consider in our work.

(i) Standard deployed configuration: The standard fully deployed configuration D of
a regular kirigami pattern can be used as an initial guess. Note that it automatically
satisfies the contractibility constraints. However, note that the boundary of it is usually
very different from the target boundary curve ∂S.
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(ii) Standard deployed configuration with rescaling: One can also consider suitably
rescaling D according to ∂S so as to reduce the boundary mismatch error. Again, the
rescaled configuration satisfies the contractibility constraints, but the boundary mismatch
error is still nonzero in general.

(iii) Conformal map: We can apply the Schwarz-Christoffel map to produce a non-rigid
transformation of D such that its boundary matches ∂S well. The angles in all faces are
also well preserved under the conformal map. However, the edge length mismatch error is
large in general.

(iv) Quasi-conformal map: We combine recent advances in conformal parameterization
[2, 3] to obtain a conformal map g : S → R from S to a rectangle R, and consider a
rescaling transformation h : R → D to achieve the height and width of D. The map
f = (h ◦ g)−1 : D → S is then a quasi-conformal mapping, with f |∂D = ∂S. Because of the
rescaling transformation h, all angles will be distorted uniformly under f . Nevertheless, in
general the distortion in edge lengths is smaller than that of the conformal map.

2.4 Contraction

To get the generalized kirigami pattern from the deployed configuration, we note that there is a
1-1 correspondence between every face in the pattern space and every face in the deployed space,
with each pair of corresponding faces being identical up to translation and rotation. Therefore,
we can simply begin from one face, and subsequently rotate and translate the adjacent faces in
the deployed configuration to close up the gaps between the edges which correspond to the same
cut. After all faces are rotated and translated, we get the generalized kirigami pattern that
corresponds to the deployed configuration we obtained in the constrained optimization problem.

3 Implementation

Let x1,x2, . . . ,xN be the coordinates of the nodes in the deployed space. The constrained
optimization problem with the objective function, the boundary matching constraints, the
contractibility constraints and the non-overlap constraints can be solved using fmincon in
MATLAB, which minimizes the following Lagrangian via gradient descent:

L(x1,x2, . . . ,xN , λboundary, λlength, λangle, λnon-overlap)

=
1

M

M∑
i=1

(∑
j

(αij − βij)2 +
∑
k

(aik − bik)2

)
+ λboundary

∑
i

‖pi − p̃i‖2

+ λlength
∑

(a2 − b2) + λangle
∑

(
∑

θi − 2π) + λnon-overlap
∑
〈(b− a)× (c− a), ~n〉.

(S15)

The minimizers x1,x2, . . . ,xN then form a valid deployed configuration of a generalized kirigami
pattern. In case there are additional constraints to be satisfied, we can also easily include them
in the above Lagrangian.

Note that the objective function and all constraints can be expressed solely in terms of
the 2N coordinates of the nodes x1 = (x1, y1),x2 = (x2, y2), . . . ,xN = (xN , yN). To accelerate
the computation, we supply the derivatives of the objective function and all constraints using
the SpecifyObjectiveGradient and SpecifyConstraintGradient options in fmincon. It is
easy to see that all the derivatives have a simple closed form in terms of the 2N variables
x1, . . . , xN , y1, . . . , yN .
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Figure S3: Generalized kagome kirigami patterns. a, Generalized kagome kirigami patterns
with different target boundary shapes and different resolutions obtained by our approach. b,
The results with the extra regular boundary angle sum constraints described in Section 2.2.1.

4 Results

Figure S3, Figure S4, Figure S5 and Figure S6 show respectively various generalized kirigami
patterns obtained by our inverse design approach with the triangle, quad, hexagon and multiple-
cell Islamic tessellations. It can be observed that our inverse design approach is capable of
producing generalized kirigami patterns that deploy and approximate a wide range of shapes,
possibly with different curvature properties or even sharp corners. Besides, the extra constraints
that we introduced above can be effectively imposed in the constrained optimization problem to
achieve a large variety of additional effects on the shape of the generalized kirigami patterns.

The constrained optimization problem is in general underconstrained and hence different
initial guesses can lead to different valid deployed configurations of generalized kirigami patterns.
Figure S7 shows the results obtained with four different initial guesses, including the standard
deployed configuration of the quad kirigami pattern, the standard deployed configuration with
rescaling, a conformal map of the standard deployed configuration and a quasi-conformal map of
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Figure S4: Generalized quad kirigami patterns. a, Generalized quad kirigami patterns
with different target boundary shapes. b, The results with the extra constraints enforcing the
pattern to be a rectangle or a square as described in Section 2.2.2.

a

b

Figure S5: Generalized hexagon kirigami patterns. a, Generalized hexagon kirigami
patterns with different target boundary shapes. b, The results with the extra regular angle
constraints described in Section 2.2.3.

the standard deployed configuration. Note that all four generalized kirigami patterns obtained
by the four initial guesses can be deployed to approximate the same circle, but the patterns and
the deployed configurations are all different.

Figure S8 shows a fabricated model of a generalized kagome kirigami pattern obtained by
our method for fitting an egg shape, produced by laser cutting a natural rubber sheet. This
time, we pin the deployed state of the fabricated model and compare it with the optimization
result. It can be observed that the fabrication result resembles the optimization result very well.
This demonstrates the effectiveness of our inverse design method.
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Figure S6: Generalized multiple-cell Islamic kirigami patterns. a, Generalized multiple-
cell Islamic kirigami patterns whose deployed configurations approximate a circle. b, The results
with the extra regular angle constraints described in Section 2.2.4.

5 Analysis of porosity and magnification factor of gener-

alized kirigami patterns

From the results obtained by our inverse design approach, it can be observed that the generalized
kirigami patterns with different types of base tessellations exhibit different properties even
if their deployed configurations approximate the same shape. For instance, the size of the
generalized kagome kirigami patterns changes significantly upon deployment, while the size of
the generalized hexagon kirigami patterns does not change much upon deployment.

To quantitatively analyze their properties, we define the porosity of a generalized kirigami
pattern by

Porosity =
Area of deployed configuration− Area covered by material

Area of deployed configuration
. (S16)

and the magnification factor of a generalized kirigami pattern by

Magnification factor =
Area of deployed configuration

Area of contracted configuration
. (S17)

Here, the area of a configuration is defined to be the area of the region enclosed by its boundary
nodes, and the area covered by material is defined to be the total area of all faces in a pattern.

Figure S9a,b show the porosity and magnification factor of the generalized kirigami patterns
that deploy and approximate different target shapes. 8 target shapes are considered for each of
the triangle, quad and hexagon tessellations. An example of different patterns that deploy to
approximate a rainbow shape is shown in Figure S9c.

Ideally, for every target shape, the area of the deployed configurations with the triangle,
quad and hexagon tessellations should be as close as possible to the area of the target shape.
However, it can be observed that the deployed configurations of the generalized hexagon kirigami
patterns usually achieve a slightly smaller area when compared to those of the triangle and
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Figure S7: An example illustrating that the generalized kirigami patterns obtained
with different initial guesses can be different. Each row shows the initial guess, the
constrained optimization result, and the generalized kirigami pattern obtained. Left: The
standard deployed configuration of the quad kirigami pattern. Middle left: The standard
deployed configuration with rescaling. Middle right: Conformal map. Right: Quasi-conformal
map.

5 cm

Figure S8: A generalized kirigami pattern for fitting an egg shape with a fabricated
model. The two figures on the left show the undeployed and deployed configurations of the
numerical optimization result obtained by our inverse design method. The two figures on the
right show a fabricated model of the pattern and its deployed state. Pins are used to fix the
position of the deployed fabricated model.
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Figure S9: Porosity and magnification factor of different generalized kirigami pat-
terns. a, The porosity of different generalized kirigami patterns. b, The magnification factor
of different generalized kirigami patterns. c, Examples of the generalized triangle, quad and
hexagon kirigami patterns for which the deployed configurations approximate the same boundary
shape.

quad patterns. One possible reason is that hexagons are less flexible than triangles and quads
in approximating shapes with higher curvature.

From the plot of porosity, it can be observed that the generalized kagome kirigami patterns
achieve much higher porosity than the two other types of patterns. The porosity of the
generalized quad and hex patterns are similar.

From the plot of magnification factor, it can again be observed that the generalized kagome
kirigami patterns achieve much higher magnification factor than the two other types of patterns.
Note that the magnification factor for the generalized hexagon patterns is close to 1, which
implies that there is only a change in the shape of the hexagonal holes of the generalized hexagon
kirigami patterns under deployment, while the entire shape of the patterns does not change
much.

The above analysis suggests that the generalized kagome kirigami patterns are well-suited
for applications that require a large change in area under deployment in order to save materials.
The generalized quad kirigami patterns can be used when it is desired to achieve a moderate
area change and porosity upon deployment. The generalized hexagon kirigami patterns are
suitable for applications which require a change in the shape of the holes without much change
in the overall area upon deployment, such as the design of a filter for allowing particles with a
certain shape to pass through.
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ba

Figure S10: Two examples of generalized quad kirigami. a, A 2 × 2 generalized quad
kirigami with width L and height 1/L2. b, A 2L3 × 2 generalized quad kirigami formed by L3

copies of the 2× 2 kirigami shown in a.

6 Theoretical limits of the shape change of generalized

kirigami patterns upon deployment

It is natural to ask about the limit of the shape change of a generalized kirigami pattern upon
deployment. In this section, we study the limits for the change in area, perimeter and curvature
of a planar generalized kirigami pattern upon deployment. To simplify our analysis, we focus on
generalized quad kirigami patterns (i.e. the faces are all quadrilateral).

6.1 Area change upon deployment

We first study the area change ∆area of a generalized kirigami pattern upon deployment, i.e.

∆area =
Area of the deployed configuration

Area of the contracted configuration
− 1. (S18)

6.1.1 Area change is unbounded if either the boundary shape of the contracted
configuration or the cut topology is not fixed

We first consider the case that we are given a cut topology of the generalized kirigami (e.g.
the resolution is m× n) while there is no condition on the boundary shape of the contracted
configuration. In this case, we can show that the area change is unbounded.

Consider a 2× 2 generalized quad kirigami with width L and height 1/L2 as shown in Figure
S10a. The area of the contracted configuration is L × 1/L2 = 1/L. Upon deployment, the
increase in area of it is (L/2)× (L/2) = L2/4. Therefore, the area change is

∆area =
L2/4

1/L
=
L3

4
. (S19)

Taking L→∞, ∆area tends to infinity. This shows that the area change is unbounded.
Analogously, for any other given cut topology, we can follow the construction above and

obtain a generalized kirigami that achieves arbitrarily large ∆area upon deployment.
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Figure S11: A 2× 2 generalized quad kirigami and its deployed configuration.

Now consider the case that we are given the boundary shape of the contracted configuration
while there is no restriction on the number of cuts to be introduced. In this case, we can again
show that the area change is unbounded.

Suppose the boundary shape of the contracted configuration is required to be a perfect
square with width and height L. Consider a 2L3 × 2 generalized quad kirigami as shown in
Figure S10b, which consists of L3 copies of the 2× 2 generalized quad kirigami shown in Figure
S10a. It is easy to see that the width of the pattern is L, and the height is 1

L2 × L3 = L. Upon
deployment, each copy leads to an area increase of L2/4. Therefore, we have

∆area ≥
(L2/4)× L3

L2
=
L3

4
. (S20)

Taking L→∞, ∆area also tends to infinity.
Analogously, for any other given boundary shape of the contracted configuration of a

generalized kirigami pattern, we can take four points on the boundary of it as the four corners
and consider a 2L3 × 2 cut topology. As L→∞, we can again achieve an arbitrarily large area
change upon deployment.

6.1.2 Area change is bounded if both the boundary shape of the contracted con-
figuration and the cut topology are fixed

The analysis above suggests that we can obtain a generalized kirigami pattern that achieves
arbitrary area change upon deployment by playing around with either the contracted shape or
the cut topology. By contrast, it can be observed that the area change is bounded in case both
of them are fixed.

As an illustration, we consider a 2× 2 generalized quad kirigami for which the boundary
shape of its contracted configuration is a perfect square with unit width and height (see Figure
S11.

If the cut pattern is regular (i.e. the 2× 2 kirigami shown in Figure S1b), then clearly we
have

∆area =
5

4
− 1 =

1

4
. (S21)
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Now suppose we relax the condition by only requiring the cuts to be vertical or horizontal
(i.e. the cut pattern forms four rectangular faces but not necessarily identical squares).

Proposition 1 For a 2× 2 generalized quad kirigami with all cuts being vertical or horizontal,
we have

∆area ≤
1

4
, (S22)

where the equality holds if and only if the generalized kirigami is regular.

Proof. Using the notation in Figure S11, in this case we have a1 + a2 = 1. Note that the area
of the interior hole in the deployed configuration is a1a2 sinα. By AM-GM inequality,

√
a1a2 ≤

a1 + a2
2

=
1

2
⇒ a1a2 ≤

1

4
, (S23)

where the equality holds if and only if a1 = a2 = 1/2. Hence,

∆area ≤
1

4
sinα ≤ 1

4
. (S24)

The equality holds if and only if a1 = a2 = 1/2 and α = π/2. In other words, the equality holds
if and only if the generalized kirigami is regular. �

The above proposition suggests that among all 2 × 2 generalized quad kirigami patterns
with only vertical and horizontal cuts, the regular one is with the greatest area change upon
deployment. In fact, it can be shown that an even greater area change can be achieved if the
cuts are not vertical or horizontal, but the area change is still bounded.

Proposition 2 For a 2× 2 generalized quad kirigami, we have

∆area <
3

2
. (S25)

Proof. We refer to Figure S11 for the notation of edge lengths and angles. The area of the
interior hole in the deployed configuration is given by

a1a2 sinα ≤ a1a2 ≤
a21 + a22

2
, (S26)

where the first equality holds if and only if α = π/2, and the second equality holds if and only
if a1 = a2.

Now, to find the maximum value of a21 + a22, we consider the contracted configuration and
let G = (x, y), E = (1, e) and F = (0, f). Then

a21 + a22 = (x− 1)2 + (y − e)2 + x2 + (y − f)2

= 2

(
x− 1

2

)2

+
1

2
+ (y − e)2 + (y − f)2.

(S27)

Since x, y, e, f ∈ [0, 1], we have

max a21 + a22 = 2

(
1

2

)2

+
1

2
+ 1 + 1 = 3, (S28)

where the maximum is attained if and only if (x, y, e, f) = (0, 1, 0, 0), (0, 0, 1, 1), (1, 1, 0, 0) or
(1, 0, 1, 1). As the cut pattern that we consider is non-degenerate, none of the four solutions
above can be achieved in the contracted configuration. Therefore, we have

∆area ≤
a21 + a22

2
<

3

2
. (S29)
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�
The above analysis shows that the area change of a 2× 2 generalized quad kirigami with

prescribed contracted shape upon deployment is always bounded regardless of its cut geometry.
Analogously, for any other given cut topology and boundary shape of the contracted configuration,
the above approach can be used to prove that the area change upon deployment is bounded.

6.2 Perimeter change upon deployment

We then study the perimeter change of a generalized kirigami pattern upon deployment:

∆perimeter =
Perimeter of the deployed configuration

Perimeter of the contracted configuration
− 1. (S30)

6.2.1 Perimeter change is unbounded if the cut topology is not fixed

Suppose we are given the boundary shape of the contracted configuration of a generalized
kirigami pattern, while there is no restriction on the number of cuts to be introduced. In this
case, we can show that the perimeter change is unbounded.

We consider the example shown in Figure S10b. For this example, note that the boundary
of the deployed configuration consists of 4L3 segments with length L

2
and 4L3 + 4 segments with

length 1
2L2 . Therefore, we have

∆perimeter =
4L3 · L

2
+ (4L3 + 4) · 1

2L2

4L
− 1 = L3 +

1

L3
. (S31)

Taking L→∞, we have ∆perimeter →∞.
Analogous to the study of area change, by suitably modifying the above example, it is easy

to see that the perimeter change is unbounded for any given boundary shape of the contracted
configuration as long as the cut topology is not fixed.

6.2.2 Perimeter change is bounded if the cut topology is fixed

Now suppose the cut topology of the generalized kirigami pattern is fixed (e.g. the resolution of
it is m× n). In this case, we can show that the perimeter change of the generalized kirigami
upon deployment is always bounded.

Let p be the perimeter of the contracted configuration of a generalized kirigami. Let d be
the diameter of the smallest circle which circumscribes the contracted configuration. It is easy
to see that d ≤ p.

As the resolution is m × n, there are at most 2(m − 1) + 2(n − 1) = 2m + 2n − 4 new
boundary edges upon deployment, and each of them must be with length not greater than d.
Hence, we have

∆perimeter ≤
p+ (2m+ 2n− 4)d

p
− 1 =

(2m+ 2n− 4)d

p
≤ 2m+ 2n− 4. (S32)

This shows that the perimeter change is bounded with a fixed cut topology.

6.3 Curvature change upon deployment

Finally, we study the curvature change of generalized kirigami patterns upon deployment. Here,
the curvature is defined by smoothly connecting the nodes in the deployed configuration which
correspond to the boundary codes in the contracted configuration (i.e. the nodes at the zig-zag
parts near the deployed boundary are not taken into account).
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6.3.1 Curvature change is unbounded if the cut topology is not fixed

The example shown in Figure S10b suggests that a target shape with very highly curved parts
can be approximated by a generalized kirigami even if the boundary shape of the contacted
configuration is fixed, and hence the curvature change upon deployment is unbounded.

6.3.2 Curvature change is bounded if the cut topology is fixed

It is well known that for any smooth simple closed plane curve C, the total curvature is 2π:∫
C

k(s)ds = 2π. (S33)

For the case that the cut topology is fixed, let C be the boundary of a deployed configuration.
We have already shown that the perimeter change is bounded in this case, and hence the length
of C is bounded. From the above total curvature formula, the curvature change is also bounded.

7 Generalized kirigami patterns for surface fitting

As discussed in the main text, we can extend our inverse design approach for producing
generalized kirigami patterns whose deployed configuration approximate a prescribed surface.

In the main text, we presented an analysis on the curvature at the holes of the deployed
configurations of generalized quad kirigami patterns. Here, we describe the technical details
of the analysis. Suppose p1,p2,p3,p4 are the four vertices in anti-clockwise orientation of a
hole in the deployed configurations. To study the curvature residing at the hole, we consider
fitting the hole by a smooth surface. In particular, the surface should be compatible with all
the adjacent quads along the straight edges. A suitable candidate for such surface is the bicubic
Bézier surface [4] in the form

X(u, v) =
3∑
i=0

3∑
j=0

B3
i (u)B3

j (v)ki,j, (S34)

where u, v ∈ [0, 1]. Here, ki,j are 16 control points including the four vertices k0,0 = p1, k3,0 = p2,
k3,3 = p3, k0,3 = p4, and the remaining control points are

k1,0 =
2k0,0 + k3,0

3
,k2,0 =

k0,0 + 2k3,0

3
,k1,3 =

2k0,3 + k3,3

3
,k2,3 =

k0,3 + 2k3,3

3
,

k0,1 =
2k0,0 + k0,3

3
,k0,2 =

k0,1 + 2k0,3

3
,k3,1 =

2k3,0 + k3,3

3
,k3,2 =

k3,0 + 2k3,3

3
,

k1,1 =
2k1,0 + k1,3

3
,k1,2 =

k1,0 + 2k1,3

3
,k2,1 =

2k2,0 + k2,3

3
,k2,2 =

k2,0 + 2k2,3

3
.

(S35)

B3
0 , B

3
1 , B

3
2 , B

3
3 are the Bernstein polynomials of degree 3 given by

B3
i (u) =

(
3
i

)
ui(1− u)3−i. (S36)

The boundary of the Bézier surface is given by {X(u, v) : u, v = 0, 1}. As there are four
collinear control points on each boundary edge of the hole, the Bézier surface will pass through
all the edges exactly, making the surface compatible with all the surrounding quads. The surface
is planar if and only if the four vertices of the hole are coplanar.
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3 cm3 cm

Figure S12: A physical model of the generalized quad pattern shown in Figure 4d
in the main text fabricated using PDMS. The model achieves a significant shape change
and fits a hat-like surface (the underlying transparent sheet) upon deployment.

Figure S13: Generalized kagome kirigami patterns for surface fitting. The target
surfaces are respectively a hyperbolic paraboloid, a landscape surface with multiple peaks, a
bivariate Gaussian and a Mexican hat. For each target surface, the resulting generalized kirigami
pattern and its deployed configuration are shown. It can be observed that our approach is
capable of controlling the boundaries and the shape of the triangular faces of the generalized
kirigami patterns for approximating different surfaces.

The mean curvature and the Gauss curvature at every hole are then given by

H(u, v) =
eG− 2fF + gE

2(EG− F 2)
(S37)

and

K(u, v) =
eg − f 2

EG− F 2
, (S38)

where E = 〈Xu,Xu〉, F = 〈Xu,Xv〉, G = 〈Xv,Xv〉, e = 〈N,Xuu〉, f = 〈N,Xuv〉, g = 〈N,Xvv〉,
and N is the outward unit normal of the Bézier surface.

Figure S12 shows a physical model of a generalized quad kirigami pattern for surface fitting
fabricated using Polydimethylsiloxane (PDMS). A mold is first 3D printed to form a negative
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space of the undeployed pattern. Then, PDMS is poured into the mold, thereby creating a
deployable kirigami structure. It can be observed that the deployed shape fits a hat-like surface
very well. This shows that our inverse kirigami design is applicable to different materials.

Besides the generalized quad kirigami patterns shown in the main text, we can also consider
generalizing the kagome kirigami patterns for surface fitting. The formulation is almost identical
to the case of quad pattern, except for that the planarity constraints are automatically satisfied
for the case of triangles. Figure S13 shows the surface fitting results with generalized kagome
kirigami patterns produced by our method. Again, our approach is capable of fitting surfaces
with different curvature properties, and further satisfying additional boundary constraints of
the generalized kirigami patterns.

References

[1] Rafsanjani, A., & Pasini, D.. Bistable auxetic mechanical metamaterials inspired by ancient
geometric motifs. Extreme Mechanics Letters 9, 291-296 (2016).

[2] Choi, G. P. T., & Lui, L. M.. A linear formulation for disk conformal parameterization
of simply-connected open surfaces. Advances in Computational Mathematics 44(1), 87-114
(2018).

[3] Meng, T. W., Choi, G. P. T., & Lui, L. M.. TEMPO: feature-endowed Teichmüller extremal
mappings of point clouds. SIAM Journal on Imaging Sciences 9(4), 1922-1962 (2016).

[4] Farin, G.E., & Farin, G.. Curves and surfaces for CAGD: a practical guide. Morgan Kaufmann
(2002).

20


