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Density-Equalizing Maps for Simply Connected Open Surfaces\ast 
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Abstract. In this paper, we are concerned with the problem of creating flattening maps of simply connected
open surfaces in \BbbR 3. Using a natural principle of density diffusion in physics, we propose an effective
algorithm for computing density-equalizing maps with any prescribed density distribution. By varying
the initial density distribution, a large variety of flattening maps with different properties can be
achieved. For instance, area-preserving parameterizations of simply connected open surfaces can be
easily computed. Experimental results are presented to demonstrate the effectiveness of our proposed
method. Applications to data visualization and surface remeshing are explored.
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1. Introduction. The problem of producing maps has been tackled by scientists and
cartographers for centuries. A classical map-making problem is to flatten the globe onto a
plane. Numerous methods have been proposed, each aiming to preserve different geometric
quantities. For instance, the Mercator projection produces a conformal planar map of the
globe: angles and small objects are preserved but the area near the poles is seriously distorted.

One problem in computer graphics closely related to cartogram production is surface
parameterization, which refers to the process of mapping a complicated surface to a simpler
domain. With the advancement of the computer technology, three-dimensional (3D) graphics
have become widespread in recent decades. To create realistic textures on 3D shapes, one
common approach is to parameterize the 3D shapes onto \BbbR 2. The texture can be designed
on \BbbR 2 and then be mapped back onto the 3D shapes. Again, different criteria of distortion
minimization have led to the invention of a large number of parameterization algorithms.

Gastner and Newman [1] proposed an algorithm for producing density-equalizing cartograms
based on the diffusion equation. Specifically, given a map and certain data defined on each
part of the map (such as the population at different regions), the algorithm deforms the
map such that the density, defined by the population per unit area, becomes a constant
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all over the deformed map. The diffusion-based cartogram generation approach has been
widely used for data visualization. For instance, Dorling [2] applied this approach to visualize
sociological data such as global population, income, and age-of-death at different regions.
Colizza et al. [3] constructed a geographical representation of disease evolution in the United
States for epidemics using this cartogram generation algorithm. Wake and Vredenburg [4]
visualized global amphibian species diversity using the method. Other applications include the
visualization of the democracies and autocracies of different countries [5], the race/ethnicity
distribution of Twitter users in the United States [6], the rate of obesity for individuals in
Canada [7], and the world citation network [8].

Inspired by the above approach, we develop an efficient finite-element algorithm for
computing density-equalizing flattening maps of simply connected open surfaces in \BbbR 3 onto \BbbR 2.
Given a simply connected open triangulated surface and certain quantities defined on all triangle
elements of the surface, we first flatten the surface onto \BbbR 2 by a natural flattening map. Then
the flattened surface is deformed according to the given quantities using a fast iterative scheme.
Furthermore, by altering the input quantities defined on the triangle elements, flattening maps
with different properties can be achieved. For instance, area-preserving parameterizations of
simply connected open surfaces can be easily obtained.

1.1. Contribution. The contribution of our work for computing density-equalizing flatten-
ing maps of simply connected open surfaces is as follows:

(i) Our approach is applicable to a wider class of surfaces when compared to the previous
approach by Gastner and Newman [1]. The previous approach [1] works for two-
dimensional (2D) domains, while ours works for simply connected open surfaces in \BbbR 3.

(ii) We propose a linear formulation for computing a curvature-based flattening map of
simply connected open surfaces. The flattening map effectively preserves the curvature
of the input surface boundary and serves as a good initialization for the subsequent
density-equalizing process.

(iii) We propose a new scheme for constructing an auxiliary region for the density diffusion.
When compared to the previous approach [1], which makes use of a regular rectangular
grid for constructing the auxiliary region, our approach produces a more adaptive
auxiliary region that requires fewer points and hence reduces the computational cost.

(iv) We propose a finite-element iterative scheme for solving the density-diffusion problem
without introducing the Fourier space as in the previous approach [1]. The scheme ac-
celerates the computation for density-equalizing maps, with the accuracy well preserved.
When compared to the state-of-the-art parameterization approaches, our algorithm
also achieves higher efficiency and accuracy.

(v) Our proposed algorithm can be used for a wide range of applications, including the
computation of area-preserving parameterizations, data visualization, and surface
remeshing.

1.2. Organization of the paper. In section 2, we review the previous works on cartogram
generation and surface parameterization. The physical principle of density equalization is
outlined in section 3. In section 4, we describe our proposed method for achieving density-
equalizing flattening maps of simply connected open surfaces. Experimental results are
presented in section 5 for analyzing our proposed algorithm. In section 6, we discuss two
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applications of our algorithm. In section 7, we conclude this paper with a discussion on the
advantages, limitations, and possible extensions of our current approach.

2. Previous work. The problem of map generation has been studied by cartographers,
geographers, and scientists for centuries. Readers are referred to Dorling [9] for a short survey
of pre-existing cartogram production methods. Edelsbrunner and Waupotitsch [10] proposed
a combinatorial approach to construct homeomorphisms with prescribed area distortion for
cartogram generation. Keim, North, and Panse [11] developed the Cartodraw algorithm for pro-
ducing contiguous cartograms. They also proposed [12] using medial-axis-based transformations
for making cartograms.

In this work, cartogram generation is shown to be closely related to surface parameter-
ization. For surface parameterization, a large variety of algorithms have been proposed by
different research groups [13, 14, 15]. There are two major classes of surface parameterization
algorithms, namely, conformal parameterization and authalic parameterization. Conformal
parameterization aims to preserve the angles and hence the infinitesimal shapes of the surfaces
while sacrificing the area ratios. By contrast, authalic parameterization aims to preserve
the area measure of the surfaces while neglecting angular distortions. For conformal pa-
rameterization, established methods include linearization of the Laplace equation [16, 17],
least-squares conformal mapping (LSCM) [18], discrete conformal parameterization (DCP) [19],
angle-based flattening (ABF) [20, 21, 22], Dirichlet energy minimization [23], homolophic
1-form [24], Yamabe flow [25], circle patterns [26], spectral conformal mapping (SCP) [27],
conformal prescription with metric scaling [28], discrete conformal equivalence [29], discrete
Ricci flow [30, 31, 32], quasi-conformal composition [33, 34, 35, 36, 37], and boundary first
flattening [38]. In contrast to conformal parameterization, only a few works on area-preserving
parameterization have been reported. Proposed methods include locally authalic map [19], Lie
advection of differential 2-forms [39], and optimal mass transport [40, 41, 42].

It is noteworthy that there are also numerous parameterization approaches trading off
between the conformal and authalic distortions, such as area-preserving MIPS [43], as-rigid-as-
possible (ARAP) parameterization [44], isometric metric [45], optimized conformal parameter-
ization with controllable area distortions [46], angle-area distortion balancing maps [47], and iso-
metric distortion energy minimization [48]. Other notable related parameterization approaches
include landmark-constrained optimized conformal parameterization [49, 50, 51, 52], optimal
conformal parameterization for surfaces with arbitrary topology [53, 54], quasi-conformal
parameterization [55, 56, 57, 58, 36, 59], bounded distortion parameterization [60, 61, 62],
composite majorization [63], approximate Killing vector fields [64], and the simplicial complex
augmentation framework (SCAF) [65].

Our density-equalizing algorithm involves handling the density gradient field on triangle
meshes. For the interpolation of vector fields, Whitney forms are used in this work. Whitney
forms were introduced by Whitney [66] for algebraic topology and subsequently used as finite
elements [67]. Readers are referred to the survey [68] for an overview of vector field processing
on triangle meshes. A related approach to introducing weights on triangle meshes has also
appeared in the construction of orthogonal dual meshes [69].

3. Background. Our work aims to produce flattening maps based on a physical principle
of diffusion. The diffusion-based method for producing cartogram proposed by Gastner and
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Newman [1] (denoted by GN for the rest of the paper) is outlined as follows. Given a planar
map and a quantity called the population defined on every part of the map, let \rho be the density
field defined by the quantity per unit area. The map can be deformed by equalizing the density
field \rho using the advection equation

(3.1)
\partial \rho 

\partial t
=  - \nabla \cdot j,

where the flux is given by Fick's law,

(3.2) j =  - \nabla \rho .

This yields the diffusion equation

(3.3)
\partial \rho 

\partial t
= \Delta \rho .

Since time can be rescaled in the subsequent analysis, the diffusion constant in Fick's law is
set to 1. Any tracers that are being carried by this density flux will move with velocity

(3.4) v(r, t) =
j

\rho 
=  - \nabla \rho 

\rho 
.

Note that the term \nabla \rho /\rho is independent of the absolute scale of \rho , and hence the update of
the velocity field is stable.

If (3.3) is solved to steady state, and the map is deformed according to the velocity field
in (3.4), then the final state of the map will have equalized density. To track the deformation
of the map, GN introduced tracers r(t) that follow the velocity field according to

(3.5) r(t) = r(0) +

\int t

0
v(r, \tau )d\tau .

In other words, taking t \rightarrow \infty , the above displacement r(t) produces a map that achieves
equalized density per unit area. To avoid infinite expansion of the map, GN proposed to
construct a large rectangular auxiliary region, called the sea, surrounding the region of interest.
Defining the density in the sea to be the average density of the region of interest ensures
that the area of the deformed map is as same as that of the initial map. In GN, the above
procedures were developed using finite difference grids, and the above equations were solved in
Fourier space.

There is room for improvement in the above-mentioned approach in two major aspects.
First, the above 2D finite difference approach works for planar domains but not for general
simply connected open surfaces in \BbbR 3. Second, the large rectangular sea and the large number
of grid points may require a long computational time. In this work, an algorithm that further
enhances the above-mentioned approach in the two aspects is proposed. The details of our
proposed algorithm is described in the following section.
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4. Our proposed method. Let S be a simply connected open surface in \BbbR 3, and let \rho be
a prescribed density distribution. Our goal is to compute a flattening map f : S \rightarrow \BbbR 2 such
that the Jacobian Jf satisfies

(4.1) Jf \propto \rho .

In other words, the final density per unit area in the flattening map becomes a constant.
Our proposed algorithm primarily consists of three steps, described in sections 4.1, 4.2,

and 4.3. We remark that if the input surface is planar, the first step can be skipped. In the
following discussions, S is discretized as a triangle mesh (\scrV , \scrE ,\scrF ), where \scrV is the vertex set,
\scrE is the edge set, and \scrF is the triangular face set. \rho is discretized as \rho \scrF on every triangle
element T \subset \scrF .

4.1. Initialization: Fast curvature-based flattening map. To compute the density-equali-
zation process, the first step is to flatten S onto \BbbR 2. To minimize the discrepancy between
the surface and the flattening result, it is desirable that the outline of the flattening result be
similar to the surface boundary. We first simplify the problem by considering only the curve
flattening problem of the surface boundary. Then we construct a surface flattening map based
on the curve flattening result.

4.1.1. Curvature-based flattening of the surface boundary. Let \gamma be the boundary of
the given surface S. Note that \gamma is a simple closed curve in \BbbR 3, and hence we can write it as
an arclength parameterized curve \gamma = \gamma (t) : [0, l\gamma ] \rightarrow \BbbR 3, where l\gamma is the total arclength of
\gamma . Our goal is to flatten \gamma onto \BbbR 2 using a map \varphi : [0, l\gamma ] \rightarrow \BbbR 2 and then obtain the entire
flattening map of the surface S. For \gamma , we can compute two quantities: the curvature \kappa \gamma 
and the torsion \tau \gamma . Note that the curvature \kappa \gamma measures the deviation of \gamma from a straight
line, and the torsion \tau \gamma measures the deviation of \gamma from a planar curve. By the fundamental
theorem of space curves [70], \gamma is completely determined (up to rigid motion) by \kappa \gamma and \tau \gamma .

Motivated by the above, we consider mapping \gamma to \varphi (\gamma ) such that \kappa \gamma \approx \kappa \varphi (\gamma ) and \tau \varphi (\gamma ) = 0.
In other words, we project \gamma onto the space of planar convex curves such that the curvature is
preserved as much as possible. By Frenet--Serret formulas [70],

(4.2) T\prime (t) = \kappa \gamma (t)\| \gamma \prime (t)\| N(t),

where T and N are, respectively, the unit tangent and unit normal of \gamma . It follows that

(4.3) \kappa \gamma (t) =
\| T\prime (t)\| 
\| \gamma \prime (t)\| 

.

After obtaining \kappa \gamma , our goal is to construct a projection of \gamma onto the space of planar simple
convex closed curves. Note that for any simple closed planar curve \scrC \subset \BbbR 2, the total signed
curvature of \scrC is a constant [70]:

(4.4)

\int 
\scrC 
k\scrC (t)dt = 2\pi .

Now, to construct a closed planar curve \varphi with total arclength same as \gamma , we set the target
signed curvature k to be

(4.5) k(s) =
2\pi \kappa \gamma (s)\int 
\gamma \kappa \gamma (t)dt

\geq 0.
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Figure 1. Our curvature-based curve flattening procedure. Given a closed curve in \BbbR 3 which represents
the surface boundary, a plane curve is first constructed using (4.6). The adjustment (4.10) is then used for
obtaining a simple closed convex curve.

Then consider the curve

(4.6) \varphi (s) =

\biggl( \int s

0
cos \theta (u)du,

\int s

0
sin \theta (u)du

\biggr) 
,

where

(4.7) \theta (u) =

\int u

0
k(t)dt.

It is easy to check that

(4.8) \varphi \prime (s) = (cos \theta (s), sin \theta (s)),

and hence \varphi is an arclength parameterized curve. Moreover, we have

(4.9) k\varphi (s) = \theta \prime (s) = k(s) \geq 0.

However, it should be noted that \varphi may not be a closed curve. In other words, there may be a
small gap between \varphi (0) and \varphi (l\gamma ) with 0 \leq \| \varphi (l\gamma ) - \varphi (0)\| \ll L, where L is the total arclength
of \varphi . To enforce that \varphi is closed, we consider updating it to

(4.10) \varphi (s)\leftarrow \varphi (s) - s

l\gamma 
(\varphi (l\gamma ) - \varphi (0)) .

In fact, \varphi becomes a simple closed convex plane curve under this adjustment. The proof is
provided in the appendix (see Appendix A). Figure 1 illustrates our curve flattening procedure.
Our algorithm is summarized in Algorithm 1.

We make two remarks about the proposed curve flattening scheme before proceeding to
the next step.

(i) Note that the curvature \kappa \gamma of a space curve is always unsigned by its mathematical
definition, which leads to the resulting convex plane curve. In case it is desired to
flatten the surface boundary as a nonconvex shape, one can introduce a sign on certain
\kappa \gamma (s) before defining the target curvature k. This modification results in a nonconvex
plane curve under the curve flattening scheme, although the proof we provide about \varphi 
being a simple closed plane curve is no longer applicable.
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Algorithm 1: Curvature-based curve flattening.

Input: The boundary \gamma of a simply connected open surface S in \BbbR 3.
Output: A curvature-based flattened curve \varphi .

\bfone Let \gamma = \{ vj\} bj=1 be the boundary vertices of S in counterclockwise order. Compute the

curvature \kappa = \| \bfT \prime \| 
\| \gamma \prime \| ;

\bftwo Rescale \kappa by \kappa \leftarrow 2\pi \kappa \int 
\gamma \kappa (s)ds

;

\bfthree Obtain the flattened curve \varphi (s) =
\bigl( \int s

0 cos \theta (u)du,
\int s
0 sin \theta (u)du

\bigr) 
, where \theta (u) =

\int u
0 \kappa (t)dt;

\bffour Adjust the map by \varphi (s)\leftarrow \varphi (s) - s
l\gamma 
(\varphi (l\gamma ) - \varphi (0));

Figure 2. A comparison between our method and the method by Sawhney and Crane [38] for closing a loop.
We first construct six test cases of open curves of length 2\pi , possibly with a large gap or even self-intersections.
We then close the curves by solving the energy minimization problem (equation (18) in [38]) and by our proposed
adjustment step (4.10). We quantitatively compare the two methods by evaluating the L2 norm of the curvature
difference \| \kappa closed  - \kappa open\| 2 between each closed curve and the original curve.

(ii) Sawhney and Crane [38] proposed another method for constructing a closed plane curve
using a similar curve integration approach. There are two major differences between
their method and ours:
(a) Their method constructs the plane curve based on a prescribed target curvature

density, while ours constructs the plane curve based on the curvature of the
surface boundary.

(b) Their method enforces the closed loop condition by introducing an energy mini-
mization step that adjusts the length of the tangents before the curve integration
step, while ours ensures the condition by the adjustment (4.10).

A comparison between our approach and their energy minimization approach is provided
in Figure 2. Both methods are able to enforce the closed loop condition, and our
method achieves a smaller change in curvature. This reflects the advantage of our
method in constructing a closed curve that preserves the target curvature as much as
possible. For the computation time, both methods require O(n) operations, where n is
the number of boundary vertices. However, unlike the method in [38], our method does
not involve any matrix multiplication or inverse. A simple operation count suggests
that our method is more efficient.

After obtaining the simple closed plane curve \varphi , we can use it as a boundary constraint
and compute a map \phi : S \rightarrow \BbbR 2 as an initial flattening map of the entire surface S. Two
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methods for surface flattening are suggested below.

4.1.2. Curvature-based Tutte flattening map. One way to construct a bijective planar
map \phi is the graph embedding method of Tutte [71], which has been shown to be a good
initialization for several existing parameterization approaches. For instance, Gu et al. [23] used
the spherical Tutte embedding followed by a nonlinear harmonic energy minimization scheme
for achieving a spherical conformal parameterization. Smith and Schaefer [45] also combined
the Tutte initialization onto the unit disk with a nonlinear isometric distortion minimization
scheme to compute a bijective parameterization. Here, we combine the Tutte mapping method
with our curvature-based curve flattening result to obtain an initial surface flattening map.

To give an overview of the Tutte mapping method, we first introduce the concept of an
adjacency matrix. The adjacency matrix M is a | \scrV | \times | \scrV | matrix defined by

(4.11) Mij =

\biggl\{ 
1 if [i, j] \in \scrE ,
0 otherwise.

In other words, the adjacency matrix only takes the combinatorial information of the input
triangle mesh into account and neglects the geometry of it. It was proved by Tutte [71] that
there exists a bijective map \phi between any simply connected open triangulated surface S in
\BbbR 3 and any convex polygon P on \BbbC with the aid of the adjacency matrix. More explicitly, by
representing \phi as a complex column vector with length | \scrV | , \phi can be obtained by solving the
complex linear system

(4.12)

\biggl\{ 
M\mathrm{T}\mathrm{u}\mathrm{t}\mathrm{t}\mathrm{e}\phi (v) = 0 if v \in S \setminus \partial S,
\phi (\partial S) = \partial P,

where

(4.13) M\mathrm{T}\mathrm{u}\mathrm{t}\mathrm{t}\mathrm{e}
ij =

\left\{   
Mij if [xi, xj ] \in \scrE ,
 - 
\sum 

t\not =iMit if j = i,

0 otherwise.

Here the boundary mapping \phi : \partial S \rightarrow \partial P can be any bijective map.
The choice of the boundary shape affects the surface flattening result. Some common choices

include the unit circle and rectangle, which, respectively, result in a disk parameterization
\phi : S \rightarrow \BbbD and a rectangular parameterization \phi : S \rightarrow R. While these choices lead to a
simple parameter domain, the distortion of the surface under the flattening map may be large.
In particular, the triangle elements near the shape boundary may be seriously squeezed. In
contrast to these simple shapes, our curvature-based flattened curve \varphi resembles the shape
of the surface boundary and hence leads to a smaller distortion in the flattened map with
the occurrence of such extreme triangle elements reduced. Hence, we propose to use \varphi as the
convex boundary constraint. Let P be the domain enclosed by \varphi . Then a bijective Tutte
flattening map \phi : S \rightarrow P can be easily obtained, as described in Algorithm 2.

We remark that if \varphi was modified to be nonconvex, one has to make a few tweaks to
the above approach for guaranteeing the bijectivity of \phi : S \rightarrow P . One possible way is to
compute two disk Tutte maps \phi 1 : S \rightarrow \BbbD and \phi 2 : P \rightarrow \BbbD and obtain the composition map
\phi = \phi  - 1

2 \circ \phi 1 : S \rightarrow P . As \BbbD is convex, both \phi 1, \phi 2 are bijective, and hence \phi is also.



1142 GARY P. T. CHOI AND CHRIS H. RYCROFT

Algorithm 2: Curvature-based Tutte flattening map.

Input: A simply connected open surface S in \BbbR 3.
Output: A curvature-based flattening map \phi : S \rightarrow P , where P is a planar convex

domain.

\bfone Let \gamma = \{ vj\} bj=1 be the boundary vertices of S. Compute the curvature-based curve

flattening \varphi : \gamma \rightarrow \BbbC ;

\bftwo Compute the adjacency matrix M with Mij =

\biggl\{ 
1 if [i, j] \in \scrE ,
0 otherwise;

\bfthree Solve the linear system

\biggl\{ 
M\mathrm{T}\mathrm{u}\mathrm{t}\mathrm{t}\mathrm{e}\phi (v) = 0 if v \in S \setminus \partial S,
\phi (vj) = \varphi (vj) for all \{ vj\} bj=1,

and obtain the desired

map \phi ;

Figure 3. Left: the angles \gamma ij and \delta ij in the locally authalic Chi energy. Middle: the two angles \alpha ij and \beta ij

opposite the edge [i, j] in the cotangent Laplacian. Right: the vertex area A(i) of a vertex i.

4.1.3. Curvature-based locally authalic flattening map. By changing the matrix M\mathrm{T}\mathrm{u}\mathrm{t}\mathrm{t}\mathrm{e}

in the above method, another way to construct \phi can be obtained. Desbrun, Meyer, and
Alliez [19] proposed a mapping scheme by minimizing the quadratic Chi energy

(4.14) E\chi (\phi ) =
\sum 

j\in N(i)

cot \gamma ij + cot \delta ij
| xi  - xj | 2

| \phi (xi) - \phi (xj)| 2,

where \gamma ij and \delta ij are the two angles at xj as illustrated in Figure 3 (left). The minimization
of the Chi energy aims to find a locally authalic mapping \phi : S \rightarrow \BbbR 2 that preserves the local
1-ring area at every vertex as much as possible. The associated authalic matrix of this energy
is given by

(4.15) M\chi 
ij =

\left\{     
\mathrm{c}\mathrm{o}\mathrm{t} \gamma ij+\mathrm{c}\mathrm{o}\mathrm{t} \delta ij

| xi - xj | 2 if [xi, xj ] \in \scrE ,
 - 
\sum 

t\not =iM
\chi 
it if j = i,

0 otherwise.

Now consider replacing M\mathrm{T}\mathrm{u}\mathrm{t}\mathrm{t}\mathrm{e} in the Tutte flattening algorithm by M\chi and solve for a
new flattening map. It is noteworthy that the minimizer of the Chi energy is not a globally
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Figure 4. An example for which the locally authalic map contains overlaps. Left: a mesh that contains
many sliver triangles, violating the convex combination mapping property [13]. Right: the curvature-based locally
authalic flattening map, with a zoom-in of the triangle overlaps.

optimal area-preserving mapping. Nevertheless, it serves as a reasonably good and simple
initialization for our density-equalization problem. More explicitly, using our curvature-based
boundary constraint, \phi can be obtained by solving the following complex linear system:

(4.16)

\biggl\{ 
M\chi \phi (v) = 0 if v \in S \setminus \partial S,
\phi (\partial S) = \varphi .

Note that, unlike the Tutte map, the bijectivity of the locally authalic map is only
guaranteed when the convex combination mapping property [13] is satisfied, that is, all
cot \gamma ij + cot \delta ij in M\chi are nonnegative. This condition is equivalent to \gamma ij + \delta ij \leq \pi for all
i, j. Figure 4 shows a mesh violating this condition, with the locally authalic flattening map
containing mesh fold-overs. In this case, we simply resort to the Tutte map for ensuring the
bijectivity. The curvature-based locally authalic flattening map is summarized in Algorithm 3.

In addition, in case it is desired to balance between the local 1-ring area distortion
and the local angle distortion, one can replace M\chi in (4.16) by the combined matrix [19]
\lambda M\chi + (1 - \lambda )M\mathrm{C}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{n}, where \lambda \in [0, 1] is a balancing parameter and M\mathrm{C}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{n} is the cotangent
Laplacian [72] given by

(4.17) M\mathrm{C}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{n}
ij =

\left\{   
1
2(cot\alpha ij + cot\beta ij) if [xi, xj ] \in \scrE ,
 - 
\sum 

t\not =iM
\mathrm{C}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{n}
it if j = i,

0 otherwise,

with \alpha ij and \beta ij being the two angles opposite the edge [i, j], as illustrated in Figure 3 (middle).
We remark that the curvature-based flattening algorithms we introduced above are a good

choice of initialization for our problem for the following reasons:
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Algorithm 3: Curvature-based locally authalic flattening map.

Input: A simply connected open surface S in \BbbR 3.
Output: A curvature-based locally authalic flattening map \phi : S \rightarrow \BbbR 2.

\bfone Let \gamma = \{ vj\} bj=1 be the boundary vertices of S. Compute the curvature-based curve

flattening \varphi : \gamma \rightarrow \BbbC ;

\bftwo Compute the authalic matrix M\chi 
ij =

\left\{     
\mathrm{c}\mathrm{o}\mathrm{t} \gamma ij+\mathrm{c}\mathrm{o}\mathrm{t} \delta ij

| xi - xj | 2 if [xi, xj ] \in \scrE ,
 - 
\sum 

t\not =iM
\chi 
it if j = i,

0 otherwise;

\bfthree Solve the linear system

\biggl\{ 
M\chi \phi (v) = 0 if v \in S \setminus \partial S,
\phi (vj) = \varphi (vj) for all \{ vj\} bj=1,

and obtain the desired map \phi ;

\bffour In case \phi contains overlaps, resort to the Tutte map using Algorithm 2;

(i) The curve flattening procedure produces a planar curve that resembles the curvature
of the given surface boundary. Unlike other conventional parameterizations which map
surfaces to a standard planar domain, our curvature-based flattening method results in
a more natural flattening map that avoids squeezing particular regions. The diffusion
process can then be more accurately executed.

(ii) The computation of the flattening maps is highly efficient. Both algorithms only involve
solving one complex linear system without any iterative procedures.

4.2. Construction of sea via reflection. In the diffusion-based approach of GN, one
important step is to set up a sea surrounding the area of interest. The presence of the sea
allows the area of interest to deform freely, and setting the initial density at the sea as the
mean density avoids arbitrary expansion of the region under the diffusion process. In this
work, we propose a new method for the construction of such a sea for the diffusion.

If the simply connected open surface S is not planar, then the above-mentioned curvature-
based flattening methods give us an initial flattening map r0 = \phi (S) in \BbbR 2. If S is initially
planar, we skip the above step and set r0 = S. In other words, we treat S itself as the initial
flattening map.

Now, we shrink the initial map r0 and place it inside the unit circle \BbbS 1 := \{ z \in \BbbC : | z| = 1\} .
Note that there will be certain gaps between the shrunk map and the circular boundary.
Denote the edge length of the shrunk flattening map by l. We fill up the gaps using uniformly
distributed points with distance l. This process results in an even distribution of points all over
the unit disk \BbbD := \{ z \in \BbbC : | z| \leq 1\} . We then triangulate the new points using the Delaunay
triangulation. This gives us a triangulation \BbbD T of the unit disk.

Next, we aim to construct a sea surrounding the unit disk in a natural way. Consider the
reflection mapping g : \BbbD \rightarrow \BbbC \setminus \BbbD defined by

(4.18) g(z) =
1

\=z
.

It is easy to observe that g is bijective. In the discrete case, the above map sends the
triangulated unit disk \BbbD T to a large polygonal region R in \BbbC with the region of \BbbD punctured.
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We now glue \BbbD T and g(\BbbD T ) along the circular boundary \partial \BbbD T . More explicitly, denote the
glued mesh by \widetilde S = (\widetilde \scrV , \widetilde \scrE , \widetilde \scrF ). We have

\widetilde \scrV = \{ z\} z\in \BbbD T
\cup 
\biggl\{ 
1

\=z

\biggr\} 
z\in \BbbD T \setminus \partial (\BbbD T )

,(4.19)

\widetilde \scrF = \scrF \cup 
\biggl\{ \biggl[ 

1

\=zi
,
1

\=zj
,
1

\=zk

\biggr] 
: [zi, zj , zk] \in \scrF 

\biggr\} 
,(4.20)

and

(4.21) \widetilde \scrE = \{ [zi, zj ] : [zi, zj ] is an edge of a face T \in \widetilde \scrF \} .
In practice, the presence of extremely large triangles at the outermost part of the glued

mesh due to reflection may result in numerical instability in the subsequent computations.
Therefore, we remove those triangles by performing a simple truncation by removing the part
far away from the unit disk \BbbD . More explicitly, we remove all vertices and faces of \widetilde S outside
\{ z : | z| > \eta \} , where \eta is a thresholding parameter. To set a reasonable \eta , we note that GN
pointed out that having a sea with dimensions a few times the linear extent of the region of
interest is sufficient. Therefore, in practice we set \eta = 5. Our experiment indicates that such
truncation does not affect the accuracy of the density-equalizing map. Finally, we rescale the
glued mesh to restore the size of the flattening map. By an abuse of notation, we continue
using r0 to represent the entire region. The above procedures are summarized in Algorithm 4.
A graphical illustration of the construction is shown in Figure 5.

Algorithm 4: Construction of sea via reflection.

Input: An initial flattening map r0, a thresholding parameter \eta .
Output: An updated map r0 with a sea surrounding the original domain.

\bfone Shrink r0 to sit inside the unit circle \BbbS 1;
\bftwo Fill up the gaps between the unit circle and the shrunk map by uniformly distributed
points with distance l, where l is the average edge length of r0;

\bfthree Perform a constrained Delaunay triangulation that triangulates the unit disk with the
newly added points. The connectivity of r0 is kept unchanged;

\bffour Apply the reflection map g(z) = 1
z to the triangulated unit disk \BbbD T ;

\bffive Glue \BbbD T and g(\BbbD T ). Update r0 by the glued result;
\bfsix Remove all vertices and faces of r0 outside \{ z : | z| > \eta \} ;
\bfseven Rescale r0 to restore the size of the flattening map;

One advantage of our construction is that the mesh size of the constructed sea is adaptive.
Unlike the approach in GN, which used a uniform finite difference grid for the sea, our
construction produces a natural distribution of points at the sea that avoids redundant
computation. More specifically, let z1, z2 be two points at the interior of the unit disk \BbbD . Under
the reflection z \mapsto \rightarrow 1

z , we have

(4.22)

\bigm| \bigm| \bigm| \bigm| 1z1  - 1

z2

\bigm| \bigm| \bigm| \bigm| = | z1  - z2| 
| z1z2| 

=
| z1  - z2| 
| z1z2| 

.
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Figure 5. Illustration of our algorithm for constructing the sea. Left: the initial flattening map. We put it
inside the unit circle and fill up the gap with uniformly distributed points, and then reflect the entire region along
the circle to construct the sea. Right: the sea constructed (in cyan) and the initial flattening map (in yellow).

This implies that the edges formed under the reflection are short near the unit disk boundary,
and get long further away. Hence, the outermost region of the sea, which stays far away from
the region of interest, consists of the coarsest triangulations. By contrast, the innermost region
of the sea closest to the unit circle has the densest triangulations. This natural transition
of mesh sparsity of the sea helps reduce the number of points needed for the subsequent
computation without affecting the accuracy of the result.

Another advantage of our construction is the improvement on the shape of the sea. In
GN, a rectangular sea is used for the finite difference framework. The four corner regions
are usually unimportant for the subsequent deformation, and hence a large amount of spaces
and computational efforts are wasted. By contrast, our reflection-based framework can easily
overcome the above drawback. In our construction of the sea, the reflection together with the
truncation produces a sea with a more regular shape. This utilizes the use of every point at
the sea and prevents any redundant computations.

4.3. Iterative scheme for producing density-equalizing maps. Given any simply con-
nected open triangle mesh, the curvature-based flattening method produces a flattened map in
\BbbR 2. Suppose we are given a population on each triangle element of the mesh. Define the density
\rho \scrF on each triangle element of the flattened map by \mathrm{P}\mathrm{o}\mathrm{p}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}

\mathrm{A}\mathrm{r}\mathrm{e}\mathrm{a} \mathrm{o}\mathrm{f} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{l}\mathrm{e} . Then we interpolate \rho \scrF 

on vertices and develop an iterative scheme for deforming the flattened map using density
diffusion. Our scheme is based on a finite element formulation.

To solve the diffusion equation on triangle meshes, one important issue is to discretize the
Laplacian. Let u : \widetilde \scrV \rightarrow \BbbR be a function. To compute the Laplacian of u at every vertex i, we
use the discrete finite-element Laplacian [73]

(4.23) \Delta u(i) =  - 1

2A(i)

\sum 
j\in \scrN (i)

(cot\alpha ij + cot\beta ij) (u(i) - u(j)),

where \scrN (i) is the 1-ring vertex neighborhood of i, \alpha ij and \beta ij are the two angles opposite to
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the edge [i, j], and A(i) is the vertex area of the vertex i. More specifically,

(4.24) A(i) =
1

3

\sum 
T\in \scrN \widetilde \scrF (i)

Area(T ),

where \scrN \widetilde \scrF (i) is the 1-ring face neighborhood of i. It is easy to observe that

(4.25)
\sum 
i\in \widetilde \scrV 

A(i) =
\sum 
T\in \widetilde \scrF 

Area(T ).

This shows that the vertex area is a good discretization of the total surface area at the vertex
set. The graphical illustrations of \alpha ij , \beta ij and A(i) are given in Figure 3 (middle and right). It
is noteworthy that the sea we constructed has an additional purpose of complementing the use
of the FEM Laplacian (4.23), which assumes the natural boundary condition \nabla u \cdot n = 0 in
its derivation. The use of the sea ensures that the region of interest is not restricted by this
natural boundary condition and hence can deform freely. An outline of the derivation of (4.23)
is provided in the appendix (see Appendix B).

Note that the density \rho is originally defined on the triangle faces, while the above Laplacian
works on vertices. To handle this discrepancy, we consider interpolating \rho \scrF at vertices.
Note that for every vertex v \in \scrV , \rho \scrV (v) should only depend on the value of \rho \scrF within its
1-ring face neighborhood. This property is related to the Whitney 2-forms [68], which are
piecewise-constant functions supported on triangle elements:

(4.26) \phi W
T (x) =

\biggl\{ 1
\mathrm{A}\mathrm{r}\mathrm{e}\mathrm{a}(T ) if x lies on T,

0 otherwise.

Note that the function value at a vertex should depend on the values within its 1-ring face
neighborhood. Any face-valued function f : \scrF \rightarrow \BbbR can be interpolated at all vertices v \in \scrV by

(4.27) f(v) =

\sum 
T\in \scrF 

\int 
T f(T )\phi W

T (v)dA\sum 
T\in \scrF 

\int 
T \phi W

T (v)dA
=

\sum 
T\in \scrN \scrF (v)

f(T )
\mathrm{A}\mathrm{r}\mathrm{e}\mathrm{a}(T )Area(T )\sum 

T\in \scrN \scrF (v)
1

\mathrm{A}\mathrm{r}\mathrm{e}\mathrm{a}(T )Area(T )
=

\sum 
T\in \scrN \scrF (v) f(T )

| \scrN \scrF (v)| 
.

The above interpolation result only depends on the mesh structure but not the geometry.
In our case of interpolating \rho , as \rho is related to the deformation of face area, it is desirable to
emphasize the weight of different faces in the interpolation. We consider the modified version
of Whitney 2-forms,

(4.28) \widetilde \phi W
T (x) =

\biggl\{ 
1 if x lies on T,
0 otherwise,

which gives the desired interpolation

(4.29) \rho \scrV (v) =

\sum 
T\in \scrF 

\int 
T \rho \scrF (T )\widetilde \phi W

T (v)dA\sum 
T\in \scrF 

\int 
T
\widetilde \phi W
T (v)dA

=

\sum 
T\in \scrN \scrF (v) \rho 

\scrF (T )Area(T )\sum 
T\in \scrN \scrF (v)Area(T )

.
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If we regard \rho \scrV as a | \scrV | \times 1 matrix and \rho \scrF as a | \scrF | \times 1 matrix, the above formula can be
represented as a matrix multiplication

(4.30) \rho \scrV := W\scrF \scrV \rho \scrF ,

where W\scrF \scrV is a | \scrV | \times | \scrF | sparse matrix

(4.31) W\scrF \scrV :=

\left(     
W1,:/\| W1,:\| 1
W2,:/\| W2,:\| 1

...
W| \scrV | ,:/\| W| \scrV | ,:\| 1

\right)     ,

with

Wij =

\biggl\{ 
Area(Tj) if the jth triangle Tj contains the ith vertex,
0 otherwise.

After computing the density \rho \scrV at the initial flattening map, we can extend \rho \scrV to the
adaptive sea surrounding the map. As suggested in GN, the density at the sea should equal
the mean density at the initial map. Therefore, for every vertex v\prime at the sea, we set

(4.32) \rho \scrV (v\prime ) = meanv\rho 
\scrV (v).

It is noteworthy that the density at the boundary of the original flattening map may be blurred
by the sea if we perform the above-mentioned interpolation with the sea included. Therefore,
it is more desirable to perform the interpolation and obtain \rho \scrV at the initial flattening map
first, and then set the density at the sea nodes. In the following discussions, by an abuse of
notation, we continue using the notation \scrV , \scrF without tilde whenever referring to the discrete
mesh structure including the sea.

With the density interpolated at all vertices, we use the following semidiscrete backward
Euler method for solving the diffusion equation (3.3):

(4.33)
\rho \scrV n  - \rho \scrV n - 1

\delta t
= \Delta n - 1\rho 

\scrV 
n \Leftarrow \Rightarrow \rho \scrV n = (I  - \delta t\Delta n - 1)

 - 1\rho \scrV n - 1.

Here \rho \scrV n is the value of \rho \scrV at the nth iteration, \Delta n is the FEM Laplacian of the deformed
map rn, and \delta t is the time step for the iterations. In the discrete case, note that \Delta n can be
represented as \Delta n =  - A - 1

n Ln, where An is a | \scrV | \times | \scrV | diagonal matrix containing the vertex
area of each vertex, and Ln is a | \scrV | \times | \scrV | symmetric sparse matrix representing the cotangent
components in (4.23). Hence, the above equation is equivalent to

(4.34) \rho \scrV n = (An - 1 + \delta tLn - 1)
 - 1
\bigl( 
An - 1\rho 

\scrV 
n - 1

\bigr) 
.

The above semidiscrete backward Euler method is unconditionally stable. The matrix An - 1 +
\delta tLn - 1 is a symmetric sparse matrix, and hence (4.34) can be efficiently solved by numerical
solvers.

After discretizing the diffusion equation, we consider the production of the induced vector
field. We first need to discretize the gradient operator \nabla . Let (\nabla \rho )\scrF n (T ) be the face-based
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discretization defined on every triangle element T = [i, j, k] at the nth iteration. Denote
the three directed edges of T in the form of vectors by eij = [i, j], ejk = [j, k], eki = [k, i],
and denote the unit normal vector of T by N . A formula of (\nabla \rho )\scrF n (T ) can be derived using
Whitney 0-forms [68], which are hat functions on the vertices:

(4.35) \phi W
i (p) =

\left\{   
1 if p = i,
0 if p is outside N\scrF (i),
affine if p lies on N\scrF (i).

Give any function f defined on vertices, f can be interpolated at any point x lying on the
triangle face T = [i, j, k] by

(4.36) f(x) = fi\phi 
W
i (x) + fj\phi 

W
j (x) + fk\phi 

W
k (x),

where fi, fj , fk are the values of f at the vertices i, j, k. Using the property that \nabla \phi W
i =

N\times ejk
2\mathrm{A}\mathrm{r}\mathrm{e}\mathrm{a}(T ) [68], we obtain

(\nabla \rho )\scrF n (T ) = \nabla 
\bigl( 
\rho \scrV n(i)\phi 

W
i + \rho \scrV n(j)\phi 

W
j + \rho \scrV n(k)\phi 

W
k

\bigr) 
= \rho \scrV n(i)\nabla \phi W

i + \rho \scrV n(j)\nabla \phi W
j + \rho \scrV n(k)\nabla \phi W

k

=
1

2Area(T )
N \times 

\bigl( 
\rho \scrV n(i)ejk + \rho \scrV n(j)eki + \rho \scrV n(k)eij

\bigr) 
.

(4.37)

This gives us an accurate approximation of the gradient (\nabla \rho )\scrF n on triangulated surfaces.
Then we can again use Whitney 2-forms (4.29) to obtain (\nabla \rho )\scrV n on the vertices.

With all differential operators discretized, we are now ready to introduce our iterative
scheme for computing density-equalizing maps. In each iteration, we update the density
by solving (4.34) and compute the induced gradient (\nabla \rho )\scrV n based on the above-mentioned
procedures. Then we deform the map by

(4.38) rn = rn - 1  - \delta t(\nabla \rho )\scrV n/\rho \scrV n .

For the stopping criterion, we consider the quantity sd(\rho \scrV n)/mean(\rho \scrV n). Note that the
standard deviation sd(\rho \scrV n ) measures the dispersion of the updated density \rho \scrV n , and we normalize
it using mean(\rho \scrV n) to remove the effect of arbitrary scaling of \rho \scrV n . Also, it is easy to note that
sd(\rho \scrV n )/mean(\rho \scrV n ) = 0 if and only if the density is completely equalized. Hence, this normalized
quantity can be used for determining the convergence of the iterative algorithm. Finally, we
rescale the mapping result so that the total area of S is preserved under our density-equalizing
mapping algorithm.

We remark that the step size \delta t affects the convergence rate of the algorithm. By dimensional
analysis of the diffusion equation (3.3), an appropriate dimension of \delta t would be L2. Also, note
that \delta t should be independent of the magnitude of \rho . Therefore, a reasonable choice of \delta t is

(4.39) \delta t = min

\biggl\{ 
min(\rho \scrV 0 )

mean(\rho \scrV 0 )
,
mean(\rho \scrV 0 )

max(\rho \scrV 0 )

\biggr\} 
\times Area(S).

The first term is a dimensionless quantity that takes extreme relative density ratios into
account, and the second term is a natural quantity with dimension L2. One can also rescale



1150 GARY P. T. CHOI AND CHRIS H. RYCROFT

Algorithm 5: Density-equalizing map (DEM) for simply connected open surfaces.

Input: A simply connected open triangulated surface S, a population on each triangle,
and a stopping parameter \epsilon .

Output: A density-equalizing flattening map f : S \rightarrow \BbbR 2.

\bfone if S is planar then
\bftwo Set r0 = S; ;
\bfthree else
\bffour Compute a curvature-based flattening map \phi : S \rightarrow \BbbC using Algorithm 2 or

Algorithm 3. Denote r0 = \phi (S);

\bffive Define the density \rho \scrF 0 = \mathrm{G}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{n} \mathrm{p}\mathrm{o}\mathrm{p}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}
\mathrm{A}\mathrm{r}\mathrm{e}\mathrm{a} \mathrm{o}\mathrm{f} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{l}\mathrm{e} on each triangle of r0;

\bfsix Compute \rho \scrV 0 = W\scrF \scrV \rho \scrF 0 ;
\bfseven Update r0 with an adaptive sea constructed using Algorithm 4;
\bfeight Extend \rho \scrV 0 to the whole domain by setting \rho \scrV 0 at the sea to be the mean of the original
\rho \scrV 0 ;

\bfnine Set \delta t = min
\Bigl\{ 

\mathrm{m}\mathrm{i}\mathrm{n}(\rho \scrV 0 )

\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n}(\rho \scrV 0 )
,
\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n}(\rho \scrV 0 )

\mathrm{m}\mathrm{a}\mathrm{x}(\rho \scrV 0 )

\Bigr\} 
\times Area(S);

\bfone \bfzero Set n = 0;
\bfone \bfone repeat
\bfone \bftwo Update n = n+ 1;
\bfone \bfthree Solve \rho \scrV n = (An - 1 + \delta tLn - 1)

 - 1
\bigl( 
An - 1\rho 

\scrV 
n - 1

\bigr) 
;

\bfone \bffour Compute the face-based discrete gradient
(\nabla \rho )\scrF n (T ) = 1

2\mathrm{A}\mathrm{r}\mathrm{e}\mathrm{a}(T )N \times 
\bigl( 
\rho \scrV n(i)ejk + \rho \scrV n(j)eki + \rho \scrV n(k)eij

\bigr) 
;

\bfone \bffive Compute (\nabla \rho )\scrV n = W\scrF \scrV (\nabla \rho )\scrF n ;
\bfone \bfsix Update rn = rn - 1  - \delta t(\nabla \rho )\scrV n/\rho \scrV n ;
\bfone \bfseven until sd(\rho \scrV n )

mean(\rho \scrV n )
< \epsilon ;

\bfone \bfeight Obtain f(S) = rn \times \mathrm{A}\mathrm{r}\mathrm{e}\mathrm{a}(\bfr 0)
\mathrm{A}\mathrm{r}\mathrm{e}\mathrm{a}(\bfr n)

;

\delta t by a constant multiple. Algorithm 5 summarizes our proposed method for producing
density-equalizing maps (DEMs) of simply connected open surfaces.

While our DEM algorithm naturally deforms the entire shape to achieve a density-equali-
zing map, in some situations it may be desirable to have a flattening map with a prescribed
simple boundary shape such as rectangle or disk. Our density-equalizing mapping algorithm
can be easily modified to handle such situations by the following approach. First, we replace
the initialization (lines 1--4) in Algorithm 5 by an initial map with the desired boundary shape,
such as a disk Tutte map or a rectangular Tutte map. Then, as it is desired that the boundary
shape remain unchanged and the region outside the mesh is not of our interest, we can skip
the construction of the sea (lines 7--8).

Theoretically, the deformation of the map during the density-equalizing process is guided by
the density gradient field \nabla \rho . To ensure that the overall boundary shape remains unchanged,
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at each iteration we can enforce a Neumann boundary condition

(4.40) (\nabla \rho ) \cdot n = 0.

In fact, this condition has been implicitly enforced in the derivation of (4.23) (see Appendix B).
Therefore, in theory we can obtain a density-equalizing map with the desired shape without
making any change in the iterative scheme.

However, in the discrete case, there is often a numerical error in approximating the density
gradient, and hence \nabla \rho at the boundary may have a small nonzero normal component, causing
the boundary to undergo a small change in the overall shape. To correct that, we can simply
add a step of projecting all boundary vertices onto the prescribed shape at the end of each
iteration. This ensures that the boundary vertices stay on the prescribed boundary shape
throughout the density-equalizing process, while having the freedom to slide along it to achieve
density equalization. With the implicit assumption of (\nabla \rho ) \cdot n = 0 in the cotangent Laplacian
formulation, this extra projection step will not lead to a notable discrepancy between the
density field and the shape deformation. Algorithm 6 summarizes this modified version of
Algorithm 5 for computing shape-prescribed density-equalizing maps.

Algorithm 6: Shape-prescribed density-equalizing map for simply connected open
surfaces.
Input: A simply connected open triangulated surface S, a prescribed boundary shape,

a population on each triangle, and a stopping parameter \epsilon .
Output: A shape-prescribed density-equalizing flattening map f : S \rightarrow \BbbR 2.

\bfone Compute an initial map \phi : S \rightarrow \BbbC with the prescribed boundary shape. Denote
r0 = \phi (S);

\bftwo Define the density \rho \scrF 0 = \mathrm{G}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{n} \mathrm{p}\mathrm{o}\mathrm{p}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}
\mathrm{A}\mathrm{r}\mathrm{e}\mathrm{a} \mathrm{o}\mathrm{f} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{l}\mathrm{e} on each triangle of r0;

\bfthree Compute \rho \scrV 0 = W\scrF \scrV \rho \scrF 0 ;

\bffour Set \delta t = min
\Bigl\{ 

\mathrm{m}\mathrm{i}\mathrm{n}(\rho \scrV 0 )

\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n}(\rho \scrV 0 )
,
\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n}(\rho \scrV 0 )

\mathrm{m}\mathrm{a}\mathrm{x}(\rho \scrV 0 )

\Bigr\} 
\times Area(S);

\bffive Set n = 0;
\bfsix repeat
\bfseven Update n = n+ 1;
\bfeight Solve \rho \scrV n = (An - 1 + \delta tLn - 1)

 - 1
\bigl( 
An - 1\rho 

\scrV 
n - 1

\bigr) 
;

\bfnine Compute the face-based discrete gradient
(\nabla \rho )\scrF n (T ) = 1

2\mathrm{A}\mathrm{r}\mathrm{e}\mathrm{a}(T )N \times 
\bigl( 
\rho \scrV n(i)ejk + \rho \scrV n(j)eki + \rho \scrV n(k)eij

\bigr) 
;

\bfone \bfzero Compute (\nabla \rho )\scrV n = W\scrF \scrV (\nabla \rho )\scrF n ;
\bfone \bfone Update rn = rn - 1  - \delta t(\nabla \rho )\scrV n/\rho \scrV n ;
\bfone \bftwo Project all boundary vertices onto the prescribed boundary shape;

\bfone \bfthree until sd(\rho \scrV n )
mean(\rho \scrV n )

< \epsilon ;

\bfone \bffour Obtain f(S) = rn \times \mathrm{A}\mathrm{r}\mathrm{e}\mathrm{a}(\bfr 0)
\mathrm{A}\mathrm{r}\mathrm{e}\mathrm{a}(\bfr n)

;

4.4. The choice of population and its effects. Before ending this section, we discuss the
choice of the initial population and its effect on the final result obtained by our algorithm.
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Some choices and the corresponding effects are listed below:
(i) If we set a relatively high population at a certain region of the input surface, the

population will cause an expansion during the density equalization. The region will be
magnified in the final density-equalizing mapping result.

(ii) Similarly, if we set a relatively low population at a certain region of the input surface,
the region will shrink in the final density-equalizing mapping result.

(iii) If we set the population to be the area of every triangle element of the input surface,
the resulting density-equalizing map will be an area-preserving planar parameterization
of the input surface, as we have

(4.41)
Initial area

Final area
=

Given population

Final area
= Density = Constant.

Examples are given in section 5 to illustrate the effect of different input populations.

5. Experimental results. In this section, we demonstrate the effectiveness of our proposed
algorithm using various experiments. Our algorithms are implemented in MATLAB (see
M112479 01.zip [local/web 209KB]). The linear systems in our algorithm are solved using
the backslash operator in MATLAB. The Fast InPolygon detection MEX custom MATLAB
function [74] is used in the step of constructing the sea. All experiments are performed on a
PC with an Intel i7-6700K CPU and 16GB RAM. All surfaces are discretized in the form of
triangle meshes. In all experiments, the stopping parameter \epsilon of our algorithms is set to be
10 - 3. Some of the surface meshes are adapted from the AIM@SHAPE Shape Repository [75].

5.1. Examples of density-equalizing maps produced by our DEM algorithm. We begin
with two synthetic examples of regular polygons on \BbbR 2. Figures 6 and 7 show, respectively,
a square and a hexagon with a given population on every triangle element, along with the
density-equalizing results obtained by our proposed DEM algorithm. In both examples the final
densities \mathrm{G}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{n} \mathrm{p}\mathrm{o}\mathrm{p}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}

\mathrm{F}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{r}\mathrm{e}\mathrm{a} highly concentrate at 1, meaning that the densities are well equalized.

Also, the plots of the quantity \mathrm{s}\mathrm{d}(\rho \scrV n )
\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{n}(\rho \scrV n )

versus the number of iterations show that the iterative

scheme converges rapidly.
We then consider a synthetic example of a surface in \BbbR 3 with Gaussian shape. The domain

of the shape is [0, 1] \times [0, 1] and the population is set to be 2.2  - | x|  - | y| , where (x, y) are
the x- and y-coordinates of the centroid of each triangle element. Algorithm 2 is used for the
initialization of the density-equalization algorithm. Figure 8 shows the initial surface and the
mapping result obtained by our DEM algorithm. The plots indicate that the density is well
equalized by our algorithm.

It is noteworthy that the curvature-based initial flattening map and the final density-
equalizing map can be significantly different in shape, as illustrated in Figure 9. In particular,
the convex initializations can be deformed to nonconvex shapes under our DEM algorithm.

We consider another synthetic example of a surface with multiple peaks in \BbbR 3. This time
we set the population as the area of each triangle element on the initial surface. In other
words, our proposed DEM algorithm should result in an area-preserving flattening map. Again,
Algorithm 2 is used for the initialization of the density-equalization algorithm. Figure 10
shows the initial surface and the mapping result obtained by our density-equalizing mapping
algorithm. The flattening map effectively preserves the area ratios.

M112479_01.zip
http://epubs.siam.org/doi/suppl/10.1137/17M1124796/suppl_file/M112479_01.zip
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Figure 6. Density equalization on a square. Top row (left to right): the initial shape colored with a given
population distribution, and the density-equalizing map colored with the final area of each triangle element.

Middle row (left to right): the values of
sd(\rho \scrV n )

mean(\rho \scrV n )
, the histogram of the initial density Given population

Initial area
on each

triangle element, and the histogram of the final density Given population
Final area

on each triangle element. See Table 1 for

statistics. Bottom: an additional semilog plot of
sd(\rho \scrV n )

mean(\rho \scrV n )
versus time with a stronger threshold of \epsilon = 10 - 5,

which shows rapid convergence.

Now consider computing the area-preserving mapping for a real surface mesh of a lion face
in \BbbR 3 using our DEM algorithm. Again, we set the population as the area of each triangle
element on the initial surface for achieving an area-preserving parameterization. Algorithm 3
is used for the initialization step of our density-equalizing mapping algorithm. Figure 11
shows the initial surface and the mapping result obtained by our density-equalizing mapping
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Figure 7. Density equalization on a hexagon. Top row (left to right): the initial shape colored with a given
population distribution, and the density-equalizing map colored with the final area of each triangle element.

Middle row (left to right): the values of
sd(\rho \scrV n )

mean(\rho \scrV n )
, the histogram of the initial density Given population

Initial area
on each

triangle element, and the histogram of the final density Given population
Final area

on each triangle element. See Table 1 for

statistics. Bottom: an additional semilog plot of
sd(\rho \scrV n )

mean(\rho \scrV n )
versus time with a stronger threshold of \epsilon = 10 - 5,

which shows rapid convergence.

algorithm. For better visualization, we color the meshes with the mean curvature of the
input lion face. The locally authalic initialization does not preserve the global area ratio; in
particular, the nose of the lion is shrunk. By contrast, the final density-equalizing flattening
map effectively preserves the area ratios.

In addition, our algorithm can produce density-equalizing flattening maps with different
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Figure 8. Density-equalizing map for a surface in \BbbR 3 with Gaussian shape. Top row (left to right): the
initial shape colored with a given population distribution, the curvature-based Tutte flattening initialization
colored with the area of each flattened triangle element, and the final density-equalizing map colored with the final

area of each triangle element. Middle row (left to right): the values of
sd(\rho \scrV n )

mean(\rho \scrV n )
, the histogram of the density

Given population
Initial flattened area

on each flattened triangle element after the Tutte flattening initialization, and the histogram

of the density Given population
Final area

on each triangle element of the final result. See Table 1 for statistics. Bottom:

an additional semilog plot of
sd(\rho \scrV n )

mean(\rho \scrV n )
versus time with a stronger threshold of \epsilon = 10 - 5, which shows rapid

convergence.

effects by changing the input population. Figure 12 shows two examples with different input
populations. For the Niccol\`o da Uzzano model, we set the input population to be the area
of each triangle element on the mesh except the eyes, and the population at the eyes to be 2
times the area of the triangles there. For the Max Planck model, we set the input population
to be the area of each triangle element on the mesh except the nose, and the population at the
nose to be 1.5 times the area of the triangles there. The resulting density-equalizing maps
have the eyes and nose magnified, respectively.

As discussed in section 4.3, our DEM algorithm can be modified as shape-prescribed DEM
to achieve a prescribed target shape. Four simple examples are shown in Figure 13. First, we
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Figure 9. Two more examples of density-equalizing maps. In these examples, we set the population according
to the height of different parts of the surfaces, aiming to achieve an expansion at the peaks. Left: the original
surfaces. Middle: the curvature-based initial flattening maps. Right: the density-equalizing maps. Note that the
convex boundaries in the initializations can become nonconvex under DEM.

consider the square example in Figure 6 again and compute two density-equalizing maps of
it to a square and a rectangle with aspect ratio 2 : 3, respectively. For the initial maps, the
Tutte method is used. The boundary vertices have moved along the shape boundary in the
resulting maps. We also consider the hexagon example in Figure 7 again and compute two
density-equalizing maps of it to, respectively, a circle and an ellipse with aspect ratio 2 : 1.
For the initial map, the disk/ellipse Tutte method with arclength parameterized boundary
constraint is used. Again, the boundary vertices move along the curved boundary. This
demonstrates the effectiveness of our shape-prescribed DEM. In addition, similarly to the
ordinary DEM, area-preserving disk/rectangular parameterization can be easily achieved using
our shape-prescribed DEM, as illustrated in Figure 14. We can also achieve the effects in
Figure 12 with boundary shape prescribed, as shown in Figure 15.

We remark that for a surface with a highly convoluted boundary, directly computing the
curvature-based flattening map and the density-equalization may be difficult. Nevertheless,
we can extend our sea approach for handling this situation. By prescribing a sea with a
simpler shape around such a surface, we can easily flatten it and carry out the usual density-
equalization procedure, achieving different desired effects. Figure 16 shows a simply connected
open surface mimicking a space-filling curve on a torus. We define a population on the mesh
with \mathrm{m}\mathrm{a}\mathrm{x}(\mathrm{p}\mathrm{o}\mathrm{p}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n})

\mathrm{m}\mathrm{i}\mathrm{n}(\mathrm{p}\mathrm{o}\mathrm{p}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}) \approx 25, aiming to produce a large deformation under density equalization.
By prescribing a rectangular sea around the mesh on the torus, we can flatten it as a rectangle
on the plane and compute the density-equalizing map. The mapping result shows that a
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Figure 10. Area-preserving parameterization of a surface with multiple peaks in \BbbR 3. Top row (left to right):
the initial shape colored with the initial area of each triangle element, the curvature-based Tutte flattening
initialization colored with the area of each flattened triangle element, and the final density-equalizing map colored

with the final area of each triangle element. Middle row (left to right): the values of
sd(\rho \scrV n )

mean(\rho \scrV n )
, the histogram

of the density Initial area
Initial flattened area

on each flattened triangle element after the Tutte flattening initialization, and

the histogram of the density Initial area
Final area

on each triangle element of the final result. See Table 1 for statistics.

Bottom: an additional semilog plot of
sd(\rho \scrV n )

mean(\rho \scrV n )
versus time with a stronger threshold of \epsilon = 10 - 5, which shows

rapid convergence.

desired effect is successfully achieved. It is also noteworthy that the presence of the sea at the
gaps helps regularize the deformation and avoid global overlaps. The idea is that the density
information at two geometrically close but topologically distant regions on the original mesh can
be transmitted between each other via the sea directly without going through the complicated
domain. Therefore, even if both regions are required to expand, they can coordinate with each
other and find a nonoverlapping direction for the expansion.

5.2. Quantitative results of our algorithm. For a quantitative analysis, Table 1 lists the
detailed statistics of the performance of our DEM algorithm on a number of simply connected
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Figure 11. Area-preserving parameterization of a lion face in \BbbR 3. Top row (left to right): the initial shape,
the curvature-based locally authalic flattening initialization, and the final density-equalizing map. Middle row

(left to right): the values of
sd(\rho \scrV n )

mean(\rho \scrV n )
, the histogram of the density Initial area

Initial flattened area
on each flattened triangle

element after the flattening initialization, and the histogram of the density Initial area
Final area

on each triangle element of

the final result. See Table 1 for statistics. Bottom: an additional semilog plot of
sd(\rho \scrV n )

mean(\rho \scrV n )
versus time with a

stronger threshold of \epsilon = 10 - 5, which shows rapid convergence.

open meshes. From the time spent and the number of iterations needed, the convergence of our
proposed algorithm is fast. Also, the median and the interquartile range of the density show
that the density is well equalized under our algorithm. The experiments reflect the efficiency
and accuracy of our proposed DEM algorithm.

Table 2 shows the performance of the shape-prescribed DEM algorithm. The shape-based
prescribed DEM is reasonably accurate but not as accurate as DEM because of the extra shape
constraints. As the shape-prescribed DEM does not include the sea, the computation of it is
faster than DEM.

We then further analyze DEM in terms of the execution time. We use the Run and
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Figure 12. Density-equalizing flattening maps with different effects obtained by our proposed DEM algorithm.
Left: the Niccol\`o da Uzzano model and the density-equalizing flattening map with the eyes magnified. Right: the
Max Planck model and the density-equalizing flattening map with the nose magnified. See Table 1 for statistics.

Figure 13. Computing density-equalizing maps using our shape-prescribed DEM. Top row: the example in
Figure 6 and two density-equalizing maps onto a square and a rectangle with aspect ratio 2 : 3. Bottom row:
the example in Figure 7 and two density-equalizing maps onto a disk and an ellipse with aspect ratio 2 : 1. See
Table 2 for statistics.

Time built-in tool in MATLAB to measure the execution time of different parts of DEM.
Table 3 shows the record for three examples. Both the curvature-based flattening map and
the construction of sea are highly efficient and only account for around 10\% of the total
computation time. Also, although the Laplacian needs to be updated at every step of the
density-equalizing process, each computation costs only around 0.1 seconds. Each iteration of
the density-equalizing process typically requires less than 0.3 seconds for triangle meshes with
30k face elements.
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Figure 14. Area-preserving parameterization via shape-prescribed DEM. Top left: the human face model
and its area-preserving parameterization onto a disk. Top right: the lion model and its area-preserving
parameterization onto a square. See Table 2 for statistics.

Figure 15. Achieving shape-prescribed density-equalizing flattening maps with the effects in Figure 12. Left:
the Niccol\`o da Uzzano model and the disk density-equalizing map with the eyes magnified. Right: the Max Planck
model and the rectangular (with aspect ratio 2 : 3) density-equalizing map with the nose magnified. See Table 2
for statistics.

We are also interested in analyzing the difference in the performance of our algorithm and
GN with the implementation available online [76]. Recall that GN works on finite difference
grids. Therefore, for a fair comparison, we deploy the two methods on a 100 \times 100 square
grid \{ (x, y) \in \BbbZ 2 : 0 \leq x, y \leq 99\} and compare the results. Each square is divided into
two right-angled triangles in running our algorithm. Following the suggestion by GN, the
dimension of the sea is set to be two times the linear extent of the square grid in running
GN. Various initial populations are tested for the computation of density-equalizing maps.
Figure 17 shows several density-equalizing mapping results produced by the two methods. The
statistics of the experiments are recorded in Table 4. With the accuracy well preserved, our
method demonstrates an improvement on the computational time by over 80\% when compared
to GN.

5.3. Comparison with other parameterization methods. We first visually compare our
DEM algorithm with the various existing parameterization algorithms [19, 40, 48, 37]. Figure 18
shows the parameterization results, whereby the peaks are substantially shrunk for conformal
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Figure 16. Density-equalizing map for a simply connected open surface with a space-filling curve pattern on
torus. Top: the mesh color coded with the input population. Middle: by prescribing a sea with a simpler shape
around the surface, the entire surface can be flattened for the subsequent density-equalization step. Bottom: the
density-equalizing mapping result.

parameterizations, and the boundary of the free-boundary conformal parameterization is
significantly different from that of the original surface. By contrast, the peaks are flattened
without being shrunk under our proposed DEM algorithm, the optimal mass transport (OMT)
map [40], and the scalable locally injective map (SLIM) [48]. Figure 19 shows more comparisons
of our DEM with OMT and SLIM. DEM and OMT are more capable than SLIM in producing
flattening maps that avoid squeezed regions (such as the peak of the Gaussian mesh and the
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Table 1
The performance of our DEM algorithm. For each surface, we record the number of triangle elements,

the time taken (in seconds) for the entire density-equalization algorithm (including the computation of initial
map and the construction of sea), the number of iterations taken in the iterative scheme, and the median and
interquartile range of the density defined on each triangle element by Given population

Final area
.

\bfS \bfu \bfr \bff \bfa \bfc \bfe 
\bfN \bfo . \bfo \bff 

\bft \bfr \bfi \bfa \bfn \bfg \bfl \bfe \bfs 
\bfT \bfi \bfm \bfe (\bfs )

\bfN \bfo . \bfo \bff 
\bfi \bft \bfe \bfr \bfa \bft \bfi \bfo \bfn \bfs 

\bfM \bfe \bfd \bfi \bfa \bfn 
\bfo \bff 

\bfd \bfe \bfn \bfs \bfi \bft \bfy 

\bfI \bfQ \bfR \bfo \bff 
\bfd \bfe \bfn \bfs \bfi \bft \bfy 

Square 10368 0.6983 6 1.0120 0.0705

Hexagon 6144 0.3123 6 1.0232 0.0549

Gaussian 10368 0.4088 4 1.0040 0.0309

Peaks 4108 0.1493 4 1.0018 0.1322

Lion 33369 1.4443 5 1.0169 0.1266

Niccol\`o da
Uzzano

25900 2.0740 8 1.0247 0.0801

Max Planck 26452 2.4307 11 1.0203 0.0631

Human face 6912 0.7933 6 1.0069 0.0573

US Map
(Romney)

46587 3.7946 3 1.0018 0.0145

US Map
(Obama)

46587 3.7801 3 1.0004 0.0145

US Map
(Trump)

46587 5.2797 4 1.0017 0.0176

US Map
(Clinton)

46587 3.7643 3 1.0001 0.0244

Table 2
The performance of our shape-prescribed DEM algorithm. The density again refers to Given population

Final area
.

\bfS \bfu \bfr \bff \bfa \bfc \bfe 
\bfN \bfo . \bfo \bff 

\bft \bfr \bfi \bfa \bfn \bfg \bfl \bfe \bfs 
\bfT \bfa \bfr \bfg \bfe \bft 
\bfs \bfh \bfa \bfp \bfe 

\bfT \bfi \bfm \bfe 
(\bfs )

\bfN \bfo . \bfo \bff 
\bfi \bft \bfe \bfr \bfa -
\bft \bfi \bfo \bfn \bfs 

\bfM \bfe \bfd \bfi \bfa \bfn 
\bfo \bff 

\bfd \bfe \bfn \bfs \bfi \bft \bfy 

\bfI \bfQ \bfR \bfo \bff 
\bfd \bfe \bfn \bfs \bfi \bft \bfy 

Square 10368 Square 0.1891 5 1.0044 0.1097

Square 10368 Rectangle 0.2260 6 1.0042 0.1367

Hexagon 6144 Circle 0.1560 6 1.0011 0.0538

Hexagon 6144 Ellipse 0.2431 9 1.0053 0.0549

Peaks 4108 Circle 0.0615 4 0.9979 0.1362

Human face 6912 Circle 0.2642 5 1.0068 0.1125

Lion 33369 Square 0.8491 6 1.0109 0.1302

Niccol\`o da
Uzzano

25900 Circle 1.3215 14 1.0054 0.0751

Max Planck 26452 Rectangle 1.2847 13 1.0164 0.0804

nose of the human face). Also, DEM and SLIM are more flexible in shape than OMT.
We then numerically compare our DEM algorithm with OMT and SLIM, in terms of the

efficiency and accuracy, for computing area-preserving parameterizations. The implementations
of both OMT and SLIM are provided by the authors [77, 78]. For a fair evaluation of the
area-preserving property, we first rescale all parameterization results computed by the three
algorithms, so that the total area of every parameterization result is the same as the original
surface. Then we evaluate the area-preserving property of the three algorithms by considering
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Table 3
Analyzing the execution time of DEM for three examples using the Run and Time tool in MATLAB. Note

that the tool requires additional computation time, and so the total time for each example is slightly longer than
that shown in Table 1.

\bfH \bfu \bfm \bfa \bfn \bff \bfa \bfc \bfe (\bfN \bfo . \bfo \bff \bft \bfr \bfi \bfa \bfn \bfg \bfl \bfe \bfs = \bfsix \bfnine \bfone \bftwo )

\bfF \bfu \bfn \bfc \bft \bfi \bfo \bfn \bfC \bfa \bfl \bfl \bfT \bfo \bft \bfa \bfl \bft \bfi \bfm \bfe (\bfs ) \bfP \bfe \bfr \bfc \bfe \bfn \bft \bfa \bfg \bfe 

Curvature-based curve flattening 1 0.03 3.3\%

Initial flattening map 1 0.05 5.6\%

Interpolate \rho \scrV 1 0.01 1.1\%

Construction of sea 1 0.09 10.0\%

Compute cotangent Laplacian Ln 5 0.22 24.4\%

Solve diffusion equation 5 0.26 28.9\%

Compute (\nabla \rho )\scrF n 5 0.04 4.4\%

Interpolate (\nabla \rho )\scrV n 5 0.13 14.4\%

Other 0.07 7.9\%

Total 0.90 100\%

\bfN \bfi \bfc \bfc \bfo \bfl \`\bfo \bfd \bfa \bfU \bfz \bfz \bfa \bfn \bfo (\bfN \bfo . \bfo \bff \bft \bfr \bfi \bfa \bfn \bfg \bfl \bfe \bfs = \bftwo \bffive \bfnine \bfzero \bfzero )

\bfF \bfu \bfn \bfc \bft \bfi \bfo \bfn \bfC \bfa \bfl \bfl \bfT \bfo \bft \bfa \bfl \bft \bfi \bfm \bfe (\bfs ) \bfP \bfe \bfr \bfc \bfe \bfn \bft \bfa \bfg \bfe 

Curvature-based curve flattening 1 0.03 1.4\%

Initial flattening map 1 0.10 4.6\%

Interpolate \rho \scrV 1 0.02 0.9\%

Construction of sea 1 0.13 5.9\%

Compute cotangent Laplacian Ln 7 0.56 25.6\%

Solve diffusion equation 7 0.74 33.8\%

Compute (\nabla \rho )\scrF n 7 0.15 6.8\%

Interpolate (\nabla \rho )\scrV n 7 0.40 18.3\%

Other 0.06 2.7\%

Total 2.19 100\%

\bfL \bfi \bfo \bfn (\bfN \bfo . \bfo \bff \bft \bfr \bfi \bfa \bfn \bfg \bfl \bfe \bfs = \bfthree \bfthree \bfthree \bfsix \bfnine )

\bfF \bfu \bfn \bfc \bft \bfi \bfo \bfn \bfC \bfa \bfl \bfl \bfT \bfo \bft \bfa \bfl \bft \bfi \bfm \bfe (\bfs ) \bfP \bfe \bfr \bfc \bfe \bfn \bft \bfa \bfg \bfe 

Curvature-based curve flattening 1 0.03 1.9\%

Initial flattening map 1 0.13 8.2\%

Interpolate \rho \scrV 1 0.03 1.9\%

Construction of sea 1 0.15 9.5\%

Compute cotangent Laplacian Ln 4 0.36 22.8\%

Solve diffusion equation 4 0.46 29.1\%

Compute (\nabla \rho )\scrF n 4 0.09 5.7\%

Interpolate (\nabla \rho )\scrV n 4 0.25 15.8\%

Other 0.08 5.1\%

Total 1.58 100\%

the absolute relative error in triangle area, defined by

(5.1) EA(T ) =

\bigm| \bigm| \bigm| \bigm| Area of T on the parameterization

Area of T on the original surface
 - 1

\bigm| \bigm| \bigm| \bigm| 
for every triangle T . Ideally, all EA should be equal to 0 for a perfectly area-preserving parame-
terization. Table 5 lists the performance of the three algorithms. Our DEM algorithm achieves
faster computation and higher accuracy for computing area-preserving parameterizations.
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Figure 17. The density-equalizing maps produced by our proposed DEM algorithm and GN with various
input population functions. Each column shows a set of experimental results color-coded by the input population
function as described in Table 4. Top row: the results by GN. Bottom row: the results by our method. Our
method produces results as accurate as those by GN.

Table 4
Comparing the performance of our DEM algorithm and GN deployed on a 100 \times 100 square mesh with

various input population functions. Here, the map difference is given by mean
\bigl( | zprev - zours| 
side length of square

\bigr) 
, where zprev

and zours are, respectively, the complex coordinates of the density-equalizing mapping results by GN and our
method. \=x and \=y are the mean of the x-coordinates and the y-coordinates of the square.

\bfI \bfn \bfp \bfu \bft \bfp \bfo \bfp \bfu \bfl \bfa \bft \bfi \bfo \bfn 
\bfT \bfi \bfm \bfe \bfb \bfy 
\bfG \bfN (\bfs )

\bfT \bfi \bfm \bfe \bfb \bfy 
\bfo \bfu \bfr \bfD \bfE \bfM 
\bfm \bfe \bft \bfh \bfo \bfd (\bfs )

\bfM \bfa \bfp 
\bfd \bfi ff\bfe \bfr \bfe \bfn \bfc \bfe 

5 + (x - \=x)+(y - \=y)
50

4.843 0.639 0.0016

1 + e - 
(x - \=x)2+(y - \=y)2

1000 4.452 0.848 0.0008

2.5 + sin \pi (x - \=x)
25

4.959 0.855 0.0012

1.5 + sin \pi (x - \=x)
25

sin \pi (y - \=y)
25

4.592 0.597 0.0026

5.4. On the use and construction of the sea. Note that, unlike our proposed DEM
algorithm, most of the existing parameterization approaches do not involve the construction
of a sea outside the region of interest. In fact, the sea in our proposed method does not
only contribute to the density-equalizing computation in our algorithm but also serves as an
important feature for analyzing the physical phenomenon of density propagation around the
region of interest.

From a physical point of view, consider the deformation of the sea under the density-
equalizing process. Let r be the displacement of a tracer at the sea from the origin before the
deformation, and let \Delta r = rfi\mathrm{n}\mathrm{a}\mathrm{l}  - r be the change in displacement of it under the density-
equalizing process. We can analyze the density propagation under the DEM algorithm by
recording \Delta r for all vertices at the sea. Figure 20 shows several log--log plots of \Delta r against
r outside the unit circle. Our experimental results show that \Delta r and r are related by the
relationship \Delta r \propto r - 2 at the outer part of the sea. In other words, the influence of density



DENSITY-EQUALIZING MAPS FOR SIMPLY CONNECTED OPEN SURFACES 1165

Figure 18. Comparison of different parameterization schemes for a surface with multiple peaks in \BbbR 3 shown
in Figure 10. Top left: the peaks surface. Top middle: the free-boundary conformal parameterization by Desbrun,
Meyer, and Alliez [19]. Top right: the disk conformal parameterization by Choi and Lui [37]. Bottom left: the
area-preserving parameterization by our DEM algorithm. Bottom middle: the OMT map [40]. Bottom right: the
scalable locally injective map [48].

diffusion on the displacement of nodes at the sea decays quadratically. From an algorithmic
point of view, this also suggests that setting a coarser sea at the outermost part by our
reflection-based method does not affect the accuracy of the density-equalizing map.

One may ask why our reflection-based construction of sea with adaptive mesh size is
advantageous when compared to other standard constructions. We consider replacing our
adaptive sea by several seas consisting of uniformly spaced nodes with various choices of
spacing and analyze the performance of the density-equalizing algorithm.

Table 6 shows the performance of DEM using our adaptive sea and uniform seas with
three choices of node spacing. Here, a natural choice for a uniform ``dense"" sea is with node
spacing equaling the average vertex spacing (denoted by a) at the initial flattening maps. We
also consider two other uniform seas with average spacing 3a and 5a, which are regarded as
``moderate"" and ``coarse"" seas, respectively. DEM with the adaptive sea can achieve accuracy
at the surface boundary comparable to that with a uniform dense sea while costing less than
10\% of computation time when compared to the dense one. When compared to the coarse and
moderate seas, the adaptive sea achieves significantly better accuracy at the surface boundary
with comparable computation time. This shows that our reflection-based construction of sea
can save computational resources without sacrificing the accuracy.
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Figure 19. More comparisons with the state-of-the-art surface parameterization schemes. Left to right: the
input surface, DEM, OMT [40], SLIM [48].

6. Applications. Our proposed density-equalizing mapping algorithm is useful for various
applications. In this section, we discuss two applications of our algorithm.

6.1. Data visualization. Similarly to GN, our DEM algorithm can be used for data
visualization. We consider visualizing the percentage of popular vote for the Republican Party
and the Democratic Party in each state in the 2012 and 2016 US presidential elections. To
visualize the data, we set the population on each state on a triangulated US map as the
percentage of popular vote obtained by the two parties and run our proposed algorithm. Figure
21 shows the density-equalizing results. For the Republican Party, the East Coast and West
Coast are significantly shrunk. This reflects the relatively low percentage of popular vote
obtained at those regions. By contrast, for the Democratic Party, the East Coast and West
Coast are significantly enlarged under the density equalization, which reflects the relative high
percentage of popular vote there. Some differences between the 2012 and the 2016 results
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Table 5
The performance of our DEM algorithm compared with the state-of-the-art nonlinear parameterization

algorithms for computing area-preserving parameterizations. Both OMT [40] and SLIM [48] are run in the
default setting in their implementation: The error threshold for OMT is 0.0001, and the number of iterations
for SLIM is 20. Note that the choice 20 was tested and shown to be a good convergence criterion by the authors
of SLIM [48]. We have also verified this by comparing the results with different number of iterations. The input
population in DEM is set to be the triangle area for computing area-preserving parameterizations. The distortion
measure EA(T ) =

\bigm| \bigm| Area of T on the parameterization
Area of T on the original surface

 - 1
\bigm| \bigm| is the absolute relative error of the area of each triangle face

under the parameterization.

\bfS \bfu \bfr \bff \bfa \bfc \bfe 
\bfN \bfo . \bfo \bff 

\bft \bfr \bfi \bfa \bfn \bfg \bfl \bfe \bfs 
\bfM \bfe \bfa \bfs \bfu \bfr \bfe \bfO \bfM \bfT [40] \bfS \bfL \bfI \bfM [48] \bfD \bfE \bfM 

Time (s) 0.956 3.413 0.333
\# iterations 22 20 3

Gaussian 10368 mean(EA) 0.1014 0.2678 0.0164
std(EA) 0.0791 0.2041 0.0233

median(EA) 0.1065 0.2104 0.0101
IQR(EA) 0.1157 0.2839 0.0154

Time (s) 0.466 0.998 0.149
\# iterations 24 20 4

Peaks 4108 mean(EA) 0.1108 0.3214 0.0928
std(EA) 0.1015 0.1791 0.1027

median(EA) 0.0863 0.3107 0.0649
IQR(EA) 0.1106 0.1892 0.0934

Time (s) 3.278 14.791 1.444
\# iterations 22 20 5

Lion 33369 mean(EA) 0.1285 0.1857 0.0938
std(EA) 0.1062 0.1298 0.0981

median(EA) 0.1050 0.1612 0.0640
IQR(EA) 0.1299 0.1934 0.0982

Time (s) 2.469 9.211 2.020
\# iterations 22 20 8

Niccol\`o da 25900 mean(EA) 0.1282 0.1400 0.0737
Uzzano std(EA) 0.1101 0.0970 0.1461

median(EA) 0.1037 0.1266 0.0369
IQR(EA) 0.1293 0.1250 0.0589

Time (s) 3.035 9.762 2.021
\# iterations 26 20 9

Max 26452 mean(EA) 0.1223 0.1075 0.0754
Planck std(EA) 0.1015 0.1078 0.1839

median(EA) 0.0991 0.0786 0.0333
IQR(EA) 0.1243 0.1174 0.0540

Time (s) 1.700 3.844 0.793
\# iterations 30 20 6

Human 33369 mean(EA) 0.1511 0.0830 0.0612
face std(EA) 0.1386 0.0824 0.1438

median(EA) 0.1174 0.0613 0.0291
IQR(EA) 0.1507 0.0830 0.0481

can also be observed. For instance, the area of California becomes more extreme on the
density-equalizing maps in 2016 when compared to those in 2012. For Trump, California has
further shrunk on the map, while for Clinton, it has further expanded on the map. Another
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Figure 20. The log--log plot of the displacement of the sea under our density-equalizing algorithm. To
study the effect at the outer sea, only the region outside the unit circle is considered. The x-axis represents the
logarithm of the displacement of every point at the sea from the origin. The y-axis represents the logarithm of
the change in the displacement under the density-equalizing map. Each cross represents a point at the sea, and
the red line is the least-squares line. Left: the square example. Middle: the hexagon example. Right: the human
face example.

Table 6
The performance of the density-equalizing maps with our adaptive sea and three uniform seas. Here the

point spacing at the coarse, moderate, and dense seas are, respectively, 5a, 3a, and a, where a is the average
spacing of the vertices of the initial flattening maps. For a fair comparison, the size of all seas is set to 5, which
is consistent with our choice of \eta = 5 in our sea construction algorithm. Here dbdy is defined by Given population

Final area

at the boundary elements of the surfaces under density-equalizing maps.

\bfS \bfu \bfr \bff \bfa \bfc \bfe \bfM \bfe \bfa \bfs \bfu \bfr \bfe 
\bfA \bfd \bfa \bfp \bft \bfi \bfv \bfe 

\bfs \bfe \bfa 

\bfU \bfn \bfi \bff \bfo \bfr \bfm 
\bfs \bfe \bfa 

(\bfc \bfo \bfa \bfr \bfs \bfe )

\bfU \bfn \bfi \bff \bfo \bfr \bfm 
\bfs \bfe \bfa (\bfm \bfo \bfd -
\bfe \bfr \bfa \bft \bfe )

\bfU \bfn \bfi \bff \bfo \bfr \bfm 
\bfs \bfe \bfa 

(\bfd \bfe \bfn \bfs \bfe )

Square \# points at sea 23882 16148 44463 389182
DEM time (s) 0.6983 0.5838 1.2037 10.4504
median(d\mathrm{b}\mathrm{d}\mathrm{y}) 1.0057 1.0148 1.0413 1.0137
IQR(d\mathrm{b}\mathrm{d}\mathrm{y}) 0.0707 0.6781 0.1351 0.0689

Hexagon \# points at sea 10022 6437 17511 150677
DEM time (s) 0.3123 0.2615 0.5022 3.8555
median(d\mathrm{b}\mathrm{d}\mathrm{y}) 1.0290 1.0630 1.0239 1.0163
IQR(d\mathrm{b}\mathrm{d}\mathrm{y}) 0.0695 0.3504 0.1754 0.0676

Gaussian \# points at sea 18676 15187 43688 364657
DEM time (s) 0.4088 0.3820 0.7674 6.1897
median(d\mathrm{b}\mathrm{d}\mathrm{y}) 0.9684 1.5254 1.1205 0.9646
IQR(d\mathrm{b}\mathrm{d}\mathrm{y}) 0.1442 1.7124 0.6226 0.1478

Max Planck \# points at sea 31444 15187 41714 364737
DEM time (s) 2.4307 1.7412 2.9786 19.5934
median(d\mathrm{b}\mathrm{d}\mathrm{y}) 1.1282 1.3877 1.2603 1.1387
IQR(d\mathrm{b}\mathrm{d}\mathrm{y}) 0.2898 1.1896 0.6747 0.2510

example is West Virginia. The area of it has decreased in the map for Clinton when compared
to that for Obama, while the area has increased in the map for Trump when compared to
that for Romney. This example of US presidential elections shows the usefulness of our DEM
algorithm in data visualization.

An interesting feature of US presidential elections is the electoral college system. As the
number of electoral votes is different for different states, it is interesting to ask how powerful
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Figure 21. Percentage of popular vote in each state visualized on density-equalizing US maps (only including
the contiguous 48 states). The triangulations are set to be transparent for enhancing the visual quality.

each popular vote is in each state. We define the vote power in each state by

(6.1) Vote power =

\mathrm{N}\mathrm{u}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{r} \mathrm{o}\mathrm{f} \mathrm{e}\mathrm{l}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{l} \mathrm{v}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{s}
\mathrm{N}\mathrm{u}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{r} \mathrm{o}\mathrm{f} \mathrm{p}\mathrm{o}\mathrm{p}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{r} \mathrm{v}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{s}

mean
\Bigl( 
\mathrm{N}\mathrm{u}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{r} \mathrm{o}\mathrm{f} \mathrm{e}\mathrm{l}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{l} \mathrm{v}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{s}
\mathrm{N}\mathrm{u}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{r} \mathrm{o}\mathrm{f} \mathrm{p}\mathrm{o}\mathrm{p}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{r} \mathrm{v}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{s}

\Bigr) .
We would like to visualize it on an area cartogram using DEM. Note that the vote power is

not related to the area of each state. To remove the effect of the original area of each state such
that the area cartogram solely reflects the vote power, we run our DEM algorithm with input

\mathrm{V}\mathrm{o}\mathrm{t}\mathrm{e} \mathrm{p}\mathrm{o}\mathrm{w}\mathrm{e}\mathrm{r}
\mathrm{A}\mathrm{r}\mathrm{e}\mathrm{a} \mathrm{o}\mathrm{f} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{s}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{e} . Figure 22 shows the resulting cartogram. In contrast to the original US map,
the DEM cartogram gives us a more intuitive view of the vote power. For instance, Wyoming
is much bigger than Texas in the cartogram, as the vote power in Wyoming is significantly
greater than that in Texas. This can give us a better understanding of the electoral system.

6.2. Adaptive surface remeshing. Note that the input population affects the size of
different regions in the resulting density-equalizing map. Specifically, a higher population leads
to a magnification, and a lower population leads to a shrinkage. Using this property of the
density-equalizing map, we can perform adaptive surface remeshing easily.

Let S be a surface to be remeshed. Given a population, we first compute the density-
equalizing map f : S \rightarrow \BbbC . Now consider a set of uniformly distributed points \scrP on the
density-equalizing map. We triangulate the set of points and denote the triangulation by \scrT .
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Figure 22. Visualizing the vote power of different states (only including the contiguous 48 states). Left: the
normal US map color coded by the number of electoral votes. Right: the area cartogram generated by DEM that
accurately reflects the vote power of all states.

Then, using the inverse mapping f - 1, we can interpolate \scrP onto S. The mesh (f - 1(\scrP ), \scrT )
gives a remeshed representation of the surface S.

Now, to increase the level of detail at a region of S, we can set a larger population there in
running our density-equalizing mapping algorithm. Since the region is enlarged in the mapping
result and \scrP is uniformly distributed, more points will lie on that part, and hence the inverse
mapping will map more points back onto that particular region of S. This completes our
adaptive surface remeshing scheme.

Figure 23 shows an example of remeshing a triangulated human face using the above-
mentioned scheme. We set the population to be the triangle area of the original mesh in
running our algorithm. To highlight the advantage of the use of our density-equalizing
map, we compare the remeshing result with that obtained via a conventional free-boundary
conformal parameterization method [19]. The eyes and the nose of the human face are
enlarged in our density-equalizing mapping result, while such features are shrunk in the
conformal parameterization because of the preservation of conformality. This difference causes
significantly different remeshing results. Also, note that the representation of the nose is poor
in the remeshing result via conformal parameterization. By contrast, the remeshing result via
our density-equalizing mapping algorithm is with a more balanced distribution of points. This
example demonstrates the strength of our algorithm in surface remeshing.

7. Discussion. We conclude the paper with a discussion of the advantages, limitations,
and possible extensions of our work.

7.1. Advantages. In this work, we have proposed an efficient algorithm for computing
density-equalizing flattening maps of simply connected open surfaces in \BbbR 3. When compared to
GN, our method is particularly well suited to planar domains with complex geometry because
of the use of triangle meshes. With this advantage, our method can possibly lead to a wider
range of applications of density-equalizing maps in data visualization. Our method is also well
suited for handling disk-like surfaces in \BbbR 3 such as human faces. This suggests a new approach
for adaptive surface remeshing via density-equalizing maps. When compared to the existing
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Figure 23. Remeshing a human face. Top left: the original human face. Top middle: the remeshing result
via our parameterization. Top right: the remeshing result via the free-boundary conformal parameterization by
Desbrun, Meyer, and Alliez [19]. Bottom left: the density-equalizing parameterization by our algorithm. Bottom
right: the free-boundary conformal parameterization by Desbrun, Meyer, and Alliez [19].

parameterization-based remeshing approaches, our method can easily control the remeshing
quality at different regions of the surfaces by changing the population at those regions.

7.2. Limitations. Since the density-diffusion process is solved on a triangle mesh, the tri-
angle quality affects the accuracy of the discretization and hence the final density-equalization
result. If the triangle mesh consists of highly irregular triangle elements, the ultimate den-
sity distribution may not be optimal even after the algorithm converges. Also, since the
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discretization is based on the triangles for every step in our algorithm, if the input population
is too extreme or highly discontinuous, the triangles may become highly irregular at a certain
step and affect the accuracy of the subsequent results. In other words, triangle meshes with
moderate triangle quality and input population are desired. In addition, for surfaces in \BbbR 3

with a highly tubular shape and with the boundary lying at one end, the flattening step may
cause extremely squeezed regions on the planar domain. In this case, the accuracy of the
subsequent computations for density equalization may be affected.

7.3. Extensions. It is well known that the discretization accuracy of the cotangent Lapla-
cian is affected by the mesh regularity. For applications that require higher discretization
accuracy of the Laplacian, one can introduce an extra step of recomputing a Delaunay trian-
gulation at every iteration in Algorithm 5. This can improve the accuracy of the Laplacian.
Note that the change in triangulation will not cause any ambiguity in the density-equalizing
process, as all density values are stored at vertices.

While mesh fold-overs are fairly rare in our experiments, currently there is no theoretical
guarantee about the bijectivity of the density-equalizing maps computed. Nevertheless, as the
deformation process is done at the step rn = rn - 1  - \delta t(\nabla \rho )\scrV n/\rho \scrV n , one possible future direction
to ensure the bijectivity may be to let the time step \delta t change adaptively throughout the
iterations to check and prevent any occurrence of fold-over.

Although our current work only focuses on simply-connected surfaces in \BbbR 3, it can be
naturally extended to general surfaces. For instance, density-equalizing maps of multiply-
connected surfaces can be computed by filling up the holes and treating them as the sea in our
proposed algorithm. Similarly, density-equalizing maps of multiple disconnected surfaces can
be handled with the aid of a large sea.

Appendix A. We prove that the curvature-based curve flattening step in section 4.1
produces a simple closed convex curve.

Proposition A.1. Let \varphi : [0, l\gamma ] \rightarrow \BbbR 2 be the arclength parameterized curve defined as in
section 4.1. Consider the new curve \Phi : [0, l\gamma ]\rightarrow \BbbR 2 defined by

(A.1) \Phi (s) = \varphi (s) - s

l\gamma 
(\varphi (l\gamma ) - \varphi (0)) .

\Phi is a simple closed convex curve.

Proof. It is easy to note that \Phi (0) = \varphi (0) = \Phi (l\gamma ) and hence \Phi is closed. Since \varphi is an
arclength parameterized curve, for any 0 \leq a < b \leq l\gamma we have

(A.2) \| \varphi (b) - \varphi (a)\| \leq 
\int b

a
\| \varphi \prime (s)\| ds = b - a,

where the equality holds if and only if \varphi ([a, b]) is a straight line. In particular, since \gamma is the
boundary of the original simply connected open surface, by our construction of \varphi , we have
\| \varphi (l\gamma ) - \varphi (0)\| \ll l\gamma .

We now prove that the signed curvature of \Phi , denoted by k\Phi , is nonnegative for all s \in [0, l\gamma ].



DENSITY-EQUALIZING MAPS FOR SIMPLY CONNECTED OPEN SURFACES 1173

Denote \varphi (s) = (x(s), y(s)) and \Phi (s) = (X(s), Y (s)). We have

\Phi \prime = (X \prime , Y \prime )

=

\biggl( 
x\prime (s) - 1

l\gamma 
(x(l\gamma ) - x(0)) , y\prime (s) - 1

l\gamma 
(y(l\gamma ) - y(0))

\biggr) 
=

\biggl( 
cos \theta (s) - 1

l\gamma 
(x(l\gamma ) - x(0)) , sin \theta (s) - 1

l\gamma 
(y(l\gamma ) - y(0))

\biggr) (A.3)

and

(A.4) \Phi \prime \prime = (X \prime \prime , Y \prime \prime ) = (x\prime \prime , y\prime \prime ) = ( - k\varphi (s) sin \theta (s), k\varphi (s) cos \theta (s)) .

Hence, we have

(A.5) X \prime Y \prime \prime  - X \prime \prime Y \prime = k\varphi (s)

\biggl( 
1 - (x(l\gamma ) - x(0)) cos \theta (s) - (y(l\gamma ) - y(0)) sin \theta (s)

l\gamma 

\biggr) 
.

Now recall that by (4.5), k\varphi (s) \geq 0 for all s. Also, we have

(x(l\gamma ) - x(0)) cos \theta (s) - (y(l\gamma ) - y(0)) sin \theta (s)

\leq 
\sqrt{} 

(x(l\gamma ) - x(0))2 + (y(l\gamma ) - y(0))2
\sqrt{} 

cos2 \theta (s) + sin2 \theta (s)

=

\sqrt{} 
(x(l\gamma ) - x(0))2 + (y(l\gamma ) - y(0))2

= \| \varphi (l\gamma ) - \varphi (0)\| 
\leq l\gamma .

(A.6)

Here, the first inequality follows from the Cauchy--Schwarz inequality, and the second inequality
follows from (A.2). Therefore, we have

(A.7) 1 - (x(l\gamma ) - x(0)) cos \theta (s) - (y(l\gamma ) - y(0)) sin \theta (s)

l\gamma 
\geq 0 for all s \in [0, l\gamma ],

and it follows that

(A.8) k\Phi (s) =
X \prime Y \prime \prime  - X \prime \prime Y \prime 

(X \prime 2 + Y \prime 2)3/2
\geq 0 for all s \in [0, l\gamma ].

We proceed to show that \Phi is simple. Note that since \Phi is a closed plane curve, the total
curvature of \Phi should satisfy

(A.9)

\int l\varphi 

0
k\Phi (s)ds = 2\pi n\Phi ,



1174 GARY P. T. CHOI AND CHRIS H. RYCROFT

where n\Phi is the turning number of \Phi . From the above results, we have

2\pi n\Phi =

\int l\varphi 

0

k\varphi (s)
\Bigl( 
1 - (x(l\gamma ) - x(0)) \mathrm{c}\mathrm{o}\mathrm{s} \theta (s) - (y(l\gamma ) - y(0)) \mathrm{s}\mathrm{i}\mathrm{n} \theta (s)

l\gamma 

\Bigr) 
(X \prime 2 + Y \prime 2)3/2

ds

\leq 
\biggl( \int l\varphi 

0
k\varphi (s)ds

\biggr) 
max
s\in [0,l\gamma ]

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\Bigl( 
1 - (x(l\gamma ) - x(0)) \mathrm{c}\mathrm{o}\mathrm{s} \theta (s) - (y(l\gamma ) - y(0)) \mathrm{s}\mathrm{i}\mathrm{n} \theta (s)

l\gamma 

\Bigr) 
(X \prime 2 + Y \prime 2)3/2

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
= 2\pi max

s\in [0,l\gamma ]

\Biggl( 
1 - A cos \theta (s) +B sin \theta (s)

(1 +A2 +B2  - 2A cos \theta (s) - 2B sin \theta (s))3/2

\Biggr) 
,

(A.10)

where A =
x(l\gamma ) - x(0)

l\gamma 
and B =

y(l\gamma ) - y(0)
l\gamma 

. The above equation can be further simplified to

(A.11) 2\pi max
s\in [0,l\gamma ]

\Biggl( 
1 - C cos(\theta (s) + \eta )

(1 + C2  - 2C cos(\theta (s) - \eta ))3/2

\Biggr) 
,

where C =
\surd 
A2 +B2 =

\| \varphi (l\gamma ) - \varphi (0)\| 
l\gamma 

\ll 1 and \eta = tan - 1 B
A = tan - 1 y(l\gamma ) - y(0)

x(l\gamma ) - x(0) . Hence, it is easy

to see that

(A.12) max
s\in [0,l\gamma ]

\Biggl( 
1 - C cos(\theta (s) + \eta )

(1 + C2  - 2C cos(\theta (s) - \eta ))3/2

\Biggr) 
\leq 1 + C

(1 - C)3
< 2.

This implies that

(A.13) 2\pi n\Phi < 4\pi \Rightarrow n\Phi < 2.

It follows that n\Phi = 1 and hence \Phi is simple. Finally, note that a simple closed curve is convex
if and only if its signed curvature does not change sign [79]. From (A.8), we conclude that \Phi is
a simple closed convex curve.

Appendix B. We review the finite element formulation for the discrete Laplacian. Readers
are referred to the paper by Reuter et al. [73] for a more detailed discussion. Here we aim
to highlight the assumption of the natural boundary condition in the derivation in the FEM
Laplacian formula (4.23), which provides us with a theoretical support for our shape-prescribed
density-equalizing maps (Algorithm 6).

To solve the equation \Delta u = f on a domain \Omega , we let u =
\sum 

xi\phi i and f =
\sum 

fi\phi i, where
\phi i is the hat function on vertex i, i = 1, 2, . . . , | \scrV | . We have

(B.1)

\int 
\Omega 
\Delta u\phi j =

\int 
\Omega 
f\phi j

for all j. By Green's first identity, we have

(B.2)

\int 
\Omega 
\Delta u\phi j =

\int 
\partial \Omega 

\phi j(\nabla u \cdot n) - 
\int 
\Omega 
\nabla u \cdot \nabla \phi j .
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Suppose that \Omega does not have boundary or the natural boundary condition \nabla u \cdot n = 0 holds.
Then we have

(B.3)

\int 
\Omega 
\Delta u\phi j =  - 

\int 
\Omega 
\nabla u \cdot \nabla \phi j =  - 

\int 
\Omega 
\nabla 
\Bigl( \sum 

xi\phi i

\Bigr) 
\cdot \nabla \phi j =  - 

\sum 
xi

\int 
\Omega 
\nabla \phi i \cdot \nabla \phi j .

Also, it is easy to see that

(B.4)

\int 
\Omega 
f\phi j =

\sum 
fi

\int 
\Omega 
\phi i \cdot \phi j .

Hence it suffices to solve

(B.5)  - Lx = Af ,

where L is a | \scrV | \times | \scrV | matrix with Lij =
\int 
\Omega \nabla \phi i \cdot \nabla \phi j , and A (called the mass matrix) is a

| \scrV | \times | \scrV | matrix with Aij =
\int 
\Omega \phi i \cdot \phi j . Using trigonometry, one can show that L is exactly the

cotangent Laplacian [72]

(B.6) Lij =

\left\{   
 - 1

2(cot\alpha ij + cot\beta ij) if [xi, xj ] \in \scrE ,
 - 
\sum 

k \not =i Lik if j = i,

0 otherwise,

with \alpha ij and \beta ij being the two angles opposite to the edge [i, j]. Similarly,

(B.7) Aij =

\left\{   
1
12(Area(T

1
ij) + Area(T 2

ij)) if [xi, xj ] \in \scrE ,
1
6

\sum 
T\in \scrN \scrF (i)Area(T ) if j = i,

0 otherwise,

where T 1
ij and T 2

ij are the two triangles incident to both i, j. To simplify computation,
one common approach is to lump the mass matrix A, i.e., to add all entries in each row
to the diagonal entry. This gives us an approximation of A by a diagonal matrix \widetilde A with\widetilde Aii =

1
3

\sum 
T\in \scrN \scrF (i)Area(T ). Hence, the Laplacian \Delta can be discretized as

(B.8) \Delta =  - \widetilde A - 1L,

which is equivalent to (4.23).
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