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S1 The algorithms of the proposed Teichmüller morphometric
framework

Suppose S1, S2 are two planar shapes with corresponding landmark points at the interior and on the
boundaries. We first compute a boundary mapping ϕ : ∂S1 → ∂S2 that matches the curvatures of the
two boundary curves as well as the prescribed landmark points {lbdy1k }nk=1 ↔ {l

bdy2
k }nk=1 on the two

boundary curves. This is achieved by representing the accumulated curvature of the two boundary curves
as two increasing functions and matching them using the SRVF dynamic warping method [1, 2]. With
the curvature-guided boundary correspondence, we then compute a landmark-matching Teichmüller
mapping f : S1 → S2 that matches the interior landmark points {lint1k }mk=1 ↔ {l

int2
k }mk=1 using the

Quasi-conformal (QC) Iteration method by Lui et al. [3, 4].
One key algorithm in the QC Iteration method is called the Linear Beltrami Solver (LBS). Given

two planar domains D1 and D2, a boundary correspondence φ : ∂D1 → ∂D2, a set of interior landmark
correspondences {l1i }mi=1 ↔ {l2i }mi=1 on D1 and D2 respectively, and a complex-valued function µ : D1 →
C, the LBS produces a quasi-conformal mapping h : D1 → D2 satisfying h(l1i ) = l2i for i = 1, . . . ,m such
that the Beltrami coefficient of h resembles µ as much as possible. More explicitly, suppose h = u+ iv
and µ = ρ+ iτ . h is computed by solving the following system of equations

∇ · (A∇u) = 0,
∇ · (A∇v) = 0,
h(l1i ) = l2i , i = 1, . . . ,m,
h|∂D1 = φ,

(S1)

where A =

(
α1 α2

α2 α3

)
, α1 = (ρ−1)2+τ2

1−ρ2−τ2 , α2 = −2τ
1−ρ2−τ2 , and α3 = (ρ+1)2+τ2

1−ρ2−τ2 . We denote the above

process of applying the Linear Beltrami Solver by h = LBS
(
φ, µ, {l1i }mi=1, {l2i }mi=1

)
.

The procedure of the QC Iteration method is outlined in Fig. 1 of the paper. In our problem
setting, with the curvature-guided boundary correspondence, the method starts by solving for an
as-conformal-as-possible landmark-matching mapping f0 = LBS

(
ϕ, 0, {lint1k }mk=1, {l

int2
k }mk=1

)
. Then, the

Beltrami coefficient µ of f0 is computed. If |µ| is not constant, the method performs a smoothing
procedure on µ (denoted the result by µ̃), and reconstructs an updated quasi-conformal mapping
f = LBS

(
ϕ, µ̃, {lint1k }mk=1, {l

int2
k }mk=1

)
. The above smoothing and reconstructing process continues until

the resultant mapping f is Teichmüller, in other words, the norm of the associated Beltrami coefficient
µf is constant over the entire domain. The convergence of the QC Iteration method has been proved [5].

With the Teichmüller mapping f and the associated Beltrami coefficient µf , a similarity score
between S1 and S2 can be defined by 1− |µf |. Our proposed method for comparing two planar shapes
is summarised as Algorithm S1.
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Algorithm S1 Landmark-matching curvature-guided Teichmüller map for planar shapes

Input: Two planar shapes S1, S2, with interior landmarks {lint1k }mk=1, {lint2k }mk=1, boundary landmarks

{lbdy1k }nk=1, {lbdy2k }nk=1.
Output: A landmark-matching, curvature-guided Teichmüller mapping f : S1 → S2, a similarity score
s.

1: Compute a curvature-guided boundary mapping ϕ : ∂S1 → ∂S2 satisfying ϕ(lbdy1k ) = lbdy2k for all
k = 1, 2, ..., n.

2: With the boundary correspondence ϕ : ∂S1 → ∂S2, compute a landmark-matching Teichmüller
mapping f : S1 → S2 satisfying f |∂S1

= ϕ and f(lint1k ) = lint2k for all k = 1, 2, ...,m.
3: Compute the Beltrami coefficient µf of the mapping f . The score s is given by 1− |µf |.

Now, suppose we are given a set of p planar shapes {Si}pi=1. To cluster the shapes, we first deploy
Algorithm S1 on all pairs of shapes. This gives us a similarity matrix M , where the (i, j)-entry of M
is the similarity score of the landmark-matching curvature-guided Teichmüller mapping fij : Si → Sj .
Then, we proceed to adaptively threshold the similarity matrix M . Our proposed adaptive thresholding
algorithm is summarised in Algorithm S2.

Algorithm S2 Adaptive thresholding

Input: A n× n similarity matrix M , a thresholding parameter λ.
Output: A thresholded matrix where all entries are 0, 12 or 1.

1: Set M0 = M .
2: Set k = 0.
3: repeat
4: Update k by k + 1.

5: For each row i, denote νki = Mk
i + λσki , where Mk

i and σki are respectively the mean and the
standard deviation of {Mk

it}nt=1. Set

Mk
ij =

{
1 if Mk−1

ij ≥ νk−1i ,

0 otherwise.

6: Update Mk by Mk+(Mk)T

2 .
7: until Mk = Mk−1.

It can be proved that our proposed adaptive thresholding algorithm converges for all similarity
matrices, and the rate of convergence can be estimated. The proof is as follows.

Theorem. Algorithm S2 converges for any similarity matrix M and for any thresholding parameter λ.

Proof. Note that in each iteration, we have

1→ 1 and 0→ 0 and
1

2
→

 1,
1
2 ,
0.

(S2)

Let nk be the number of
1

2
in the matrix Mk. It is easy to see that the sequence {nk}∞k=1 is non-increasing.

Also, note that
0 ≤ nk ≤ n1 ≤ |M |, (S3)
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where |M | denotes the total number of entries in M . By Monotone Convergence Theorem [6], {nk}∞k=1

converges and 0 ≤ limk→∞ nk ≤ n1.
Now, it is easy to see that if nK+1 = nK then MK+1 = MK , which indicates the convergence. By

the symmetry of Mk, if nK+1 < nK , then nK − nK+1 must be a multiple of 2. Hence, the maximum
number of iterations needed for achieving convergence is bounded above by n1/2. �

We then compute the generalised Erdős number (GEN) of the thresholded matrix using [7] and apply
the GEN-based community detection method [8] to obtain the classification result. The Teichmüller-based
classification scheme is summarised as Algorithm S3.

Algorithm S3 Classification of planar shapes via landmark-matching curvature-guided Teichmüller
mappings

Input: A set of planar shapes {Si}pi=1 with prescribed landmark correspondences.
Output: Community labels {li}pi=1.

1: Apply Algorithm S1 for all pairs of shapes (Si, Sj), 1 ≤ i, j ≤ p. Denote the similarity score between
them by sij .

2: Construct a p× p similarity matrix M = (sij).
3: Apply Algorithm S2 on M and obtain the thresholded matrix.
4: Apply the GEN-based community detection method with the thresholded matrix and obtain the

community labels {li}pi=1.

This completes our Teichmüller morphometric framework for planar shapes.

S2 Discretisation and implementation

In our case studies, we use a finite element discretisation of planar shapes as illustrated by Fig. S1.
Every planar shape is discretised as a triangular mesh with regular triangle elements, with multiple
vertices highlighted as landmarks. The landmark selection on the planar shapes is performed using
the image processing software ImageJ [9]. Our proposed algorithms are implemented in MATLAB. All
computations are performed on a PC with Intel i7-6700K CPU and 16 GB RAM. For triangular meshes
with approximately 9000 triangle elements, the average time taken for computing each landmark-matching
curvature-guided Teichmüller mapping using Algorithm S1 is less than 5 seconds. For Algorithm S3, the
computations are further parallelised using the Parallel Computing Toolbox in MATLAB. The codes of
our proposed algorithms are available at http://scholar.harvard.edu/choi/files/tm.zip.

S3 Classification of Hawaiian Drosophila wings

In the first case study in our paper, we apply our proposed Teichmüller morphometric framework
(Algorithm S3) on Drosophila wings in the Hawaiian Drosophila Wing Database [10]. Table S1 lists the
wing specimens used in our study. Fig. S2 shows the clustering result with specimen labels. Fig. S3,
Fig. S4 and Fig. S5 show the three communities formed using our framework. Here, for every species
with multiple specimens in the dataset, we put the species in one of the three figures according to the
mode of the community labels of the specimens. Species with multiple modes of community labels are
not included in the figures.
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Figure S1: A Hawaiian Drosophila wing and the finite element discretisation of it. Red: Landmark
points of the intersections between the longitudinal veins L2, L3, L4, L5, the anterior cross-vein (ACV),
the posterior cross-vein (PCV) and the boundary. Wing image courtesy of the Hawaiian Drosophila
Wing Database [10].

S4 Comparison between our method and the existing morpho-
metric approaches

Fig. S6 shows a comparison between our curvature-guided, landmark-matching Teichmüller mapping
approach (Algorithm S1) and four other morphometric approaches, including direct mapping, Procrustes
superimposition [11], least-square conformal mapping and Thin Plate Spline [12]. Consider mapping a
D. punalua wing onto a D. silvestris wing with 10 landmark correspondences. Denote the landmarks
on the D. punalua wing and the D. silvestris wing by {~pi}10i=1 and {~qi}10i=1 respectively, where all ~pi
and ~qi are vectors in R2. For the direct mapping, we directly overlay the D. punalua wing onto the D.
silvestris wing and compute the intensity difference. The Procrustes and Thin Plate Spline mappings
are computed using the MATLAB built-in functions procrustes and tpaps respectively, with the given
landmark correspondences ~pi ↔ ~qi, i = 1, . . . , 10. The Procrustes method computes an optimal linear
transformation

f(~x) = T (b~x) + ~c, (S4)

where T is a 2 × 2 matrix for rotation and reflection, b is a scalar for scaling, and ~c is a vector for

translation, such that the sum of squared errors

10∑
i=1

‖f(~pi)− ~qi‖2 is minimised. The Thin Plate Spline

method computes the unique minimiser f of the weighted sum αE(f) + (1− α)R(f), where α ∈ [0, 1] is
a weighting factor,

E(f) =

10∑
i=1

‖f(~pi)− ~qi‖2 (S5)

is the landmark mismatch error measure and

R(f) =

∫∫ [(
∂2f

∂x21

)2

+ 2

(
∂2f

∂x1∂x2

)2

+

(
∂2f

∂x22

)2
]
dx1dx2 (S6)

is the roughness measure. In our experiment, we set α = 1/2. For the least-square conformal mapping,
we look for a third order polynomial f(z) = a0z + a1z + a2z

2 + a3z
3 that deforms the D. punalua wing

and matches the D. silvestris wing as much as possible, where a0, a1, a2, a3 ∈ C are parameters to be
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Figure S2: Visualising the community detection result obtained by our Teichmüller morphometric
framework on the MDS coordinate plane. The nodes are coloured based on their communities. Blue:
Community 1. Red: Community 2. Green: Community 3. The shapes of the nodes represent their
phylogenetic groupings. Circle: adiastola group. Square: planitibia group. Triangle: glabriapex group.
Diamond: grimshawi group. The number beside each node represents the specimen number specified in
Table S1. The wing images shown are adapted from [10].

determined. The optimal f is computed by minimising the following objective function:

E(f) =

10∑
i=1

|f(zi)− wi|2 , (S7)

where {zi}10i=1, {wi}10i=1 are the complex representations of {~pi}10i=1 and {~qi}10i=1 respectively. The optimal
solution is obtained using the MATLAB function lsqnonlin, with the Levenberg–Marquardt algorithm
[13] being used.

As shown in Fig. S6, since the wings are with different size, shape and landmark locations, directly
overlaying the two wings does not help analysing the difference in their geometries. Also, neither the
Procrustes superimposition, the least-square conformal mapping method nor the Thin Plate Spline
method can exactly match all landmarks and the wing boundaries. By contrast, our Teichmüller method
guarantees exact landmark and wing boundary matching. This reflects the advantage of our proposed
method for planar morphometrics.
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Figure S3: The species classified as Community 1 by our method. The images are adapted from the
Hawaiian Drosophila Wing Database [10] (not to scale).

S5 Robustness of our method with respect to the thresholding
parameter

Recall that Algorithm S2 requires an input of the thresholding parameter λ for computing the thresholded
quasi-conformal similarity matrix. Fig. S7 shows the thresholding result with various λ. Using the
thresholding results, we apply the GEN-based community detection algorithm [8] and obtain the
clustering results as shown in Fig. S8. It can be observed that a very small value of λ may oversimplify
the quasi-conformal similarity matrix and lead to the formation of large communities, while a very
large value of λ may chop most entries to 0 and lead to many small communities. Nevertheless, the
community detection results are consistent with various moderate values of λ between 0.5 and 1.5. This
shows that our method is robust with respect to a reasonable range of λ. In practice, we take λ = 1.

S6 Robustness of our method with respect to the community
detection method

We are also interested in the robustness of our proposed method with respect to the community detection
method used in Algorithm S3. Fixing λ = 1, we apply various clustering algorithms, including the
GEN-based community detection algorithm [8], hierarchical clustering, density-based clustering and
spectral clustering, on the thresholded similarity matrix and obtain the community detection results.
For hierarchical clustering, the MATLAB function cluster in the Statistics and Machine Learning
Toolbox is used, with the required input maximum number of clusters set to be 4. For density-based
clustering, the DBSCAN algorithm [14] is used. For the spectral clustering, the algorithm by Shi and
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Figure S4: The species classified as Community 2 by our method. The images are adapted from the
Hawaiian Drosophila Wing Database [10] (not to scale).

Malik [15] in the MATLAB Community Detection Toolbox is used, with the required input number of
clusters set to be n = 3 and n = 4.

Fig. S9 shows the community detection results. It can be observed that the algorithms produce
consistent clustering results, which suggests that our proposed method is robust with respect to the
community detection method. It is noteworthy that the GEN-based community detection method is
advantageous as it does not require any prescribed information of the number of clusters.

S7 Detecting subtle shape dissimilarities using our method

Our Teichmüller-map morphometric method is capable of detecting subtle shape dissimilarities such as
microevolutionary patterns and bilateral asymmetry. In Fig. S10, we compare the wings of a specimen
of D. heteroneura by computing the landmark-matching Teichmüller mapping from the right wing to
the left wing. The resulting quasi-conformal similarity score 1− |µf | is approximately 0.944, indicating
a high overall similarity between the two wings.

To study the subtle dissimilarity between them, we consider the intensity difference between the
mapping result and the left wing and observe a subtle difference between the longitudinal veins on the
two wings, especially L2 and L5. It can also be observed that the pigment patterns near the distal tips
of L2, L3 and L4 on the two wings are almost identical, while those near the cross-veins are slightly
different.

Furthermore, analogous to the study of the temporal development of Lepidoptera wings discussed in
Section 4(b) of the paper, we can study the bilateral asymmetry by considering the deformation of small
circles to small ellipses under the Teichmüller mapping. This time, it is natural to quantify the local

area difference by the quantity δA =
Area of ellipse

Area of circle
− 1 for each small circle. For each local region on

the right wing, a positive δA indicates that the region is smaller than the corresponding local region on
the left wing, a negative δA indicates that it is larger, and a perfect symmetry between the two regions
yields δA = 0. From the heat map of δA in Fig. S10, we observe that the most significant local area
asymmetry occurs near the distal tip of L2, as well as the intersections between L4, L5 and PCV.
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Figure S5: The species classified as Community 3 by our method. The images are adapted from the
Hawaiian Drosophila Wing Database [10] (not to scale).

S8 Assessing the vein difference under Teichmüller mappings

Suppose S1 and S2 are two insect wings with prescribed landmark correspondence. Under the landmark-
matching Teichmüller mapping f : S1 → S2, the boundary arcs and all of the landmarks of them are
matched, while the interior veins, in general, are not. In this section, we outline an approach for assessing
the vein difference under Teichmüller mappings.

Mathematically, every interior vein of a wing can be regarded as a parameterised curve γ : [0, 1]→ R2.
A classical result in differential geometry is that the shape of a plane curve is uniquely determined by
its signed curvature kγ , up to translation and rotation.

Suppose γ1 : [0, 1]→ R2 and γ2 : [0, 1]→ R2 are two corresponding veins on S1 and S2 respectively,
and their endpoints are corresponding landmark pairs. Under the landmark-matching Teichmüller
mapping f : S1 → S2, we have f(γ1(0)) = γ2(0) and f(γ1(1)) = γ2(1). These boundary conditions
determine the translation and rotation. Therefore, the difference between f(γ1) and γ2 is captured by
the difference in their signed curvatures kf(γ1) and kγ2 . It is natural to define the distance between γ1
and γ2 by

df (γ1, γ2) = ‖kf(γ1) − kγ2‖2 =

(∫ 1

0

(kf(γ1)(t)− kγ2(t))2dt

)1/2

. (S8)

In practice, the above distance can be easily evaluated by considering the image of uniformly sampled
points on γ1 under f and uniformly sampled points on γ2.

We remark that it is possible to obtain a more explicit expression of df (γ1, γ2). Recall that the first
order approximation of f around z0 is given by

f(z) ≈ f(z0) + fz(z0)(z − z0) + fz(z0)z − z0. (S9)
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This suggests that the infinitesimal orientation change under f is 1
2 argµf (z0). As curvature is related

to the rate of change of angle between neighbouring tangents, it is expected that kf(γ1) can be described
in terms of argµf and kγ1 .

S9 Clustering the Hawaiian Drosophila wings by the tradi-
tional geometric morphometrics approach

From the clustering result obtained by our Teichmüller morphometric framework, it can be observed that
the D. adiastola wings are split into two communities. We compare the result with that obtained using
traditional geometric morphometrics [16]. Instead of performing non-rigid mappings between the wing
shapes, we apply the Procrustes superimposition to align all wings based on the 10 landmarks on each
of them. Then, we perform principal component analysis on the 20 coordinates of the 10 landmarks of
all wings. Figure S11 shows the principal component analysis result. The k-means clustering algorithm
is further applied to form communities.

Since this approach only considers the 10 landmarks on each wing but not the shape of the entire
wing boundary, the community detection result is different from that obtained by our Teichmüller
morphometric framework. However, it can be observed that the D. adiastola wings are again split into
two communities under this approach. This suggests that the split of the D. adiastola wings obtained
by our proposed approach is more likely to be reflecting the multimodal wing pattern of D. adiastola,
rather than an error made by our method.
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Species Phylogenetic group Specimen number

clavisetae adiastola 1–5

ornata adiastola 6–7

setosimentum adiastola 8–10

adiastola adiastola 11–14

cilifera adiastola 15–20

hamifera adiastola 21–26

spectabilis adiastola 27–32

heteroneura planitibia 33–37

planitibia planitibia 38

silvestris planitibia 39–40

nigribasis planitibia 41–42

cyrtoloma planitibia 43–46

melanocephala planitibia 47–48

neoperkinsi planitibia 49–51

neopicta planitibia 52–55

oahuensis planitibia 56–57

obscuripes planitibia 58–60

hemipeza planitibia 61–63

picticornis planitibia 64–65

aglaia glabriapex 66–67

basisetae glabriapex 68–70

digressa glabriapex 71–72

discreta glabriapex 73–74

fasciculisetae glabriapex 75

glabriapex glabriapex 76–77

macrothrix glabriapex 78–80

montgomeryi glabriapex 81–83

punalua glabriapex 84–87

affinidisjuncta grimshawi 88–89

balioptera grimshawi 90–91

bostrycha grimshawi 92–93

craddockae grimshawi 94

crucigera grimshawi 95–98

disjuncta grimshawi 99–103

grimshawi grimshawi 104

heedi grimshawi 105–106

silvarentis grimshawi 107–108

limitata grimshawi 109–112

engyochracea grimshawi 113–115

hawaiiensis grimshawi 116–118

murphyi grimshawi 119–120

orphnopeza grimshawi 121–122

orthofascia grimshawi 123

recticilia grimshawi 124–125

sproati grimshawi 126–127

villosipedis grimshawi 128

Table S1: The list of wing specimens adapted from [10] in our study of Hawaiian Drosophila wings. The
specimen numbers represent the row/column numbers corresponding to the specimens in the similarity
matrix.
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Figure S6: A comparison between our method and four existing morphometric approaches. The first row
shows the D. punalua and D. silvestris wings. Row 2 shows the Teichmüller mapping of D. punalua onto
D. silvestris, and the intensity difference between the Teichmüller mapping result and the D. silvestris
wing. Row 3-4 show the intensity differences computed using direct mapping, Procrustes superimposition
[11], least-square conformal mapping and Thin Plate Spline [12]. The D. punalua and D. silvestris wing
images are adapted from [10].

12



Figure S7: The thresholded similarity matrices produced by our adaptive thresholding algorithm
(Algorithm S2) with different choices of the thresholding parameter λ.
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Figure S8: The community detection results with different choices of λ. Every specimen is represented as
a node on the plane constructed by multidimensional scaling. The node colours represent the communities
detected by the GEN-based community detection algorithm [8]. The four shapes of the nodes represent
the four phylogenetic groupings.
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Figure S9: The community detection results on the thresholded similarity matrix (with the thresholding
parameter λ = 1) by various clustering algorithms.
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Figure S10: Analysing the bilateral asymmetry of a specimen of D. heteroneura. The first column
shows the right wing and the left wing. We compute a landmark-matching Teichmüller map from the
right wing to the left wing. The second column shows the intensity difference between the Teichmüller
mapping result and the left wing, together with the heat map of the local area difference δA. The wing
images are adapted from [10].
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Figure S11: The principal components analysis result of the Hawaiian Drosophila wings obtained by
traditional geometric morphometrics. The nodes are coloured based on the k-means clustering result.
Blue: Community 1. Red: Community 2. Green: Community 3. The shapes of the nodes represent their
phylogenetic groupings. Circle: adiastola group. Square: planitibia group. Triangle: glabriapex group.
Diamond: grimshawi group. The number beside each node represents the specimen number specified in
Table S1. The wing images shown are adapted from [10].
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