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Abstract Surface parameterization is widely used in computer graphics and geome-
try processing. It simplifies challenging tasks such as surface registrations, morphing,
remeshing and texture mapping. In this paper, we present an efficient algorithm for
computing the disk conformal parameterization of simply-connected open surfaces.
A double covering technique is used to turn a simply-connected open surface into
a genus-0 closed surface, and then a fast algorithm for parameterization of genus-0
closed surfaces can be applied. The symmetry of the double covered surface pre-
serves the efficiency of the computation. A planar parameterization can then be
obtained with the aid of a Möbius transformation and the stereographic projection.
After that, a normalization step is applied to guarantee the circular boundary. Finally,
we achieve a bijective disk conformal parameterization by a composition of quasi-
conformal mappings. Experimental results demonstrate a significant improvement in
the computational time by over 60%. At the same time, our proposed method retains
comparable accuracy, bijectivity and robustness when compared with the state-of-
the-art approaches. Applications to texture mapping are presented for illustrating the
effectiveness of our proposed algorithm.

Communicated by: Yang Wang

� Lok Ming Lui
lmlui@math.cuhk.edu.hk

Gary Pui-Tung Choi
pchoi@g.harvard.edu

1 John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge,
MA, USA

2 Department of Mathematics, The Chinese University of Hong Kong, Hong Kong, Hong Kong

http://crossmark.crossref.org/dialog/?doi=10.1007/s10444-017-9536-x&domain=pdf
http://orcid.org/0000-0002-9152-0743
mailto:lmlui@math.cuhk.edu.hk
mailto:pchoi@g.harvard.edu


88 G.P.-T. Choi, L.M. Lui

Keywords Disk conformal parameterization · Simply-connected open surface ·
Quasi-conformal theory

Mathematics Subject Classification (2010) 37K25 · 68U05 · 68U10

1 Introduction

With the advancement of computer technologies and 3D acquisition techniques, 3D
objects nowadays are usually captured and modeled by triangular meshes for further
usages. A large number of applications of triangular meshes can be found in com-
puter graphics and computer-aided design. However, working on general meshes is
a difficult task because of their complicated geometry. The complicated geometry
hinders applications such as surface registration, morphing and texture mapping. To
overcome this problem, one common approach is to parameterize the surfaces onto
a simple parameter domain so as to simplify the computations. For instance, textures
can be designed on the simple domain and then mapped back onto the original sur-
faces [17, 25, 51]. Another example that usually makes use of parameterization is
surface registration [3, 16, 26–29, 31, 32, 36–38]. Instead of directly computing the
registration between two convoluted surfaces, one can perform the registration on the
simple parameter domain, which is much easier. It is also common to perform sur-
face remeshing with the aid of parameterizations [19, 42, 43]. With the development
of the computer industry, the problem of finding a good parameterization method is
becoming increasingly important.

To make a parameterization useful and applicable, one should seek for a method
that minimizes certain types of distortions. In particular, it is desirable to minimize
the angular distortions of the 3D meshes. For instance, with the angular distortions
minimized, regular triangle elements on high-quality meshes will remain to be reg-
ular on the parameter domain. The preservation of the high quality of meshes is
important for solving geometric PDEs [7, 30]. Angle preserving parameterizations,
also known as conformal parameterizations, effectively preserve the local geometry
of the surfaces. Hence, in this paper, our goal is to develop an efficient conformal
parameterization algorithm.

The choice of the parameter domain is also a key factor in deciding the parameter-
ization scheme for simply-connected open surfaces. In many practical applications,
enforcing the parameter domain to be a regular shape, such as the unit disk, is
preferred over having an arbitrary shape. For instance, in surface remeshing, one
common approach is to flatten a mesh onto the plane and then perform the remesh-
ing procedure by building a new simple mesh structure on the planar domain. The
remeshing procedure on a circular domain is much easier than that on an arbitrary
domain. Specifically, the circular domain is always convex while other arbitrary
domains may be non-convex and hence existing meshing schemes, such as the Delau-
nay triangulation method, may produce unwanted elements outside the domains.
Also, the disk conformal parameterization is more useful than free-boundary parame-
terization in solving PDEs on meshes. For example, the Poisson’s equation has exact
form solutions on disk domain but not necessarily on other arbitrary domains. The
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solutions on the disk parameterizations can then be used to obtain the solutions on the
original meshes. Besides, the disk conformal parameterization is important for shape
analysis. For instance, the well-known conformal welding method by Sharon and
Mumford [46] and the extended version by Lui et al. [34] requires a disk conformal
parameterization for computing the shape fingerprints. Free-boundary parameteriza-
tions cannot be applied. The abovementioned applications demonstrate the physical
significance of achieving a disk conformal parameterization.

In real applications, besides the quality of the parameterization result, it is also
important to consider the computational efficiency of the parameterization algorithm.
In particular, a fast algorithm is desired so that the computation can be completed
within a short time. In this paper, we develop an efficient algorithm for the disk
conformal parameterization of simply-connected open surfaces. To achieve the effi-
ciency, we first transform a topologically disk-like surface to a genus-0 closed surface
by a double covering technique. Then we can apply a fast parameterization algo-
rithm for genus-0 closed surfaces to compute a spherical parameterization of the
double covered surface. Note that although the size of the problem is doubled by dou-
ble covering, the computational efficiency is preserved because of the symmetry of
the double covered surface. The spherical parameterization, together with a suitable
Möbius transformation and the stereographic projection, provides us with an almost
circular planar parameterization for the original surface. A normalization technique
followed by a composition of quasi-conformal maps are then used for obtaining a
bijective disk conformal parameterization. The bijectivity of the parameterization is
supported by quasi-conformal theories. The entire algorithm only involves solving
sparse linear systems and hence the computation of the disk conformal parame-
terization is greatly accelerated. Specifically, our proposed method speeds up the
computation of disk conformal parameterizations by over 60% while attaining accu-
racy comparable to the state-of-the-art approaches [4, 14]. In addition, our proposed
method demonstrates robustness to highly irregular triangulations.

The rest of the paper is organized as follows. In Section 2, we review the previous
works on surface parameterizations. In Section 3, we highlight the contribution of our
work. Our proposed algorithm is then explained in details in Section 4. The numerical
implementation of the algorithm is introduced in Section 5. In Section 6, we present
numerical experiments to demonstrate the effectiveness of our proposed method. The
paper is concluded in Section 7.

2 Previous works

With a large variety of real applications, surface parameterization has been exten-
sively studied by different research groups. Readers are referred to [10, 11, 20, 49]
for surveys of mesh parameterization methods. In this section, we give an overview
of the works on conformal parameterization.

A practical parameterization scheme should retain the original geometric infor-
mation of a surface as far as possible. Ideally, the isometric parameterization, which
preserves geometric distances, is the best parameterization in the sense of geome-
try preserving. However, isometric planar parameterizations only exist for surfaces
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with zero Gaussian curvature [6]. Hence, it is impossible to achieve isometric param-
eterizations for general surfaces. A similar yet far more practical substitute is the
conformal parameterization. Conformal parameterizations are angle preserving, and
hence the infinitesimal shape is well retained. For this reason, numerous studies have
been devoted to surface conformal parameterizations.

The existing algorithms for the conformal parameterizations of disk-type sur-
faces can be divided into two groups, namely, the free-boundary methods and
the fixed-boundary methods. For the free-boundary methods, the planar conformal
parameterization results are with irregular shapes. In [18], Hormann and Greiner
proposed the MIPS algorithm for conformal parameterizations of topologically disk-
like surfaces. The boundary develops naturally with the algorithm. In [47], Sheffer
and de Sturler proposed the Angle Based Flattening (ABF) method to compute
conformal maps, based on minimizing the angular distortion in each face to the nec-
essary and sufficient condition of a valid 2D mesh. Sheffer et al. [48] extended the
ABF method to ABF++, a more efficient and robust algorithm for planar conformal
parameterizations. A new numerical solution technique, a new reconstruction scheme
and a hierarchical technique are used to improve the performance. Lévy et al. [25]
proposed the Least-Square Conformal Maps (LSCM) to compute a conformal param-
eterization by approximating the Cauchy-Riemann equation using the least square
method. In [5], Desbrun et al. proposed the Discrete, Natural Conformal Parameteri-
zation (DNCP) by computing the discrete Dirichlet energy. In [24], Kharevych et al.
constructed a conformal parameterization based on circle patterns, which are arrange-
ments of circles on every face with prescribed intersection angles. Jin et al. [21]
applied a double covering technique [15] and an iterative scheme for genus-0 surface
conformal mapping in [14] to obtain a planar conformal parameterization. In [40],
Mullen et al. reported a spectral approach to discrete conformal parameterizations,
which involves solving a sparse symmetric generalized eigenvalue problem.

For the fixed-boundary methods, numerous researchers have proposed bril-
liant disk conformal parameterization algorithms. Floater [8] proposed the shape-
preserving parameterization method for surface triangulations by solving linear
systems based on convex combinations. In [9], Floater improved the parameteriza-
tion method using a generalization of barycentric coordinates. In [14], Gu and Yau
constructed a basis of holomorphic 1-forms to compute conformal parameterizations.
By integrating the holomorphic 1-forms on a mesh, a globally conformal parame-
terization can be obtained. In [39], Luo proposed the combinatorial Yamabe flow
on the space of all piecewise flat metrics associated with a triangulated surface for
the parameterization. In [22], Jin et al. suggested the discrete Ricci flow method for
conformal parameterizations, based on a variational framework and circle packing.
Yang et al. [50] generalized the discrete Ricci flow and improved the computation
by allowing two circles to intersect or separate from each other, unlike the conven-
tional circle packing-based method [22]. In [4], Choi and Lui presented a two-step
iterative scheme to correct the conformality distortions at different regions of the unit
disk. Table 1 compares several previous works on the conformal parameterizations
of disk-type surfaces.

Our proposed algorithm involves a step of spherical parameterization. Various
spherical parameterization algorithms have been developed in the recent few decades,
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Table 1 Several previous works on conformal parameterization of simply-connected open surfaces

Methods Boundary Bijective? Iterative?

Shape-preserving [8] Fixed Yes No

MIPS [18] Free Yes Yes

ABF/ABF++ [47, 48] Free Local (no flips) Yes

LSCM/DNCP [5, 25] Free No No

Holomorphic 1-form [14] Fixed No No

Mean-value [9] Fixed Yes No

Yamabe Riemann map [39] Fixed Yes Yes

Circle patterns [24] Free Local (no flips) Yes

Genus-0 surface conformal map [21] Free No Yes

Discrete Ricci flow [22] Fixed Yes Yes

Spectral conformal [40] Free No No

Generalized Ricci flow [50] Fixed Yes Yes

Two-step iteration [4] Fixed Yes Yes

such as [1, 3, 13–17, 35]. Among the existing algorithms, we apply the fast spheri-
cal conformal parameterization algorithm proposed in [3], which involves solving a
Laplace equation and a generalized Laplace equation. As a remark, the use of geo-
metric PDEs is not only important in surface parameterization but also in a large
variety of other fields, such as image analysis, geometric design and minimal molec-
ular surfaces [2]. More details of the tools used in our proposed method will be
explained in Section 4.

3 Contributions

In this paper, we introduce a linear formulation for the disk conformal parameteri-
zation of simply-connected open surfaces. Unlike the conventional approaches, we
first find an initial map via a parameterization algorithm for genus-0 closed surfaces,
with the aid of a double covering technique. The symmetry of the double covered
surface helps retaining the low computational cost of the problem. After that, we nor-
malize the boundary and apply quasi-conformal theories to ensure the bijectivity and
conformality. Our proposed algorithm is advantageous in the following aspects:

1. Our proposed method only involves solving a few sparse symmetric positive
definite linear systems of equations. It further accelerates the computation of
disk conformal parameterizations by over 60% when compared with the fastest
state-of-the-art approach [4].

2. With the significant improvement of the computational time, our pro-
posed method possesses comparable accuracy as of the other state-of-the-art
approaches.



92 G.P.-T. Choi, L.M. Lui

3. The bijectivity of the parameterization is supported by quasi-conformal theories.
No foldings or overlaps exist in the parameterization results.

4. Our proposed method is highly robust to irregular triangulations. It can handle
meshes with very sharp and irregular triangular faces.

4 Proposed method

In this section, we present our proposed method for disk conformal parameterizations
of simply-connected open surfaces in details.

A map f : M → N between two Riemann surfaces is called a conformal map if
it preserves the inner product between vectors in parameter space and their images in
the tangent plane of the surface, up to a scaling factor. More specifically, there exists
a positive scalar function λ such that f ∗ds2N = λds2M . In other words, conformal
maps are angle preserving. The following theorem guarantees the existence of several
special types of conformal maps.

Theorem 4.1 (Uniformization Theorem) Every simply connected Riemann surface
is conformally equivalent to exactly one of the following three domains:

(i) the Riemann sphere,
(ii) the complex plane,
(iii) the open unit disk.

Proof See [44].

With this theoretical guarantee, our goal is to efficiently and accurately compute
a conformal map f : M → D from a topologically disk-like surface M to the open
unit disk D.

Before explaining our proposed algorithm in details, we point out the major diffe-
rences between our proposed method and the two-step iterative approach [4]. Table 2
highlights the main features of our proposed method and the two-step iterative
approach [4] for disk conformal parameterizations. The two-step iterative approach
makes use of the disk harmonic map as an initial map, with the arc-length parameter-
ized circular boundary constraint. This introduces large conformality distortions in
the initial map. To correct the conformality distortion, two further steps are required
in [4]. First, the Cayley transform is applied to map the initial disk onto the upper
half plane for correcting the distortion at the inner region of the disk. Then, itera-
tive reflections along the unit circle are applied for correcting the distortion near the
boundary of the disk until convergence.

In contrast, our proposed fast method primarily consists of only two stages. In the
first stage, we find an initial planar parameterization via double covering followed by
a spherical conformal map. Since there is no enforcement of the boundary in comput-
ing the initial planar parameterization, the conformality distortion of our initial map
is much lower than that by the disk harmonic map. In the second stage, we enforce the
circular boundary, and then alleviate the conformality distortion as well as achieving
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the bijectivity using quasi-conformal theories. The absence of iterations in our pro-
posed algorithm attributes to the significant enhancement in the computational time
when compared with the two-step iterative approach [4].

In the following, we explain the two stages of our proposed algorithm in details.

4.1 Finding an initial map via double covering

Instead of directly computing the map f : M → D from a simply-connected open
surfaceM to the unit diskD, we tackle the problem by using a simple double covering
technique. The double covering technique was also suggested in [15] to compute
conformal gradient field of surfaces with boundaries. In the following, we discuss
the construction in the continuous setting. Specifically, we construct a genus-0 closed
surface ˜M by the following method. First, we duplicate M and change its orientation.
Denote the new copy by M ′. Then we identify the boundaries of the two surfaces:

∂M ←→ ∂M ′. (1)

By the above identification, the two surfaces M and M ′ are glued along the two
boundaries. Note that here we do not identify the interior of the two surfaces M and
M ′. As a result, a closed surface is formed. Denote the new surface by ˜M . It can be
easily noted that since M and M ′ are simply-connected open surfaces, the new sur-
face ˜M is a genus-0 closed surface. More explicitly, denote by K and κg the Gaussian
curvature and geodesic curvature. Assume that we slightly edit the boundary parts of
M and M ′ so that ˜M is smooth. Then by the Gauss-Bonnet theorem, we have

∫

M

KdA +
∫

∂M

κgds = 2πχ(M) = 2π (2)

and
∫

M ′
KdA +

∫

∂M ′
κgds = 2πχ(M ′) = 2π. (3)

Hence, we have

2πχ( ˜M) = ∫

˜M
KdA

= ∫

M
KdA + ∫

M ′ KdA

= (

2π − ∫

∂M
κgds

) + (

2π − ∫

∂M ′ κgds
)

= 4π − ∫

∂M
κgds + ∫

∂M
κgds

= 4π.

(4)

Therefore, the new surface ˜M has Euler characteristic χ( ˜M) = 2, which implies that
it is a genus-0 closed surface. As a remark, in the discrete case, the unsmooth part
caused by the double covering does not cause any difficulty in our algorithm since
we are only considering the angle structure of the glued mesh. The details of the
combinatorial argument are explained in Section 5.

After obtaining ˜M by the abovementioned double covering technique, we look for
a conformal map that maps ˜M to the unit sphere. By the uniformization theorem,
every genus-0 closed surface is conformally equivalent to the unit sphere. Hence,
the existence of such a conformal map is theoretically guaranteed. In [3], Choi et al.
proposed a fast algorithm for computing a conformal map between genus-0 closed
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surfaces and the unit sphere. The algorithm consists of two steps, and in each step
one sparse symmetric positive definite linear system is to be solved. In the following,
we briefly describe the mentioned spherical conformal parameterization algorithm.

The harmonic energy functional of a map ψ : N → S
2 from a genus-0 closed

surface N to the unit sphere is defined as

E(ψ) =
∫

N

||∇ψ ||2dvN . (5)

In the space of mappings, the critical points of E(ψ) are called harmonic mappings.
For genus-0 closed surfaces, conformal maps are equivalent to harmonic maps [23].
Therefore, to find a spherical conformal map, we can consider solving the following
Laplace equation

�T ψ = 0 (6)

subject to the spherical constraint ||ψ || = 1, where �T ψ is the tangential component
of �ψ on the tangent plane of S2. Note that this problem is nonlinear. In [3], the
authors linearize this problem by solving the equation on the complex plane:

�φ = 0 (7)

given three point boundary correspondences φ(ai) = bi , where ai, bi ∈ C for
i = 1, 2, 3. Note that �T φ = �φ = 0 since the target domain is now C. Now
the problem (7) becomes linear since �φ is linear and the nonlinear constraint
||ψ || = 1 in the original problem (6) is removed. After solving the problem (7),
the inverse stereographic projection is applied for obtaining a spherical parameter-
ization. Note that in the discrete case, the conformality of the inner region on the
complex plane is negligible but that of the outer region on the complex plane is quite
large. Correspondingly, the conformality distortion near the North pole of the sphere
is quite large. Therefore, to correct the conformality distortion near the North pole,
the authors in [3] propose to apply the South-pole stereographic projection to project
the sphere onto the complex plane. Unlike the result obtained by solving Equation
(7), the part with high conformality distortion is now at the inner region on the
plane. By fixing the outermost region and composing the map with a suitable quasi-
conformal map, the distortion of the inner region can be corrected. Finally, by the
inverse South-pole stereographic projection, a bijective spherical conformal param-
eterization with negligibly low distortions can be obtained. Readers are referred to
[45] and [3] for more details of the harmonic map theory and the abovementioned
algorithm respectively.

The combination of the double covering technique and the fast spherical confor-
mal parameterization algorithm in [3] is particularly advantageous. It should be noted
that because of the symmetry of the double covered surface, half of the entries in the
coefficient matrix of the discretization of the Laplace Equation (7) are duplicated.
Therefore, even we have doubled the size of the problem under the double covering
technique, we can save half of the computational cost of the coefficient matrix by
only computing half of the entries. Moreover, the spherical conformal parameteri-
zation algorithm in [3] involves solving only two sparse symmetric positive definite
systems of equations. Therefore, the computation is still highly efficient.
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Fig. 1 A simply-connected open human foot model and the planar conformal parameterization obtained
using double covering followed by spherical conformal map and stereographic projection. It can be
observed that the resulting boundary is not perfectly circular

After finding a spherical conformal map f̃ : ˜M → S
2 for the glued surface ˜M

using the parameterization algorithm, note that by symmetry, we can separate the
unit sphere into two parts, each of which exactly corresponds to one of M and M ′.
Since our goal is to find a disk conformal map f : M → D, we put our focus on only
one of the two parts. Now, we apply a Möbius transformation on S

2 so that the two
parts become the northern and southern hemispheres of S2. After that, by applying
the stereographic projection P : S2 → C defined by

P(x, y, z) = x

1 − z
+ i

y

1 − z
, (8)

the southern hemisphere is mapped onto the open unit disk D. Since the Möbius
transformation and the stereographic projection are both conformal mappings, the
combination of the above steps provides a conformal map f : M → D.

Theoretically, by the symmetry of the double covered surface, the boundary of the
planar region obtained by the above stereographic projection should be a perfect unit
circle. However, in the discrete case, due to irregular triangulations of the meshes
and the conformality distortions of the map, the boundary is usually different from
a perfect circle, as suggested in the experimental results in [4]. In other words, the
planar region R we obtained after applying the stereographic projection may not be
a unit disk. An illustration is given in Fig. 1. To solve this issue, we need one further
step to enforce the circular boundary, at the same time maintaining low conformality
distortions and preserving the bijectivity of the parameterization.

4.2 Enforcing the circular boundary to achieve a bijective disk conformal
parameterization

To control the conformality distortion and the bijectivity, our idea is to normalize the
boundary and then compose the map with a quasi-conformal map. Quasi-conformal
maps are a generalization of conformal maps, which are orientation preserving
homeomorphisms between Riemann surfaces with bounded conformality distortions.



A linear formulation for disk conformal parameterization... 97

Fig. 2 An illustration of quasi-conformal mappings. All information of a quasi-conformal map can be
determined by the Beltrami coefficient μ

Intuitively, a conformal mapping maps infinitesimal circles to infinitesimal circles,
while a quasi-conformal mapping maps infinitesimal circles to infinitesimal ellipses
with bounded eccentricity [12]. Mathematically, a quasi-conformal map f : C → C

satisfies the Beltrami equation

∂f

∂z̄
= μ(z)

∂f

∂z
(9)

for some complex-valued functions μ with ‖μ‖∞ < 1. μ is called the Beltrami
coefficient of f .

The Beltrami coefficient captures the important information of the mapping f .
For instance, the angles and the magnitudes of both the maximal magnification and
the maximal shrinkage can be easily determined by the Beltrami coefficient μ (see
Fig. 2). Specifically, the angle of the maximal magnification is arg(μ(p))/2 with the
magnifying factor 1 + |μ(p)|, and the angle of the maximal shrinkage is the orthog-
onal angle (arg(μ(p)) − π)/2 with the shrinking factor 1 − |μ(p)|. The maximal
dilation of f is given by:

K(f ) = 1 + ‖μ‖∞
1 − ‖μ‖∞

. (10)

It is also noteworthy that f is conformal around a small neighborhood of p if and only
if μ(p) = 0. Hence, |μ| is a good indicator of the angular distortions of a mapping.

In fact, the norm of the Beltrami coefficient μ is not only related to the confor-
mality distortion but also the bijectivity of the associated quasi-conformal mapping,
as explained by the following theorem:

Theorem 4.2 If f : M → D is a C1 map satisfying ‖μf ‖∞ < 1, then f is bijective.

Proof See [12].

This theorem can be explained with the aid of the Jacobian of f . The Jacobian Jf

of f is given by

Jf =
∣

∣

∣

∣

∂f

∂z

∣

∣

∣

∣

2

(1 − |μf |2). (11)
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Suppose ‖μf ‖∞ < 1, then we have
∣

∣

∣

∂f
∂z

∣

∣

∣

2 
= 0 and (1 − |μf |2) > 0. Therefore,

J (f ) is positive everywhere. Since D is simply-connected and f is proper, we can
conclude that f is a diffeomorphism. In fact, f is a universal covering map of degree
1. Therefore, f must be bijective. One important consequence of Theorem 4.2 is
that we can easily achieve the bijectivity of a quasi-conformal map by enforcing its
associated Beltrami coefficient to be with supremum norm less than 1.

Moreover, it is possible for us to reconstruct a mapping by a given Beltrami
coefficient, as explained by the following theorem:

Theorem 4.3 Let M1 and M2 be two simply-connected open surfaces. Given 2-point
correspondences, every Beltrami coefficient μ with ‖μ‖ < 1 is associated with a
unique quasi-conformal homeomorphism f : M1 → M2.

Proof See [12].

For the aspect of numerical computations, Lui et al. [33] proposed the linear Bel-
trami solver (LBS), a fast algorithm for reconstructing a quasi-conformal map on
a rectangular domain from a given Beltrami coefficient. The key idea of LBS is as
follows.

By expanding the Beltrami Equation (9), we have

μf = (ux − vy) + i(vx + uy)

(ux + vy) + i(vx − uy)
. (12)

Suppose μ(f ) = ρ + iτ . Then, vx and vy can be expressed as linear combinations
of ux and uy :

vy = α1ux + α2uy,

−vx = α2ux + α3uy,
(13)

where
α1 = (ρ−1)2+η2

1−ρ2−η2
,

α2 = − 2η
1−ρ2−η2

,

α3 = 1+2ρ+ρ2+η2

1−ρ2−η2
.

(14)

Similarly, we can express ux and uy as linear combinations of vx and vy :

−uy = α1vx + α2vy,

ux = α2vx + α3vy.
(15)

Hence, to solve for a quasi-conformal map, it remains to solve

∇ ·
(

A

(

ux

uy

))

= 0 and ∇ ·
(

A

(

vx

vy

))

= 0 (16)

where A =
(

α1 α2
α2 α3

)

.

In the discrete case, the above elliptic PDEs (16) can be discretized into sparse
linear systems. For details, please refer to [33]. In the following discussion, we denote
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the quasi-conformal map associated with the Beltrami coefficient μ obtained by LBS
by LBS(μ).

Another important property of quasi-conformal mappings is about their compo-
sition mappings. In fact, the Beltrami coefficient of a composition mapping can be
explicitly expressed in terms of the Beltrami coefficients of the original mappings.

Theorem 4.4 Let f : � ⊂ C → f (�) and g : f (�) → C be two quasi-conformal
mappings. Then the Beltrami coefficient of g ◦ f is given by

μg◦f = μf + (fz/fz)(μg ◦ f )

1 + (fz/fz)μf (μg ◦ f )
. (17)

In particular, if μf −1 ≡ μg , then since μf −1 ◦ f = −(fz/fz)μf , we have

μg◦f ≡ μf + (fz/fz)((−fz/fz)μf )

1 + (fz/fz)μf ((−fz/fz)μf )
≡ 0. (18)

Hence g ◦ f is conformal.

Proof See [12].

In other words, by composing two quasi-conformal maps whose Beltrami coeffi-
cients satisfy the above condition, one can immediately obtain a conformal map. This
observation motivates the following step.

To enforce the circular boundary of the parameterization, we first normalize the
boundary of the region R to the unit circle:

v �→ v

|v| (19)

for all v ∈ ∂R. Denote the normalized region by ˜R. Since the vertices near the bound-
ary of the region R may be very dense, a direct normalization of the boundary may
cause overlaps of the triangulations as well as geometric distortions on the unit disk.
To eliminate the overlaps and the distortions of ˜R, we apply the linear Beltrami solver
to construct another quasi-conformal map with the normalized boundary constraints.
Then by the composition property, the composition map becomes a conformal map.
More specifically, denote the Beltrami coefficient of the mapping g : ˜R → M from
the normalized planar region to the original surface by μ. We reconstruct a quasi-
conformal map with Beltrami coefficient μ on the unit disk by extending the linear
Beltrami solver, so that it is applicable not only on rectangular domains but also cir-
cular domains. We compute a map h : ˜R → D by applying the linear Beltrami
solver:

h = LBS(μ) (20)

with the circular boundary constraint h(v) = v for allv ∈ ∂ ˜R.
Note that by the composition property stated in Theorem 4.4, h◦g−1 is a conformal

map from the original surface M to the unit disk D. Finally, the bijectivity of the
composition map is supported by Theorem 4.2, since the Beltrami coefficient of the
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composition map is with supremum norm less than 1. This completes the task of
finding a bijective disk conformal parameterization. The numerical implementation
of our proposed method is explained in Section 5.

5 Numerical implementation

In this section, we describe the numerical implementation of our proposed algorithm
in details. In the discrete case, 3D surfaces are commonly represented by triangular
meshes. Discrete analogs of the theories on the smooth surfaces are developed on the
triangulations.

We first briefly describe the discrete version of the mentioned double covering
technique for obtaining a genus-0 closed mesh. This discretization was also applied
in [15] to compute conformal gradient fields of surfaces with boundaries. A trian-
gulation K = (V , E, F ) of a smooth simply-connected open surface consists of
the vertex set V , the edge set E and the triangular face set F . Each face can be
represented as an ordered triple [u, v, w] where u, v, w are three vertices. Suppose
the boundary vertices of K are {wi}ri=1. Denote a duplicated triangulation of K by
K ′ = (V ′, E′, F ′), with boundary vertices {w′

i}ri=1. Let v, e, f denote the number of
vertices, edges and faces of M respectively. We duplicate M and denote the new copy
by M ′, with v′, e′, f ′ the number of vertices, edges and faces. By Euler’s formula,
we have

v − e + f = v′ − e′ + f ′ = 1. (21)

Then, we construct a new surface ˜M by reversing the face orientation of M ′ and glu-
ing the two boundaries ∂M and ∂M ′. To reverse the orientation of K ′, we rearrange
the order of the vertices of each face in F ′ from [u, v, w] to [u, w, v]. Then, to glue
the two surfaces, we identify the boundary vertices of the two meshes:

wi ←→ w′
i for alli = 1, 2, · · · , r. (22)

Now, denote the number of vertices, edges and faces of ˜M by ṽ, ẽ and f̃ respectively.
It follows that

ṽ − ẽ + f̃

= (v + v′ − r) − (e + e′ − r) + (f + f ′)
= v + v′ − e − e′ + f + f ′
= 2,

(23)

Hence, the new surface ˜M is a genus-0 closed surface. The complete double covering
procedure is described in Algorithm 1.

Then, we introduce the discretization about harmonic mappings used in the fast
spherical conformal parameterization algorithm in [3]. Let ˜K be the triangulation of
a genus-0 closed surface N . Let us denote the edge spanned by two vertices u, v on
˜K by [u, v]. The discrete harmonic energy of ψ : ˜K → S

2 is given by

E(ψ) = 1

2

∑

[u,v]∈˜K

kuv||ψ(u) − ψ(v)||2, (24)
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Algorithm 1: The double covering technique in our initial step.
Input: A triangulation K = (V , E, F ) of a simply-connected open surface.
Output: A genus-0 closed mesh ˜K = (˜V , ˜E, ˜F).

1 Duplicate K and denote the copy by K ′ = (V ′, E′, F ′);
2 Change the order of the vertices of each face in F ′ from [u, v, w] to [u, w, v];
3 Replace the boundary vertices w′

i by wi in E′ and F ′ for i = 1, 2, · · · , r;
4 Set ˜V = V ∪ V ′ \ {w′

i}ri=1;
5 Set ˜E = E ∪ E′;
6 Set ˜F = E ∪ E′;

where kuv = cotα + cotβ with α, β being the angles opposite to the edge [u, v].
This is known as the cotangent formula [41]. With the discrete harmonic energy, we
can appropriately discretize the Laplace-Beltrami operator as

�ψ(vi) =
∑

vj ∈N(vi )

kvivj
(ψ(vj ) − ψ(vi)), (25)

where N(vi) denotes the set of the 1-ring neighboring vertices of vi . Therefore, the
Laplace Equation (7) becomes a linear system in the form

Az = b, (26)

where A is a square matrix satisfying

Aij =
{

kvivj
ifi 
= j,

− ∑

vt∈N(vi )
kvivt ifi = j

for alli, j. (27)

For the choice of the points a1, a2, a3, b1, b2, b3 in the boundary constraint of
Equation (7), we choose a triangular face [a1, a2, a3] on the triangulation K and
a triangle [b1, b2, b3] on the complex plane that shares the same angle structure
as [a1, a2, a3]. Note that the above linear system is sparse and symmetric positive
definite. Therefore, it can be efficiently solved.

It is noteworthy that due to the symmetry of the double covered surface, for every
edge [u, v] in the triangulation K , there exists a unique edge [u′, v′] in the duplicated
triangulation K ′ such that

kuv = cotα + cotβ = cotα′ + cotβ ′ = ku′v′ , (28)

where α, β are the angles opposite to the edge [u, v] and α′, β ′ are the angles opposite
to the edge [u′, v′]. Therefore, only half of the vertices and faces are needed for
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computing the whole coefficient matrix A to solve the Laplace Equation (7). More
explicitly, Equation (26) can be expressed as the following form:

⎛

⎝

B ∗ 0
∗ ∗ ∗
0 ∗ B

⎞

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

z1
...

z|V |−r

ζ1
...

ζr

z′
1
...

z′|V |−r

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= b. (29)

Here, {zi}|V |−r
i=1 and {z′

i}|V |−r
i=1 are respectively the coordinates of the non-boundary

vertices of K and K ′, {ζi}ri=1 are the coordinates of the glued vertices, and B is a
(|V | − r) × (|V | − r) sparse symmetric positive definite matrix. It follows that we
can save half of the computational cost in finding all the cotangent weights kuv in A.
Hence, the computation of the spherical conformal map is efficient even the number
of vertices and faces is doubled under the double covering step.

Another important mathematical tool in our proposed algorithm is the quasi-
conformal mapping. Quasi-conformal mappings are closely related to the Beltrami
coefficients. It is important to establish algorithms for computing the Beltrami coef-
ficient associated with a given quasi-conformal map, as well as for computing the
quasi-conformal map associated with a given Beltrami coefficient.

We first focus on the computation of the Beltrami coefficients. In the discrete case,
suppose K1, K2 ⊂ R

3 are two triangular meshes with the same number of vertices,
faces and edges, and f : K1 → K2 is an orientation preserving piecewise linear
homeomorphism. It is common to discretize the Beltrami coefficient on the triangular
faces. To compute the Beltrami coefficient μf associated with f , we compute the
partial derivatives on every face T1 on K1.

Suppose T1 on K1 corresponds to a triangular face T2 on K2 under the mapping
f . The approximation of μf on T1 can be computed using the coordinates of the six
vertices of T1 and T2. Since the triangulations are piecewise linear, we can place T1
and T2 on R

2 using suitable rotations and translations to simplify the computations.
Hence, without loss of generality, we can assume that T1 and T2 are on R

2. Specifi-
cally, suppose T1 = [a1 + i b1, a2 + i b2, a3 + i b3] and T2 = [w1, w2, w3], where
a1, a2, a3, b1, b2, b3 ∈ R, and w1, w2, w3 ∈ C. Recall that ∂f

∂z̄
= 1

2

(

∂f
∂x

+ i
∂f
∂y

)

and

∂f
∂z

= 1
2

(

∂f
∂x

− i
∂f
∂y

)

. Hence, to discretize the Beltrami coefficient, we only need to

compute ∂
∂x

and ∂
∂y

on every triangular face T1. It is natural to use the differences
between the vertex coordinates for the approximation. We define

Dx = 1

2Area(T1)

⎛

⎝

b3 − b2
b1 − b3
b2 − b1

⎞

⎠

t

and Dy = − 1

2Area(T1)

⎛

⎝

a3 − a2
a1 − a3
a2 − a1

⎞

⎠

t

. (30)
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Then, we can compute the Beltrami coefficient

μf (z) = ∂f

∂z̄

/

∂f

∂z
(31)

on T1 by

μf (T1) =

1
2

(

Dx + i Dy

)

⎛

⎝

w1
w2
w3

⎞

⎠

1
2

(

Dx − i Dy

)

⎛

⎝

w1
w2
w3

⎞

⎠

. (32)

This approximation is easy to compute. Hence, it is convenient to obtain the Bel-
trami coefficient associated with a given quasi-conformal map in the discrete case. A
relatively complicated task is to compute the quasi-conformal map f associated with
a given Beltrami coefficient μf . To achieve this, we apply the LBS [33] to recon-
struct a quasi-conformal map from a given Beltrami coefficient, with the boundary
vertices of the disk fixed. We now briefly explain the discretization of the LBS.

Recall that the quasi-conformal map associated with a given Beltrami coefficient
can be obtained by solving Equation (16). The key idea of LBS is to discretize Equa-
tion (16) into sparse SPD linear systems of equations so that the solution can be
efficiently computed.

For each vertex vi , let Ni be the collection of the neighboring faces attached to vi .
Let T = [vi, vj , vk] be a face ,wi = f (vi), wj = f (vj ) and wk = f (vk). Suppose
vl = gl + i hl and wl = sl + i tl , for l = i, j, k. We further denote the Beltrami
coefficient of the face T obtained from Equation (32) by μf (T ) = ρT + i ηT .
Equation (14) can be discretized as follows:

α1(T ) = (ρT −1)2+η2T
1−ρ2

T −η2T
,

α2(T ) = − 2ηT

1−ρ2
T −η2T

,

α3(T ) = 1+2ρT +ρ2
T +η2T

1−ρ2
T −η2T

.

(33)

Then, Lui et al. [33] introduced the discrete divergence to compute the divergence
operator. Define AT

i , AT
j , AT

k , BT
i , BT

j , BT
k by

⎛

⎝

AT
i

AT
j

AT
k

⎞

⎠ = 1

Area(T )

⎛

⎝

hj − hk

hk − hi

hi − hj

⎞

⎠ and

⎛

⎝

BT
i

BT
j

BT
k

⎞

⎠ = 1

Area(T )

⎛

⎝

gk − gj

gi − gk

gj − gi

⎞

⎠ . (34)

Then the discrete divergence of a discrete vector field �V = (V1, V2) on the triangular
faces can be defined by

Div( �V )(vi) =
∑

T ∈Ni

AT
i V1(T ) + BT

i V2(T ). (35)
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With the discrete divergence, Equation (16) can be discretized into the following
linear system:

∑

T ∈Ni
AT

i [α1(T )aT + α2(T )bT ] + BT
i [α2(T )aT + α3(T )bT ] = 0

∑

T ∈Ni
AT

i [α1(T )cT + α2(T )dT ] + BT
i [α2(T )cT + α3(T )dT ] = 0

(36)

for all vertices vi . Here aT , bT , cT and dT are certain linear combinations of the x-
coordinates and y-coordinates of the desired quasi-conformal map f . Hence, we can
obtain the x-coordinate and y-coordinate function of f by solving the linear system
in Equation (36). For more details, please refer to [33].

With the aforementioned discrete analogs and algorithms, we are ready to
describe the numerical implementation of our proposed algorithm for disk conformal
parameterizations of simply-connected open surfaces.

Given a triangular mesh M of disk topology, we first apply the double covering
technique as described in Algorithm 1. Then, we apply the fast spherical conformal
parameterization algorithm [3] on the glued genus-0 closed mesh ˜M . To obtain a
planar parameterization from the obtained parameter sphere S, we apply a Möbius
transformation to locate the part corresponding to one of the two copies on the south-
ern hemisphere. After that, by the stereographic projection, the Southern hemisphere
is mapped to a planar region R in the complex plane. Note that this planar region is
usually a bit different from a perfect disk due to the discretization and approximation
errors. Therefore, we normalize the boundary of R to enforce a circular boundary
as in Equation (19). However, this step may causes overlaps as well as conformality
distortions on the normalized region ˜R.

To overcome these issues, we apply the idea of the composition of quasi-conformal
maps in Theorem 4.4. We first compute the Beltrami coefficient of the quasi-
conformal map g : ˜R → M by solving Equation (32) on all triangular faces of ˜R.
Denote the Beltrami coefficient by μ. We then reconstruct another quasi-conformal
map h : ˜R → D with the given Beltrami coefficient μ, using LBS [33]. Note that
boundary constraints are needed in solving Equation (36). In our case, we give the
Dirichlet condition on the whole boundary of the normalized disk ˜R. More explicitly,
the boundary condition used in solving Equation (36) for the map h : ˜R → D is

h(v) = v (37)

for all boundary vertices v ∈ ∂ ˜R. After obtaining h, we can conclude that the compo-
sition map f = h◦g−1 is the desired disk conformal parameterization. The complete
implementation of our algorithm is described in Algorithm 2.

6 Experimental results

In this section, we demonstrate the effectiveness of our proposed algorithm using a
number of 3D simply-connected open meshes. The meshes are freely adapted from
mesh repositories such as the AIM@SHAPE Shape Repository [52], the Stanford
3D Scanning Repository [53] and the Benchmark for 3D Mesh Segmentation [54].
Our proposed algorithm and the two-step iterative approach [4] are implemented in
MATLAB. The sparse linear systems in our proposed algorithm are solved using the
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Fig. 3 The disk conformal
parameterization of the foot
model in Figure 1 using our
proposed algorithm

backslash operator (\) in MATLAB. For the other existing algorithms in our com-
parison, we use available online software for the computation. All experiments are
performed on a PC with a 3.40 GHz quad core CPU and 16 GB RAM.

We apply our proposed algorithm on various kinds of simply-connected open sur-
faces with different geometry. Figure 3 shows the disk conformal parameterization
of the foot model in Fig. 1 using our proposed method. Figures 4 and 5 respectively
show a simply-connected open statue model and a Stanford bunny model, together
with the disk conformal parameterizations of them obtained by our proposed method.
For a better visualization of the parameterization results, the triangular faces of the
meshes are colored with the mean curvatures of the models. The disk parameteriza-
tions well resemble the original models locally. The histograms of the conformality
distortion of our proposed algorithm are shown in Fig. 6. It can be observed that both
the angle differences and the norm of the Beltrami coefficients highly concentrate at
0. This indicates that our proposed algorithm produces disk conformal parameteriza-
tions with minimal distortions for different kinds of simply-connected open surfaces.

Fig. 4 A simply-connected open statue model and the disk conformal parameterization obtained by our
proposed algorithm. The color represents the mean curvature of the model
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Fig. 5 A simply-connected open Stanford bunny model and the disk conformal parameterization obtained
by our proposed algorithm. The color represents the mean curvature of the model

As for the efficiency, our proposed algorithm takes only around 1 second for mod-
erate meshes. The computation can also be complete within half a minute for dense
meshes.

To quantitatively assess the performance of our proposed algorithm for disk con-
formal parameterizations, we compare our proposed algorithm with the existing

Fig. 6 The conformality distortion of our parameterization algorithm evaluated by two measurements.
The top row shows the angular distortion of the parameterizations, in terms of the difference in degrees
between the new angle after the parameterization and its corresponding original angle on the mesh. The
bottom row shows the norm of the Beltrami coefficients of the parameterizations. The left column: The
results of statue. The middle column: The results of foot. The right column: The results of Stanford bunny
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Algorithm 2: Our proposed linear formulation for disk conformal parameteriza-
tion
Input: A simply-connected open mesh M .
Output: A bijective disk conformal parameterization f : M → D.

1 Double cover M and obtain a genus-0 closed mesh ˜M;
2 Apply the fast spherical conformal parameterization [3] on ˜M and obtain the
parameter sphere S;
3 Apply a Möbius transformation on S so that the original surface M

corresponds to the southern hemisphere of S;
4 Using the stereographic projection for the southern hemisphere of S, obtain a
planar region R;
5 Normaliz the boundary of R:

v �→ v

|v| (38)

for all v ∈ ∂R and denote the normalized region by ˜R;
6 Compute the Beltrami coefficient of the map g : ˜R → M and denote it by μ;
7 Apply the linear Beltrami solver [33] to obtain a map h : ˜R → D

h = LBS(μ) (39)

with the boundary constraint h(v) = v for all v ∈ ∂ ˜R. The composition map
f = h ◦ g−1 is the desired disk conformal parameterization;

methods. In particular, the comparisons performed in [4] suggest that the holo-
morphic 1-form method [14] and the two-step iterative approach [4] achieve the
best conformality among all state-of-the-art approaches as well as the bijectivity.
Therefore, the holomorphic 1-form method and the two-step iterative approach are
considered in our comparisons. The implementation of the holomorphic 1-form
method is included in the RiemannMapper Toolkit [55] written in C++ and the two-
step iterative approach is implemented in MATLAB. The error thresholds in both
the holomorphic 1-form method and the two-step iterative approach are set to be
ε = 10−5.

The statistics of the performances of the algorithms are shown in Table 3. It is
noteworthy that the angular distortion of our proposed method is comparable and
sometimes better than the two state-of-the-art algorithms [4, 14]. This implies that
our algorithm successfully produces low-distortion parameterizations. Moreover, our
proposed method demonstrates a significant improvement in the computational time
of the disk conformal parameterizations. Specifically, our proposed method is around
20 times faster than the holomorphic 1-form method on average. Also, our proposed
method requires 60% less computational time than the two-step iteration on aver-
age. The results illustrate the efficiency of our proposed algorithm. As a remark,
in all experiments, our proposed algorithm generates folding-free parameterization
results.
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Table 3 Performance of our proposed method and two other state-of-the-art algorithms

Time (s) / Mean(|distortion|) (degrees) / SD(|distortion|) (degrees)

Surfaces No. of faces Holomorphic 1-form [14] Two-step iteration [4] Our proposed method

Horse 9K fail 0.76 / 4.58 / 5.45 0.18 / 4.60 / 5.49

T-shirt 14K 18.64 / 1.38 / 3.26 2.09 / 1.34 / 3.25 0.34 / 1.35 / 3.26

Foot 20K 11.73 / 1.40 / 1.24 1.75 / 1.42 / 1.22 0.47 / 1.42 / 1.22

Chinese lion 30K 29.87 / 1.44 / 2.05 2.70 / 1.42 / 2.04 0.92 / 1.42 / 2.05

Sophie 40K 28.29 / 0.36 / 0.61 5.87 / 0.34 / 0.60 1.31 / 0.35 / 0.60

Bimba 50K 28.04 / 1.29 / 1.78 2.22 / 1.22 / 1.74 1.32 / 1.22 / 1.75

Human face 50K 28.45 / 0.55 / 1.84 4.61 / 0.53 / 1.82 1.40 / 0.53 / 1.83

Niccolo da Uzzano 50K 29.49 / 0.78 / 1.73 7.95 / 0.75 / 1.75 1.34 / 0.76 / 1.74

Mask 60K fail 7.08 / 0.25 / 0.33 1.93 / 0.25 / 0.33

Bunny 70K 40.14 / 1.08 / 1.80 4.18 / 1.08 / 1.79 1.99 / 1.08 / 1.79

Brain 100K 58.49 / 1.46 / 1.59 6.81 / 1.46 / 1.59 2.73 / 1.46 / 1.59

Lion vase 100K 93.64 / 1.44 / 1.91 5.34 / 1.27 / 1.75 2.64 / 1.27 / 1.76

Max Planck 100K 75.92 / 0.61 / 0.80 6.58 / 0.61 / 0.80 2.88 / 0.61 / 0.80

Hand 110K 63.90 / 1.40 / 1.99 7.51 / 1.21 / 1.31 3.30 / 1.21 / 1.31

Igea 270K 173.60 / 0.40 / 0.72 54.63 / 0.40 / 0.71 9.47 / 0.40 / 0.71

Julius Caesar 430K 295.63 / 0.21 / 0.67 65.54 / 0.20 / 0.67 19.51 / 0.20 / 0.67

Here the distortion refers to the angular distortion of the parameterization, that is, the difference (in
degrees) between the new angle and its corresponding original angle on the mesh

Our proposed method is very robust to irregular triangulations. Figure 7 shows a
simply-connected mask model which has a very irregular triangulation. Sharp and
irregular triangles can be easily observed in a zoom-in of the model. Note that the

Fig. 7 A mask model with a highly irregular triangulation. Sharp triangles can be easily observed in a
zoom-in of the model. Our proposed method can handle this kind of irregular triangulations. Left: The
mask model. Right: A zoom-in of the model
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Fig. 8 The Stanford bunny
model with a rainbow
checkerboard texture mapped
onto it using our proposed
parameterization algorithm

holomorphic 1-form method [14] fails to compute the disk conformal parameteriza-
tion of this model while our proposed method succeeds (please refer to Table 3). This
demonstrates the robustness of our proposed method.

In addition, to illustrate the accuracy of our proposed algorithm, we map a rain-
bow checkerboard texture onto a simply-connected bunny mesh using our proposed
parameterization algorithm. In Fig. 8, it can be easily observed that the orthogonal
checkerboard structure is well preserved under the our proposed parameterization
scheme. The preservation of the orthogonality indicates that our proposed algorithm
is with negligibly low conformality distortion.

Because of the efficiency, accuracy, bijectivity and robustness, our proposed
algorithm is highly practical in applications, such as texture mapping in computer

Fig. 9 A T-shirt model with a
flower pattern design mapped
onto it using our proposed
parameterization algorithm
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graphics and fashion design. For instance, clothing designs can be easily visualized
using our proposed algorithm. Figure 9 shows a T-shirt model with a 2D flower pat-
tern design mapped onto it. It is noteworthy that the patterns are well preserved on
the 3D T-shirt model. Unlike the traditional 2D images of clothes, the 3D models
with our texture mapping technique provide a more comprehensive and realistic pre-
view of the clothes for the designers. In addition, our proposed algorithm can be
used in developing virtual dressing rooms. In virtual dressing rooms, it is desirable
to have an efficient and accurate way for customers to virtually try on clothes. Our
proposed algorithm can help creating such a virtual dressing experience for online
shoppers.

As a final remark, we discuss the possibility of further boosting up the efficiency
of our proposed algorithm. Recall that in our proposed algorithm, we need to compute
the spherical conformal parameterization of the double covered surface using the
algorithm in [3] in order to find an initial planar parameterization. The algorithm in
[3] consists of two major steps, namely a North-pole step and a South-pole step. In the
North-pole step, the Laplace equation (7) is solved in a triangular domain [b1, b2, b3]
on the complex plane and the inverse stereographic projection is applied. Then the
South-pole step aims to correct the conformality distortion near the North pole of the
sphere caused by the discretization and approximation errors. In fact, since we are
only interested in half of the glued surface, the South-pole step may be skipped as
we can take the Southern hemisphere obtained by the first step as our result. It may
already be with acceptable conformality.

The conformality distortion in the North-pole step in [3] is primarily caused by the
choice of the boundary triangle [a1, a2, a3]. If the chosen boundary triangle and its
neighboring triangular faces are regular enough, then the overall distortion obtained
in the North-pole step is already very low and only a small region around the North-
pole is with relatively large distortion. In this case, the South-pole step is not needed
to improve the distortion of the Southern region which we are interested. On the
other hand, with the presence of the South-pole step, the overall distortion in the
final spherical parameterization result will be negligible regardless of the choice of
the boundary triangle. In short, with a well chosen boundary triangle [a1, a2, a3] in
Equation (7), half of the computational cost in computing the spherical conformal
mapping can be further reduced.

Table 4 shows the performance of the current version of our proposed method and
the possible improved version of it without the South-pole step in [3], under a suitable
choice of the boundary triangle [a1, a2, a3] in Equation (7). It can be noted that the
differences in the conformality distortion of the two versions are mostly negligible,
while the version without the South-pole step possess a further 40% improvement in
the computational time on average. However, it should be reminded that the possible
improved version without the South-pole step requires a suitably chosen boundary
triangle [a1, a2, a3] for [3], while the current version of our method is fully automatic.
Hence, the current version of our proposed method is probably more suitable for
practical applications until an automatic algorithm for searching for the most suitable
boundary triangle [a1, a2, a3] is developed.
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7 Conclusion and future works

In this paper, we have proposed a linear formulation for the disk conformal parame-
terizations of simply-connected open surfaces. We begin the algorithm by obtaining
an initial planar parameterization via double covering and spherical conformal map-
ping. Note that even the size of the surface is doubled by double covering, the
combination of the double covering technique and the spherical conformal mapping
results in an efficient computation because of the symmetry. After that, we normal-
ize the boundary and compose the map with a quasi-conformal map so as to correct
the conformality distortion and achieve the bijectivity. Our proposed formulation is
entirely linear, and hence the computation is significantly accelerated by over 60%
when compared with the fastest state-of-the-art approaches. At the same time, our
parameterization results are of comparable quality to those produced by the other
state-of-the-art approaches in terms of the conformality distortions, the bijectivity and
the robustness. Therefore, our proposed algorithm is highly practical in real appli-
cations, especially for the problems for which the computational complexity is the
main concern.

Note that there is a normalization step in Step 5 of Algorithm 2 for getting a
circular boundary. In Step 7 of Algorithm 2, we compose the normalized parame-
terization map with another quasi-conformal map. By Theorem 4.4, the composition
helps improving the conformality of the interior of the disk parameterization. The
boundary condition can be further improved for achieving better conformality if we
can optimally allocate the boundary vertices on the unit circle. However, previous
approaches on this issue are nonlinear and hence incorporating them into our cur-
rent algorithm will significantly decrease the efficiency of it. In the future, we plan
to develop a linear approach for tackling this problem. We will also explore more
applications, such as remeshing and registration of simply-connected open surfaces,
based on the proposed parameterization scheme.
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