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Spherical Conformal Parameterization of Genus-0 Point Clouds for Meshing∗

Gary Pui-Tung Choi† , Kin Tat Ho‡ , and Lok Ming Lui‡

Abstract. The point cloud is the most fundamental representation of three-dimensional geometric objects.
Analyzing and processing point cloud surfaces is important in computer graphics and computer
vision. However, most of the existing algorithms for surface analysis require connectivity information.
Therefore, it is desirable to develop a mesh structure on point clouds. This task can be simplified
with the aid of a parameterization. In particular, conformal parameterizations are advantageous in
preserving the geometric information of the point cloud data. In this paper, we extend a state-of-
the-art spherical conformal parameterization algorithm for genus-0 closed meshes to the case of point
clouds, using an improved approximation of the Laplace–Beltrami operator on data points. Then,
we propose an iterative scheme called the north-south reiteration for achieving a spherical conformal
parameterization. A balancing scheme is introduced to enhance the distribution of the spherical
parameterization. High-quality triangulations and quadrangulations can then be built on the point
clouds with the aid of the parameterizations. Also, the meshes generated are guaranteed to be genus-
0 closed meshes. Moreover, using our proposed spherical conformal parameterization, multilevel
representations of point clouds can be easily constructed. Experimental results demonstrate the
effectiveness of our proposed framework.

Key words. mesh generation, triangulation, quadrangulation, spherical conformal parameterization, surface
reconstruction, point cloud, multilevel representation
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1. Introduction. Contemporary scanning technologies enable efficient acquisitions of three-
dimensional (3D) objects. Using modern 3D scanners, data points are sampled from the
surfaces of 3D objects for further analyses and usages. Point clouds are widely applied in
computer graphics, vision, and many other engineering fields. However, the data points ac-
quired by laser scanners are often complex and unorganized. Moreover, the absence of the
connectivity information in point cloud data poses difficulties in understanding the underlying
geometry of the 3D objects. This largely hinders the applications of the data. For instance,
many applications in 3D printing [51, 38] and texture mapping [52, 33] are built upon mesh
structures. With the rapid development of the computer industry, finding a high-quality
meshing framework for point cloud data is increasingly important.
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SPHERICAL CONFORMAL PARAMETERIZATION FOR MESHING 1583

One possible approach for mesh generation on point clouds is to parameterize a point cloud
to a simpler domain with the corresponding genus, such as the unit sphere for genus-0 point
clouds. Then, a triangulation or a quadrangulation can be created on the parameter domain
instead of the original complicated point cloud. Finally, a mesh structure on the point cloud
can be defined with respect to the structure on the parameter domain. The major difficulty of
computing parameterizations of point-set surfaces is the extremely limited information they
can provide. Most of the existing surface parameterization methods are developed on meshes
only. In other words, besides the locations of the point data, a given connectivity is also
required as an input. The connectivity information plays an important role in representing
the surface structure as well as in approximating continuous operators to minimize certain
distortions. As a result, most conventional mesh parameterization approaches fail to work
on point clouds. Without the connectivity information, the underlying geometry of the point
cloud data becomes more obscure. Hence, it is more challenging to develop parameterization
schemes with good quality for point cloud data.

A good parameterization scheme for a point cloud must satisfy certain criteria. In par-
ticular, it should retain the geometric information of a point cloud as completely as possible.
In our case, one of the ultimate goals is to create a triangulation for a point cloud by finding
a Delaunay triangulation on a simpler parameter domain. It is noteworthy that in general, a
mesh structure with good quality on the parameter domain does not necessarily imply that
the associated mesh structure of the original data points is satisfactory. In other words, mesh-
ing the parameter domain may provide meaningless results if the parameterization scheme
is arbitrarily chosen. Note that the regularity of the mesh structures is related to the an-
gle structure of the triangles and quadrilaterals. To ensure the regularity of the associated
mesh structure on the point cloud, the parameterization should preserve the angle structure
of the triangles and quadrilaterals on the parameter domain. This motivates for us the use of
conformal mappings.

For smooth surfaces, it is well known that the conformal parameterizations preserve angles
and hence the local geometry of the surfaces. It is natural to consider the discrete analogue
of conformal parameterization for point cloud data. Since data points are sampled from
real 3D surfaces, we can assume that every point cloud has an underlying geometry. Based
on this important assumption, we consider finding conformal parameterizations of genus-0
point clouds. In [9], Choi, Lam, and Lui proposed a fast spherical conformal parameterization
algorithm for genus-0 closed surfaces in two steps. In the first step, a Laplace equation is solved
on a planar triangular domain and the inverse stereographic projection is applied to obtain an
initial spherical parameterization. In the second step, quasi-conformal theories are applied to
enhance the conformality of the spherical parameterization. The computation only involves
solving a few sparse linear systems and the conformality distortion of the parameterization is
minimal. However, the algorithm is developed on triangular meshes only. In this work, we
extend and improve the algorithm for point clouds with spherical topology.

The aforementioned algorithm in [9] developed on meshes involves solving a Laplace equa-
tion. To extend the algorithm for point clouds, we propose a new weight function for en-
hancing the accuracy of the approximation of the Laplace–Beltrami (LB) operators on point
clouds. Using our improved approximation, the LB operator in the mentioned algorithm can
be accurately computed on point clouds. Also, we replace a key step of solving for a quasi-
conformal map in the mentioned algorithm by an iterative scheme, called the north-south
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1584 GARY PUI-TUNG CHOI, KIN TAT HO, AND LOK MING LUI

(N-S) reiteration, for improving the conformality of the parameterizations. Furthermore, we
introduce a balancing scheme for enhancing the distribution of the parameterization results.
Experimental results demonstrate the effectiveness of our proposed parameterization algo-
rithm for genus-0 point clouds. Our algorithm achieves global spherical parameterizations
with minimal conformality distortions. Furthermore, with the aid of our parameterization
schemes, we can easily generate high-quality triangulations and quadrangulations on point
clouds. The meshes generated are guaranteed to be genus-0 closed meshes. Moreover, mul-
tilevel representations of the point clouds can also be easily computed with the aid of our
spherical parameterization scheme.

The rest of the paper is organized as follows. The contribution of our work is highlighted in
section 2. In section 3, we review the related previous works on point cloud parameterizations
and approximations of differential operators on point clouds. In section 4, we introduce the
mathematical background of our work. In section 5, we review a spherical conformal param-
eterization scheme for triangular meshes, which is closely related to our proposed framework
for point clouds. In section 6, we explain our proposed framework for spherical conformal
parameterization and mesh generation of point clouds. In section 7, we demonstrate the ef-
fectiveness of our proposed framework by numerous experiments. The paper is concluded in
section 8.

2. Contribution. In this work, we propose a framework for meshing using spherical con-
formal parameterizations of genus-0 point clouds. Our proposed method is advantageous in
the following aspects:

(i) We extend and improve the spherical conformal parameterization algorithm on meshes
in [9] for point clouds. An accurate approximation of the LB operator is achieved using
the moving least square (MLS) method [30, 35, 36] together with a new Gaussian-type
weight function. A key step of the parameterization algorithm in [9] for computing a
quasi-conformal map is replaced by solving a Laplace equation on the complex plane,
followed by an iterative scheme, the N-S reiteration. Also, the point distribution of
the parameterization is enhanced by a balancing scheme for point clouds.

(ii) Our spherical parameterization method is efficient and robust to complex geometric
structures. The algorithm completes within a few minutes and can handle highly
convoluted point clouds.

(iii) Unlike most of the existing approaches, our algorithm specifically minimizes the confor-
mality distortion of the parameterizations. Since the local geometry is preserved under
the global spherical conformal parameterizations, we can create an almost-Delaunay
triangulation on a point cloud by computing a Delaunay triangulation of its spherical
conformal parameterization. The resulting triangulation on the point cloud preserves
the regularity of that on the parameterization.

(iv) High-quality quad meshes can also be generated using our spherical conformal param-
eterization scheme.

(v) Unlike the conventional approaches for meshing, our method is topology preserving.
The meshes produced using our proposed framework are guaranteed to be genus-0
closed meshes. No postprocessing is required.

(vi) Our method is stable under geometrical and topological noises on the input point
clouds.
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(vii) With the aid of our spherical conformal parameterization scheme, multilevel represen-
tations of genus-0 point clouds can be easily constructed.

3. Previous works. In this section, we describe some previous works closely related to
our work.

Surface parameterization has been extensively studied by different research groups. For
surveys on surface parameterization methods, see [15, 16, 23, 55]. In particular, conformal
parameterizations have been well established on meshes. For the recent works, Lai et al. [28]
proposed a folding-free spherical conformal mapping scheme by harmonic energy minimization.
In [1], Aflalo, Kimmel, and Zibulevsky proved theoretical bounds of the conformal factor and
proposed a method that minimizes the area distortion and avoids numerical errors of the
conformal mapping. In [9], Choi, Lam, and Lui developed a fast algorithm for spherical
conformal parameterizations of genus-0 closed meshes.

In the last few decades, numerous studies have been devoted to the parameterization of
point cloud data. In [13, 14], Floater and Reimers proposed the meshless parameterization
method for unorganized point sets. The point sets are parameterized onto a planar domain
by solving a sparse linear system. In [63], Zwicker and Gotsman presented a parameterization
approach for a genus-0 point cloud using a k-nearest neighborhood (K-NN) graph of the point
cloud, followed by a spherical embedding method for planar graphs. In [3, 4, 5], Azariadis
and Sapidis introduced the notion of dynamic base surfaces and suggested a parameterization
scheme by orthogonally projecting a point cloud onto the dynamic base surface. Guo et al.
[19] computed a global conformal parameterization of point-set surfaces, based on Riemann
surface theory and Hodge theory. In [57], Tewari, Gotsman, and Gortler proposed a doubly
periodic global parameterization of point cloud sampled from a closed surface of genus 1 to
the plane, with the aid of discrete harmonic one-forms. Wang, Yuan, and Miao [58] suggested
a parameterization method for genus-0 cloud data. A point cloud is first mapped onto its
circumscribed sphere, then the sphere is mapped onto an octahedron and finally unfolded
to a 2D image. In [61], Zhang et al. presented an as-rigid-as-possible parameterization
approach for point cloud data. A point cloud with disk topology is mapped onto the plane
by a local flattening step and a rigid alignment. In [35], Liang et al. constructed spherical
conformal mappings of genus-0 point clouds by adapting the harmonic energy minimization
algorithm in [28]. Meng et al. [46] proposed a neural network based method for point cloud
parameterization. An adaptive sequential learning algorithm is applied to dynamically adjust
the parameterization.

The use of parameterization of the point cloud is widespread in computer science and
engineering. One of the major applications of point cloud parameterization is mesh generation.
Instead of a convoluted point cloud, mesh reconstruction is usually completed on a simpler
parameter domain. In [13, 14], Floater and Reimers applied their proposed parameterization
scheme for meshing point clouds with disk topology. In [22], Hormann and Reimers extended
the parameterization method in [14] for surface reconstruction of point clouds with spherical
topology. In [63], Zwicker and Gotsmann used their proposed parameterization method for
mesh reconstruction of genus-0 point clouds. Tewari, Gotsman, and Gortler [57] performed
surface reconstruction using their proposed doubly periodic global parameterization. Li et al.
[34] proposed a meshless quadrangulation scheme by global parameterization. The input
point cloud is cut to be with disk topology and parameterized onto the plane for meshing.
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Table 1
Several previous works on meshing point clouds using parameterization.

Methods Topology
Parameter

domain
Local/global

parameterization?
Distortion to
be minimized

Meshless parameterization
[13, 14]

Disk topology Plane Global /

Meshless parameterization
for spherical topology [22]

Genus-0 Planes Local /

Spherical embedding [63] Genus-0 Sphere Global Stretch

Discrete one-forms [57] Genus-1 Planes Local /

As-rigid-as-possible
meshless parameterization

[61]
Disk topology Plane Global ARAP

Meshless quadrangulation
by global parameterization

[34]
Unrestricted Plane Global

Gradient and
principal fields

Zhang et al. [61] suggested a mesh reconstruction method of point cloud data by meshless
denoising and their proposed parameterization scheme. Table 1 compares several previous
works on meshing point clouds using parameterizations. The above previous works reflect the
importance of parameterization in surface reconstruction of point cloud data.

Finding a conformal parameterization involves solving differential equations. In particular,
for conformal parameterizations of point clouds, it is necessary to build a discrete analogue
of the differential operators on point clouds. Numerous works on approximating differential
operators on a point cloud have been reported. In [47], Nayroles, Touzot, and Villon described
a diffuse approximation method for estimating the derivatives at a given set of points. In
[6], Belkin and Niyogi established a theoretical foundation for the LB operator on point
clouds. Belkin, Sun, and Wang [7] proposed the PCD Laplace operator for approximating the
LB operator using an integral approximation. The MLS method [56, 31] is widely used for
the approximation. A number of algorithms for the approximation of derivatives have been
developed based on the MLS method [39, 32, 48, 8]. In [30], Lange and Polthier proposed
a point-set analogue of the LB and shape operator using the MLS method. In [35, 36],
Liang and others approximated the LB operator on point clouds by the MLS method with
a special weighting function. In [27], Lai, Liang, and Zhao presented a local mesh approach
for solving PDEs on point clouds. A local mesh structure is constructed at each point using
local principal component analysis (PCA). Macdonald, Merriman, and Ruuth [45] computed
reaction-diffusion processes on point clouds. In [42], Lozes, Elmoataz, and Lézoray proposed a
method to solve PDEs on point clouds for image processing using partial difference operators
on weighted graphs.

4. Mathematical background. In this section, we introduce some basic mathematical
concepts closely related to our work. For more details, see [53, 54, 24].

4.1. Conformal maps. An altas of a manifold is said to be conformal if all of its transition
maps are biholomorphic. A conformal structure is the maximal conformal altas, and a surface
with a conformal structure is called a Riemann surface. Suppose M, N are two Riemann
surfaces with local coordinate systems r1(x1, x2) and r2(x1, x2), where r1, r2 : R2 → R3 are
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vector-valued functions. The first fundamental forms ofM and N are respectively defined by

(4.1) ds2
M =

∑
i,j

gijdx
idxj and ds2

N =
∑
i,j

g̃ijdx
idxj ,

where gij = 〈∂r1
∂xi
, ∂r1
∂xj
〉, g̃ij = 〈∂r2

∂xi
, ∂r2
∂xj
〉. Consider f : M → N . In local coordinate systems,

f can be regarded as f : R2 → R2, with f(x1, x2) = (f1(x1, x2), f2(x1, x2)). The pull-back
metric f∗ds2

N defined on M, induced by f and ds2
N , is the metric

(4.2) f∗ds2
N =

∑
m,n

∑
i,j

g̃ij
(
f
(
x1, x2

)) ∂fm
∂xi

∂fn

∂xj

 dxmdxn.

f is said to be conformal if there exists a positive scalar function λ(x1, x2), called the conformal
factor, such that f∗ds2

N = λds2
M. An immediate consequence of the above is that every

conformal map preserves angles and hence the local geometry of the surface.

4.2. Harmonic maps. By the uniformization theorem, every genus-0 closed surface is
conformally equivalent to S2. Hence, it is natural to consider mappings between a genus-0
closed surface and the unit sphere. The Dirichlet energy for a map f :M→ S2 is defined as

(4.3) E(f) =

∫
M
|∇f |2dvM.

In the space of mappings, the critical points of E(f) are called harmonic mappings. For
genus-0 closed surfaces, conformal maps are equivalent to harmonic maps [24]. Hence, the
problem of finding a conformal map f : M → S2 is equivalent to an energy minimization
problem.

4.3. Quasi-conformal maps. Quasi-conformal maps are a generalization of conformal
maps. Mathematically, f : C → C is a quasi-conformal map if it satisfies the Beltrami
equation

(4.4)
∂f

∂z
= µ(z)

∂f

∂z

for some complex-valued function µ satisfying ||µ||∞ < 1 and ∂f
∂z is nonvanishing almost

everywhere. Here, the complex partial derivatives are defined by

(4.5)
∂f

∂z
:=

1

2

(
∂f

∂x
− i∂f

∂y

)
and

∂f

∂z
:=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

µ is called the Beltrami coefficient of the quasi-conformal map f . Note that the quasi-
conformal map f is conformal around a small neighborhood of p if and only if µ(p) = 0, as
(4.4) becomes the Cauchy–Riemann equation in this situation.

Suppose f : Ω1 → Ω2 and g : Ω2 → Ω3 are quasi-conformal maps with the Beltrami
coefficients µf and µg, respectively. Then, the Beltrami coefficient of the composition map
g ◦ f : Ω1 → Ω3 is explicitly given by

(4.6) µg◦f =
µf + fz

fz
(µg ◦ f)

1 + fz
fz
µf (µg ◦ f)

.
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Quasi-conformal maps are also defined between two Riemann surfaces M and N . A

Beltrami differential µ(z)dzdz on M is an assignment to each chart (Uα, φα) of an L∞ complex-

valued function µα defined on the local parameter zα such that µα(zα)dzαdzα
= µβ(zβ)

dzβ
dzβ

on

the domain also covered by another chart (Uβ, ψβ), where
dzβ
dzα

= d
dzα

φαβ and φαβ = φβ ◦ φ−1
α .

An orientation preserving diffeomorphism f : M → N is called quasi-conformal associated
with µ(z)dzdz if for any chart (Uα, φα) on M and any chart (Uβ, ψβ) on N , the mapping

fαβ := ψβ ◦ f ◦ f−1
α is quasi-conformal associated with µα

dzα
dzα

. See [17] for more details of
quasi-conformal maps.

4.4. Stereographic projection. In our work, we frequently make use of the stereographic
projection. Mathematically, the stereographic projection is a conformal map PN : S2 → C
with

(4.7) PN (x, y, z) =
x

1− z
+ i

y

1− z
.

The inverse stereographic projection is a conformal map P−1
N : C→ S2 with

(4.8) P−1
N (x+ iy) =

(
2x

1 + x2 + y2
,

2y

1 + x2 + y2
,
−1 + x2 + y2

1 + x2 + y2

)
.

Similarly, we define the south-pole stereographic projection PS : S2 → C by

(4.9) PS(x, y, z) =
x

1 + z
+ i

y

1 + z
.

The inverse south-pole stereographic projection is the map P−1
S : C→ S2 with

(4.10) P−1
S (x+ iy) =

(
2x

1 + x2 + y2
,

2y

1 + x2 + y2
,
1− x2 − y2

1 + x2 + y2

)
.

4.5. Point cloud and local system. A point cloud P = {z1, z2, . . . , zn} ⊂ R3 is a set of
sample points representing a Riemann surfaceM. Because of the absence of the connectivity
information, we construct a local coordinate system for P on each point zs and approximate
the derivatives. To achieve this, we define an atlas (Us, φs) for each point zs, where Us is an
open cover and φs is the associated local coordinate function. Us is formed using the collection
of all neighboring points of zs, denoted by N (zs). Specifically, we apply the k-NN algorithm
to define the neighborhood. The k-NN N k(zs) of zs is a set with k distinct elements in P
(including zs) closest from zs under the Euclidean 2-norm. In this work, we apply the KD-tree
implementation by Lin [37] for the computation. We denote N k(zs) = {z1

s , z
2
s , . . . , z

k
s } with

z1
s = zs. Then, one common approach for constructing a local coordinate system is to define

the normal vector as the z-axis, which is more convenient for further computation. There are
various methods to obtain the tangent planes and the normal vectors for point clouds, such
as the PCA method [21]. Using the PCA method for zs, we obtain three vectors {e1

s, e
2
s, e

3
s}

which form an orthonormal basis of R3.
Then, we project N k(zs) to the plane spanned by {e1

s, e
2
s} by ẑis = zis−〈zis− zs, e3

s〉e3
s, i =

1, 2, . . . , k. Now we have the projection N̂ k(zs) = {ẑ1
s , ẑ

2
s , . . . , ẑ

k
s } and the local coordinatesD
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{(x1
s, y

1
s), (x

2
s, y

2
s), . . . , (x

k
s , y

k
s )}, where xis = 〈zis−zs, e1

s〉 and yis = 〈zis−zs, e2
s〉 for i = 1, 2, . . . , k.

Therefore, we can define φs : Ns → R2 by φs(z
i
s) = (xis, y

i
s). Also, the neighborhood N (zs)

can be regarded as a graph of its projection N̂ (zs), that is, zis = zs+xise
1
s +yise

2
s +fs(x

i
s, y

i
s)e

3
s.

5. An overview of the fast spherical conformal parameterization algorithm for triangu-
lar meshes. In this section, we briefly describe the approach in [9] for computing a spherical
conformal parameterization of a genus-0 closed triangular mesh M . This approach motivates
our proposed parameterization scheme for genus-0 point clouds.

To compute a conformal mapping f : M → S2, it suffices to solve (4.3). This can be
achieved by solving the Laplace equation ∆T f = 0 subject to ‖f‖ = 1, where ∆T f is the tan-
gential component of ∆f on the tangent plane of S2. This tangential approach was applied by
Oberknapp and Polthier in [49]. Note that this problem is nonlinear because of the constraint
‖f‖ = 1. In [2, 20], Angenent and others linearize this problem by solving the equation on
the complex plane,

(5.1) ∆f = 0,

given three boundary constraints f(ai) = bi, where ai, bi ∈ C, i = 1, 2, 3, such that the
triangle [a1, a2, a3] and the triangle [b1, b2, b3] are with the same angle structures. Note that
∆T f = ∆f = 0 since the target domain is now C. As the nonlinear constraint ‖f‖ = 1 is
removed, the above problem becomes linear and can be solved using the cotangent formula
[50].

After solving (5.1), the inverse stereographic projection P−1
N is applied for obtaining a

spherical parameterization. However, unlike in the continuous case, the spherical parame-
terization in the discrete case is with large conformality distortion at the north pole of the
sphere due to the discretization and the approximation errors. Hence, Choi, Lam, and Lui
[9] proposed to apply the south-pole stereographic projection PS to map the sphere to a
planar domain R ⊂ C. Note that the region with large distortion is the innermost region
of R, while the outermost region of R has negligible distortion. Denote the above steps by
a map g : M → R. To correct the distortion of g, Choi, Lam, and Lui made use of the
quasi-conformal theory.

Let µg−1 be the Beltrami coefficient of the map g−1. Fixing the outermost region on R,
Choi, Lam, and Lui [9] composed the map g with a quasi-conformal map h : R→ S2 with the
associated Beltrami coefficient µh = µg−1 . Let h = u + iv and µh = ρ + iτ . Specifically, by
considering the Beltrami equation (4.4), each pair of the partial derivatives vx, vy and ux, uy
can be expressed as linear combinations of the other [26],

−vy = α1ux + α2uy;

vx = α2ux + α3uy,
and

−uy = α1vx + α2vy;

ux = α2vx + α3vy,
(5.2)

where α1 = (ρ−1)2+τ2

1−ρ2−τ2 ;α2 = − 2τ
1−ρ2−τ2 ;α3 = (1+ρ)2+τ2

1−ρ2−τ2 . Since ∇· ( −vyvx ) = 0 and ∇· ( −uyux
) =

0, the map h can be constructed by solving the following equations:

(5.3) ∇ ·
(
A

(
ux
uy

))
= 0 and ∇ ·

(
A

(
vx
vy

))
= 0,
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1590 GARY PUI-TUNG CHOI, KIN TAT HO, AND LOK MING LUI

where A = (
α1 α2

α2 α3
). In the discrete case, the above elliptic PDEs (5.3) can be discretized

into sparse symmetric positive definite linear systems as described in [43, 9]. In [25], Jones and

Mahadevan derived the system (5.2) from the conjugate Beltrami equation ∂h
∂z = ν(z)

(
∂h
∂z

)
and

proposed an alternative approach for solving the system. Specifically, the authors considered
minimizing the functional

(5.4)
1

2

∫
R

(
α1|∇u|2 + 2α2∇u · ∇v + α3|∇v|2

)
dS

using an Euler–Lagrange variational approach. Despite the different implementations, both of
the two above-mentioned methods effectively solve for a quasi-conformal map on triangulated
meshes. Then, by (4.6), the composition map h ◦ g : M → S2 is with the Beltrami coefficient
µh◦g = 0 and hence h ◦ g is conformal. See [9] for more details.

Note that a key step above is the computation of the quasi-conformal map h for improving
the conformality, which is guaranteed by the composition formula (4.6). However, the Bel-
trami coefficients in the above algorithm are approximated on the triangular faces of a mesh.
Hence, the above algorithm cannot be directly applied for point clouds. Moreover, even if
we can define the discrete Beltrami coefficients on point clouds, (4.6) may not hold anymore.
Therefore, we need to replace this key step by a new method suitable for point clouds.

6. Meshing genus-0 point clouds using spherical conformal parameterization. In this
section, we discuss our proposed framework for meshing genus-0 point clouds. The main steps
involved include solving a series of Laplace equations on the complex plane for the spherical
conformal parameterization of a genus-0 point cloud and creating a mesh structure with the
aid of the global parameterization.

6.1. Approximation of the LB operator. In this subsection, we explain our approximation
scheme for the LB operator in the Laplace equation (5.1) on a point cloud P by the MLS
method. The MLS method is widely used for approximation [39, 32, 48, 8, 30, 35, 36]. In
particular, Liang and others [35, 36] approximated the LB operator on point clouds using the
MLS method with a special weight function. Our approximation scheme is built upon the
method in [30, 35, 36]. In this work, we propose a new weight function to achieve a more
accurate approximation of the LB operator.

First, we discuss our approximation method for the derivatives on the point cloud P =
{z1, z2, . . . , zn}. To simplify the discussion, we only consider the approximation on the patch
N (zs) of a point zs ∈ P . Recall that N (zs) can be regarded as a graph of its projection
N̂ (zs), that is, zis = zs + xise

1
s + yise

2
s + fs(x

i
s, y

i
s)e

3
s. Denote the derivatives of fs along

the e1
s-direction and the e2

s-direction by fsx and fsy, respectively. We select a set of basic
functions {f1

s , f
2
s , . . . , f

m
s } as a basis and write fs(x, y) ≈

∑m
i=1 cif

i
s(x, y), where {ci}mi=1 are

some coefficients to be determined. In our work, we use {1, x, y, x2, xy, y2} as the basis of the
space of all polynomials with second order or below, which means m = 6. We add a remark
here that m = 6 is an appropriate choice for our approximation. Since second derivatives
are considered in approximating the LB operator, polynomials with at least second order are
needed. On the other hand, if we fit a polynomial with third order (m = 10) or higher, it will
be too sensitive to noises and the approximation gets worse. Therefore, m = 6 is a suitable
dimension for our approximation.D
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Table 2
Some common weighting functions for the MLS approximation.

Weight Formula of w(d)

Constant weight w(d) = 1

Exponential weight w(d) = exp

(
− d

2

h2

)
Inverse of squared distance weight w(d) =

1

d2 + ε2

Wendland weight [59, 60] w(d) =

(
1− d

D

)4(
4d

D
+ 1

)
Special weight [35] w(d) =

{
1 if d = 0
1
k

if d 6= 0

In the approximation, we aim to minimize

(6.1)

n∑
i=1

wi

 m∑
j=1

cjf
j
s (xi, yi)− fs(xi, yi)

2

,

where wi = w(‖zi − zs‖) for some weighting function w : R → R. The weight function
w significantly affects the accuracy and robustness of the approximation. Hence, one must
carefully choose a suitable weight function. Table 2 lists some common weighting functions.

Note that the information provided by the data points near the center point zs should
be more reliable than that of the data points distant from zs. The closer the data points
are to zi, the more reliable they are. Hence, it is natural to consider a smooth weight func-
tion which concentrates at zs. This motivates us to use a weight function of the Gaussian
type. As a remark, in [6, 7], Belkin and others used a Gaussian weight function in the form
of exp

(
−‖x− y‖2/4t

)
for integral approximation. In our MLS approximation, we propose

another Gaussian-type weight function:

(6.2)


ws = w(0) = 1,

wi = w(‖zi − zs‖) =
1

k
exp

(
−
√
k

h2
‖zi − zs‖2

)
for all i 6= s,

where h is the maximum distance from zs in N k(zs). Numerical experiments are demon-
strated in section 7 to support our proposed weight function with the specific factor

√
k/h2

inside the exponent. It can be observed that our proposed weight results in more accurate
approximations of the LB operator on point clouds.

With the proposed weight function, we now solve the minimization problem (6.1). Denote
f js,i = f js (xi, yi) and fs,i = fs(xi, yi).

Let

~A =


f1s,1 f2s,1 ··· f

m
s,1

f1s,2 f2s,2 ··· f
m
s,2

...
...

. . .
...

f1s,n f2s,n ··· f
m
s,n

 , ~D =

( w1 0 ··· 0
0 w2 ··· 0

...
...

. . .
...

0 0 ··· wn

)
,~c =

( c1
c2

...
cm

)
, and~b =

 fs,1
fs,2

...
fs,n

 .
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The minimization problem in (6.1) can be written as follows:

(6.3) min
c∈Rn

〈
~D( ~Ac−~b), ~Ac−~b

〉
.

We can solve it using the least square method, namely, solving

(6.4) ~AT ~D ~A~c = ~AT ~D~b.

Next, for any function u defined on the neighborhood N (z), we can approximate it by a
combination of {f1

s , f
2
s , . . . , f

m
s }:

(6.5) u = fs(x, y) ≈
m∑
i=1

ĉif
i
s(x, y).

Similarly, the coefficients ĉi can be approximated. Let

~A =


f1s,1 f2s,1 ··· f

m
s,1

f1s,2 f2s,2 ··· f
m
s,2

.

..
.
..

. . .
.
..

f1s,n f2s,n ··· f
m
s,n

, ~D =

( w1 0 ··· 0
0 w2 ··· 0

...
...

. . .
...

0 0 ··· wn

)
, ~̂c =

( ĉ1
ĉ2

...
ĉm

)
, and ~u =

( u1
u2

...
un

)
.

We can find the coefficients ĉi by solving the following least square problem:

(6.6) ~AT ~D ~A~̂c = ~AT ~D~u.

Since we know the explicit formula of the derivatives of each f is, we can compute the
approximated derivatives of u, such as

(6.7)
∂u

∂x
=

m∑
i=1

~ci
∂f is
∂x

and
∂u

∂y
=

m∑
i=1

~ci
∂f is
∂y

.

Now, we are ready to introduce the construction of the LB operator of a smooth function
u on N (zs). For any smooth real-valued function u on the N (z), the LB operator of u is given
by

(6.8) ∆u(z) =
1

W

2∑
i,j=1

∂i(g
ijW∂j(u(z))),

where z is a point in N (z), (gij) is the metric of the surface at z, W =
√

det(gij), and
(gij) = (gij)

−1.
Since zis = (xis, y

i
s, fs(x

i
s, y

i
s)) and N (zs) is a graph of N̂ (zs), we have

(6.9) (gij) =

(
1 + (fs)

2
x (fs)x(fs)y

(fs)x(fs)y 1 + (fs)
2
y

)
and (gij) =

1

W 2

(
1 + (fs)

2
y −(fs)x(fs)y

−(fs)x(fs)y 1 + (fs)
2
x

)
,

where W =
√

1 + (fs)2
x + (fs)2

y.D
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We use (6.7) to calculate the first order partial derivatives of fs. Then, we proceed to
compute ∆u(zs). Since we have a closed form of ∆u and the LB operator is a second order
differential operator, by differentiating (6.8), we get

(6.10) ∆u(zs) = α1
∂u

∂x
(zs) + α2

∂u

∂y
(zs) + α3

∂2u

∂x2
(zs) + α4

∂2u

∂x∂y
(zs) + α5

∂2u

∂y2
(zs),

where α1, α2, α3, α4, α5 are coefficients which depend on partial derivatives of fs. This com-
pletes our approximation scheme for the LB operator on point clouds. With this approx-
imation, we are now ready to describe our proposed spherical conformal parameterization
algorithm for genus-0 point clouds.

6.2. Spherical conformal parameterization of genus-0 point clouds. In this subsection,
we introduce our proposed method for the spherical conformal parameterizations of genus-0
point clouds.

Given a point cloud P sampled from a genus-0 closed surface M, our goal is to find a
conformal map f̃ : P → S2 which effectively resembles the conformal map f : M → S2. By
the previous section, we can approximate the LB operator ∆ on P . Denote the approximated
LB operator on the point cloud by ∆PC . The approximation allows us to solve the Laplace
equation (5.1) on point clouds for a map φ : P → C. More specifically, we solve the equation

(6.11) ∆PCφ = 0

subject to the constraints φ(ai) = bi for i = 1, 2, 3, where ai, bi ∈ C. The choice of the three
boundary points a1, a2, a3 affects the conformality of the map φ. In the case of triangular
meshes, a1, a2, a3 are chosen to be the three vertices of the most regular triangle among all
triangles on the input mesh [9]. Here, the regularity of a triangle [a1, a2, a3] is defined by

(6.12) Regularity[a1, a2, a3] =
∣∣∣α− π

3

∣∣∣+
∣∣∣β − π

3

∣∣∣+
∣∣∣γ − π

3

∣∣∣ ,
where α, β, and γ are the three angles in the triangle [a1, a2, a3]. However, in the case of point
clouds, we do not have the required connectivity information. Hence, we choose the three
points a1, a2, a3 in a different way.

Recall that in approximating the LB operator, it is necessary to find the k-nearest neigh-
boring data points z1

s , z
2
s , . . . , z

k
s for each point zs on the point cloud P . We consider forming

a triple using zs and two other neighboring points zis and zjs , where i 6= j. Different combi-
nations of i and j result in different triples [zs, z

i
s, z

j
s ]. Then, we propose to choose the three

boundary points a1, a2, a3 in the constraint of (6.11) by considering

(6.13) min
s,i,j

Regularity[zs, z
i
s, z

j
s ]

among all combinations of s, i and j.
After solving (6.11) with our proposed boundary constraints, we apply the inverse stereo-

graphic projection P−1
N on φ(P ) to obtain a spherical point cloud. Recall that the conformality

distortion around the north pole is large due to the approximation error in the stereographic
projection. Note that the key step in the method in [9] for correcting the distortion via aD
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composition of quasi-conformal maps does not work for the case of point clouds. Now, we
propose a new method to correct the conformality distortion by solely using the LB operator.

We begin with the south-pole stereographic projection PS to project the spherical point
cloud back onto the complex plane. Under the projection, the north pole of the sphere, which
corresponds to the outermost region of φ(P ) ⊂ C, is mapped to the innermost region on the
complex plane. It follows that the outermost region is now with very low distortion while the
innermost region is with large distortion. We use the outermost low-distortion data points as
the boundary constraints and solve the Laplace equation ψ : (PS ◦ P−1

N ◦ φ)(P )→ C again,

(6.14) ∆PCψ = 0

subject to the boundary constraints ψ(x) = x for all data points x in the outermost low-
distortion region. The low-distortion boundary constraints provide us with a more accurate
result in the inner part of the planar region. Finally, we apply the inverse south-pole stereo-
graphic projection P−1

S and obtain a composition map

(6.15) f̃ = P−1
S ◦ ψ ◦ PS ◦ P−1

N ◦ φ.

This step effectively replaces the step in the mesh parameterization algorithm in [9] which
involves computing a quasi-conformal map.

Altogether, by solving (6.11) and (6.14) and using a number of projections, we can obtain
a conformal map f̃ : P → S2. Note that the method in [9] is based on certain manipulations
of Beltrami coefficients and quasi-conformal maps. In contrast, our new method only involves
solving Laplace equations. The equivalence between the two approaches can be explained as
follows.

In the first step, the conformality distortion of the spherical parameterization is due to the
error in the stereographic projection. Then in the approach in [9], the entire initial parame-
terization result is used in (5.3) for computing a quasi-conformal map in order to cancel the
distortion. The method is theoretically guaranteed by the composition formula (4.6) of quasi-
conformal maps. In contrast, in our new approach, we only make use of the most accurate
part in the initial parameterization result. More explicitly, we use the southernmost regions as
the boundary constraints and compute the remaining part of the spherical parameterization
again, with the aid of the LB operator. The replacement of the south-pole step in [9] by our
new south-pole step can be justified by the following theorem.

Theorem 6.1. Let (S1, σ|dz|2) and (S2, ρ|dw|2) be two Riemann surfaces, and µ is a pre-
scribed Beltrami differential on S1. Then, the map solved by (5.3) is a harmonic map between
(S1, |dz + µdz̄|2) and (S2, ρ|dw|2). Consequently, solving the Laplace equation (6.14) is equiv-
alent to solving (5.3).

Proof. Let ζ be the coordinates of S1 with respect to the distorted metric |dz + µdz̄|2.
Then, the harmonic map between (S1, |dz + µdz̄|2) and (S2, ρ|dw|2) is a critical point of the
following energy:

(6.16) Eharm(h) =

∫
S1

ρ(h(ζ))(|hζ |2 + |hζ̄ |2)dxdy.
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On the other hand, by definition of the Beltrami equation (4.4), the solution to (5.3) is the
critical point of the following energy functional:

(6.17) EQC(f) =

∫
S1

ρ(f(z))(|fz̄ − µfz|2)dxdy.

It is shown in [44] that the above two energy functionals have the same set of critical points.
Hence, solving the generalized Laplace equation (5.3) for a quasi-conformal map is equivalent
to solving the Laplace equation (6.14) for a harmonic map under the distorted metric. Then,
the conformality of our approach is again guaranteed by the composition formula (4.6) of
quasi-conformal maps.

Therefore, in the continuous case, under suitable boundary conditions in (5.3) and (6.14),
both of the methods are theoretically guaranteed for producing a conformal map.

However, in the discrete case, the two methods perform differently. For the case of tri-
angular meshes, the Beltrami coefficients can be accurately computed and the composition
formula (4.6) of quasi-conformal maps is accurate under the discretization. In this situation,
the method in [9] can be effectively applied. Yet, for the case of point clouds, we only have
an approximation of the LB operator but not the Beltrami coefficients, and there is no guar-
antee about the composition formula (4.6) of quasi-conformal maps. Consequently, it is more
suitable to use our proposed method as it only involves solving the Laplace equation (6.14).
However, since the accuracy of our proposed method depends on the boundary constraints
in solving the Laplace equation (6.14), the boundary constraints obtained from the initial
parameterization result may contain small errors and hence slightly affect the result in solving
(6.14). Therefore, it is desirable to perform more iterations for obtaining a more accurate
result.

It is noteworthy that in the parameterization algorithm in [9] for triangular meshes, no
further steps are required after the second step. However, because of the above-mentioned
issue about the boundary constraints in the Laplace equation (6.14), further iterations are
necessary for enhancing the parameterization result. These are the N-S reiterations. In each
N-S reiteration, two Laplace equations are solved again after the north-pole stereographic
projection and the south-pole stereographic projection, respectively. For solving each Laplace
equation, we fix the outermost r% points on C to ensure the existence of the solution.

More specifically, in each N-S reiteration, we first project the previous spherical parame-
terization result onto the complex plane using the north-pole stereographic projection. Next,
we compute a harmonic map φ̃ : (PN ◦ f̃)(P )→ C by solving the Laplace equation

(6.18) ∆PC φ̃ = 0

with the boundary constraints φ̃(x) = x for the outermost r% of the data points on C.
After obtaining φ̃, the inverse north-pole stereographic projection is again applied, followed
by the south-pole stereographic projection. Then, we compute another harmonic map ψ̃ :
(PS ◦ P−1

N ◦ φ̃ ◦ PN ◦ f̃)(P )→ C by solving the Laplace equation

(6.19) ∆PCψ̃ = 0D
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Algorithm 1. Our proposed spherical conformal parameterization algorithm.

Input: A genus-0 point cloud P .
Output: A spherical conformal parameterization f : P → S2.

1 Approximate the LB operator on P and denote it by ∆PC ;
2 Find the most regular triple of points by solving problem (6.13);

3 Obtain a map φ : P → C by solving the Laplace equation (6.11);

4 Apply the inverse stereographic projection P−1
N : C→ S2 on φ(P );

5 Apply the south-pole stereographic projection PS : S2 → C on (P−1
N ◦ φ)(P );

6 Solve the Laplace equation (6.14) for ψ : (PS ◦ P−1
N ◦ φ)(P )→ C;

7 Apply the inverse south-pole stereographic projection P−1
S and denote the overall

composition of the maps by f = P−1
S ◦ ψ ◦ PS ◦ P−1

N ◦ φ;
8 repeat

9 Update f̃ by f ;

10 Solve the Laplace equation (6.18) for φ̃ : (PN ◦ f̃)(P )→ C;

11 Solve the Laplace equation (6.19) for ψ̃ : (PS ◦ P−1
N ◦ φ̃ ◦ PN ◦ f̃)(P )→ C;

12 Update f by P−1
S ◦ ψ̃ ◦ PS ◦ P−1

N ◦ φ̃ ◦ PN ◦ f̃ ;

13 until mean(‖f(pi)− f̃(pi)‖2) < ε;

with the boundary constraints ψ̃(x) = x for the outermost r% of the data points on C. We
then define the updated spherical parameterization by the composition map

(6.20) P−1
S ◦ ψ̃ ◦ PS ◦ P−1

N ◦ φ̃ ◦ PN ◦ f̃ .

We check whether the above updated parameterization result is close to the previous parame-
terization result f̃ . If yes, then the parameterization is stable and we complete the algorithm.
If no, we apply another N-S reiteration on the updated parameterization point by repeating
the procedures and so on. In practice, we choose r = 10. Our proposed spherical conformal
parameterization scheme is outlined in Algorithm 1.

To explain the motivation of our proposed N-S reiteration scheme, we define the N-S
Dirichlet energy by

(6.21) Ẽ(f) =
1

2
(E(PN (f)) + E(PS(f))) ,

where E(f) is the Dirichlet energy. It follows that the minimum of Ẽ is attained if and only
if E(PN (f)) and E(PS(f)) are minimized, which implies that E(f) is minimized and f is
conformal. Therefore, to find a conformal f , we can consider minimizing the N-S Dirichlet
energy Ẽ(f). More specifically, we aim to minimize both E(PN (f)) and E(PS(f)). Note
that these two energies are respectively minimized by solving the Laplace equations (6.18)
and (6.19) in our proposed N-S reiteration. Introducing the N-S reiteration for minimiz-
ing the energies is advantageous for two reasons. First, it linearizes the computation as
we only need to solve linear systems on C. Second, it avoids the error induced by theD
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stereographic projection as we consider both the north-pole step and the south-pole step
in each reiteration.

Note that theoretically we only need to take away the two points of infinity, and at least
three points on C are required to be fixed to guarantee the existence of the solution of the
two Laplace equations. However, in terms of the numerical computations, the large matrix
equations may be ill-posed if only three points are fixed as boundary constraints. Therefore,
we consider fixing the outermost r% of data points in solving (6.18) and (6.19). Nevertheless,
fixing these extra points may not affect the accuracy of the solution too much. This can be
explained with the aid of the Beltrami holomorphic flow [17] as follows.

Theorem 6.2 (Beltrami holomorphic flow on C [17]). There is a one-to-one correspondence
between the set of quasi-conformal diffeomorphisms of C that fix the points 0, 1, and∞ and the
set of smooth complex-valued functions µ on C with ‖µ‖∞ = k < 1. Furthermore, the solution
fµ to the Beltrami equation (4.4) depends holomorphically on µ. Let {µ(t)} be a family of
Beltrami coefficients depending on a real or complex parameter t. Suppose also that µ(t) can
be written in the form

(6.22) µ(t)(z) = µ(z) + tν(z) + tε(t)(z)

for z ∈ C, with suitable µ in the unit ball of C∞(C), ν, ε(t) ∈ L∞(C) such that ‖ε(t)‖∞ → 0
as t→ 0. Then, for all w ∈ C,

(6.23) fµ(t)(w) = fµ(w) + tV (fµ, ν)(w) + o(|t|)

locally uniformly on C as t→ 0, where

(6.24) V (fµ, ν)(w) = −f
µ(w)(fµ(w)− 1)

π

∫
C

ν(z)((fµ)z(z))
2

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
dxdy.

In our case, as the conformality distortion of the outermost region is negligible, ν is
compactly supported around origin. Hence, it can be deduced from (6.24) in the above
theorem that the data points located farther away from the origin will be associated with
a smaller flow V , as the denominator in the integral becomes larger. Therefore, in each
iteration, the outermost points will remain almost unchanged, while the innermost points
(which have the largest conformality distortion) will be adjusted and improved. In other
words, fixing more outermost points for the numerical stability does not affect the solution
much. Numerical experiments are presented in section 7 to verify the convergence of our N-S
reiteration scheme. Intuitively, the boundary constraints in (6.18) and (6.19) are adjusted
to the positions associated with a conformal map by the iterations. They are observed to
eventually stabilize and hence we obtain the desired conformal map by solving (6.18) and
(6.19) with these boundary constraints.

Finally, we make an important remark about our proposed spherical conformal parame-
terization algorithm for genus-0 point clouds. In addition to genus-0 point clouds, our pro-
posed algorithm also efficiently works on genus-0 triangular meshes. Note that for triangu-
lar meshes, the LB operator can be easily constructed by computing the cotangent weights
on the given mesh structures. Also, solving Laplace equations on the complex plane onlyD
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1598 GARY PUI-TUNG CHOI, KIN TAT HO, AND LOK MING LUI

requires solving sparse linear systems. Hence, our proposed algorithm can serve as an alterna-
tive linear formulation for computing spherical conformal parameterizations of genus-0 closed
triangular meshes.

6.3. Improving the distribution of the spherical parameterization. It is obvious that
spherical conformal parameterizations are unique only up to Möbius transformations. Al-
though the conformality does not change under the Möbius transformations, the distribution
of the points on the sphere does. The distribution is crucial for meshing. Hence, it is desirable
to obtain an even distribution of the points on the sphere.

In the spherical conformal parameterization algorithm for triangular meshes [9], Choi,
Lam, and Lui proved the following theorem.

Theorem 6.3 (see [9, p. 75]). Let T1 and T2 be two triangles of C. The product of the
perimeters of T1 and PS(P−1

N (T2)) is invariant under arbitrary scaling of T1 and T2.

With this theorem, Choi, Lam, and Lui achieved an even distribution of a spherical param-
eterization mesh by applying the stereographic projection on the sphere and then considering
the outermost triangle T and the innermost triangle t on the complex plane. They scaled the
planar domain by a factor so that T and t are with the same perimeters on the sphere, under
the inverse stereographic projection.

In our case, the above idea does not work as we do not have any information about the
connectivity of the point clouds. However, we can extend Theorem 6.3 for point clouds by
considering two sets of points. The extension is as follows.

Theorem 6.4. Let {ui}mi=0 and {vj}nj=0 be two sets of points on C. Then

(
m∑
i=1

‖λui − λu0‖

) n∑
j=1

∥∥PS (P−1
N (λvj)

)
− PS(P−1

N (λv0))
∥∥

=

(
m∑
i=1

‖ui − u0‖

) n∑
j=1

∥∥PS (P−1
N (vj)

)
− PS(P−1

N (v0))
∥∥

for any scaling factor λ 6= 0. In other words, the product is an invariance under arbitrary
scaling.

Proof. We prove the theorem using the approach in [9]. Note that for any z = x+ iy, we
have

PS(P−1
N (z)) = PS(P−1

N (x+ iy))

=
− 2x

1+x2+y2

1 + −1+x2+y2

1+x2+y2

+ i

2y
1+x2+y2

1 + −1+x2+y2

1+x2+y2

=
−x

x2 + y2
+ i

y

x2 + y2
=
−Re(z)

|z|2
+ i

Im(z)

|z|2
.

(6.25)
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Hence, for any scaling factor λ 6= 0, we have(
m∑
i=1

‖λui − λu0‖

) n∑
j=1

∥∥PS(P−1
N (λvj))− PS(P−1

N (λv0))
∥∥

=

(
m∑
i=1

‖λui − λu0‖

) n∑
j=1

∥∥∥∥−Re(λvj)

|λvj |2
+ i

Im(λvj)

|λvj |2
− −Re(λv0)

|λv0|2
+ i

Im(λv0)

|λv0|2

∥∥∥∥


=

(
λ

m∑
i=1

‖ui − u0‖

) λ

λ2

n∑
j=1

∥∥∥∥−Re(vj)

|vj |2
+ i

Im(vj)

|vj |2
− −Re(v0)

|v0|2
+ i

Im(v0)

|v0|2

∥∥∥∥


=

(
m∑
i=1

‖ui − u0‖

) n∑
j=1

∥∥PS(P−1
N (vj))− PS(P−1

N (v0))
∥∥ .

(6.26)

Therefore, the product is an invariance.

To apply this theorem for obtaining an even distribution of our spherical parameterization
result, we propose to use the average distance between the poles on the unit sphere and their k-
NN neighborhoods. More specifically, suppose vN and vS are the northernmost point and the
southernmost point on the spherical parameterization result f(P ) obtained by Algorithm 1,
respectively. By the north-pole stereographic projection PN , vN is mapped to the point xN on
the complex plane. On the other hand, by the south-pole stereographic projection PS , vS is
mapped to the point xS on the complex plane. Denote the average distances of xN and xS to
their k-NN neighborhood on their corresponding planar domain by dN and dS , respectively;
dN and dS are explicitly given by

(6.27) dp = mean({|PN (f(z))− xN | : z ∈ N k(f−1(vN ))})

and

(6.28) ds = mean({|PS(f(z))− xS | : z ∈ N k(f−1(vS))}).

Then, we scale the whole planar domain (PN ◦ f)(P ) by a scaling factor

(6.29) λ =

√
dp × ds
dp

.

Now, denote the two updated average distances by d̃p and d̃s. It follows that

(6.30) d̃p = λdp =

√
dp × ds
dp

× dp =
√
dp × ds.

Also, by Theorem 6.4, we have

(6.31) d̃p × d̃s = dp × ds.D
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Algorithm 2. Our proposed balancing scheme for better distribution.

Input: A spherical conformal parameterization f : P → S2.
Output: A spherical conformal parameterization with improved distribution.

1 Apply the north-pole stereographic projection PN on f(P );
2 Denote the northernmost and the southernmost points of f(P ) by vN and vS .

Multiply all points in PN (f(P )) by a scaling factor λ =

√
dp×ds
dp

, where

dp = mean({|PN (f(z))− xN | : z ∈ N k(f−1(vN ))}) and
ds = mean({|PS(f(z))− xS | : z ∈ N k(f−1(vS))});

3 Apply the inverse north-pole stereographic projection P−1
N on λ(PN (f(P )));

Therefore,

(6.32) d̃s = dp × ds ×
1

d̃p
=
√
dp × ds.

In other words, the two updated average distances d̃p and d̃s defined on the new spherical pa-
rameterization result P−1

N (λ(PN (f(P )))) are equal. This indicates that the distribution of the
points at the two poles is balanced. Hence, Algorithm 1 together with the described balancing
scheme provide us with a spherical conformal parameterization with an even distribution. Our
balancing scheme is summarized in Algorithm 2.

6.4. Meshing using spherical conformal parameterization. In this subsection, we present
our meshing framework for genus-0 point clouds. Directly triangulating a point cloud is dif-
ficult because of its complicated geometry. However, with the aid of the spherical conformal
parameterization of point clouds, the difficulty is significantly alleviated. Instead of trian-
gulating a point cloud, we triangulate the unit sphere obtained by our spherical conformal
parameterization algorithm. Algorithms for triangulating a spherical point cloud are well-
established. In particular, the spherical Delaunay triangulation method, which computes a
Delaunay triangulation on the unit sphere, is the most suitable method for our purpose.

Delaunay triangulations are widely used in computer graphics because of their good tri-
angle quality. More specifically, Delaunay triangulations are advantageous as they maximize
the minimum angle in every triangle in the triangulations and hence avoid skinny triangles.
With this important property, the triangulations generated by this method are more regular
than the common triangulation methods.

By applying the spherical Delaunay triangulation method on the spherical conformal pa-
rameterization of a genus-0 point cloud, we obtain a nice triangulation on the spherical point
cloud. Since the points on the original point cloud and those obtained by the spherical con-
formal parameterization have a 1-1 correspondence, the triangulation on the spherical point
cloud naturally induces a triangulation on the original point cloud. It is noteworthy that
since the parameterization is conformal, the angles of the new triangulation on the original
point cloud are well preserved. In other words, the regularity of the triangulation defined
on the original point cloud closely resembles that of the spherical Delaunay triangulation.
Moreover, the meshing result is guaranteed to be a genus-0 closed triangular mesh because ofD
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Algorithm 3. Our proposed meshing framework for genus-0 point clouds.

Input: A genus-0 point cloud P .
Output: A triangular mesh M = (P, T ) where T is a triangulation of P .

1 Apply Algorithm 1 and Algorithm 2 to obtain a spherical conformal parameterization
f : P → S2;

2 Compute a triangulation T on f(P ) using the spherical Delaunay algorithm;
3 Use T to form a triangular mesh M = (P, T );

the spherical Delaunay method. This completes our goal of meshing a genus-0 point cloud.
Our meshing framework is described in Algorithm 3.

Before ending this section, we make an important remark about a possible extension of
our proposed framework. In fact, our proposed parameterization and meshing scheme can be
possibly extended for point clouds with disk topology. In this case, we can first extend the
double covering technique [18, 10] to turn a point cloud with disk topology into a genus-0
point cloud. More specifically, given a point cloud P of a simply connected open surface M,
we turn P into a point cloud P̃ with spherical topology and approximate the derivatives on
it by the following steps:

Step 1: Approximate the derivatives on P using the k-NN algorithm and the MLS method.
Step 2: Duplicate P and denote the copy of it by P ′.
Step 3: Define the derivatives on P ′ using the results in Step 1, with reversed orientations.
Step 4: Identify the boundary points of P , P ′ and obtain a genus-0 point cloud P̃ .
Step 5: Create the LB operator for P̃ using the derivatives on P and P ′.
Then, we can apply the above-mentioned spherical conformal parameterization algorithm

on P̃ to obtain a spherical point cloud. After that, by applying the stereographic projection
on the southern hemisphere, we obtain a planar conformal parameterization of P . Finally, we
can easily compute a Delaunay triangulation on the planar parameter domain. Since both the
parameterization algorithm and the stereographic projection produce conformal results, this
triangulation on the planar domain accurately induces a regular mesh structure on P . This
completes the task of meshing a point cloud with disk topology.

7. Experimental results. In this section, we demonstrate the effectiveness of our proposed
framework for meshing genus-0 point clouds using spherical conformal parameterization. In
the following, we assess the performance of our proposed framework in different aspects. The
datasets used in the experiments are freely adapted from the AIM@SHAPE Shape Repository
[64], the Stanford 3D Scanning Repository [65], and the RGB-D Scenes Dataset v.2 [29]. The
mentioned algorithms are implemented in MATLAB. The sparse linear systems for the Laplace
equations are solved using the built-in backslash operator (\) in MATLAB. All experiments
are performed on a PC with an Intel Core i5-3470 CPU @3.20 GHz processor and 8.00 GB
RAM.

7.1. The performance of our approximation of the LB operator. In this work, we apply
the MLS method with a new weight function for approximating the LB operator. It is natural
to ask whether our proposed weight function produces better results. It is also necessary toD
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compare other approximation approaches such as the local mesh method to justify our choice.
In this subsection, we compare the numerical accuracy of the local mesh method and the MLS
method with several weighting functions for approximating the LB operator on point clouds.
More specifically, we compare the performance of the following methods:

1. The local mesh method [27],
2. The MLS method with the Wendland weight in [59, 60],
3. The MLS method with the Gaussian weight in [6, 7],
4. The MLS method with the special weight in [35], and
5. The MLS method with our proposed weight function.

Experiments are carried out for assessing the numerical accuracies of the above-mentioned
approaches. Figure 1 shows the setups in two of the experiments. In each experiment, we
first generate a point cloud on the unit disk. This serves as the ground truth in our analysis.
Then, we transform the point cloud using a conformal map with an explicit formula. We apply
the mentioned approximation schemes for approximating the LB operator on the transformed
point cloud. Then, we solve the Laplace equation with the circular boundary constraints on
the original unit disk. Theoretically, the result obtained by the disk harmonic map should be
exactly the same as the original point cloud, as the transformation is given by a conformal map

Figure 1. Two experiments for assessing the approximation accuracies of the LB operator. In each ex-
periment, we generate a point cloud on the unit disk and transform it using a conformal map with an explicit
formula. We then approximate the LB operator on the transformed point cloud and solve the Laplace equation
back onto the unit disk. Top: the first experiment. Bottom: the second experiment.
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Table 3
The approximation error in the two experiments. Top: the first experiment. Bottom: the second experiment.

Method
Maximum

position error
Average position

error

Local mesh method [27] 1.3427 0.0179

MLS with the Wendland weight in [59, 60] 3.3074 0.1696

MLS with the Gaussian weight in [6, 7] 0.5697 0.0114

MLS with the special weight in [35] 0.0427 0.0006

MLS with our proposed weight 0.0245 0.0004

Method
Maximum

position error
Average position

error

Local mesh method [27] 1.5148 0.0271

MLS with the Wendland weight in [59, 60] 2.0082 0.0803

MLS with the Gaussian weight in [6, 7] 1.5460 0.0925

MLS with the special weight in [35] 0.0110 0.0001

MLS with our proposed weight 0.0103 0.0002

with an explicit formula. In other words, the ideal position error between the disk harmonic
map and the original point cloud should be 0. By measuring the maximum and average
position error between the pairs of points, we can evaluate the accuracy of the aforementioned
approximation schemes for approximating the LB operator.

Table 3 illustrates the approximation error of different approaches in the two experiments.
It is noteworthy that in both experiments the MLS method with our proposed weight function
produces approximations which are much more accurate than those produced by the local mesh
method and the MLS method with the Wendland weight [59, 60] and the Gaussian weight in
[6, 7]. With similar and negligible average position errors, our proposed scheme reduces the
maximum position errors by about 25% on average when compared with the MLS method
with the special weight [35]. The comparisons reflect the advantage of our proposed method
for approximating the LB operator.

7.2. Performance of our proposed spherical conformal parameterization. After demon-
strating the advantage of our approximation scheme for the LB operator, we investigate the
performance of our proposed spherical conformal parameterization algorithm for genus-0 point
clouds. Figures 2 and 3 show the results of parameterizing a lion point cloud and a bulldog
point cloud using our proposed parameterization method. Two more convoluted examples are
shown in Figure 4. The experiments demonstrate the effectiveness of our proposed algorithm
for convoluted point cloud data.

Moreover, with the aid of the spherical conformal parameterization, we can create a Delau-
nay triangulation on the spherical parameterization result by the spherical Delaunay algorithm
and define an induced triangulation on the input point cloud. Using the mesh structures, we
can measure the angle differences of the two meshed point clouds and hence effectively evaluate
the conformality of our parameterization scheme. In particular, we define the conformality
distortion of the parameterization by the angular distortion between the two meshes. The
angle difference provides an accurate measurement of the conformality distortion of the pa-
rameterizations. It can be easily observed in Figures 2 and 3 that the histograms of the angleD
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Figure 2. Parameterizing a lion point cloud. Top left: A lion point cloud. Top middle: The spherical
conformal parameterization of the lion point cloud. Top right: A triangulation created by our method. Bottom
left and middle: The triangulated point cloud and the spherical parameterization result colored with the approx-
imated mean curvature at each vertex. Bottom right: The conformality distortion of the parameterization based
on the triangulation.

differences highly concentrate at 0. In addition, for better visualizations of the spherical con-
formal parameterization results, we color the surfaces by the approximated mean curvature
on the source surfaces. It can be observed from the colored figures that the local geometries of
the point clouds are well preserved under our proposed spherical conformal parameterization
algorithm. Figure 5 shows the difference plots of several experiments. The plots demonstrate
the convergence of our N-S reiteration scheme.

We compare our proposed spherical conformal parameterization method for genus-0 point
clouds with the spherical embedding method proposed by Zwicker and Gotsman [63] and
the global conformal map [35]. In our experiment, k = 25 nearest neighbors of every point
are used for approximating the LB operator in Algorithm 1. The stopping threshold for
the N-S reiteration is set to be ε = 0.0001. Table 4 summarizes the computational time
and the conformality distortion of the three schemes. It is noteworthy that our proposed
method produces spherical conformal parameterizations with better conformality. The better
conformality obtained by our method is attributed to the south-pole step in our algorithm,
which is conceptually equivalent to a composition of quasi-conformal maps. With this specific
step, our method can hence further reduce the conformality distortion of the parameterization.D
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Figure 3. Parameterizing a bulldog point cloud. Top left: A bulldog point cloud. Top middle: The spherical
conformal parameterization of the bulldog point cloud. Top right: A triangulation created by our method.
Bottom left and middle: The triangulated point cloud and the spherical parameterization result colored with the
approximated mean curvature at each vertex. Bottom right: The conformality distortion of the parameterization
based on the triangulation.

Also, note that the global conformal map [35] fails for a few examples, which may be due to
the uneven distribution of points in those examples. Moreover, our method is more efficient
than the algorithms in [63] and [35]. The above results indicate that our parameterization
algorithm preserves the local geometry of the point clouds very well. Last, we make a remark
that the most time-consuming part in our algorithm is the MLS approximation of the LB
operator. Therefore, as the size of the input point cloud increases, the computational time for
the MLS approximation of the LB operator will outweigh the time for the parameterization
steps in our algorithm. This possibly diminishes the advantage in the overall computational
time of our algorithm over the algorithms in [63] and [35].

7.3. Performance of our meshing scheme. As mentioned in the last subsection, we
generate mesh structures on genus-0 point clouds by building Delaunay triangulations on their
spherical conformal parameterizations. Our meshing scheme has two important advantages.
First, the regularity of the triangulations generated is guaranteed by the preservation of the
angle structures of the Delaunay triangulations computed on the spherical parameterizations.
As the angle structures are well retained under the spherical conformal parameterization, a
regular triangulation defined on the parameterized point clouds can effectively induce a regularD
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1606 GARY PUI-TUNG CHOI, KIN TAT HO, AND LOK MING LUI

Figure 4. Parameterizing two convoluted point clouds of a human brain and a spiral. Left: The input point
clouds. Middle: The spherical conformal parameterizations obtained by our proposed algorithm. Right: The
triangulations created by our method.

Figure 5. Several plots of the difference mean (‖f(pi) − f̃(pi)‖2) with the number of iterations in our
N-S reiteration scheme. Left: Cereal box. Middle: Hippocampus. Right: Bulldog. The plots demonstrate the
convergence of our proposed algorithm.

and almost-Delaunay triangulation on the original point clouds. Besides Figures 2, 3, and 4,
some more examples of triangulations created by our approach are shown in Figure 6. It
can be observed that our meshing method can handle point clouds with different geometry.
High quality triangulations can be created even with the presence of sharp, nonconvex, and
convoluted regions on the input point clouds. Second, unlike most of the existing meshing
methods, the meshes produced by our proposed scheme are guaranteed to be genus-0 closed
meshes. No holes or unwanted boundaries will be present in our meshing result. Hence,
postprocessing steps are not required in our meshing scheme.D
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Table 4
Performances of three spherical conformal parameterization methods for genus-0 point clouds. To quanti-

tatively evaluate the conformality of the parameterization, we build a mesh structure on the spherical param-
eterization using the spherical Delaunay method and then create an induced mesh structure on the original
point cloud. The conformality distortion (denoted by δ) of the parameterization is assessed using the angle
difference (in degrees) between an angle on a meshed point cloud and the mapped angle on the meshed spherical
parameterization result.

Point clouds
Number

of
points

Performance
Our proposed

method

Spherical
embedding

[63]

Global
conformal
map [35]

Time (s) 8.1768 23.7988 16.7058
Soda can 6838 Mean(|δ|) 0.5902 4.0431 2.3352

SD(|δ|) 0.8007 5.2731 1.9803

Time (s) 13.0919 37.4124 18.7151
Hippocampus 10242 Mean(|δ|) 1.2855 14.3072 1.3062

SD(|δ|) 1.4701 19.6461 1.5100

Time (s) 30.7785 87.0887 40.4214
Max Planck 21530 Mean(|δ|) 0.7326 8.6058 1.0792

SD(|δ|) 1.0803 14.0857 1.5756

Time (s) 50.7390 132.1765
Cereal box 33061 Mean(|δ|) 0.6523 12.3573 Fail

SD(|δ|) 0.9165 14.0440

Time (s) 114.7057 291.8312 122.8818
Spiral 48271 Mean(|δ|) 0.8580 16.4704 0.9658

SD(|δ|) 1.3280 22.5073 1.3135

Time (s) 115.5802 198.2285 126.7621
Brain 48487 Mean(|δ|) 1.4266 35.2629 2.2495

SD(|δ|) 2.9093 35.7986 2.7430

Time (s) 88.9297 206.9920 113.4447
Bulldog 49797 Mean(|δ|) 1.5432 16.2010 1.8700

SD(|δ|) 2.9183 21.1544 3.1891

Time (s) 95.8935 212.5685 136.3296
Chinese lion 50002 Mean(|δ|) 1.8474 19.1579 2.4907

SD(|δ|) 1.9286 22.7259 2.6207

Time (s) 198.6064 360.7178 227.0290
Bimba 74764 Mean(|δ|) 0.6227 18.0340 0.6379

SD(|δ|) 0.8129 20.6272 0.7975

Time (s) 427.7658 731.8661 560.6077
Igea 134345 Mean(|δ|) 0.7076 5.0853 3.8293

SD(|δ|) 1.4273 8.2623 2.9703

Time (s) 676.4106 995.7537
Armadillo 172974 Mean(|δ|) 1.4167 23.2354 Fail

SD(|δ|) 1.6855 23.9892

Time (s) 1305.9013 1484.7682 1642.9208
Lion vase 256094 Mean(|δ|) 2.0920 17.8501 3.6696

SD(|δ|) 4.1052 21.9588 5.8502

Time (s) 1690.3412 1793.5970 2158.9806
Fossil 305002 Mean(|δ|) 1.0008 18.9758 1.0305

SD(|δ|) 1.4658 21.3011 1.4782
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1608 GARY PUI-TUNG CHOI, KIN TAT HO, AND LOK MING LUI

Figure 6. Meshes generated by our proposed method and a zoom-in of them. The regularity of the triangu-
lations is attributed to our spherical conformal parameterization and the spherical Delaunay method.

We compare our meshing method with three existing meshing approaches. As an exam-
ple of parameterization-based approaches, Zwicker and Gotsman [63] generate triangulations
for a genus-0 point cloud with the aid of the spherical embedding algorithm and the spher-
ical Delaunay triangulation method. On the other hand, two typical methods for meshing
without using parameterizations are the marching cubes algorithm [41] and the Tight Co-
cone algorithm [11]. Figure 7 provides a comparison between our method and the three
mentioned approaches. It can be observed that our meshing scheme and the Tight Cocone
algorithm [11] produce high-quality triangulations, while the triangulations produced by the
approaches in [63] and [41] consist of certain sharp and irregular triangles. Also, the result
by the marching cubes algorithm contains holes, while our method is topology preserving.
Therefore, unlike the marching cubes algorithm, no further postprocessing is needed in our
meshing scheme.

To quantitatively assess the “almost-Delaunay” property of our meshing results induced
by the spherical Delaunay triangulations, we recall that a Delaunay triangulation satisfies the
opposite angle sum property: For every edge in a Delaunay triangulation, the two angles α
and β opposite to the edge satisfy

(7.1) α+ β ≤ π.D
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SPHERICAL CONFORMAL PARAMETERIZATION FOR MESHING 1609

Figure 7. A comparison between our meshing scheme and other approaches. A front view of the triangulated
point cloud and a zoom-in of the nose are shown for each method. Left to right: Our meshing result, the method
in [63], the marching cubes algorithm [41], and the Tight Cocone algorithm [11].

For the above-mentioned meshing approaches, we define the Delaunay ratio of the resulting
triangulation by

(7.2)
# of edges with opposite angles α, β s.t. α+ β ≤ π

Total # of edges in the triangulation
.

A higher Delaunay ratio indicates that the triangulation is closer to a perfect Delaunay trian-
gulation. The Delaunay ratios by different meshing algorithms are presented in Table 5. Be-
cause of the high accuracy of our spherical conformal parameterizations, our proposed scheme
achieves significantly better triangulation results when compared with the spherical embed-
ding algorithm [63] and the marching cubes algorithm [41]. Also, our results are comparable
to or even slightly better than those of the Tight Cocone algorithm [11]. The comparisons
demonstrate the advantages of our proposed meshing scheme. A further comparison between
our method and the Tight Cocone algorithm [11] is given in the following subsection.

In addition, we can generate quadrangulations of point clouds with the aid of the spherical
conformal parameterization. Two examples of the quad meshes generated by our method are
given in Figure 8. To create quad meshes of point clouds, we make use of a standard spherical
quad mesh and our spherical conformal parameterization results. With the aid of the spherical
conformal parameterizations, we can interpolate the standard quad mesh onto the input pointD
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1610 GARY PUI-TUNG CHOI, KIN TAT HO, AND LOK MING LUI

Table 5
The Delaunay ratios of different meshing approaches. The ratio assesses the proportion of edges in the

resulting triangulations that satisfy the opposite angle sum property α+ β ≤ π in a triangulation. A Delaunay
ratio that exactly equals 1 indicates that the triangulation is Delaunay.

Point clouds
Our

proposed
method

Spherical
embedding

[63]

Marching
cubes [41]

Tight
Cocone [11]

Soda can 0.99 0.93 0.82 0.98

Hippocampus 0.99 0.91 0.82 0.99

Max Planck 0.99 0.93 0.82 0.99

Cereal box 0.99 0.88 0.81 0.99

Spiral 1.00 0.85 0.82 0.99

Brain 0.99 0.82 0.82 0.99

Bulldog 1.00 0.86 0.82 0.99

Chinese lion 0.99 0.84 0.82 0.99

Bimba 1.00 0.88 0.81 1.00

Igea 0.97 0.90 0.83 0.97

Armadillo 0.98 0.80 0.82 0.98

Lion vase 0.99 0.85 0.83 0.99

Figure 8. Quad mesh generation on point clouds using our proposed method.

clouds and thus generate quad mesh representations. Because of the conformality of our
parameterization scheme, the resulting quad meshes are of high quality. Also, the meshes are
guaranteed to be topology preserving.

Before ending this subsection, we demonstrate the significance of our proposed balancing
scheme in the spherical conformal parameterization. The redistribution is vital for the meshing
quality. Figure 9 shows the meshing results with and without the redistribution scheme.
It can be easily observed that if the spherical parameterization of a genus-0 point cloud
is unbalanced, then on the mesh generated by interpolation with the aid of the spherical
conformal parameterization, most of the vertices will be concentrated at one small region ofD
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SPHERICAL CONFORMAL PARAMETERIZATION FOR MESHING 1611

Figure 9. The effect of our balancing scheme on meshing a genus-0 point cloud of Max Planck. Top
left: A spherical conformal parameterization without the balancing scheme. Bottom left: A spherical conformal
parameterization with the balancing scheme. Middle: The front view of the meshing results by interpolation
with the aid of the parameterizations. Right: The back view.

the mesh. As a result, most features of the underlying surface are lost. In contrast, with
our proposed balancing scheme, a high-quality mesh can be effectively generated. The above
results reflect the importance of our balancing scheme in the point cloud parameterizations
for meshing.

7.4. Stability under geometrical and topological noises. Our meshing framework is sta-
ble under geometrical and topological noises of the input genus-0 point clouds. In some
situations, the point clouds obtained by 3D cameras are geometrically noisy. To compute
triangulations which represent the underlying surfaces, we can first apply a Poisson filtering
on the noisy point clouds. Then, with the aid of our spherical conformal parameterization,
we can obtain high-quality triangulations on a uniform spherical point cloud and interpolateD

ow
nl

oa
de

d 
11

/2
8/

16
 to

 1
40

.2
47

.8
7.

69
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1612 GARY PUI-TUNG CHOI, KIN TAT HO, AND LOK MING LUI

Figure 10. Meshing a geometrically noisy point cloud.

Figure 11. Comparison of our meshing scheme and the Tight Cocone algorithm [11] on a geometrically
noisy point cloud. All points are considered in the computations. Left: Our meshing result with a zoom-in of
the nose. Right: The result of the Tight Cocone algorithm with a zoom-in of the nose.

Figure 12. Meshing a topologically noisy point cloud with unwanted holes.
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SPHERICAL CONFORMAL PARAMETERIZATION FOR MESHING 1613

Figure 13. Meshing real 3D scanned noisy point cloud data of a cereal box and a soda can in the RGB-D
Scenes Dataset v.2 [29]. Left: The raw point cloud data. Middle: The meshing results. Right: The meshing
results without showing the triangulations.

them back onto the filtered point clouds to produce meshed surfaces. We first demonstrate
the effectiveness of our algorithm with two synthetic examples.

Figure 10 shows a synthetic point cloud with 3% uniformly distributed random noise and
our meshing result. We can also construct a faithful triangulated mesh on the geometrically
noisy point cloud without any filtering or sampling procedure. Figure 11 shows the triangu-
lation result of our meshing scheme and the Tight Cocone algorithm [11] on the noisy point
cloud in Figure 10. All points of the point cloud are considered and fixed in the construction
of the triangulation. It can be observed that there are irregular triangulations and topological
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1614 GARY PUI-TUNG CHOI, KIN TAT HO, AND LOK MING LUI

Figure 14. Multilevel representations of a genus-0 point cloud of Igea. For better visualizations, we create
mesh structures on the representations. Top left: A point cloud with 134345 points of Igea. Top middle to
bottom right: The multilevel representations with 0, 1, 2, 3, and 4 subdivisions. The representations are with
642, 2562, 10242, 40962, and 163842 points, respectively.

holes on the result by [11], while our meshing scheme guarantees a regular and topology
preserving triangulation even for noisy input point clouds.

In addition, it is common that the sampling processes result in nonuniformly sampled
point clouds. In particular, there may be large holes on certain parts of the point clouds sam-
pled from genus-0 objects, which create topological ambiguities and hinder mesh generations.
Our parameterization and meshing scheme produce satisfactory results with these topolog-
ical noises. Moreover, the meshes generated are guaranteed to be genus-0 closed meshes.
Figure 12 shows a synthetic point cloud with 1021 randomly created topological holes. It can
be observed that our algorithm produces a satisfactory meshing result.

Then, we apply our algorithm for real 3D scanned noisy point cloud data. Much raw point
cloud data are adapted from the RGB-D Scenes Dataset v.2 [29]. Figure 13 shows two point
clouds of a soda can and a cereal box and shows our meshing results. The above experiments
demonstrate the stability and robustness of our proposed method for noisy point clouds.

7.5. Multilevel representations of genus-0 point clouds. With our proposed spherical
conformal parameterization scheme, multilevel representations of a genus-0 point cloud can be
easily achieved. We start with a coarse spherical point cloud. The vertices on the sphere can
be interpolated onto the genus-0 point cloud with the aid of its spherical parameterization.D
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Figure 15. Multilevel representations of a genus-0 lion vase point cloud. For better visualizations, we create
mesh structures on the representations. Top left: A lion vase point cloud with 256094 points. Top middle to
bottom right: The multilevel representations with 0, 1, 2, 3, and 4 subdivisions. The representations are with
696, 2778, 11106, 44418, and 177666 points, respectively.

Then, we can progressively subdivide the sphere using existing subdivision methods, such
as the butterfly subdivision method [12] and the loop subdivision method [40]. For each
subdivided sphere, we can repeat the mentioned interpolation procedure and obtain a coarse
representation of the point cloud. This method results in multilevel representations of the
point cloud. As the subdivision level increases, more details of the point cloud are represented.
Examples of multilevel representations of genus-0 point clouds are given in Figures 14 and 15.
In our examples, the subdivisions are generated using the loop subdivision method [40]. The
subdivision connectivity of the results can be easily observed. The results indicate that our
method can effectively generate the multilevel representations of genus-0 point clouds.

8. Conclusion and future work. In this paper, we presented a novel framework for mesh-
ing genus-0 point clouds via global spherical conformal parameterizations. We extended and
improved the parameterization algorithm for triangular meshes in [9]. First, we enhancedD
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1616 GARY PUI-TUNG CHOI, KIN TAT HO, AND LOK MING LUI

the accuracy for approximating the LB operator on point clouds by using a new Gaussian-
type weight function. Second, we proposed an iterative scheme called the N-S reiteration
to replace the step of solving for a quasi-conformal map in [9] for achieving better confor-
mality. Third, we introduced a balancing scheme for guaranteeing an even distribution of
the spherical point cloud parameterization. Experimental results show that our proposed
algorithm is highly efficient and accurate. With the aid of the spherical conformal parameter-
izations, almost-Delaunay triangulations and high-quality quadrangulations of genus-0 point
clouds can be effectively created. The meshes generated are guaranteed to be of genus-0 and
no post-processing is needed. In addition, our meshing method is stable under geometrical
and topological noises on point clouds. Moreover, multilevel representations of genus-0 point
clouds can be easily computed. As a remark, our proposed spherical conformal parameteriza-
tion algorithm also works efficiently on triangular meshes. In the future, we plan to establish
a rigorous theoretical proof of the convergence of our parameterization scheme and extend our
method to handle disk-type point clouds and point clouds with arbitrary topology.
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