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Abstract Surface parameterizations have been widely used in computer graphics and geom-
etry processing. In particular, as simply-connected open surfaces are conformally equiva-
lent to the unit disk, it is desirable to compute the disk conformal parameterizations of the
surfaces. In this paper, we propose a novel algorithm for the conformal parameterization of a
simply-connected open surface onto the unit disk, which significantly speeds up the computa-
tion, enhances the conformality and stability, and guarantees the bijectivity. The conformality
distortions at the inner region and on the boundary are corrected by two steps, with the aid
of an iterative scheme using quasi-conformal theories. Experimental results demonstrate the
effectiveness of our proposed method.

Keywords Disk conformal parameterization · Simply-connected open surface ·
Beltrami differential · Conformal Geometry · Quasi-conformal theory

1 Introduction

Surface parameterization refers to the process of bijectivelymapping a complicated surface to
a simple canonical domain. In recent years, the use of parameterizations has been widespread
in computer graphics and geometry processing. The applications of parameterizations include
surface registration, texture mapping, mesh editing, remeshing, morphing, detail synthesis,
mesh compression and medical visualization. For instance, in surface registration, which
aims to find a one to one correspondence between two surfaces, it is common to parameterize
the surfaces to simpler domains, such as the unit disk D or the unit sphere S

2, to simplify
the computation. This approach has been widely used in medical imaging for obtaining the
surface registrations between anatomical structures, such as the cortical surfaces [1–3] and
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the hippocampal surfaces [4]. In texture mapping [5], the geometric details and material
properties are usually modeled as texture images. With the aid of the parameterizations of
3D meshes to the planar domain, the texture can be glued to the meshes. Besides, parameter-
izations are applied to solve PDEs on complicated 2D domains [5–7]. The abovementioned
applications reflect the importance of obtaining a good parameterization.

Numerous studies have been devoted to surface parameterizations. For simply-connected
open surfaces, it is common to parameterize the surfaces to a unit disk. To achieve a mean-
ingful parameterization, the distortion of certain geometric quantities, such as distance, area,
and angle, should be minimized. By the Riemann mapping theorem, a simply-connected
open surface is conformally equivalent to the unit disk D. In other words, the existence of
a disk conformal parameterization is theoretically guaranteed. Therefore, it is desirable to
look for a disk conformal parameterization.

Conformal parameterization of disk-type surfaces has been a difficult topic in sur-
face parameterization theory for a long time. Different research groups have developed
brilliant algorithms to tackle the problem. Despite the effectiveness of the state-of-the-
art approaches, there are still opportunities for further enhancements in the computa-
tional time and the conformality of the parameterizations. Firstly, as most of the latest
algorithms are nonlinear, the computation is quite inefficient. This becomes an obsta-
cle for practical applications in which a large number of surfaces are involved. Sec-
ondly, the conformality distortion is still far from negligible. The distortion affects the
accuracy of the parameterizations, and thus hinders practical applications. There are two
sources of the conformality distortion. One of the sources is the discretization of the
surfaces and the operators in different algorithms. Since the surfaces are usually represented
as triangulated meshes, the operators are discretized. Although the conformality of the para-
meterizations is theoretically guaranteed in the continuous case, certain numerical angular
distortions inevitably exist for the discrete case under any algorithms. Another source is the
limitations of the algorithms themselves due to different assumptions and conditions in the
algorithms. In this work, we aim to develop a numerical method for disk conformal para-
meterizations that overcomes the above mentioned obstacles. First, we propose to speed up
the computation by linearizing the algorithm as much as possible. To enhance the accu-
racy, we then propose a simple two-step iteration to correct the conformality distortion with
the aid of quasi-conformal theories. Experimental results suggest that our proposed method
outperforms other state-of-the-art approaches.

The rest of the paper is organized as follows. In Sect. 2, we review the previous works
in the literature related to our work. In Sect. 3, we outline the contributions of our work.
Our proposed method is explained in details in Sect. 4. In Sect. 5, we describe the numer-
ical implementation details of our proposed method. In Sect. 6, we show and analyze the
experimental results of our proposed method. The paper is concluded in Sect. 7.

2 Previous Works

In this section, we describe some previous works closely related to our work.
Mesh parameterization has been extensively studied by different research groups. The

goal is to map a complicated 3D or 2D surface to a simple parameter domain, such as the
unit sphere S2 or the unit disk D. Several surveys of mesh parameterization methods can be
found in [22–25].

Parameterizations inevitably create different kinds of geometric distortions. Thus, there is
always a trade-off between the different types of distortions. This results in various criteria in
determining the least distorted parameterizations. One of the criteria is the geodesic distance
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distortion. A parameterization that preserves distances is called isometric. However, it is well
known in differential geometry that distance preserving planar parameterizations only exist
for developable surfaces, or equivalently, surfaces with zero Gaussian curvature [26]. Hence,
finding an isometric parameterization is impossible in most cases.

Another criteria is the area distortion. A parameterization without any area distortion is
said to be authalic. Desbrun et al. [12] reported a discrete authalic parameterization method
by introducing the Chi energy. Zou et al. [27] proposed an area preserving algorithm using
Lie advection. Zhao et al. [28] reported a method using optimal transport to achieve an
area preserving mapping. However, as authalic parameterizations allow extreme angular
distortions, they are less applicable in applications [24].

On the contrary, conformal parameterization is more favorable as it preserves angles and
hence the local geometry. For this reason, numerous studies have been devoted to conformal
parameterizations. In particular, since conformal maps are equivalent to harmonic maps for
genus-0 surfaces [29], the problem can be turned into finding a harmonic map. The study
of the discretization of harmonic maps is originated from [30,31]. Pinkall and Polthier [30]
introduced a discretization of the Dirichlet energy for computing piecewise linear minimal
surfaces. Eck et al. [31] proposed a discrete harmonic mapping to approximate the continu-
ous harmonic maps using finite element method. Later, different conformal parameterization
algorithms are proposed. Unlike the conformal parameterizations of genus-0 closed surfaces
[1,2,21,32–35], the presence of the surface boundary leads to more variations in the confor-
mal parameterizations of simply-connected open surfaces. Floater [8] introduced amethod for
making shape-preserving parameterizations of surface triangulations. Hormann and Greiner
[9] presented the most isometric parameterization of surfaces method (MIPS) for disk-like
surfaces. Sheffer and De Sturler [10] proposed the Angle Based Flattening (ABF) method,
which constructs a parameterization by minimizing a functional that punishes the angular
distortion. In [11], Sheffer et al. reported the ABF++ method, which is an extension of the
ABF method that overcomes its drawbacks. In [13], Lévy et al. proposed a parameterization
method by approximating the Cauchy-Riemann equations using the least-squares method.
Desbrun et al. [12] introduced the intrinsic parameterizations which minimize the distortion
of different intrinsic measures of the surface patches. In [14], Floater derived a generalization
of barycentric coordinates to improve methods for parameterizations. Kharevych et al. [15]
introduced an approach for conformal parameterizations based on circle patterns. Gu and
Yau [21] constructed a basis of holomorphic 1-forms and integrated holomorphic differen-
tials to obtain a conformal parameterization. Luo [20] developed the combinatorial Yamabe
flow for conformal parameterizations. Jin et al. [17] proposed a method for disk confor-
mal parameterizations using the double covering [36] followed by the spherical conformal
mapping [2]. Later, Mullen et al. [16] reported a spectral approach to discrete conformal
parameterizations. In [18], Jin et al. proposed the discrete surface Ricci flow algorithm for
conformal parameterizations. Yang et al. [19] generalized the discrete Ricci flow to improve
the flexibility and robustness of the above method. The properties of the abovementioned
conformal parameterization algorithms for disk-type surfaces are summarized in Table 1.

As shown in Table 1, for simply-connected open surfaces, there are two major types of
conformal parameterizations, namely, (1) Free boundary parameterizations and (2) Fixed
boundary parameterizations. Free boundary parameterizations do not restrict the shape of
the boundary of the planar parameterizations. As there are more flexibilities on the boundary,
less conformality distortions will be caused. However, because of the absence of boundary
constraints, the planar parameterizations of two surfaces are usually completely different in
shapes. This hinders the comparisons between different surfaces. For practical applications,
it is desirable to obtain a planar parameterization with a more regular boundary. In this
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Table 1 Several previous works on conformal parameterization of disk-type surfaces

Methods Boundary Bijectivity Complexity

Shape-preserving [8] Fixed Yes Linear

MIPS [9] Free Yes Nonlinear

ABF/ABF++ [10,11] Free Local (no flips) Nonlinear

LSCM [12,13] Free No Linear

Mean-value [14] Fixed Yes Linear

Circle patterns [15] Free Local (no flips) Nonlinear

Spectral conformal [16] Free No Linear

Double covering [17] Free No Nonlinear

Discrete Ricci flow [18] Fixed Yes Nonlinear

IDRF [19] Fixed Yes Nonlinear

Yamabe Riemann map [20] Fixed Yes Nonlinear

Holomorphic 1-form [21] Fixed Yes Nonlinear

case, fixed boundary parameterization is preferred. The boundary of the mesh is usually
restricted to a convex domain. Particularly, it is common to enforce the boundary to be a
unit circle. Because of this extra constraint, the conformality distortion for fixed boundary
parameterizations is unavoidably larger. This reflects the significance of finding a fast and
accurate disk conformal parameterization algorithm.

3 Contribution

The contributions of our work on disk conformal parameterizations are divided into three
directions. Firstly, we improve the conformality distortion of the parameterizations by intro-
ducing a “north pole-south pole” iterative scheme. After obtaining an initial disk harmonic
map, the conformality distortion of the inner region is corrected on the upper half plane by
a composition of quasi-conformal maps. Then, we extend D to C through a reflection, and
correct the distortion near the boundary of D by a composition of quasi-conformal maps.
Secondly, as every single step of our method is linear and the iteration converges shortly,
our proposed algorithm is more computationally efficient than other state-of-the-art algo-
rithms. Thirdly, our proposed method for disk conformal parameterizations is bijective. The
bijectivity is ensured by the property of the Beltrami differential of the composition map.
In summary, we propose an algorithm for disk conformal parameterization of genus-0 open
surfaces with

1. Improved conformality;
2. Faster computation; and
3. Guaranteed bijectivity.

4 Proposed Method

In this section, we describe our proposed method for the disk conformal parameterizations of
simply-connected open surfaces. The disk conformal parameterizations are achievedwith the
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Table 2 Features of the fast spherical conformal parameterization [1] and our proposed method

Features Fast spherical conformal parameterization [1] Our proposed method

Type of surfaces Genus-0 closed surfaces Simply-connected open surfaces

“North pole” step Use the stereographic projection and
work on C

Use the Cayley transform and
work on the upper half plane

“South pole” step South pole stereographic projection Reflection along the unit circle

Boundary adjustment No Yes

Output Unit Sphere Unit disk

Bijectivity Yes Yes

aid of an efficient iterative algorithm. In [1], the North Pole-South Pole iterative scheme was
introduced for the fast spherical conformal parameterizations of genus-0 closed surfaces. The
main idea of the iterative scheme is to improve the conformality distortions near the north
pole and the south pole of the spherical parameterizations step by step. In the “north pole”
step, a genus-0 closed surface is mapped to a unit sphere using a highly efficient method.
The conformality distortion near the south pole of the sphere is small while the distortion
near the north pole is relatively large. After that, in the “south pole” step, the conformality
distortion near the north pole is corrected, with the region around the south pole kept fixed.
In other words, to achieve a globally conformal parameterization, one can try to ensure the
conformality of one part first, and then obtain the conformality of the other part in the second
step, with the aid of the conformal part obtained before. Motivated by this idea, we introduce
a “North Pole-South Pole” iterative scheme for disk conformal parameterizations of simply-
connected open surfaces. In our case, instead of the actual geometric poles of the unit disk,
by the “north pole” and the “south pole” we mean the two regions of a disk at which we
handle the conformality distortion one by one. Table 2 highlights the features of and the
comparisons between the Fast Spherical Conformal Parameterization [1] and our proposed
method.

Our proposed method consists of three steps: (1) initialization, (2) “north pole” step,
(3) “south pole” iteration. The three stepswill be described in the subsequent three subsections
respectively.

4.1 Initialization Using the Discrete Harmonic Map

In the first step of our proposed method, we look for an initial map for the disk parameteriza-
tions. Among the existing algorithms, we use the disk harmonic map [37] as an initialization
since it is computationally efficient and easy to implement. We first briefly describe the
harmonic map theory.

A map f : M → N between two Riemann surfaces is said to be conformal if there
exists a positive scalar function λ such that f ∗ds2N = λds2M . It is easy to observe that every
conformal map preserves angles.

The harmonic energy functional for f : M → S
2 is defined as

E( f ) =
∫
M

|∇ f |2dvM . (1)

In the space ofmappings, the critical points of E( f ) are calledharmonicmappings. For genus-
0 closed surfaces, conformal maps are equivalent to harmonic maps. For more details, please
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refer to [29,38]. By Riemann mapping theorem, every simply-connected open surface M can
be conformally mapped onto D. Also, a conformal map between two simply-connected open
surfaces can be uniquely determined, provided that three-point correspondences are given.

In [37], Gu and Yau described a simple method to compute the disk harmonic map
f : M → D for a disk-type surface M . f can be computed by solving the following
Laplace equation:

{
ΔM f (u) = 0 if u ∈ M \ ∂M

f |∂M = g
(2)

where g : ∂M → ∂D is given by the arc length parameterization.
In the discrete case, the Laplace equation ΔM f (u) = 0 in Eq. (2) becomes a sparse

symmetric positive definite linear system. The boundary vertices {vi }n−1
i=0 are mapped to the

unit circle according to the ratio of the edge lengths:

f (vi ) = (cos θi , sin θi ), (3)

where l[vi ,vi+1] denotes the length of the edge [vi , vi+1] and
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

s :=
n−1∑
i=0

l[vi ,vi+1]

si :=
i−1∑
j=0

l[v j ,v j+1]

θi := 2π si
s .

(4)

Hence, the Laplace Eq. (2) can be efficiently solved. Note that the harmonic parameteri-
zation with fixed boundary condition is generally not conformal and induces conformality
distortions. However, in practice, the harmonic disk parameterization is still a good enough
mapping to serve as an initialization. The conformality distortions of the interior region and
the boundary region of the disk will be corrected by the steps introduced in Sects. 4.2 and
4.3 respectively.

4.2 Improvement of Conformality on the Upper Half Plane

There are two drawbacks of the disk harmonic map algorithm [37]. One of the drawbacks is
that the conformality distortion is often quite large due to the restrictive circular boundary
constraints. Secondly, the bijectivity is usually lost with bad triangulations. Foldings or
overlaps may exist if there are extremely irregular triangles. We aim to alleviate these two
drawbacks in this subsection and the following subsection.

To improve the conformality distortion of the initial disk harmonic map, our strategy is to
compose themapwith a quasi-conformalmap. Quasi-conformalmaps are the generalizations
of conformal maps, which are orientation preserving homeomorphisms between Riemann
surfaces with bounded conformality distortions, in the sense that their first order approxi-
mations take small circles to small ellipses of bounded eccentricity [40]. Mathematically,
f : C → C is a quasi-conformal map if it satisfies the Beltrami equation

∂ f

∂ z̄
= μ(z)

∂ f

∂z
(5)
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Fig. 1 An illustration of how the conformality distortion can be determined by the Beltrami coefficient. The
picture is adapted from [39]

for some complex-valued functions μ with ‖μ‖∞ < 1. μ is called the Beltrami coefficient
of f . Beltrami coefficient measures the conformality distortion of a map. In particular, f is
conformal around a small neighborhood of p if and only if μ(p) = 0.

From μ(p), we can determine the angles of the directions of maximal magnification and
shrinking and the amount of them as well. Specifically, the angle of maximal magnification
is arg(μ(p))/2 with magnifying factor 1 + |μ(p)|. The angle of maximal shrinking is the
orthogonal angle (arg(μ(p)) − π)/2 with shrinking factor 1 − |μ(p)|. Thus, the Beltrami
coefficient μ gives us all the information about the properties of the map (See Fig. 1).

The maximal dilation of f is given by:

K ( f ) = 1 + ‖μ‖∞
1 − ‖μ‖∞

. (6)

The Beltrami coefficient of a composition of quasi-conformal maps is related to the Bel-
trami coefficients of the original maps. Suppose f : Ω → f (Ω) and g : f (Ω) → C are two
quasi-conformal maps with Beltrami coefficients μ f and μg correspondingly. The Beltrami
coefficient of the composition map g ◦ f is given by

μg◦ f =
μ f + fz

fz
(μg ◦ f )

1 + fz
fz

μ f (μg ◦ f )
. (7)

Quasi-conformal map can also be defined between two Riemann surfaces. In this case,

Beltrami differential is used. A Beltrami differential μ(z) dzdz on a Riemann surface S is an
assignment to each chart (Uα, φα) of an L∞ complex-valued function μα , defined on local
parameter zα such that

μα

dzα
dzα

= μβ

dzβ
dzβ

, (8)

on the domain which is also covered by another chart (Uβ, φβ). Here, dzβ
dzα

= d
dzα

φαβ and
φαβ = φβ ◦ φα . An orientation preserving diffeomorphism f : M → N is called quasi-

conformal associated with μ(z) dzdz if for any chart (Uα, φα) on M and any chart (Uβ, ψβ) on

N , the mapping fαβ := ψβ ◦ f ◦ f −1
α is quasi-conformal associated with μα

dzα
dzα

. Readers
are referred to [39,40] for more details about quasi-conformal theories.
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Beltrami differential is closely related to the bijectivity of amap. Specifically, if f : M1 →
D is a C1 map satisfying ‖μ f ‖∞ < 1, then f is bijective. This can be explained using the
jacobian of f . The jacobian J f of f is given by

J f =
∣∣∣∣∂ f∂z

∣∣∣∣
2

(1 − |μ f |2). (9)

Since ‖μ f ‖∞ < 1, we have
∣∣∣ ∂ f
∂z

∣∣∣2 	= 0 and (1 − |μ f |2) > 0. Therefore, the Jacobian is

positive everywhere. Since D is simply-connected and f is proper, we can conclude that f
is a diffeomorphism. In fact, f is a universal covering map of degree 1. Hence, f must be
bijective.

Intuitively, with a composition of two maps with the same Beltrami differential, the
conformality distortion is cancelled out. In our case, let μ be the Beltrami differential of
f , where f : M → D is obtained by solving Eq. (2). We proceed to look for a quasi-
conformal map g : D → D with the same Beltrami differential μ. The composition map,
f̃ := g ◦ f −1 : M → D, is then conformal. This can be explained by the following theorem:

Theorem 1 Let f : M1 → M2 and g : M2 → M3 be quasi-conformal maps. Suppose the
Beltrami differential of f −1 and g are the same. Then the Beltrami differential of g ◦ f is
equal to 0. Hence, g ◦ f : M1 → M3 is conformal.

Proof Note that μ f −1 ◦ f = −( fz/| fz |)2μ f . Since μ f −1 = μg , we have

μ f + fz
fz

(μg ◦ f ) = μ f + fz
fz

(μ f −1 ◦ f ) = μ f + fz
fz

(− fz
fz

)μ f = 0. (10)

Hence, by the composition formula,

μg◦ f =
μ f + fz

fz
(μg ◦ f )

1 + fz
fz

μ f (μg ◦ f )
= 0. (11)

Thus, g ◦ f is conformal. 
�
Motivated by the above theorem, we can fix the conformality distortion of the initial f

by a quasi-conformal map g : D → D. More specifically, suppose the Beltrami differential
of f is μ f , we compute another quasi-conformal map g : D → D with the same Beltrami
differential. According to Theorem 1, the composition map g◦ f is conformal. The distortion
of f is therefore corrected.

Of course, one crucial issue is to efficiently compute g. Lui et al. [41] proposed a linear
algorithm, called the Linear Beltrami Solver (LBS), to reconstruct a quasi-conformal map
g(x, y) = u(x, y) + iv(x, y) from its Beltrami coefficient μg = ρ + i η on rectangular
domains in C. Choi et al. [1] extended this algorithm on triangular domains in C. The brief
idea of LBS is as follows.

From the Beltrami Equation (5), we have

μg = (ux − vy) + i(vx + uy)

(ux + vy) + i(vx − uy)
. (12)

By direct computation, it remains to solve

∇ ·
(
M

(
ux
uy

))
= 0 and ∇ ·

(
M

(
vx
vy

))
= 0 (13)
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where

M =
⎛
⎝

(ρ−1)2+η2

1−ρ2−η2
− 2η

1−ρ2−η2

− 2η
1−ρ2−η2

1+2ρ+ρ2+η2

1−ρ2−η2

⎞
⎠ . (14)

In the discrete case, solving the above elliptic PDEs (13), with certain boundary conditions
on u and v, can be discretized into solving a sparse symmetric positive definite linear system.
Readers are referred to [1,41] for details. For convenience, we denote the quasi-conformal
map associated with the Beltrami differential μ by LBS(μ).

In our case, we need to find a quasi-conformal map g : D → D. This involves suitably
allocating the boundary vertices on S

1. In other words, instead of having a fixed boundary
condition, we need to search for an optimal boundary correspondence g|∂D to reduce confor-
mality distortions. This makes the problem nonlinear and causes computational difficulties.
To alleviate this issue, our strategy is to transform the current domain to another domain,
such that the problem can be linearized. More specifically, we use the Cayley transform to
map the unit disk onto the upper half plane. The Cayley transform is a bijective conformal
map. Mathematically, the Cayley transform W : D → H = {x + iy|y ≥ 0; x, y ∈ R} is
defined by

W (z) = i
1 + z

1 − z
. (15)

Our problem is then transformed to finding a quasi-conformal map h : H → H whose
Beltrami differential is equal to μ(W◦ f )−1 . According to Theorem 1, the composition map
h ◦ W ◦ f : M → H is conformal.

Note that under the Cayley transform, the boundary of the disk is mapped onto the real
axis y = 0. In other words, to enforce a circular boundary, we only need to enforce that h
maps the real axis to the real axis. Equivalently, we only need to restrict v = 0 on ∂H while
solving Eq. (13) and put no restriction on u. This allows us to compute h by solving two
separate elliptic equations for u and v.

In the discrete case, the surface M is represented discretely by a triangulated mesh. The
initial parameterization f projects M onto a triangulated mesh Ω of D. W maps Ω to a
big triangle in H. The three vertices of the big triangles are W (p1), W (p2) and W (p3),
where [p1, p2, p3] is a triangular face of Ω enclosing the point z = 1 ∈ D (see Fig. 2a). To
compute the desired quasi-conformal map h, we solve the Beltrami’s equation, subject to the
constraints that the three vertices of the big triangles are fixed and that vertices on the real
axis slide along the real axis:

⎧⎪⎨
⎪⎩
h = LBS

(
μ(W◦ f )−1

)
h(W (pi )) = W (pi ) for i = 1, 2, 3

Im(h(W (z))) = 0 for any z ∈ ∂D.

(16)

The above can be formulated as two sparse symmetric positive linear systems, which can
be solved efficiently using the conjugate gradient method.

After that, we map the upper half plane (or the big triangle in the discrete case) back to
the unit disk using the inverse Cayley transform

W−1(z) = z − i

z + i
. (17)
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Fig. 2 An illustration of the a “north pole” iteration and b “south pole” iteration

As we enforce the boundary vertices to be on the real axis under the map h, the corresponding
boundary vertices under the composition map

g := W−1 ◦ h ◦ W ◦ f (18)

will still be on ∂D. This preserves the circular boundary condition of disk conformal para-
meterizations. Also, since W−1 is conformal, the composition map g is our desired disk
conformal parameterization.

As a remark, the three vertices of the big triangleΩ correspond to the three vertices closest
to z = 1 on D. Since the point z = 1 here serves like the north pole in the stereographic
projection in [1], we regard this step as the “north pole” step. It should be noted that the
conformality distortion of the inner region of D is significantly improved by the composition
of quasi-conformal maps, as explained in Theorem 1. Also, the additional freedom on the
boundary vertices slightly alleviates the conformality distortion near the boundary, although
not perfectly. The conformality distortions near the boundary will be further adjusted in the
next subsection. Besides, by the composition formula in Theorem 1, we have ‖μg‖∞ < 1.
Hence, g is a diffeomorphism.

In summary, Fig. 2a gives a geometric illustration of the algorithm proposed in this sub-
section. To fix the conformality distortion at the inner region, our strategy is to compute a
quasi-conformal map of the unit disk with the same Beltrami coefficient as the initial para-
meterization. In order to linearlize the computation of the quasi-conformal map, the unit disk
is mapped to H or a big triangle in the discrete case by the Caley transform W . The problem
is then reduced to solving the Beltrami’s equation using LBS on the big triangle, which
involves two sparse symmetric positive definite linear systems. The desired quasi-conformal
map and hence the desired disk conformal parameterization can be obtained by an inverse
Caley transform W−1.
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4.3 Correction of Boundary Conformality Distortion by Reflection

After improving the conformality of the inner region, the next step is to correct the distortion
near the boundary. Note that as we enforce the boundary of the parameter domain to be a
unit circle (instead of a free boundary), this constraint causes conformality distortions near
the boundary.

In [1], for spherical conformal parameterizations, the “north pole” iteration corrects the
conformality distortion near the south pole of the sphere, and then the “south pole” iteration
improves the conformality near the north pole, with the southernmost region fixed. Since
the conformality distortion around the south pole is corrected by the “north pole” iteration,
conformality distortions will not be induced by fixing the southernmost region in the “south
pole” iteration. We extend this idea to our case. For our case, recall that the conformality of
the inner region is significantly improved by the “north pole” step as described in Sect. 4.2.
Thus, the innermost region of the disk is the “south pole” we desire. Motivated by [1], we
fix this least distorted region and correct the conformality distortion near the boundary by a
quasi-conformal map.

Similar to the last Sect. 4.2, we will make use of the LBS [41] to construct the suit-
able quasi-conformal map. As observed in the last subsection, the composition of a quasi-
conformal map can significantly reduce the distortion at the inner region but not near the
boundary. Since our goal is to handle the distortion on the boundary, the aforementioned
idea in the last subsection cannot be directly applied. To settle this problem, our strategy is
to enlarge the domain, so that boundary region becomes the inner region of a much bigger
domain. More precisely, we conformally reflect the unit disk along the circular boundary,
such that the new domain of interest becomes the whole complex plane C. In the discrete
case, the new domain is a big triangle whose three vertices are the reflected vertices of the
triangle near the origin. The boundary region is now located at the inner region of the new
big triangle (see Fig. 2b). Conformality distortion can be corrected by finding the appropriate
quasi-conformal map of the big triangle.

Mathematically, Lui et al. [42] introduced an extension of a diffeomorphism on D to C

through a reflection as follows.

Theorem 2 Let f : D → D be a diffeomorphism of the unit disk fixing 0 and 1 and satisfying
the Beltrami equation fz̄ = μ f fz with μ f defined on D. Then an extension of f from D to
C given by

f̃ (z) =
⎧⎨
⎩

f (z) if |z| ≤ 1
1

f (1/z̄)
if |z| > 1

(19)

satisfies the Beltrami Equation f̃z̄ = μ̃ f̃ f̃z on C, where

μ̃ f̃ (z) =
⎧⎨
⎩

μ f (z) if |z| ≤ 1

z2

z̄2
μ f (1/z̄) if |z| > 1.

(20)

Proof See [42]. 
�
In other words, by appropriately defining the Beltrami coefficient, one can extend a quasi-

conformal map of D to a quasi-conformal map of C.
Now we are ready to propose the “south pole” step for correcting the conformality distor-

tion near the boundary of the disk parameterization. Using the formula of reflection in Eq.
(19), we construct a copy of the points on D \ ∂D outside D by the correspondence
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z ∈ D \ ∂D ←→ 1

z̄
∈ C \ D, (21)

and extend the map g in Eq. (18) to the extended map g̃ : C → C defined by

g̃(z) =
⎧⎨
⎩
g(z) if z ∈ D

1
g(1/z̄)

if z ∈ C \ D.
(22)

Recall that the conformality distortion of the innermost region of the disk parameterization is
small after the “north pole” step. Since the outermost region of the new domain corresponds
to the innermost region of D after the reflection [Eq. (20)], the conformality distortion of the
outermost region of the new domain is also negligible. With this characteristics, we apply the
LBS [41] to compose the map g̃ by a quasi-conformal map Q̃ : C → C with the Beltrami
differential μ̃g̃−1 , leaving the outermost region of the new domain fixed:

{
Q̃ = LBS(μ̃g̃−1)

Q̃(z) = z for |z| � 1.
(23)

The conformality of g̃ will be significantly improved, according to the composition for-
mula of Beltrami differentials in Eq. (7). In particular, the conformality distortion near the
boundary of the original disk will be alleviated. Besides, by Theorem 2, the region corre-
sponding to Dwill be exactly mapped onto D under the map Q̃. In other words, the boundary
of the region is guaranteed to be a perfect circle in the continuous case. This results in a disk
conformal parameterization

ϕ := Q̃ ◦ g̃|M , (24)

with the conformality distortions at both the boundary region and the inner region corrected.
Moreover, as the composition of quasi-conformal maps results in a zero Beltrami differential,
we have ‖μϕ‖∞ < 1. Hence, ϕ is guaranteed to be bijective.

In the discrete case, the domain obtained using the reflection formula in Theorem 2 is
a big triangle Ω , where the outermost triangular faces of Ω corresponds to the innermost
triangular face near the origin in D (see Fig. 2b). The computation of Q̃ is reduced to finding
a quasi-conformal map of Ω , which is solved efficiently using LBS. Now, as the Beltrami
differential is piecewise constant on each triangular face T in D, we cannot directly apply
Eq. (20) to obtain the Beltrami differential μ̃g̃−1(T̃ ) on the reflected triangular faces T̃ on
Ω \ D. Instead, we approximate μ̃g̃−1(T̃ ) by

μ̃g̃−1(T̃ ) = (z12/z21 + z22/z22 + z32/z23)

3
μg−1(T ), (25)

where T = [z1, z2, z3]. This approximation unavoidably introduces numerical errors. Hence,
the boundary of the inner region, which is the original disk, may not be transformed to a
perfect circle under the composition. In this situation, we project the image boundary to the
unit circle. That is, for any vertex z ∈ ∂D,

z �→ z

|z| . (26)

Then we repeat the “south pole” step to extend the unit disk to the big triangle using the
reflection formula in Eq. (19) and perform the composition of quasi-conformal maps again
until convergence.
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5 Numerical Implementation

In this section, we describe the numerical implementation of our proposed method for the
disk conformal parameterization in details.

Firstly, we introduce the discretization of the disk harmonic map [37] that we use as an
initial map. Let K be the triangulation of a genus-0 open surface M . Denote the edge spanned
by two vertices u, v by [u, v]. The discrete harmonic energy of f : K → D is given by

E( f ) =
∑

[u,v]∈K
kuv|| f (u) − f (v)||2. (27)

Here kuv = cot α+cot β, where α, β are the angles opposite to the edge [u, v]. This is known
as the cotangent formula.

From the above, the Laplace-Beltrami operator is discretized as

ΔM f (vi ) =
∑

v j∈N (vi )

kviv j ( f (v j ) − f (vi )) (28)

where N (vi ) is the set of the vertices of the one-ring neighbors of the vertex vi . Hence, the
Laplace equation (2) becomes a sparse linear system in the form

Az = b (29)

where A is a square matrix, A(i, j) = kviv j , A(i, j) = −∑
v j∈N (vi )

kviv j subject to the
arc-length parameterized boundary constraint. The linear system can be efficiently solved
using the conjugate gradient method. Therefore, the initialization of our proposed method
can be computed efficiently.

One important mathematical quantity in our proposed method is the Beltrami differential.
In the discrete case, the computation of the Beltrami differentials between surfaces in R3 can
be simplified to the computation of Beltrami coefficients on C. This simplification is done
as follows.

As the surfaces are represented as triangulated meshes, it is convenient to define the
Beltrami coefficients on the triangular faces. Suppose f = (u+iv) : K1 ⊂ R

2 → K2 ⊂ R
2 is

an orientation preserving piecewise linear homeomorphism between two planar triangulated
meshes. To compute the associated Beltrami coefficient μ f , which is a complex-valued
function defined on each triangular face of K1, we approximate the partial derivatives on
every face T1 on K1.

Suppose T1 on K1 corresponds to another triangular face T2 on K2. The approxima-
tion of μ f on T1 can be achieved using the coordinates of the six vertices of T1 and T2.
Specifically, suppose T1 = [a1 + i b1, a2 + i b2, a3 + i b3] and T2 = [w1, w2, w3], where
a1, a2, a3, b1, b2, b3 ∈ R, and w1, w2, w3 ∈ C. We approximate the Beltrami coefficient

μ f (z) = ∂ f

∂ z̄

/
∂ f

∂z
(30)

on T1 by

μ f (T1) =

1
2 (Dx + i Dy)

⎛
⎝w1

w2

w3

⎞
⎠

1
2 (Dx − i Dy)

⎛
⎝w1

w2

w3

⎞
⎠

, (31)
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where

Dx = 1

2Area(T1)

⎛
⎝
b3 − b2
b1 − b3
b2 − b1

⎞
⎠

t

and Dy = − 1

2Area(T1)

⎛
⎝
a3 − a2
a1 − a3
a2 − a1

⎞
⎠

t

. (32)

More explicitly, the approximation of the Beltrami coefficient μ f on T1 is given by

μ f (T1) = ((b3−b2)w1+(b1−b3)w2+(b2−b1)w3)−i ((a3−a2)w1+(a1−a3)w2+(a2−a1)w3)

((b3−b2)w1+(b1−b3)w2+(b2−b1)w3)+i ((a3−a2)w1+(a1−a3)w2+(a2−a1)w3)
.

(33)

The above method can be extended to compute the Beltrami differential of a quasi-conformal
map g : K1 ⊂ R

2 → K2 ⊂ R
3. In this case, to compute the Beltrami differential between the

corresponding triangular faces, we use a rigidmotion R to translate each triangular face of K2

onto R
2. Then we can use the abovementioned method to compute the Beltrami coefficient

of the map R ◦g on the triangular face T1 on K1. Since rigid motions are conformal, we have

μR = 0. (34)

Hence, by the composition formula in Eq. (7),

μR◦g =
μg + gz

gz
(μR ◦ g)

1 + gz
gz

μg(μR ◦ g)

= μg + 0

1 + 0
= μg. (35)

That is, the Beltrami differential of g is equal to that of R ◦ g. Therefore, the extension
introduced above for the computation of Beltrami differentials is valid.

With the above extension, we can easily obtain the Beltrami differentials of the mappings
in the “north pole” step and the “south pole” iteration in Sects. 4.2 and 4.3 respectively. Recall
that Beltrami differentials are associated with quasi-conformal maps. Now, we look for an
efficient method to compute the quasi-conformal map f associated with a given Beltrami
differentialμ f . To achieve this, we apply theLBS [41] to reconstruct a quasi-conformal map
from a given Beltrami differential with the three vertices of the big triangule fixed.We briefly
explain the key idea for the discretization of the LBS [41].

Note that the quasi-conformal map associated with a given Beltrami differential can be
obtained by solving Eq. (13).LBS aims to discretize Eq. (13) and reduce it to a linear system.

For each vertex vi , let Ni be the collection of neighborhood faces attached to vi . Let
T = [vi , v j , vk] be a face and wl = f (vl) where l = i, j or k. Suppose vl = gl + i hl and
wl = sl + i tl (l = i, j, k). Assume further that the Beltrami differential of the face T is
denoted by μ f (T ) = ρT + i ηT . It can be proved that Eq. (13) can be discretized into the
following linear system:

∑
T∈Ni

1

Area(T )

{
(h j − hk)[α1(T )aT + α2(T )bT ] + (g j − gk)[α2(T )aT + α3(T )bT ]} = 0

∑
T∈Ni

1

Area(T )

{
(h j − hk)[α1(T )cT + α2(T )dT ] + (g j − gk)[α2(T )cT + α3(T )dT ]} = 0

(36)
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where

(
α1(T ) α2(T )

α2(T ) α3(T )

)
=

⎛
⎜⎝

(ρT −1)2+η2T
1−ρ2

T −η2T
− 2ηT

1−ρ2
T −η2T

− 2ηT
1−ρ2

T −η2T

1+2ρT +ρ2
T +η2T

1−ρ2
T −η2T

⎞
⎟⎠ , (37)

and aT , bT , cT and dT are certain linear combinations of the x-coordinates and y-coordinates
of the desired quasi-conformal map f . Hence, we can obtain the x-coordinate and y-
coordinate function of f by solving the linear system in Eq. (36). For more details, please
refer to [41].

As the computations of the Beltrami differentials and the associated quasi-conformalmaps
(using LBS [1,41]) are both linear, the “north pole” step and the “south pole” iteration are
highly efficient. Hence, our proposed method significantly speeds up the computation of the
disk conformal parameterizations. The detailed implementation of our proposed method is
described in Algorithm 1.

6 Experimental Results

In this section, we demonstrate the effectiveness of our proposed method using various 3D
simply-connected openmeshes. Themeshes are freely available on the AIM@SHAPE Shape
Repository [43]. The algorithm is developed using MATLAB on Windows 7 platform. All
experiments are performed on a PC with a 3.40GHz CPU. In our experiments, the error
threshold in Algorithm 1 is set to be ε = 10−5.

Figures 3, 4 and 5 respectively show a human face mesh, a Chinese lion head mesh, a
human brain mesh, and their disk conformal parameterizations obtained by our proposed
method. The histograms of the norms of the Beltrami differentials are shown in Fig. 6. It
is apparent that the peaks of the norms are close to 0, which implies that the conformality
distortions are small. Besides, from the energy plots shown in Fig. 7, it can be observed that
our proposed iterative method converges shortly. Hence, our method is very efficient.

To quantitatively assess the quality of our proposed method, three different factors are
considered, including the computational time, the mean of the norm of the Beltrami differ-
entials, and the standard deviation. The computational time evaluates the efficiency of our
proposed method, the mean of the norm of the Beltrami differential checks if our proposed
method is of small conformality distortions in general, and from the standard deviation we
can see whether there exists any region with extremely large conformality distortions. As we
aim at a bijective disk conformal parameterization, we compare our proposed method with
four state-of-the-art algorithms that guarantee bijectivity and enforce a circular boundary.
One of the methods is the discrete Ricci flow (RF) algorithm proposed by Jin et al. [18].
Another method is the inversive distance Ricci flow (IDRF) algorithm introduced by Yang
et al. [19]. The Yamabe Riemann map algorithm by Luo [20] and the holomorphic 1-form
algorithm by Gu and Yau [21] are also considered. The statistics of the performance of our
proposed method and the four mentioned algorithms are listed in Table 3.

Our proposed method is highly efficient and accurate. For a 3D mesh with 100k faces, the
time taken by ourmethod is usually less than 10s. Ourmethod is capable of handling different
types of meshes. Besides the typical human face meshes, our method also works for meshes
with irregular shapes and bad triangulations. For instance, our proposed method success-
fully computes the disk conformal parameterization of a human hand mesh with long fingers
(see Fig. 8). As a remark, in all our experiments, the resulting disk conformal parameteriza-
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Algorithm 1: Fast disk conformal parameterization
Input: A simply-connected open mesh M , an energy threshold ε.
Output: A bijective disk conformal parameterization ϕ : M → D.

Denote the boundary of M as ∂M = [v0, v1, ..., vn ]. Compute the edge lengths l[vi ,vi+1] for1
i = 0, 1, ..., n, where vn+1 := v0;
Obtain an initial disk parameterization f : M → D by2

{∑
v∈N (u) kuv( f (u) − f (v)) = 0 if u /∈ ∂M

f (vi ) = (cos θi , sin θi ) if u = vi ∈ ∂M

where s := ∑n−1
i=0 l[vi ,vi+1], si := ∑i−1

j=0 l[v j ,v j+1] and θi := 2πsi /s;

Apply the Cayley transform W : D → H defined by3

W (z) = i
1 + z

1 − z

;
Compute the Beltrami differential μ(W◦ f )−1 of the map (W ◦ f )−1;4

Compute the quasi-conformal map5

h = LBS(μ(W◦ f )−1 )

with the boundary vertices (W ◦ f )(vi ) restricted on the real axis;
Project the upper half plane to the unit disk by the inverse Cayley transform6

W−1(z) = z − i

z + i
.

Denote ϕ := W−1 ◦ h ◦ W ◦ f ;
repeat7

Update ν by the Beltrami differential μϕ−1 of the map ϕ−1;8

By reflection, extend ϕ−1 and μϕ−1 on D to ϕ̃−1 and μ̃ϕ̃−1 on a big triangular domain B using9
Eqs. (19) and (20). For each face T = [z1, z2, z3] on D, define

μ̃ϕ̃−1 (T̃ ) = (z1
2/z21 + z2

2/z22 + z3
2/z23)

3
μϕ−1 (T )

;
Compute the quasi-conformal map10

Q̃ = LBS(μ̃ϕ̃−1 )

with the outermost vertices of B fixed;
Update ϕ by the restriction Q̃ ◦ ϕ̃|M ;11
Project the boundary of ϕ(M) onto the unit circle;12

until mean(|μϕ−1 |) − mean(|ν|) < ε;13

tions are bijective. There exists no flips or overlaps in the disk conformal parameterizations
obtained by our proposed method.

For a more detailed comparison, it is easy to see from Table 3 that the computational
time of our method is shorter than that of the four aforementioned algorithms. Firstly, the
computational time of our proposed method is 60% shorter than that of the discrete Ricci
flow algorithm [18] on average. For the conformality, it is apparent from the mean and the
standard deviation of the norm of Beltrami differentials that our method surpasses the RF
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Fig. 3 A human face and its disk conformal parameterization using our proposed method. Top the triangula-
tions. Bottom the mean curvature texture maps

algorithm [18]. The mean of the norm by our proposed method is over 85% smaller than
that by the RF algorithm [18] on average. This shows that our proposed method has a better
conformality. Also, the standard deviation by our proposed method is 80% lower than that
by the RF algorithm [18] on average, which illustrates that the dispersion of the conformality
distortion of our proposed method is much smaller.

Then, for the comparison with the Inversive Distance Ricci Flow algorithm [19], it is
noteworthy that the computational time of our proposed method is 75% shorter than that of
the IDRF method [19] on average. Besides, the conformality of our method is comparable to
(and sometimes better than) that of the IDRF algorithm [19]. In particular, the conformality
near the boundary of our method is usually much better (see Fig. 9). This demonstrates
the effectiveness of our proposed method in correcting the conformality distortion at the
boundary region of the disk parameterization. More importantly, our method is applicable
for a wider class of meshes. The IDRF algorithm [19] may sometimes fail. For instance,
the IDRF algorithm [19] fails for the lion vase mesh shown in Fig. 10 while our proposed
methodworkswell. The features of the lion vasemesh, such as the circular patterns around the
boundary and the texture of the hair, are well preserved. These results reflect the advantages
of our proposed method.

When compared with the Yamabe Riemann map algorithm [20], our method also demon-
strates a significant improvement in the computational time. More explicitly, our proposed
method is 80% faster than the Yamabe Riemann map algorithm [20] on average. Our method
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Fig. 4 A Chinese lion head and its disk conformal parameterization using our proposed method. Top the
triangulations. Bottom the mean curvature texture maps

is also applicable to a wider class of meshes as the Yamabe Riemannmap algorithm [20] fails
for a number of meshes, especially for meshes with bad triangulations. For the remaining
cases, the conformality of our method is comparable to (and sometimes better) than that of
the Yamabe Riemann map algorithm [20].

For the differences between our proposed algorithmand the holomorphic 1-formalgorithm
[21], it is noteworthy that our proposed algorithm is 90% faster than the holomorphic 1-form
algorithm [21] on average. The conformality of our method is comparable to (and often
better) than that of the holomorphic 1-form algorithm [21]. Besides, our method is more
stable than the holomorphic 1-form algorithm [21] as the holomorphic 1-form algorithm
[21] occasionally fails.

In addition, Fig. 11 contrasts another feature between our proposed method and the IDRF
algorithm [19]. For the four abovementioned algorithms, one of the triangular faces has to
be punctured at the beginning and filled at the end. For the region around the puncture, the
conformality distortion is exceptionally large. On the contrary, the parameterization obtained
by our proposed method is of small conformality distortion and is free of such unnaturally
distorted regions. This again demonstrates the advantage of our proposed method.

Besides the four aforementioned methods, we also compare our proposed method with
the double covering algorithm [17] for simply-connected open surfaces. In [17], Jin et al.
suggested to glue two copies of the same surface along the boundaries to form a closed
symmetric surface, and then computed the spherical conformal mapping [2] of the new
surface, and obtained the disk parameterization by applying the stereographic projection on
the hemisphere. It is noteworthy that the spherical conformalmapping [2] uses the Gaussmap
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Fig. 5 A human brain and its disk conformal parameterization using our proposed method. Top the triangu-
lations. Bottom the mean curvature texture maps

Fig. 6 Histograms of the norm of Beltrami differentials |μ| of our proposed method for a human face mesh,
a Chinese lion head mesh and a human brain mesh. The small norms with the peak at |μ| ≈ 0 indicate that
the conformality distortion is very small. Left Human face. Middle Chinese lion head. Right Human brain

as initialization. In practice, it fails for most glued surfaces because the Gauss map is often
undefined on the sharp “boundaries” of the glued surfaces. Instead of using the Gauss map,
we use another method to obtain the initial spherical map. We apply the disk harmonic map
[37] and project the surface onto the southern hemisphere by the stereographic projection,
and then glue the surface with a copy of it in the northern hemisphere to form the initial
sphere. The energy threshold of the spherical conformal mapping [2] is set to be 10−3. The
comparison of the two algorithms is shown in Table 4.

As illustrated by Table 4, the computational time of our proposed method is much shorter.
Our proposed method is over 12 times faster than the double covering algorithm [17] on
average. Also, the conformality of our proposed method is significantly better. The mean and
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Fig. 7 Energy plots of mean(|μ|) of our proposed method for a human face mesh, a Chinese lion head mesh
and a human brain mesh. For all of the meshes, the iterations converge shortly. Left Human face. Middle
Chinese lion head. Right Human brain

Table 3 Performance of our proposed method and four state-of-the-art algorithms

Surfaces No. of
faces

Time (s) / mean(|μ|) /sd(|μ|)
Our method RF [18] IDRF [19]

Human face 49982 6.86/0.0101/0.0284 13.01/0.2421/0.1563 Fail

Sophie 41587 4.88/0.0056/0.0083 23.86/0.1476/0.0792 29.43/0.0057/0.0086

Max Planck 99515 6.44/0.0102/0.0109 21.54/0.1431/0.0818 30.86/0.0103/0.0106

Mask 62467 8.63/0.0043/0.0051 13.46/0.2379/0.1425 Fail

Nicolo da Uzzano 50042 5.71/0.0136/0.0314 10.34/0.2992/0.1434 Fail

Julius Caesar 433956 72.69/0.0032/0.0100 108.72/0.1033/0.0689 173.55/0.0033/0.0094

Bimba 48469 2.61/0.0217/0.0254 10.07/0.2947/0.1430 Fail

Human brain 96811 4.90/0.0250/0.0217 22.87/0.1861/0.1007 32.30/0.0249/0.0220

Hand 105860 6.89/0.0194/0.0168 35.38/0.0550/0.0281 39.63/0.0211/0.0212

Chinese lion 34421 2.23/0.0240/0.0271 8.03/0.2029/0.1024 10.11/0.0238/0.0265

Lion vase 98925 4.19/0.0236/0.0257 33.45/0.3687/0.1726 Fail

Surfaces No. of
faces

Time (s) / mean(|μ|) / sd(|μ|)
Our method Yamabe Riemann

map [20]
Holomorphic
1-form [21]

Human face 49982 6.86/0.0101/0.0284 Fail 52.12/0.0111/0.0292

Sophie 41587 4.88/0.0056/0.0083 34.32/0.0057/0.0085 57.36/0.0058/0.0083

Max Planck 99515 6.44/0.0102/0.0109 34.34/0.0103/0.0106 92.74/0.0103/0.0109

Mask 62467 8.63/0.0043/0.0051 Fail Fail

Nicolo da Uzzano 50042 5.71/0.0136/0.0314 Fail 50.97/0.0143/0.0275

Julius Caesar 433956 72.69/0.0032/0.0100 175.01/0.0033/0.0094 462.63/0.0033/0.0096

Bimba 48469 2.61/0.0217/0.0254 Fail 56.12/0.0230/0.0250

Human brain 96811 4.90/0.0250/0.0217 31.52/0.0249/0.0220 89.88/0.0251/0.0217

Hand 105860 6.89/0.0194/0.0168 44.25/0.0211/0.0212 104.04/0.0224/0.0269

Chinese lion 34421 2.23/0.0240/0.0271 14.82/0.0238/0.0265 40.43/0.0244/0.0271

Lion vase 98925 4.19/0.0236/0.0257 Fail 137.93/0.0271/0.0282
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Fig. 8 A hand mesh and its disk conformal parameterization using our proposed method. Top the triangula-
tions. Bottom the mean curvature texture maps

Fig. 9 Comparison of the norm of the Beltrami differentials between our proposed method and the IDRF
algorithm [19]. The colormaps show the norm of the Beltrami differentials on each triangular face. Left Our
proposed method. Right the IDRF algorithm [19]

the standard deviation of the norms of theBeltrami differentials of our proposedmethod are 80
and 60% smaller than those of the double covering algorithm [17] on average respectively.
As a remark, the boundary of the disk parameterization obtained by the double covering
algorithm [17] is usually different from a perfect circle, while our proposed method always
guarantees a circular boundary. This can be demonstrated from the last quantity in the table.
The quantity measures the deviation of the boundary from a perfect circle, which is defined as
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Fig. 10 A lion vase mesh and its disk conformal parameterization using our proposed method. The features
of the lion vase mesh are well preserved by the disk parameterization. This demonstrates the conformality of
the disk parameterization by our proposed method

Fig. 11 Comparison between the disk parameterizations obtained by our proposed method and by the IDRF
algorithm [19]. The colormaps show the norm of the Beltrami differentials on each triangular face. It is
observed that there is a region with exceptionally large conformality distortion in the center of the disk by the
IDRF algorithm [19]. Top the disk parameterizations obtained by our proposed method (left) and by the IDRF
algorithm [19](right). Bottom The zoom in of the center of the disks
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Table 4 Performance of our proposed method and the double covering method [17]

Surfaces No. of
faces

Time (s) / mean(|μ|) / sd(|μ|) / ∑boundary |1 − |z|2|
Our method Double covering [17]

Human face 49,982 6.86/0.0101/0.0284/3.5305e-14 82.20/0.0679/0.0770/0.0036

Sophie 41,587 4.88/0.0056/0.0083/4.3854e-14 31.62/0.0517/0.0390/0.0023

Max Planck 99,515 6.44/0.0102/0.0109/1.2768e-14 115.53/0.0326/0.0214/0.0022

Mask 62,467 8.63/0.0043/0.0051/1.0203e-13 74.88/0.1104/0.0461/0.0178

Nicolo da Uzzano 50,042 5.71/0.0136/0.0314/3.5749e-14 99.71/0.0917/0.0624/0.0577

Julius Caesar 433,956 72.69/0.0032/0.0100/1.3922e-13 467.42/0.1313/0.0361/0.0014

Bimba 48,469 2.61/0.0217/0.0254/1.8763e-14 80.94/0.0638/0.0389/0.0625

Human brain 96,811 4.90/0.0250/0.0217/9.3259e-15 fail

Hand 105,860 6.89/0.0194/0.0168/2.4314e-14 fail

Chinese lion 34,421 2.23/0.0240/0.0271/2.3204e-14 50.37/0.0477/0.0439/0.0034

Lion vase 98,925 4.19/0.0236/0.0257/1.8430e-14 180.30/0.0959/0.0602/0.0101

Table 5 Performance of our proposed method, the shape-preserving parameterization [8] and the mean-value
parameterization [14]

Surfaces No. of
faces

Time (s) / mean(|μ|) / sd(|μ|)
Our method Shape-preserving [8] Mean-value [14]

Human face 49,982 6.86/0.0101/0.0284 8.19/0.0818/0.0692 8.81/0.0722/0.0659

Sophie 41,587 4.88/0.0056/0.0083 6.58/0.0449/0.0411 6.25/0.0470/0.0393

Max Planck 99,515 6.44/0.0102/0.0109 32.28/0.0786/0.0459 29.92/0.0413/0.0260

Mask 62,467 8.63/0.0043/0.0051 12.15/0.1154/0.0259 13.26/0.1132/0.0237

Nicolo da Uzzano 50,042 5.71/0.0136/0.0314 9.07/0.1306/0.0852 9.08/0.1144/0.0800

Julius Caesar 433,956 72.69/0.0032/0.0100 203.55/0.1332/0.0362 221.69/0.1323/0.0359

Bimba 48,469 2.61/0.0217/0.0254 10.60/0.1271/0.0724 10.51/0.0722/0.0448

Human brain 96,811 4.90/0.0250/0.0217 27.48/0.0950/0.0452 27.79/0.0656/0.0316

Hand 105,860 6.89/0.0194/0.0168 37.65/0.0798/0.0431 39.29/0.0552/0.0371

Chinese lion 34,421 2.23/0.0240/0.0271 5.32/0.1083/0.0590 5.74/0.0721/0.0450

Lion vase 98,925 4.19/0.0236/0.0257 27.26/0.3892/0.2480 30.29/0.2496/0.1610

∑
boundary |1− |z|2|. If the quantity is equal to zero, it means the boundary is a perfect circle.

As shown in the table, our method successfully creates disk conformal parameterizations
onto a perfect disk, while the double covering approach cannot.

Besides, we compare our proposed algorithm with the shape-preserving parameterization
method [8], and themean-value parameterizationmethod [14]. The twomentioned algorithms
are both with fixed circular boundary, bijectivity guaranteed and linear. As shown in Table
5, our proposed algorithm is more computationally efficient than both the shape-preserving
method [8] and the mean-value parameterization [14]. Moreover, it is noteworthy that our
method has significantly better performance on the conformality distortion. The comparisons
demonstrate the effectiveness of our proposed method.

In addition, we demonstrate the bijectivity of our proposed algorithm. The bijectivity of
our proposed algorithm is independent of the quality of the initial disk harmonic map. Here
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Fig. 12 Comparison between the disk parameterizations of an open surface with multiple peaks obtained
by the initial disk harmonic map and by our proposed method. It is observed that there are foldings near the
peak in the initial disk harmonic map, but they are eventually corrected by our proposed algorithm. Left a
simply-connected open surface with multiple sharp peaks. Top right the initial disk harmonic parameterization
and the zoom in of a peak of the disk. Bottom right the final parameterization result obtained by our proposed
algorithm and the zoom in of the peak

we consider two examples that the initial disk harmonic maps are not bijective while our
algorithm can eventually correct the overlaps and guarantee the bijectivity. Figure 12 shows
a simply-connected open surface with several sharp peaks. For the initial disk harmonic
map, overlaps are observed near the peaks. The overlaps are corrected using our proposed
algorithm. Another example is given in Fig. 13. Under the initial disk harmonicmap, overlaps
exist near the legs of a horse surface. Again, our proposed algorithm restores the bijectivity.
The examples illustrate that our proposed algorithm results in a bijective parameterization
even if the initial map is not bijective.

7 Conclusion and Future Work

In this paper, we have presented a novel algorithm for the disk conformal parameterization of
simply-connected open surfaces. Our method consists of three major steps. In the first step,
we compute the initial disk parameterization using the disk harmonic map [37]. Then, we
project the unit disk to the upper half plane and compose themapwith a quasi-conformal map
to correct the conformality distortion at the inner region of the disk. After that, we extend the
unit disk to a big triangular domain in C using a reflection, and compose the extended map
with a quasi-conformal map with the extended Beltrami differential. Finally, by projecting
the boundary to the unit disk if necessary and repeating the previous step, a disk conformal
parameterization is obtained. It is noteworthy that the bijectivity of the parameterization is
ensured by the composition formula of quasi-conformal maps. Experimental results have
illustrated the effectiveness of our proposed method, with significant improvements in the
computational time, the conformality and the stability. In the future, we will investigate the
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Fig. 13 Comparison between the disk parameterizations of a horse surface obtained by the initial disk har-
monic map and by our proposed method. The foldings near the legs in the initial disk harmonic map are
resolved by our proposed algorithm. Left a horse surface. Top right the initial disk harmonic parameterization
and the zoom in of a leg of the disk. Bottom right the final parameterization result obtained by our proposed
algorithm and the zoom in of the leg

possibility of extending the proposed method for enhancing the parameterizations of high
genus surfaces.
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