THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics

MATH1010 UNIVERSITY MATHEMATICS 2024-2025 Term 1 Suggested Solutions of WeBWork Coursework 10

If you find any errors or typos, please email us at math1010@math.cuhk.edu.hk

1. (1 point)

Use the Fundamental Theorem of Calculus to evaluate (if it exists)

$$\int_{-\pi}^{\pi} f(x) \, dx,$$

where

$$f(x) = \begin{cases} -9x & \text{if } -\pi \le x \le 0\\ -5\sin(x) & \text{if } 0 < x \le \pi \end{cases}$$

If the integral does not exist, type "DNE" as your answer.

Solution:

$$\begin{split} & \int_{-\pi}^{\pi} f(x) dx = \int_{-\pi}^{0} -9x dx - \int_{0}^{\pi} 5\sin(x) dx \\ & = \frac{9x^{2}}{2} \Big|_{-\pi}^{0} + 5\cos(x) \Big|_{0}^{\pi} \\ & = -10 + \frac{9\pi^{2}}{2} \end{split}$$

2. (1 point)

Evaluate the limit $\lim_{n\to\infty} \sum_{j=1}^{n} \frac{7j^3}{n^4}$.

$$\lim_{n\to\infty}\sum_{j=1}^n \frac{7j^3}{n^4} = \underline{\hspace{1cm}}$$

Solution:

Let
$$S_n = \sum_{j=1}^n \frac{7j^3}{n^4} = \frac{7}{n^4} \sum_{j=1}^n j^3 = \frac{7}{n^4} \left(\frac{n(n+1)}{2} \right)^2 = \frac{7}{n^4} \cdot \frac{n^2(n+1)^2}{4} = \frac{7n^2(n^2+2n+1)}{4n^4} = \frac{7(n^2+2n+1)}{4n^4}$$

Then $\lim_{n \to \infty} \sum_{j=1}^n \frac{7j^3}{n^4} = \lim_{n \to \infty} S_n = \frac{7}{4}$.

3. (1 point) The following sum

$$\sqrt{16 - \left(\frac{4}{n}\right)^2} \cdot \frac{4}{n} + \sqrt{16 - \left(\frac{8}{n}\right)^2} \cdot \frac{4}{n} + \ldots + \sqrt{16 - \left(\frac{4n}{n}\right)^2} \cdot \frac{4}{n}$$

is a right Riemann sum with n subintervals of equal length for the definite integral

$$\int_0^b f(x) \, dx$$

where $b = \underline{\hspace{1cm}}$ and $f(x) = \underline{\hspace{1cm}}$

Solution: It is clear

$$\sqrt{16 - \left(\frac{4}{n}\right)^2} \cdot \frac{4}{n} + \sqrt{16 - \left(\frac{8}{n}\right)^2} \cdot \frac{4}{n} + \ldots + \sqrt{16 - \left(\frac{4n}{n}\right)^2} \cdot \frac{4}{n} = \frac{4}{n} \sum_{i=1}^n \sqrt{16 - \left(\frac{4i}{n}\right)^2}$$

thus if one compare the form of Riemann sum, we know the interval [0,4] is equally divided into n subintervals and the intergrand function is $\sqrt{16-x^2}$

thus
$$b = 4, f(x) = \sqrt{16 - x^2}$$

4. (1 point) Compute the following limit. Use INF to denote ∞ and MINF to denote $-\infty$.

$$\lim_{x \to 0} \frac{x}{\int_{x}^{x^{2}} \sqrt[3]{729 - 5t^{3}} dt} = \underline{\hspace{1cm}}$$

Solution: Let $f(x) = \int_x^{x^2} \sqrt[3]{729 - 5t^3} dt$ then $f'(x) = 2x\sqrt[3]{729 - 5x^6} - \sqrt[3]{729 - 5x^3}$ thus it is clear $\lim_{x\to 0} f'(x) = -9$.By using L'Hopital's rule, we know

$$\lim_{x \to 0} \frac{x}{\int_{x}^{x^{2}} \sqrt[3]{729 - 5t^{3}} dt} = \lim_{x \to 0} \frac{x}{f(x)} = \lim_{x \to 0} \frac{1}{f'(x)} = -\frac{1}{9}$$

5. (1 point)

Evaluate the integral

$$\int_{\sqrt{\pi/2}}^{\sqrt{\pi}} 6t^3 \cos(t^2) \, dt$$

Solution: We use change of variable $t^2 = x$ and integration by part

$$\int_{\sqrt{\pi/2}}^{\sqrt{\pi}} 6t^3 \cos(t^2) dt = \int_{\sqrt{\pi/2}}^{\sqrt{\pi}} 3t^2 \cos(t^2) dt^2 = \int_{\pi/2}^{\pi} 3x \cos(x) dx$$
$$= 3x \sin(x)|_{\pi/2}^{\pi} - \int_{\pi/2}^{\pi} 3\sin(x) dx = -\frac{3\pi}{2} + 3\cos(x)|_{\pi/2}^{\pi} = -3 - \frac{3\pi}{2}$$

6. (1 point)

Evaluate the integral

$$\int_0^4 \left| \sqrt{x+2} - x \right| dx$$

Solution: Note that by simple computation we know $\sqrt{x+2} \ge x$ if $x \in (0,2)$ and $\sqrt{x+2} \le x$ if $x \in (0,2)$ and $x \in (0,2)$

$$\int_0^4 \left| \sqrt{x+2} - x \right| dx = \int_0^2 \sqrt{x+2} - x \, dx + \int_2^4 x - \sqrt{x+2} \, dx$$
$$= \left[\frac{2}{3} (x+2)^{\frac{3}{2}} - \frac{x^2}{2} \right] \Big|_0^2 + \left[\frac{x^2}{2} - \frac{2}{3} (x+2)^{\frac{3}{2}} \right] \Big|_2^4 = \frac{44}{3} - \frac{4\sqrt{2}}{3} - 4\sqrt{6}$$

7. (1 point)

The interval [0,3] is partitioned into n equal subintervals, and a number x_i is arbitrarily chosen in the i^{th} subinterval for each i. Then:

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{6x_i + 2}{n} = \underline{\qquad}$$

Solution:

Solution:

Let's interpret the sum as a Riemann sum.

Recall that the Riemann sum for a function f(x) on the interval [0,3] has the form $\sum_{i=1}^{n} f(x_i) \frac{3}{n}$ since the length of each subinterval is $\Delta x = \frac{3}{n}$.

$$\sum_{i=1}^{n} \frac{6x_i + 2}{n} = \sum_{i=1}^{n} \frac{6x_i + 2}{3} \cdot \frac{3}{n}$$
, therefore the given sum is the Riemann sum for $f(x) = \frac{6x + 2}{3}$.

The limit of the Riemann sum as n approaches infinity is the integral of the function f(x) from 0 to 3, thus

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{6x+2}{3} \cdot \frac{3}{n} = \int_{0}^{3} \frac{6x+2}{3} dx = \frac{1}{3} \int_{0}^{3} (6x+2) dx = \left[\frac{1}{3} \left(3x^{2} + 2x \right) \right] \Big|_{0}^{3} = \frac{1}{3} \left(3 \cdot 3^{2} + 2 \cdot 3 \right) = 11$$

8. (1 point)

(a) Consider the integral $\int_0^{\pi} \sin(5x) dx$. Which of the following expressions represents the integral as a limit of Riemann sums?

• A.
$$\lim_{n \to \infty} \sum_{i=1}^{n} \sin\left(\pi + \frac{5\pi i}{n}\right)$$

• B.
$$\lim_{n\to\infty} \sum_{i=1}^n \frac{\pi}{n} \sin\left(\frac{\pi i}{n}\right)$$

• C.
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{\pi}{n} \sin\left(\frac{5\pi i}{n}\right)$$

• D.
$$\lim_{n \to \infty} \sum_{i=1}^{n} \sin\left(\frac{\pi i}{n}\right)$$

• E.
$$\lim_{n\to\infty}\sum_{i=1}^n \frac{\pi}{n} \sin\left(\pi + \frac{5\pi i}{n}\right)$$

• F.
$$\lim_{n\to\infty} \sum_{i=1}^{n} \sin\left(\frac{5\pi i}{n}\right)$$

(b) Limit in the correct answer to (a) = _____

Solution: (a)let $f(x) = \sin(5x)$ then devide interval $[0, \pi]$ into n equal size subintervals, and use the language of Riemann sum, we have

$$\int_0^{\pi} \sin(5x) dx = \int_0^{\pi} f(x) dx = \frac{\pi}{n} \lim_{n \to \infty} \sum_{i=1}^n f(\frac{\pi i}{n}) = \lim_{n \to \infty} \sum_{i=1}^n \frac{\pi}{n} \sin(\frac{5\pi i}{n})$$

thus C is the right expression.

(b)

$$\int_0^{\pi} \sin(5x) dx = -\frac{\cos(5x)}{5} \Big|_0^{\pi} = \frac{2}{5}$$

9. (1 point)

Consider the integral $\int_2^6 \frac{x}{1+x^5} dx$. Which of the following expressions represents the integral as a limit of Riemann sums?

• A.
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{4}{n} \frac{2 + \frac{4i}{n}}{1 + \left(2 + \frac{4i}{n}\right)}$$

• B.
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{6}{n} \frac{2 + \frac{6i}{n}}{1 + \left(2 + \frac{6i}{n}\right)^{5}}$$

• C.
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{6}{n} \frac{2 + \frac{6i}{n}}{1 + (2 + \frac{6i}{n})}$$

• D.
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{2 + \frac{4i}{n}}{1 + \left(2 + \frac{4i}{n}\right)^{5}}$$

• E.
$$\lim_{n\to\infty} \sum_{i=1}^{n} \frac{4}{n} \frac{2 + \frac{4i}{n}}{1 + (2 + \frac{4i}{n})^5}$$

• F.
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{2 + \frac{6i}{n}}{1 + \left(2 + \frac{6i}{n}\right)^5}$$

Solution: By dividing interval [0,4] into n equal-size subintervals, we have

$$\int_{2}^{6} \frac{x}{1+x^{5}} dx = \int_{0}^{4} \frac{x+2}{1+(x+2)^{5}} dx = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{4}{n} \frac{2+\frac{4i}{n}}{1+\left(2+\frac{4i}{n}\right)^{5}}$$

Thus E is the right expression.

10. (1 point)

Let
$$F(x) = \int_4^x \frac{6}{\ln(5t)} dt$$
, for $x \ge 4$.

A.
$$F'(x) =$$

B. On what interval or intervals is F increasing?

 $x \in \underline{\hspace{1cm}}$

(Give your answer as an interval or a list of intervals, e.g., (-infinity,8] or (1,5),(7,10), or enter nonefor no intervals.)

 \mathbf{C} . On what interval or intervals is the graph of F concave up?

 $x \in \underline{\hspace{1cm}}$

(Give your answer as an interval or a list of intervals, e.g., (-infinity,8] or (1,5),(7,10), or enter nonefor no intervals.)

Solution:

A.
$$F'(x) = \frac{6}{\ln(5x)}$$
.

B. For $x \ge 4$, F'(x) > 0, so F(x) is increasing for all $x \in [4, \infty)$.

C. $F''(x) = -6\frac{1}{x\ln(5x)^2} < 0$ for $x \ge 4$, so the graph of F(x) is concave down for all $x \in [4, \infty)$ (and is concave up for no intervals).

11. (1 point)

Suppose that $F(x) = \int_{1}^{x} f(t) dt$, where

$$f(t) = \int_{1}^{t^2} \frac{\sqrt{7 + u^4}}{u} \, du.$$

Find F''(2).

$$F''(2) = \underline{\hspace{1cm}}$$

Solution: since $F(x) = \int_{1}^{x} f(t) dt$ and

$$f(x) = \int_{1}^{x^2} \frac{\sqrt{7 + u^4}}{u} du.$$

we have F'(x) = f(x) and

$$f'(x) = 2x \cdot \frac{\sqrt{7+x^8}}{x^2} = \frac{2\sqrt{7+x^8}}{x}$$

thus

$$F''(x) = f'(x) = \frac{2\sqrt{7+x^8}}{x}$$
$$F''(2) = f'(x) = \frac{2\sqrt{7+2^8}}{2} \approx 16.2172747402$$