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1. The function f is continuous at x = 0 and is defined for −1 < x < 1 by

f(x) =


2a
x

(ex − 1) if − 1 < x < 0

1 if x = 0
bx cosx
1−
√
1−x if 0 < x < 1.

Determine the values of the constants a and b.

Solution For f to be continuous at x = 0,

(a) lim
x→0+

f(x) = f(0)

1 = lim
x→0+

bx cosx

1−
√

1− x

= lim
x→0+

bx cosx(1 +
√

1− x)

1− (1− x)

= lim
x→0+

b cosx(1 +
√

1− x)

= 2b

So b = 1
2
.

(b) lim
x→0−

f(x) = f(0)

1 = lim
x→0−

2a

x
(ex − 1)

= 2a

So a = 1
2
.

2. Determine whether the following functions are differentiable at x = 0.

(a) f(x) =

{
1 + 3x− x2, when x < 0

x2 + 3x+ 2, when x ≥ 0

(b) f(x) =

{
e−

1
x2 , when x 6= 0

0, when x = 0

(c) f(x) = | sinx|
(d) f(x) = x|x|
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Solution

(a) Note that

lim
x→0+

f(x) = lim
x→0+

x2 + 3x+ 2

= 2

lim
x→0−

f(x) = lim
x→0−

1 + 3x− x2

= lim
x→0−

1 6= 2

Hence, f is not continuous at x = 0, thus not differentiable at x = 0.

(b)

lim
x→0+

f(x)− f(0)

x− 0
= lim

x→0+

e−
1
x2

x

= lim
y→∞

ye−y
2

(Let y =
1

x
)

= lim
y→∞

y

ey2

= lim
y→∞

1

y

y2

ey2

=

(
lim
y→∞

1

y

)(
lim
y→∞

y2

ey2

)
= 0 · 0 = 0

lim
x→0−

f(x)− f(0)

x− 0
= lim

x→0−

e−
1
x2

x

= lim
y→−∞

ye−y
2

(Let y =
1

x
)

= lim
y→−∞

y

ey2

= lim
y→−∞

1

y

y2

ey2

=

(
lim

y→−∞

1

y

)(
lim

y→−∞

y2

ey2

)
=

(
lim

y→−∞

1

y

)(
lim
y2→∞

y2

ey2

)
= 0 · 0 = 0

Hence, f is differentiable at x = 0.

(c)

lim
x→0+

f(x)− f(0)

x− 0
= lim

x→0+

| sinx| − 0

x

= lim
x→0+

sinx

x

= 1



lim
x→0−

f(x)− f(0)

x− 0
= lim

x→0−

| sinx| − 0

x

= lim
x→0−

− sinx

x

= −1 6= 1

Hence, f is not differentiable at x = 0.

(d)

lim
x→0+

f(x)− f(0)

x− 0
= lim

x→0+

x|x| − 0

x

= lim
x→0+

x2

x

= 0

lim
x→0−

f(x)− f(0)

x− 0
= lim

x→0−

x|x| − 0

x

= lim
x→0−

−x2

x

= 0

(a) 2a (b) 2b (c) 2c

(d) 2d

Figure 1: Graph of Q2



3. Let f(x) = |x|3.

(a) Find f ′(x) for x 6= 0.

(b) Show that f(x) is differentiable at x = 0.

(c) Determine whether f ′(x) is differentiable at x = 0.

Solution

(a)

f ′(x) =

{
3x2, when x > 0;

−3x2, when x < 0.

(b) Note that

lim
h→0

|h|3 − 0

h− 0
= lim

h→0

|h|h2

h
= lim

h→0
|h|h = 0.

Hence f is differentiable at x = 0 with f ′(x) = 0.

(c) Note that, by (a) and (b),

lim
h→0+

f ′(h)− f ′(0)

h− 0
= lim

h→0+

3h2

h
= lim

h→0+
3h = 0.

lim
h→0−

f ′(h)− f ′(0)

h− 0
= lim

h→0−

−3h2

h
= lim

h→0−
−3h = 0.

Hence f ′(x) is differentiable at x = 0 with f ′′(x) = 0.

(a) graph of f (b) graph of f ′ (c) graph of f ′′

Figure 2: Graph of Q3



4. Let

f(x) =

(x− 1)2 sin

(
1

x− 1

)
, when x 6= 1;

0, when x = 1.

(a) Is f continuous on R?

(b) Is f differentiable on R?

(c) Is f ′ continuous on R?

Solution

(a) lim
x→1

f(x)

= lim
x→1

(x− 1)2 sin

(
1

x− 1

)
= 0 (by squeeze theorem)

= f(1)

So f is continuous.

(b) lim
x→1

f(x)− f(1)

x− 1

= lim
x→1

(x− 1) sin

(
1

x− 1

)
= 0 by squeeze theorem.

So f ′(1) = 0.

When x 6= 2,

f ′(x)

= lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

1

h

(
(x+ h− 1)2 sin

(
1

x+ h− 1

)
− (x− 1)2 sin

(
1

x− 1

))
= lim

h→0

1

h

(
(x− 1)2

(
sin

(
1

x+ h− 1

)
− sin

(
1

x− 1

))
+ (2h(x− 1) + h2) sin

(
1

x+ h− 1

))
=

[
lim
h→0

1

h
(x− 1)2

(
2 cos

(
x− 1 + h/2

(x+ h− 1)(x− 1)

)
sin

(
−h/2

(x+ h− 1)(x− 1)

))]
+

(x− 1) sin

(
1

x− 1

)
= − cos

(
1

x− 1

)
+ (x− 1) sin

(
1

x− 1

)
So f is differentiable.

(c) limx→1 f
′(x) does not exist. So f ′ is not continuous.



5. Find natural domains of the following functions and differentiate them on their
natural domains. You are not required to do so from first principles.

(a) f(x) =
sin x

1 + cos x
.

(b) f(x) = (1 + tan2 x) cos2 x.

(c) f(x) = ln (ln (ln x))

(d) f(x) = ln | sin x|

Solution

(a)

1 + cos x = 0

cosx = −1

x = (2n− 1)π, n ∈ Z

Therefore, the natural domain is R \ {(2n− 1)π : n ∈ Z}.

f ′(x) =
(1 + cos x) cosx− sinx(− sinx)

(1 + cos x)2

=
cosx+ cos2 x+ sin2 x

(1 + cos x)2

=
cosx+ 1

(1 + cos x)2

=
1

1 + cos x

(b) tan x is well-defined on R\{ (2n−1)π
2

: n ∈ Z}. Therefore, this is also the natural
domain of f .
Note that f(x) = (1 + tan2 x) cos2 x = cos2 x+ sin2 x = 1. Hence, f ′(x) = 0.

(c)

lnx > 0 (1)

x > 1 (2)

ln(lnx) > 0 (3)

lnx > 1 (4)

x > e (5)

By considering the intersection of the intervals above, the natural domain is
given by (e,∞).

f ′(x) =
1

ln(lnx)
· 1

lnx
· 1

x

=
1

x lnx ln(lnx)



(d)

| sinx| > 0

sinx 6= 0

x 6= nπ, n ∈ Z

Therefore, the natural domain of f is R \ {nπ : n ∈ Z}. Note that f(x) =
ln(± sinx). Therefore,

f ′(x) =
1

± sinx
· ± cosx

=
cosx

sinx
= cotx

(a) 5a (b) 5b (c) 5c

(d) 5d

Figure 3: Graph of Q5

6. Let f : R→ R be a function satisfying

f(x+ y) = f(x) + f(y) for all x, y ∈ R.

Suppose f is differentiable at x = 0, with f ′(0) = a. Show that f(x) = ax.

Solution
Let x = y = 0, we have

f(0) = 2f(0).

Hence f(0) = 0.
Since f is differentiable at x = 0, we have

a = f ′(0) = lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

f(h)

h
.



For each fixed x ∈ R, we have

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

f(x) + f(h)− f(x)

h
= lim

h→0

f(h)

h
= a.

This indicates that f is differentiable everywhere with f ′(x) = a. Then f(x) = ax+c
for some c ∈ R.
However, we must have c = 0 since f(0) = c = 0.

7. Find
dy

dx
if

(a) x2 + y2 = exy

(b) x3y + sinxy2 = 1

(c) y = tan−1
√
x

(d) y = 2sinx

(e) y = xlnx

(f) y = xx
x

Solution

(a) x2 + y2 = exy

2x+ 2y
dy

dx
=

(
1 + x

dy

dx

)
exy

dy

dx
=

exy − 2x

2y − xexy

(b) x3y + sinxy2 = 1

3x2y + x3
dy

dx
+

(
y2 + 2xy

dy

dx

)
cosxy2 = 0

dy

dx
=
−3x2y − y2 cosxy2

x3 + 2xy cosxy2

(c) y = tan−1
√
x

tan y =
√
x

sec2 y
dy

dx
=

1

2
√
x

dy

dx
=

cos2 y

2
√
x

(d) y = 2sinx

dy

dx
= 2sinx ln 2 cos x

(e) y = xlnx

ln y = (lnx)2

1

y

dy

dx
=

2 lnx

x
dy

dx
=

2y lnx

x



(f) y = xx
x

ln y = xx lnx

ln ln y = x lnx+ ln lnx
1

y ln y

dy

dx
= lnx+ 1 +

1

x lnx
dy

dx
= (y ln y)

(
lnx+ 1 +

1

x lnx

)

8. Find
d2y

dx2
if

(a) y = ln tan x

(b) y = sin−1
√

1− x2

Solution
(a)

dy

dx
=

1

tanx
· sec2 x =

cosx

sinx
· 1

cos2 x
=

1

sinx cosx
=

2

sin 2x
= 2 csc(2x)

d2y

dx2
= −4 csc(2x) cot(2x)

(b)
dy

dx
=

1√
1− (

√
1− x2)2

· −2x

2
√

1− x2
= − x√

x2 − x4

d2y

dx2
= −

√
x2 − x4 − x · 2x−4x3

2
√
x2−x4

x2 − x4
= −x

2 − x4 − x(x− 2x3)

(x2 − x4) 3
2

= − x4

(x2 − x4) 3
2

9. Find the n-th derivative of the following functions for all positive integers n.

(a) f(x) = (ex + e−x)2, x ∈ R

(b) f(x) =
1

1− x2
, x ∈ (−1, 1)

(c) f(x) = sin x cos x, x ∈ R
(d) f(x) = cos2 x, x ∈ R

(e) f(x) =
x2

ex
, x ∈ R

Solution

(a) Simplify f(x) first,

f(x) = (ex + e−x)2 = e2x + 2 + e−2x.

Hence,

f (n)(x) = 2ne2x + (−2)ne−2x.



(b) Process the partial fraction for f(x). Suppose

f(x) =
A

1 + x
+

B

1− x
,

where A,B is a constant, then we have

1

1− x2
=

(B − A)x+ (B + A)

1− x2
,

by comparing the coefficients, we have{
B + A = 1,

B − A = 0.

Hence, A = B =
1

2
, and

f(x) =
1

2

(
1

1 + x
+

1

1− x

)
.

Therefore,

f (n)(x) =
1

2

[
(−1)n

n!

(1 + x)n+1
+

n!

(1− x)n+1

]
.

(c) By double angle formula,

f(x) = sinx cosx =
1

2
sin 2x.

Hence,

f (n)(x) =


2n−1 sin 2x if n = 4k for some k ∈ N,
2n−1 cos 2x if n = 4k + 1 for some k ∈ N,
−2n−1 sin 2x if n = 4k + 2 for some k ∈ N,
−2n−1 cos 2x if n = 4k + 3 for some k ∈ N.

(d) By double angle formula,

f(x) = cos2 x =
1

2
(1 + cos 2x).

Hence,

f (n)(x) =


2n−1 cos 2x if n = 4k for some k ∈ N,
−2n−1 sin 2x if n = 4k + 1 for some k ∈ N,
−2n−1 cos 2x if n = 4k + 2 for some k ∈ N,
2n−1 sin 2x if n = 4k + 3 for some k ∈ N.



(e) Note that

f(x) =
x2

ex
= x2e−x = g(x)h(x)

where g(x) = x2, h(x) = e−x. Using Leibniz Rule (proved by mathematical
induction and product rule),

f (n)(x) =
n∑
k=0

(
n

k

)
g(k)(x)h(n−k)(x).

Note that g′(x) = 2x, g′′(x) = 2 and g(k)(x) = 0 for all k ≥ 3. Hence,

f (n)(x) =

(
n

0

)
g(x)h(n)(x) +

(
n

1

)
g′(x)h(n−1)(x) +

(
n

2

)
g′′(x)h(n−2)(x)

= (−1)nx2e−x + (−1)n+12nxe−x + (−1)nn(n− 1)e−x.

10. Find all points (x0, y0) on the graph of

x
2
3 + y

2
3 = 8

where lines tangent to the graph at (x0, y0) have slope −1.

Solution
We differentiate both sides of the equation and get

2

3
x−

1
3 +

2

3
y−

1
3y′ = 0.

Thus,

y′ = −y
1
3

x
1
3

.

Since y′ = −1 at (x0, y0), we have

y
1
3
0 = x

1
3
0 ,

and thus x0 = y0. Plugging this back to the equation, we have

2x
2
3
0 = 8,

and so x0 = ±8. Therefore, (x0, y0) = (8, 8) or (−8,−8).

11. The chain rule says
(f ◦ g)′(x) = f ′(g(x)) · g′(x),

or equivalently,
dy

dx
=
dy

du
· du
dx
,

where y = f(u) and u = g(x).



(a) Give examples to show

(f ◦ g)′′(x) 6= f ′′(g(x)) · g′′(x),

or equivalently,
d2y

dx2
6= d2y

du2
· d

2u

dx2
,

where
d2y

dx2
denotes the second derivative of y = f(x).

(b) Prove that

(f ◦ g)′′(x) = f ′′(g(x)) · (g′(x))2 + f ′(g(x)) · g′′(x).

Solution

(a) Let y = u2 and u = x.

Then y = x2.
dy

dx
= 2x

d2y

dx2
= 2

d2u

dx2
= 0

d2y

du2
· d

2u

dx2
= 0

(b) y = f(u) and u = g(x).
dy

dx
=
dy

du
· du
dx

d

dx

dy

dx

=
d

dx

(
dy

du
· du
dx

)
=

d

dx

(
dy

du

)
· du
dx

+
dy

du
· d

2u

dx2

=
d2y

du2

(
du

dx

)2

+
dy

du
· d

2u

dx2

12. (a) Suppose a, b > 0 are constants, and

y =
1

ab
arctan

(
b

a
tan x

)

for x ∈
(
−π

2
,
π

2

)
. Express

dy

dx
as a function of sinx and cos x.

(b) Suppose a, b > 0 are constants, and

y = ln

∣∣∣∣a+ b tan x

a− b tan x

∣∣∣∣



for x ∈
(
−π

2
,
π

2

)
\
{
± arctan

a

b

}
. Express

dy

dx
as a function of sinx and cosx.

Solution

(a)
dy

dx
=

1

ab

1

1 + ( b
a

tanx)2
· b
a

sec2 x =
1

a2 cos2 x+ b2 sin2 x

(b) Note that

y = ln

∣∣∣∣a cosx+ b sinx

a cosx− b sinx

∣∣∣∣
and

d

dx
ln |x| = 1

x
for x 6= 0.

Hence,

dy

dx
=

(
a cosx− b sinx

a cosx+ b sinx

)
×

(a cosx− b sinx)(−a sinx+ b cosx)− (a cosx+ b sinx)(−a sinx− b cosx)

(a cosx− b sinx)2

=
2ab cos2 x+ 2ab sin2 x

(a cosx+ b sinx)(a cosx− b sinx)

=
2ab

a2 cos2 x− b2 sin2 x
.


