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Abstract of thesis entitled:
Strominger-Yau-Zaslow Transformations in Mirror Symmetry

Submitted by CHAN, Kwok Wai
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in July 2008

We study mirror symmetry via Fourier-Mukai-type transforma-
tions, which we call SYZ mirror transformations, in view of
the ground-breaking Strominger-Yau-Zaslow Mirror Conjecture
which asserted that the mirror symmetry for Calabi-Yau mani-
folds could be understood geometrically as a T-duality modified
by suitable quantum corrections. We apply these transforma-
tions to investigate a case of mirror symmetry with quantum cor-
rections, namely the mirror symmetry between the A-model of a
toric Fano manifold X̄ and the B-model of a Landau-Ginzburg
model (Y, W ). Here Y is a noncompact Kähler manifold and
W : Y → C is a holomorphic function. We construct an ex-
plicit SYZ mirror transformation which realizes canonically the
isomorphism

QH∗(X̄) ∼= Jac(W )

between the quantum cohomology ring of X̄ and the Jacobian
ring of the function W . We also show that the symplectic struc-
ture ωX̄ of X̄ is transformed to the holomorphic volume form
eWΩY of (Y, W ). Concerning the Homological Mirror Symme-
try Conjecture, we exhibit certain correspondences between A-
branes on X̄ and B-branes on (Y, W ) by applying the SYZ phi-
losophy.
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Chapter 1

Introduction

1.1 What is mirror symmetry?

Mirror symmetry is a phenomenal consequence of superstring
theory [22]. The latter is an attempt to unify the two pillars
of twentieth century theoretical physics: general relativity and
quantum mechanics. Consistency of superstring theory requires
spacetime to have ten dimensions, four of which is the classical
spacetime, i.e. three spatial dimensions plus one time dimen-
sion; the remaining six curl up into a very tiny gadget, known
as a Calabi-Yau threefold in geometry. While there are plenty
examples of such spaces [11], the universe should be modeled
on only one of them. In the search of this candidate, physicists
discovered that superstring theories (or more precisely, super-
conformal field theories) on two entirely different Calabi-Yau
threefolds1 can occasionally be equivalent [23]. This duality is
not only surprising from a physical point of view, but also leads
to many astonishing and highly nontrivial mathematical conse-
quences.

One of these being the famous prediction of the numbers of
rational curves on a quintic threefold [10]. The story goes as

1In most cases, even the topology of the Calabi-Yau threefolds are different.
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CHAPTER 1. INTRODUCTION 2

follows. Consider the hypersurface X in CP 4 defined by

X = {z ∈ CP 4 : f(z) = 0},
where f is a generic homogeneous polynomial of degree five.
X is a Calabi-Yau threefold by a simple calculation of Chern
classes. A long standing question in algebraic geometry is the
computation of the number NX(d) of rational curves of degree d

in X for any d ∈ H2(X,Z) ∼= Z. At the time of the discovery of
mirror symmetry, these numbers were virtually incalculable by
mathematical methods and geometers could only strive to get
them one by one. But by exploiting mirror symmetry, physicists
were able to give a complete answer for all NX(d) at once using
much easier calculations. More precisely, the computation of
the numbers NX(d) was reduced to a calculation involving the
variations of Hodge structures on another Calabi-Yau threefold
Y , called the mirror manifold of X2. The latter question is well-
studied and is related to the complex algebraic geometry of Y ;
while the number of rational curves turn out to be symplectic
invariants (Gromov-Witten invariants) of X. Indeed, at least
morally, mirror symmetry for Calabi-Yau manifolds can be for-
mulated as follows.

For any Calabi-Yau manifold X, there exists another Calabi-
Yau manifold Y , called the mirror manifold of X, such that the
symplectic geometry (A-model) of X is equivalent to the complex
algebraic geometry (B-model) of Y , and vice versa.

Besides quintic threefolds, many other examples exhibiting
similar phenomena have been found. However, it is much more
desirable to know why mirror symmetry works. Two attempts
were made towards a mathematical understanding of mirror

2This is called the mirror theorem for quintic threefolds, which was proved by Givental
[21] and Lian-Liu-Yau [34] independently. For details, see the book of Cox-Katz [14]
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symmetry for Calabi-Yau manifolds. In an address to the 1994
International Congress of Mathematicians in Zürich, Kontsevich
[29] speculated that mirror symmetry for a pair of Calabi-Yau
manifolds X and Y could be explained as a statement in homo-
logical algebra. His Homological Mirror Symmetry Conjecture
says the following.

There is an equivalence of triangulated categories

DbFuk(X) ∼= DbCoh(Y )

where DbFuk(X) is the derived category of the Fukaya A∞-
category Fuk(X) of X and DbCoh(Y ) is the derived category
of coherent sheaves of Y .

In contrast to this algebraic formulation of Kontsevich, the
ground-breaking work of Strominger-Yau-Zaslow [43] suggested
a geometric explanation of mirror symmetry. The Strominger-
Yau-Zaslow Mirror Conjecture asserts that

Any Calabi-Yau manifold X admits a fibration by special La-
grangian tori and the mirror Calabi-Yau manifold Y can be ob-
tained by T-duality, i.e. dualizing the special Lagrangian torus
fibration of X. Moreover, the A-model of X should be inter-
changed with the B-model of Y , and vice versa, through Fourier-
type transformations.

Those Fourier-type transformations are going to play a key
role in this thesis and will be called SYZ mirror transforma-
tions. Both the Homological Mirror Symmetry Conjecture and
the SYZ Mirror Conjecture are based on considerations of phys-
ical objects called D-branes in superstring theory. These two
conjectures are expected to reveal the secret of mirror symmetry
for Calabi-Yau manifolds. Unfortunately, only in a few examples
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(namely elliptic curves and quartic K3 surfaces) have mathe-
maticians been able to verify the Homological Mirror Symmetry
Conjecture; and even worse, not a single nontrivial example has
been found for the SYZ Mirror Conjecture (see, however, the
recent breakthrough by Gross-Siebert [24], after earlier works of
Fukaya [15] and Kontsevich and Soibelman [31]).

On the other hand, mirror symmetry was extended to other
settings, notably to Fano manifolds [20], [30], [28], [26]. Given a
Fano manifold X̄, its mirror is conjecturally given by a noncom-
pact Kähler manifold Y together with a holomorphic function
W : Y → C. The pair (Y, W ) is called a Landau-Ginzburg model
in physics, and the function W is called the superpotential. The
A-model (respectively, B-model) of the Landau-Ginzburg model
(Y, W ) refers to the symplectic-(respectively, complex-) geomet-
ric aspects of the singularity theory of the holomorphic function
W on Y . Again, mirror symmetry predicts that the A- and B-
models of X̄ and (Y, W ) are interchanged, and this has many
mathematical consequences. An example is the following con-
jecture:

There exists a ring isomorphism between the quantum coho-
mology QH∗(X̄) of a Fano manifold X̄ and the Jacobian ring
Jac(W ) of the superpotential W of the mirror Landau-Ginzburg
model (Y, W ).

This conjecture has been verified (at least) for toric Fano and
flag manifolds by the works of Givental [17], [18] and many oth-
ers. A version of the Homological Mirror Symmetry Conjecture
has also been formulated by Kontsevich [30]. In this case, the
conjecture must be stated as two separate halves since the cat-
egories associated to the Landau-Ginzburg model (Y, W ) have
to be suitably modified.
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There are equivalences of triangulated categories

DbCoh(X̄) ∼= DbFuk(Y, W ), and

DbFuk(X̄) ∼= DSing(Y, W ),

where Fuk(Y, W ) is a variant of the usual Fukaya category [40]
and DSing(Y, W ) is the category of singularities of (Y, W ) [39].

Substantial evidences in the toric case [40], [44], [6], [7], [1],
[2], [13], [12] have been found (in contrast to the non-toric and
Calabi-Yau cases where evidence is much rarer). Nevertheless, a
geometric explanation for the mirror symmetry phenomenon for
Fano manifolds, in particular, an analogue of the SYZ Mirror
Conjecture, is lacking.

1.2 Statements of main results

The aim of this thesis is to explore the geometry of mirror sym-
metry for toric Fano manifolds following the SYZ philosophy.
In particular, we will interpret the mirror symmetry for toric
Fano manifolds as a T-duality modified by suitable quantum
corrections and establish a canonical correspondence between
the A-model of a toric Fano manifold and the B-model of the
mirror Landau-Ginzburg model by means of SYZ mirror trans-
formations.

To describe our results, we first fix some notations. Let N ∼=
Zn be a lattice and M = Hom(N,Z) the dual lattice. Let X̄

be an n-dimensional toric Fano manifold associated to a fan in
MR = M ⊗ZR. If v1, . . . , vd ∈ N are the primitive generators of
the one-dimensional cones of the fan defining X̄, then a polytope
P̄ ⊂ MR := M ⊗Z R defined by the inequalities

〈x, vi〉 ≥ λi, i = 1, . . . , d,

for some λ1, . . . , λd ∈ R associates a symplectic or Kähler struc-
ture ωX̄ to X̄. Physicists predicted that the mirror of (X̄,
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ωX̄), as a symplectic manifold, is given by the Landau-Ginzburg
model (Y, W ), where Y is the non-compact Kähler manifold
(C∗)n and W : Y → C is the Laurent polynomial

eλ1zv1 + . . . + eλdzvd

where zvi denotes the monomial z
v1

i
1 . . . z

vn
i

n and z1, . . . , zn are
complex coordinates on Y .

We need torus fibrations in order to apply T-duality. One of
the advantages of X̄ being a toric manifold is that the moment
map µ : X̄ → P̄ of the Hamiltonian T n-action on X̄ provides a
natural Lagrangian torus fibration. Moreover, the restriction to
the open dense orbit X ⊂ X̄ is a torus bundle

µ : X → P,

where P = P̄ \∂P̄ is the interior of P̄ 3. Our first result says that
the mirror manifold Y , derived by Hori-Vafa [28] using physical
arguments, can essentially be obtained by a direct application
of T-duality to µ : X → P . More precisely, we will prove the
following proposition in Chapter 2, Section 2.3.

Proposition 1.2.1. Let YSY Z be the total space of the dual torus
fibration of µ : X → P . Then YSY Z, which we call the semi-flat
SYZ mirror of X, is the open complex submanifold

{(z1, . . . , zn) ∈ Y : |eλizvi| < 1 for i = 1, . . . , d}
contained in Hori-Vafa’s mirror manifold Y = (C∗)n.

Much more mysterious is the superpotential W : Y → C.
Intuitively, W is ”mirror” to the toric divisor at infinity D∞ =⋃d

i=1 Di = X̄ \ X. Here Di denotes the toric prime divisor
which corresponds to vi ∈ N for i = 1, . . . , d. Note that the
moment map µ : X̄ → P̄ is singular exactly along D∞ and all the

3According to the definition of Auroux [5], the fibers of µ : X → P are special La-
grangians.
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quantum corrections, namely holomorphic curves and discs, are
due to the compactification of X ∼= (C∗)n by adding D∞. Since
we have ignored the toric divisor at infinity D∞ =

⋃d
i=1 Di =

X̄ \ X and hence quantum corrections, we are unable to see
the superpotential W just by using T-duality. To recapture the
information, we consider the cover

π : X̃ := X ×N → X

and various functions on it. Let K ⊂ H2(X̄,R) be the Kähler
cone of X̄. For each q = (q1, . . . , ql) ∈ K (where l := d − n =
Picard number of X̄), we introduce a function Φq ∈ C∞(X̃) as a
generating function for holomorphic discs counting on X̄. This
gives a family of functions {Φq} ⊂ C∞(X̃) over K. Now, if we
assume that X̄ is a product of projective spaces, then {Φq} can
be used to compute the quantum cohomology QH∗(X̄) and the
quantum product naturally becomes a convolution product (see
Chapter 3, Section 3.1).

Proposition 1.2.2.

1. The logarithmic derivatives of Φq, with respect to qa for
a = 1, . . . , l, are given by

qa
∂Φq

∂qa
= Φq ? Ψn+a.

Here Ψi ∈ C∞(X̃) is defined, for i = 1, . . . , d, by Maslov
index two holomorphic discs which correspond to the toric
divisor Di, and ? denotes the convolution product with re-
spect to the lattice N .

2. We have a natural isomorphism of C-algebras

QH∗(X̄) ∼= C[Ψ±1
1 , . . . , Ψ±1

n ]/L
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where C[Ψ±1
1 , . . . , Ψ±1

n ] is the polynomial algebra generated
by Ψ±1

1 , . . . , Ψ±
n with respect to the convolution product ?,

and L is the ideal generated by linear relations that are
defined by the linear equivalence among the toric divisors
D1, . . . , Dd, provided that X̄ is a product of projective spaces.

A key to the proof is the observation that each holomorphic
curve which contributes to the quantum product can be obtained
by gluing of Maslov index two holomorphic discs. This can
be seen explicitly and made concrete if we go to the world of
tropical geometry [36]. We have to use the fundamental results
of Cho and Oh [13] on the classification of holomorphic discs
in toric Fano manifolds. The condition that X is a product of
projective spaces is imposed since we want to give a geometric
proof of the proposition, without appealing to Givental’s mirror
theorem [18].

Now the upshot is that we can explicitly construct and ap-
ply SYZ mirror transformations to study the mirror symmetry
between X̄ and (Y, W ). More precisely, the SYZ mirror trans-
formation for toric Fano manifolds F will be defined to be a
combination of the semi-flat SYZ transformation and taking fi-
brewise Fourier series. We prove that the SYZ transformation
of Φq is precisely the exponential of the superpotential W , i.e.
F(Φq) = eW , and show how the symplectic structure of X̄ is
transformed to the holomorphic structure of (Y, W ) (see Chap-
ter 3, Section 3.2).

Theorem 1.2.1. The SYZ transformation of the generating func-
tion Φq for holomorphic discs counting on the toric Fano man-
ifold X̄ gives (the exponential of) the superpotential W on the
mirror manifold Y ∼= (C∗)n:

F(Φq) = eW ∈ H0(Y,OY ).

Furthermore, we can incorporate the symplectic structure ωX̄ on
X̄ to give the holomorphic structure on the Landau-Ginzburg



CHAPTER 1. INTRODUCTION 9

model (Y, W ) through SYZ transformation in the sense that

F(Φqe
ωX̄) = eWΩY .

Here we view Φqe
ωX̄ as a symplectic structure corrected by holo-

morphic discs and eWΩY as a holomorphic volume form.
As another application of our approach, we give a geometric

explanation of the isomorphism QH∗(X̄) ∼= Jac(W ). In more
details, We show that the SYZ transformation F(Ψi) of the func-
tion Ψi is nothing but the monomial eλizvi, for i = 1, . . . , d, and
thereby exhibiting a canonical isomorphism between the quan-
tum cohomology QH∗(X̄) and the Jacobian ring Jac(W ), which
takes the quantum product ∗, now realized as the convolution
product ?, to the ordinary product of functions, just as what
classical theory of Fourier series does (see Chapter 3, Section
3.3).

Theorem 1.2.2. The SYZ transformation induces a canonical
isomorphism of C-algebras

F : QH∗(X̄)
∼=−→ Jac(W )

provided that X̄ is a product of projective spaces.

Regarding the Homological Mirror Symmetry Conjecture, we
will consider the simplest correspondence between D-branes,
namely the correspondence between an A-brane (L,L), where
L is a Lagrangian torus fiber of X and L is a flat U(1)-bundle
over L, and the mirror B-brane (z,Oz), where z ∈ Y is a point
and Oz is the skyscraper sheaf. By using Cho and Oh’s results
[13], [12], we show in Chapter 3, Section 3.4 that

Proposition 1.2.3. The endomorphism algebra of the A-brane
(L,L), which is given by the Floer cohomology HF (L,L), is iso-
morphic to the endomorphism algebra End(z,Oz) of the mirror
B-brane (z,Oz) as C-algebras. In particular, the Floer cohomol-
ogy HF (L,L) of (L,L) is nontrivial if and only if the mirror
z ∈ Y is a critical point of W : Y → C.
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The rest of this thesis is organized as follows. In Chapter 2,
we briefly review the use of SYZ transformations in mirror sym-
metry without quantum corrections, namely mirror symmetry
for semi-flat Calabi-Yau manifolds, and give a proof of Proposi-
tion 1.2.1. Chapter 3 is the heart of this thesis, where we con-
struct the SYZ mirror transformation for toric Fano manifolds
explicitly and show how they can be applied to give a geometric
understanding of mirror symmetry for toric Fano manifolds. In
particular, we will prove Theorems 1.2.1 and 1.2.2 and Proposi-
tion 1.2.3, and provide a couple of examples for illustration. In
the final section, we conclude with discussions of possible future
research directions.

2 End of chapter.



Chapter 2

Mirror symmetry without
corrections

In this chapter, following Leung [32], we will briefly review mir-
ror symmetry for semi-flat Calabi-Yau manifolds, where quan-
tum corrections are absent. We will see that mirror symmetry
in this case is T-duality without any modifications. As an ap-
plication, we prove Proposition 1.2.1.

2.1 Review of mirror symmetry for semi-flat

Calabi-Yau manifolds

As before, N ∼= Zn and M = Hom(N,Z) denote dual lattices
and NR = N ⊗Z R, MR = M ⊗Z R denote respectively the real
vector spaces spanned by N , M . We also denote by TN (and
TM) the real n-torus NR/N (and MR/M). Let D ⊂ MR =
M ⊗Z R be a convex domain. (More generally, instead of a
convex domain, one may consider an affine manifold.) Out of
D, we can naturally construct two manifolds which are mirror
to each other.

First of all, the tangent bundle TD = D× iMR is naturally a
complex manifold with complex coordinates zj = xj + iyj where
xj’s and yj’s are respectively the base coordinates on D and fiber
coordinates on MR. We have the standard holomorphic volume

11
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form ΩTD = dz1 ∧ . . . ∧ dzn on TD. By taking quotient by the
lattice M ⊂ MR, we can compactify the fiber directions to give
the complex manifold

Y = TD/M = D × iTM ,

where TM denotes the torus MR/M . It is naturally equipped
with a torus fibration (in fact a torus bundle)

νY : Y → D.

The holomorphic n-form ΩTD descends to give the holomorphic
volume form

ΩY = dz1 ∧ . . . ∧ dzn

on Y . Moreover, if φ is an elliptic solution of the real Monge-
Ampère equation

det
( ∂2φ

∂xj∂xk

)
= const,

then the Kähler form

ωY = i∂∂̄φ =
∑

j,k

φjkdxj ∧ dyk,

with φjk denoting ∂2φ
∂xj∂xk

, determines a Calabi-Yau metric on Y ,
and νY : Y → D becomes a special Lagrangian torus fibration,
which is called an SYZ fibration. In summary, we have the fol-
lowing structures on Y :

Riemannian metric gY =
∑

j,k φjk(dxj ⊗ dxk + dyj ⊗ dyk)

Holomorphic volume form ΩY =
∧n

j=1(dxj + idyj)

Symplectic form ωY =
∑

j,k φjkdxj ∧ dyk

SYZ fibration νY : Y → D
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The SYZ Mirror Conjecture [43] suggested that the mirror
manifold X of Y should be given by the moduli space of pairs
(L,∇) where L is a special Lagrangian torus fiber of Y and ∇ is
a flat U(1)-connection on the trivial line bundle L × C over L.
This is nothing but the total space of the dual torus fibration
µX : X = D × iTN → D, taking into account the fact that
the dual torus TM = (TN)∗ is the moduli space of flat U(1)-
connections on the trivial line bundle TN × C over the torus
TN .

Furthermore, X can naturally be viewed as the quotient of
the cotangent bundle T ∗D = D×iNR by the lattice N ⊂ NR. In
particular, the standard symplectic form ωT ∗D =

∑n
j=1 dxj∧duj,

where uj’s are the fiber coordinates on NR, descends to give a
symplectic form

ωX =
n∑

j=1

dxj ∧ duj

on X = T ∗D/N . Through the metric

gX =
∑

j,k

(φjkdxj ⊗ dxk + φjkduj ⊗ duk),

where (φjk) is the inverse matrix of (φjk), we obtain a com-
plex structure on X with complex coordinates given by dwj =∑n

k=1 φjkdxk + iduj. There is a corresponding holomorphic vol-
ume form which can be written as

ΩX = dw1 ∧ . . . ∧ dwn =
n∧

j=1

(
n∑

k=1

φjkdxk + iduj).

Also the projection map

µX : X → D

naturally becomes a special Lagrangian torus fibration. In sum-
mary, we have the following structures on X:
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Riemannian metric gX =
∑

j,k(φjkdxj ⊗ dxk + φjkduj ⊗ duk)

Holomorphic volume form ΩX =
∧n

j=1(
∑n

k=1 φjkdxk + iduj)

Symplectic form ωX =
∑n

j=1 dxj ∧ duj

SYZ fibration µX : X → D

It is easy to see that the geometric structures of X and Y are
interchanged by T-duality or dualizing torus fibrations. Hence
we call X the semi-flat SYZ mirror of Y (and vice versa).

We remark that both Y and X admit natural Hamiltonian
T n-actions, but while µ : X → D is a moment map for the TN -
action on X, ν : Y → D is not a moment map for the TM -action
on Y . In fact, a moment map µY : Y → NR for the TM -action
on Y is given by

µY = Lφ ◦ νY ,

where Lφ : D → NR is the Legendre transform of φ defined by

Lφ(x1, . . . , xn) = dφx =
( ∂φ

∂x1
, . . . ,

∂φ

∂xn

)
.

Since φ is convex, the image D∗ = Lφ(D) is an open convex
subset of (MR)

∗ = NR. (For this and other properties of the
Legendre transform, see, for example, the book of Guillemin
[25], Appendix 1.) In the action coordinates x1, . . . , xn of D∗,
which are given by ∂xj

∂xk
= φjk, the various structures on Y are

written as

Riemannian metric gY =
∑

j,k(φ
jkdxj ⊗ dxk + φjkdyj ⊗ dyk)

Holomorphic volume form ΩY =
∧n

j=1(
∑n

k=1 φjkdxk + idyj)

Symplectic form ωY =
∑n

j=1 dxj ∧ dyj

SYZ fibration µY : Y → D∗
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We move on to discuss the correspondences between D-branes
in this case. Lying at the heart of the SYZ Mirror Conjecture is
the basic but important observation that a point z = x+ iy ∈ Y

defines a flat U(1)-connection ∇y on the trivial line bundle over
the special Lagrangian torus fiber Fx := µ−1

X (x). Now the point
z ∈ Y together with its structure sheaf Oz constitute a B-brane
on Y ; while the pair (Lx,Ly), where Ly denotes the flat U(1)-
bundle (Lx × C,∇y), gives an A-brane on X. This implements
the simplest case of correspondence between D-branes on mirror
manifolds:

(Lx,Ly) ←→ (z,Oz).

The space of infinitestimal deformations of the A-cycle (Lx,Ly),
which is given by H1(Lx,C), is canonically identified with the
tangent space TzY under T-duality.

On the other hand, consider a section L = {(x, u(x)) ∈ X :
x ∈ D} of µX : X → D. The submanifold L is Lagrangian if and
only if (locally) there exists a function f such that uj = ∂f

∂xj
. By

the above observation (now used in the opposite way), a point
(x, u(x)) ∈ L determines a flat U(1)-connection ∇u(x) on the
trivial bundle over the fiber Γx = ν−1

Y (x). Therefore, the family
of points {(x, u(x)) : x ∈ D} gives rise to the U(1)-connection

∇L = dY − i

2

n∑
j=1

uj(x)dyj

on the trivial bundle over Y . Its curvature two form is given by

FL = dY

(
− i

2

n∑
j=1

uj(x)dyj

)
= − i

2

∑

j,k

∂uj

∂xk
dxk ∧ dyj,

and, in particular,

F 2,0
L =

1

8

∑

j<k

(∂uj

∂xk
− ∂uk

∂xj

)
dzj ∧ dzk.
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We conclude that ∇L is integrable, i.e. F 2,0
L = 0, if and only if L

is Lagrangian. More generally, we can equip L with a flat U(1)-
bundle L = (L×C, dL +α), where α ∈ Ω1(L,R) is a closed (and
hence exact) one-form. The A-brane (L,L) is then transformed
to the U(1)-connection

∇L,L = ∇L + α,

which again is integrable if and only if L is Lagrangian. Further-
more, one can prove that ∇L,L satisfies the deformed Hermitian-
Yang-Mills equations if and only if L is special Lagrangian (see
[33] and [32] for the detailed proofs). ∇L,L is a connection on a
line bundle over Y given by the semi-flat SYZ transformation of
L:

LL,L = πY,∗(π∗X(ι∗L)⊗ P),

where ι : L ↪→ X is the inclusion map. In conclusion, the A-
brane (L,L) corresponds to the B-brane (Y,LL,L) again through
T-duality:

(L,L) ←→ (Y,LL,L).

2.2 Semi-flat SYZ transformations

In this section, we will see how the geometric structures of the
mirror manifolds X and Y are transformed to each other by
fiberwise Fourier-type transformations.

We have mentioned that the dual torus (TN)∗ = TM can be in-
terpreted as the moduli space of flat U(1)-bundles on TN . More
precisely, given y = (y1, . . . , yn) ∈ MR, we have a connection

∇y = d +
i

2

n∑
j=1

yjduj

on the topologically trivial line bundle TN×C over TN . This is a
flat U(1)-connection and it is gauge equivalent to the trivial con-
nection if and only if y ∈ M . Moreover this construction gives all
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flat U(1)-connections on TN×C up to unitary gauge transforma-
tions. The universal U(1)-bundle is given by the topologically
trivial line bundle P = TN × TM × C (the so-called Poincaré
bundle) over the product TN × TM , equipped with the universal
connection d + i

2

∑n
j=1(yjduj − ujdyj). The curvature of this

connection is the universal two form

F = i

n∑
j=1

dyj ∧ duj.

Now consider the relative version of this picture. Let X ×D

Y = D × i(TN × TM) be the fiber product of the fibrations
µ : X → D and ν : Y → D. By abuse of notations, we still use P
and F = i

∑n
j=1 dyj ∧duj ∈ Ω2(X×D Y ) to denote the fiberwise

universal line bundle and curvature two form respectively.

Definition 2.2.1. The semi-flat SYZ mirror transformation F :
Ω∗(X) → Ω∗(Y ) is defined by

F(α) = πY,∗(π∗X(α) ∧ eF ) =

∫

TN

π∗X(α) ∧ eF

where πX : X ×D Y → X and πY : X ×D Y → Y are the two
natural projections.

The point is that this fiberwise Fourier-type transformation
transforms the symplectic structure on X to the complex struc-
ture on Y in the sense of the following

Proposition 2.2.1.

F(eωX) = ΩY .
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Proof. The proof is by direct calculation.

F(eωX) =

∫

TN

π∗X(eωX) ∧ eF

=

∫

TN

e
∑n

j=1(dxj+idyj)∧duj

=

∫

TN

n∧
j=1

(
1 + (dxj + idyj) ∧ duj

)

=

∫

TN

(
n∧

j=1

(dxj + idyj)

)
∧ du1 ∧ . . . ∧ dun

= ΩY

where we have assumed that
∫

TN
du1 ∧ . . . ∧ dun = 1.

Moreover, F has the inversion property, which demonstrates a
property which a mirror transformation should possess:

Proposition 2.2.2. If we define the inverse transform F−1 :
Ω∗(Y ) → Ω∗(X) by

F−1(α) = i−nπX,∗(π∗Y (α) ∧ e−F ) = i−n

∫

TM

π∗Y (α) ∧ e−F ,

then
F−1(ΩY ) = eωX .



CHAPTER 2. MIRROR SYMMETRY WITHOUT CORRECTIONS 19

Proof.

F−1(ΩY ) = i−n

∫

TM

π∗Y (ΩY ) ∧ e−F

= i−n

∫

TM

(
n∧

j=1

(dxj + idyj)

)
∧ ei

∑n
j=1 duj∧dyj

= i−n

∫

TM

n∧
j=1

(
(dxj + idyj) ∧ eiduj∧dyj

)

= i−n

∫

TM

n∧
j=1

(
dxj + idyj + idxj ∧ duj ∧ dyj

)

= i−n

∫

TM

n∧
j=1

(
iedxj∧duj ∧ dyj

)

=

∫

TM

e
∑n

j=1 dxj∧duj ∧ dy1 ∧ . . . ∧ dyn

= eωX ,

where we have again assumed that
∫

TM
dy1 ∧ . . . ∧ dyn = 1.

By exactly the same arguments, one can also show that

F(ΩX) = eωY , F−1(eωY ) = ΩX .

If we include the consideration of B-fields, the semi-flat SYZ
transformation will give an identification of the moduli space of
complexified symplectic structures on X with the moduli space
of complex structures on Y , and vice versa. For a more detailed
discussion of this and other things, we refer to Leung [32].

2.3 Derivation of Hori-Vafa’s mirror mani-

fold

Recall that, for a toric Fano manifold X̄, the primitive gener-
ators of the 1-dimensional cones of the fan defining X̄ are de-
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noted by v1, . . . , vd. Without loss of generality, we can assume
that v1 = e1, . . . , vn = en is the standard basis of N ∼= Zn. The
map

∂ : Zd → N, (k1, . . . , kd) 7→
d∑

i=1

kivi

is surjective since X̄ is compact. Let K be the kernel of ∂, so
that the sequence

0 −→ K
ι−→ Zd ∂−→ N −→ 0 (2.3.1)

is exact. Now, if

Q1 = (Q11, . . . , Qd1), . . . , Ql = (Q1l, . . . , Qdl) ∈ Zd

is a Z-basis of K, then the mirror manifold of X̄, derived by
Hori and Vafa in [28] using physical arguments, is the complex
submanifold

Y =
{

(Z1, . . . , Zd) ∈ (C∗)d :
d∑

i=1

QiaZi = ra, a = 1, . . . , l
}

,

in (C∗)d, where ra = −∑d
i=1 Qiaλi for a = 1, . . . , l. In terms of

these coordinates, the superpotential W : Y → C is given by

W = e−Z1 + . . . + e−Zd.

The goal of this section is to show that Hori-Vafa’s mirror man-
ifold Y naturally arises as we apply T-duality to the open dense
orbit X ⊂ X̄. To do this, we have to recall the construction of
X̄ (and X) as a symplectic quotient.

From the above exact sequence (2.3.1), we get an exact se-
quence of real tori

0 −→ TK
ι−→ T d ∂−→ TN −→ 0 (2.3.2)
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where TK := KR/K. Considering their Lie algebras and dualiz-
ing the sequence gives

0 −→ MR
∂∗−→ (Rd)∗ ι∗−→ K∗

R −→ 0.

The standard diagonal action of T d on Cd is Hamiltonian with
respect to the standard symplectic form i

2

∑d
i=1 dWi ∧ dW̄i and

the moment map h : Cd → (Rd)∗ is given by

h(W1, . . . , Wd) =
1

2
(|W1|2, . . . , |Wd|2).

Restricting to TK , we get a Hamiltonian action of TK on Cd with
moment map hK = ι∗ ◦ h. Using the Z-basis {Q1, . . . , Ql} of K,
the map ι∗ : (Rd)∗ → K∗

R is given by

ι∗(X1, . . . , Xd) =

(
d∑

i=1

Qi1Xi, . . . ,

d∑

i=l

QilXi

)
(2.3.3)

in the coordinates associated to the dual basis Q∗
1, . . . , Q

∗
l of K∗.

The moment map hK : Cd → K∗
R can thus be written as

hK(W1, . . . , Wd) =
1

2

(
d∑

i=1

Qi1|Wi|2, . . . ,
d∑

i=1

Qil|Wi|2
)
∈ Rl ∼= K∗

R.

Note that r := (r1, . . . , rl) lies in K∗
R. Now X̄ and X are given

by the symplectic quotients

X̄ = h−1
K (r)/TK , X = (h−1

K (r) ∩ (C∗)d)/TK

respectively (see, for example, Guillemin [25], appendix).
In this process, notice that the image of h−1

K (r) under the map
h : Cd → (Rd)∗ lies inside the affine linear subspace MR(r) =
{(X1, . . . , Xd) ∈ (Rd)∗ : ι∗(X1, . . . , Xd) = r} which is a translate
of MR. Hence, restricting h to h−1

K (r)∩(C∗)d gives a T d-invariant
bundle h : h−1

K (r) ∩ (C∗)d → P ⊂ MR(r). Taking quotient by
TK will give a TN -bundle

µ : X → P.
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In fact, we can write (see [3])

X = T ∗P/N = P × iTN

and the induced symplectic form ωX = ωX̄ |X is the standard
symplectic form:

ωX =
n∑

j=1

dxj ∧ duj

where xj’s and uj’s (with uj ≡ uj + 2π) are respectively the
coordinates on P ⊂ MR(r) and TN . In other words, the xj’s and
uj’s are symplectic or action-angle coordinates. We are therefore
in exactly the same situation as in Section 2.1.

Applying T-duality, i.e. dualizing the torus bundle µ : X →
P , we get the semi-flat SYZ mirror manifold YSY Z = TP/M =
P × iTM , together with the standard complex structure and
holomorphic n-form:

ΩYSY Z
=

n∧
j=1

(dxj + idyj) = dz1 ∧ . . . ∧ dzn

where yj’s (with yj ≡ jj +2π) are the dual coordinates on TM =
(TN)∗ and zj = xj + iyj are the complex coordinates on YSY Z .
We also have the dual torus fibration

ν : YSY Z → P.

We are now in a position to prove Proposition 1.2.1.

Proof of Proposition 1.2.1. Dualizing the sequence (2.3.2) and
complexifying gives

0 −→ TCM
∂∗−→ (C∗)d ι∗−→ (T ∗

K)C −→ 0.

If Zi = Xi + iYi, i = 1, . . . , d are the complex coordinates on
(C∗)d, then it follows from the definition of the map ι∗ : (Rd)∗ →
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K∗
R given in (2.3.3) that Hori-Vafa’s mirror manifold Y can be

written as

Y =
{

(Z1, . . . , Zd) ∈ (C∗)d : ι∗(Z1, . . . , Zd) = r
}

.

From this we see that Y is just the complex submanifold MR(r)×
iTM ⊂ (C∗)d and the inclusion map ∂∗ : YHV ↪→ (C∗)d is given,
in the complex coordinates zj = xj + iyj on Y = MR(r)× iTM

∼=
(C∗)n, by

∂∗(z1, . . . , zn) = (〈z, v1〉 − λ1, . . . , 〈z, vd〉 − λd).

Since
∑d

i=1 Qiavi = 0 for a = 1, . . . , l, we have

d∑
i=1

Qia(〈z, vi〉 − λi) = ra, a = 1, . . . , l

and it follows that Zi|Y = 〈z, vi〉−λi for i = 1, . . . , d. Now YSY Z

is given by the open subset

YSY Z = {(z1, . . . , zn) ∈ Y : Re(〈z, vi〉 − λi) > 0 for i = 1, . . . , d}.

By the proposition, the SYZ mirror YSY Z is strictly smaller
than Hori-Vafa’s mirror Y . This issue was discussed in Hori-
Vafa [28] and Auroux [5] and we refer to those papers for details.
From now on, we would be confusing the notations and using Y

to denote either the SYZ semi-flat mirror or Hori-Vafa’s mirror
manifold. Which one we are referring to should be clear from
the context.

2 End of chapter.



Chapter 3

Mirror symmetry for toric Fano
manifolds

In the previous chapter, we have shown that it is enough to
obtain the mirror manifold Y of a toric Fano manifold X̄ using
T-duality by just considering the Lagrangian torus bundle µ :
X → P given by the restriction of the moment map µ : X̄ → P̄

to the open dense orbit X ⊂ X̄. But as we mentioned in the
introduction, to get the superpotential W : Y → C, we must
retain the information of the compactification of X ∼= (C∗)n by
adding the toric divisor D∞ at infinity. To do this, recall that
we consider the cover

π : X̃ := X ×N → X.

In this chapter, we will see how X̃ and functions on it help to
recover the quantum information and enable us to define the
SYZ mirror transformations for the toric Fano manifold X̄ and
get the superpotential W .

3.1 A generating function of holomorphic discs

and QH∗(X̄)

In this section, we introduce a generating function Φq of holo-
morphic discs and show its relation to the quantum cohomology

24
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of X̄. In particular, we demonstrate that the quantum cup prod-
uct can be realized as a convolution product (Proposition 1.2.2).

Recall that from Section 2.3, we have the exact sequence
(2.3.1):

0 −→ K
ι−→ Zd ∂−→ N −→ 0. (3.1.1)

Now consider the Kähler cone K ⊂ H2(X̄,R) of X̄. For each
q = (q1, . . . , ql) ∈ K (l = d−n), we let P̄ be the polytope defined
by

P̄ = {x ∈ MR : 〈x, vi〉 ≥ λi, i = 1, . . . , d}
with λi = 0 for i = 1, . . . , n and λn+a = log qa for a = 1, . . . , l,
where as before, we assume that v1 = e1, . . . , vn = en is the
standard basis of N ∼= Zn. For a point x ∈ P = P̄ \ ∂P̄ , we
let Lx = µ−1(x) be the Lagrangian torus fibre over x. Then the
groups H2(X̄,Z), π2(X̄, Lx) and π1(Lx) can be identified canon-
ically with K, Zd and N respectively, so that the above exact
sequence (3.1.1) coincides with the following exact sequence of
homotopy groups associated to the pair (X̄, Lx):

0 −→ H2(X̄,Z)
ι−→ π2(X̄, Lx)

∂−→ π1(Lx) −→ 0.

It is known that π2(X̄, Lx) is generated by d classes β1, . . . , βd.
By the results of Cho-Oh [13], there is a unique (up to auto-
morphism of the domain) holomorphic disc ϕi : (D2, ∂D2) →
(X̄, Lx) representing the class βi. The symplectic area of ϕi is
given by (Cho-Oh [13], Theorem 8.1):

∫

βi

ωX̄ =

∫

D2

ϕ∗i ωX̄ = 〈x, vi〉 − λi. (3.1.2)

Definition 3.1.1. Let

π+
2 (X̄, Lx) =

{ d∑
i=1

kiβi ∈ π2(X̄, Lx) : ki ∈ Z≥0, i = 1, . . . , d
}
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be the positive cone generated by β1, . . . , βd. For β =
∑d

i=1 kiβi ∈
π+

2 (X̄, Lx), we let w(β) =
∏d

i=1 ki! be its weight. For q =
(q1, . . . , ql) ∈ K, define the function Φq ∈ C∞(P ×N) by

Φq(x, v) =
∑

β∈π+
2 (X̄,Lx), ∂β=v

1

w(β)
e−

∫
β

ωX̄ .

Remark 3.1.1.

1. Let P̄ be the polytope defined by the inequalities

〈x, vi〉 ≥ λi, i = 1, . . . , d.

Also let

Q1 = (Q11, . . . , Qd1), . . . , Ql = (Q1l, . . . , Qdl) ∈ Zd

be a Z-basis of K. Then the point q = (q1, . . . , ql) ∈ K in
the Kähler cone is given by qa = e−ra for a = 1, . . . , l, where

ra = −
d∑

i=1

Qiaλi.

Hence, choosing a polytope which gives rise to the Kähler
structure parametrized by q ∈ K is equivalent to choosing
a Z-basis of the lattice K = H2(X̄,Z). Our choice of the
polytope P̄ amounts to choosing the Z-basis {Q1, . . . , Ql} of
K such that (Qn+a,b)1≤a,b≤l = Idl.

2. If we consider suitably marked holomorphic discs, then the
weight w(β) of the class β should account for the redun-
dance in counting disconnected holomorphic discs. This
deserves further clarification.

We are going to prove the first part of Proposition 1.2.2.
But the reader may have noticed that for different q ∈ K, the
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function Φq ∈ C∞(P ×N) is defined on a different space, as P

depends on q. What we do would be using analytic continuation
and regarding all Φq as functions defining on MR × N . For
functions f, g ∈ C∞(MR×N), we define their convolution f ?g ∈
C∞(MR ×N) by

f ? g(x, v) =
∑

v1+v2=v

f(x, v1)g(x, v2).

Now we are ready to state and prove:

Proposition 3.1.1 (=part 1. of Proposition 1.2.2). The loga-
rithmic derivatives of Φq, with respect to qa for a = 1, . . . , l, are
given by

qa
∂Φq

∂qa
= Φq ? Ψn+a

where Ψi ∈ C∞(MR ×N) is defined, for i = 1, . . . , d, by

Ψi(x, v) =

{
e
− ∫

βi
ωX̄ if v = vi

0 if v 6= vi.

Here, again we use analytic continuation so that Ψi is defined
on MR ×N .

Proof. For simplicity, we will just compute ql
∂Φq

∂ql
. By using Cho-

Oh’s formula (3.1.2) and our choice of the polytope P̄ , we have

e〈x,v〉Φq(x, v) =
∑

k1,...,kd∈Z≥0,
∑d

i=1 kivi=v

q
kn+1

1 . . . qkd

l

k1! . . . kd!
.

Note that the right-hand-side is independent of x ∈ P . Differ-
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entiating both sides with respect to ql gives

e〈x,v〉∂Φq

∂ql
(x, v) =

∑

k1,...,kd−1∈Z≥0, kd∈Z≥1,
∑d

i=1 kivi=v

q
kn+1

1 . . . q
kd−1

l−1 qkd−1
l

k1! . . . kd−1!(kd − 1)!

=
∑

k1,...,kd∈Z≥0,
∑d

i=1 kivi=v−vd

q
kn+1

1 . . . qkd

l

k1! . . . kd!

= e〈x,v−vd〉Φq(x, v − vd).

Hence, we obtain

ql
∂Φq

∂ql
= qle

−〈x,vd〉Φq(x, v − vd).

Now, by definition of convolution, we have

Φq ? Ψd(x, v) =
∑

v1+v2=v

Φq(x, v1)Ψd(x, v2) = Φq(x, v − vd)Ψd(x, vd),

and Ψd(x, vd) = e
− ∫

βd
ωX = eλd−〈x,vd〉 = qle

−〈x,vd〉. The result
follows.

In the previous proposition, we introduce functions Ψi ∈
C∞(MR × N) for i = 1, . . . , d. Each is defined by the unique
holomorphic disc ϕi : (D2, ∂D2) → (X̄, Lx) representing the
class βi, and by the classification results of Cho and Oh, these
are all the Maslov index two discs with boundary lying on the
torus Lagrangian fibre Lx. It is also easy to see that, for each
i = 1, . . . , d, ϕi is the unique Maslov index two holomorphic disc
which intersects Di at one interior point (which can be chosen to
be the center of the disc). We therefore conclude that the func-
tions {Ψi}, the holomorphic discs {ϕi} and the toric divisors
{Di} are in one-to-one correspondences with each other:

{Ψi} 1−1←→ {ϕi} 1−1←→ {Di}.
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Each toric divisor Di determines a cohomology class in H2(X̄,C)
which will again be denoted by Di. By the above one-to-one cor-
respondences, we can introduce linear relations in the C-vector
space spanned by the functions {Ψi} using the linear equiva-
lences among the divisors {Di}.
Definition 3.1.2. Two linear combinations

∑d
i=1 aiΨi and

∑d
i=1 biΨi

are said to be linearly equivalent, denoted by
∑d

i=1 aiΨi ∼
∑d

i=1 biΨi,
if the corresponding divisors

∑d
i=1 aiDi and

∑d
i=1 biDi are lin-

early equivalent.

We further define Ψ−1
i , i = 1, . . . , d, by

Ψ−1
i (x, v) =

{
e
∫

βi
ωX if v = −vi

0 if v 6= vi

so that Ψ−1
i ? Ψi = 1. Now recall the second part of Proposition

1.2.2.

Proposition 3.1.2 (=part 2. of Proposition 1.2.2). We have a
natural isomorphism of C-algebras

QH∗(X̄) ∼= C[Ψ±1
1 , . . . , Ψ±1

n ]/L
where C[Ψ±1

1 , . . . , Ψ±1
n ] is the polynomial algebra generated by

Ψ±1
1 , . . . , Ψ±1

n with respect to the convolution product and L is
the ideal generated by linear equivalences, provided that X̄ is a
product of projective spaces.

It is known by the general theory of toric varieties (c.f. [16],
[4]) that the cohomology ring H∗(X̄,C) of a compact toric mani-
fold X̄ is generated by the classes D1, . . . , Dd in H2(X̄,C). More
precisely, there is a presentation of the form:

H∗(X̄,C) = C[D1, . . . , Dd]/(L+ SR)

where L is the ideal generated by linear equivalences and SR is
the Stanley-Reisner ideal generated by primitive relations (see
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Batyrev [8]). Now by a result of Siebert and Tian [42], QH∗(X̄)
is also generated by D1, . . . , Dd and a presentation of QH∗(X̄)
can be given by replacing each relation in SR by the quantum
counterpart. Denote by SRQ the quantum counterpart of the
Stanley-Reisner ideal. Then we can rephrase what we said as:

QH∗(X̄) = C[D1, . . . , Dd]/(L+ SRQ).

The computation of QH∗(X̄) (as a presentation) therefore re-
duces to computing the generators of the ideal SRQ.

Let X̄ = Pn1 × . . . × Pnl be a product of projective spaces.
The dimension of X̄ is n := n1 + . . . + nl. For a = 1, . . . , l,
denote by v1,a = e1, . . . , vna,a = ena

, vna+1,a = −∑na

j=1 ej ∈ Na

the primitive generators of the 1-dimensional cones in the fan of
Pna, where {e1, . . . , ena

} is the standard basis of Na
∼= Zna. We

use the same symbol vj,a to denote the vector

(0, . . . , vj,a︸︷︷︸
a-th

, . . . , 0) ∈ N = N1 ⊕ . . .⊕Nl

where vj,a sits in the a-th place, for j = 1, . . . , na+1, a = 1, . . . , l.
These d =

∑l
a=1(na +1) = n+ l vectors in N generate the fan of

X. We also denote by Dj,a the toric divisor, ϕj,a : (D2, ∂D2) →
(X̄, Lx) the holomorphic disc, βj,a ∈ π2(X̄, Lx) the homotopy
class and Ψj,a ∈ C∞(MR × N) the function corresponding to
vj,a. Using these notations, all the primitive relations can be
explicitly written down:

Lemma 3.1.1. There are exactly l primitive collections:

Pa = {vj,a : j = 1, . . . , na + 1},
a = 1, . . . , l, and hence

SR = 〈
na+1∏
j=1

Dj,a : a = 1 . . . , l〉.
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Proof. Let P be any primitive collection. Suppose P 6⊂ Pa for
any a. Then for each a such that P ∩ Pa 6= ∅, we can find
v ∈ P \ (P ∩ Pa). By definition, P \ {v} generates a cone in
the fan of X̄. But all the cones in the fan of X̄ are direct sums
of cones in the fans of the factors. So in particular, P ∩ Pa

will generate a cone in the fan of Pna. However, this will imply
that the set P itself generates a cone, which is impossible. We
conclude that P must be contained in, and hence equal to one
of the Pa’s. The result follows.

As a result, the cohomology ring of X̄ = Pn1 × . . . × Pnl is
given by

H∗(X̄,C) =
C[D1,1,...,Dnl+1,l]〈

Dj,a−Dna+1,a:j=1,...,na, a=1,...,l
〉

+
〈∏na+1

j=1 Dj,a:a=1,...,l
〉 .

Recall that π+
2 (X̄, Lx) is the positive cone generated by the

classes β1,1, . . . , βnl+1,l. Then by a theorem of Batyrev [8], the
kernel of ∂ : π+

2 (X̄, Lx) → π1(Lx) is the effective cone Heff
2 (X̄,Z),

i.e. the cone of classes which are represented by holomorphic
curves. For a = 1, . . . , l, denote by δa the effective class

∑na+1
j=1 βj,a ∈

Heff
2 (X̄,Z). Then Heff

2 (X̄,Z) = 〈δa : a = 1, . . . , l〉 and the Kähler
parameters q = (q1, . . . , qa) are given by

qa = e−
∫

δa
ωX̄ .

We can now compute SRQ by the following lemma:

Lemma 3.1.2. Fix a point p ∈ X so that µ(p) = x. Then there
is a unique (up to automorphism of the domain) holomorphic
curve ϕa : (P1; x0, x1, . . . , xna+1) → X̄ with na +2 marked points
representing the class δa ∈ H2(X̄,Z) such that ϕa(xj) ∈ Dj,a for
j = 1, . . . , na+1 and ϕa(x0) = p. Moreover, the Gromov-Witten
invariant

GW0,na+2,γ(P.D.(pt); D1,a, . . . , Dna+1,a, Ti)

=

{
1 if γ = δa and Ti = [pt]

0 otherwise
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where the Ti’s is a basis of H∗(X̄;C).

Proof. For the proof of the first part, see Batyrev [9], Theo-
rem 9.3 (see also [41], section 4). For the second part, observe
that since X̄ is convex, the Gromov-Witten invariants are enu-
merative, in the sense that only smooth irreducible curves will
contribute. Also, any γ ∈ Heff

2 (X̄,Z) can be written as γ =∑l
a=1

∑na+1
r=1 ar,avr,a where all ar,a ≥ 0. Let ϕ : (P1; x0, x1, . . . , xna+1)

→ X̄ be a curve representing γ such that ϕ(xj) ∈ Dj,a for j =
1, . . . , na + 1 and ϕ(x0) = p. Then aj,a ≥ 1 for j = 1, . . . , na + 1,
and so

∑l
a=1

∑na+1
r=1 ar,a ≥ na + 1. But if the Gromov-Witten

invariant GW0,na+2,γ(P.D.(pt); D1,a, . . . , Dna+1,a, T ) is not zero,
then by dimension counting, we must have

2((na + 2− 3) + (na + 1)) + deg(T )

= 2(dim(X̄)− 3 + (na + 2) +
l∑

a=1

na+1∑
r=1

ar,a)

whence deg(T )+2(na+1) = 2dim(X̄)+2
∑l

a=1
∑na+1

r=1 ar,a. This
is possible only if deg(T ) = 2dim(X̄) and γ = δa =

∑na+1
j=1 vj,a.

Now the second part follows from the first part.

By the second part of the above lemma, we have the relation

D1,a ∗ . . . ∗Dna+1,a = e−
∫

δa
ωX̄ = qa

in QH∗(X̄). Hence

SRQ = 〈
na+1∏
j=1

Dj,a − qa : a = 1 . . . , l〉.

We are in a position to prove Proposition 3.1.2:

Proof of Proposition 3.1.2. For a general toric Fano manifold X̄,
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notice that we have the relation

ΨQ1a

1 ? . . . ? ΨQna
n ? Ψn+a(x, v)

=

{
e
−∑n

i=1 Qia

∫
βi

ωX̄−
∫

βn+a
ωX̄ if v = 0

0 otherwise

=

{
qa if v = 0

0 otherwise
= qa,

or Ψn+a = qa(Ψ
−1)Q1a ? . . . ? (Ψ−1

n )Qna. For each i = 1, . . . , n,
there exists 1 ≤ a ≤ l such that Qia > 0 (since otherwise all vi

will lie in some half space of NR which is impossible). Thus the
inclusion

C[Ψ1, . . . , Ψn, Ψn+1, . . . , Ψd] ↪→ C[Ψ±1
1 , . . . , Ψ±1

n ]

is an isomorphism. Consider the surjective map

ρ : C[D1, . . . , Dd] → C[Ψ1, . . . , Ψd]

defined by mapping Di to Ψi for i = 1, . . . , d. This map is not
injective because there are nontrivial relations in C[Ψ1, . . . , Ψd]
which are generated by the relations

ΨQ1a

1 ? . . . ? ΨQna
n Ψn+a − qa = 0, a = 1, . . . , l.

By the above lemma, in the case of products of projective spaces,
the kernel of ρ is exactly given by the ideal SRQ, so that we have
an isomorphism

C[D1, . . . , Dd]/SRQ

∼=−→ C[Ψ1, . . . , Ψd].

Since (C[D1, . . . , Dd]/SRQ)/L = C[D1, . . . , Dd]/(L + SRQ) =
QH∗(X̄), we have the desired isomorphism

QH∗(X̄) ∼= C[Ψ1, . . . , Ψd]/L ∼= C[Ψ±1
1 , . . . , Ψ±1

n ]/L.
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Remark 3.1.2. By Givental’s mirror theorem [18], Proposition
3.1.2 is true for all toric Fano manifolds X̄.

The geometry of the isomorphism in Proposition 3.1.2 can
be explained as follows (see the examples in Section 3.3). The
quantum corrections brought by the relation

D1,a ∗ . . . ∗Dna+1,a = qa

is due to the holomorphic curve ϕa : (P1; x0, x1, . . . , xna+1) → X̄

which passes through the divisors D1,a, . . . , Dna+1,a and the point
p ∈ X above x ∈ P . On the other hand, the holomorphic discs
ϕ1,a, . . . , ϕna+1,a are responsible for the relation

Ψ1,a ? . . . ? Ψna+1,a = qa.

In fact, the holomorphic curve ϕa can be obtained by gluing
together the holomorphic discs ϕ1,a, . . . , ϕna+1,a. We can make
this clearer by going to the world of tropical geometry. We first
consider a diffeomorphism P → NR given by the Legendre trans-
form (see [3])

x 7→
(

∂gP

∂x1
, . . . ,

∂gP

∂xn

)

of the strictly convex function gP : P → R defined by

gP (x) =
l∑

a=1

na+1∑
j=1

(λj,a − 〈x, vj,a〉)log(〈x, vj,a〉 − λj,a).

We need this diffeomorphism because tropical curves and discs
will lie in NR, instead of P (for details of tropical geometry,
please refer to [35], [36], [38]).

Proposition 3.1.3. The set-theoretic union of the tropical discs
associated to the holomorphic discs ϕ1,a, . . . , ϕna+1,a is a tropical
curve Γ ⊂ NR with only 1 vertex at gP (x) ∈ NR and na + 1
unbounded edges in the directions v1,a, . . . , vna+1,a.
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Proof. The tropical disc associated to ϕj,a is a half line emanat-
ing from the given point gP (x) ∈ NR with slope vj,a (see [13],
[37]). The union of these half lines is a graph with only 1 vertex
at gP (x) of valence na +1. The proposition follows from the fact
that the balancing condition

na+1∑
j=1

vj,a = 0

at gP (x), which is automatically satisfied.

As can be seen from the works of Mikhalkin [35] and Nishinou-
Siebert [38], counting tropical curves with suitable multiplicities
should be the same as counting holomorphic curves. For obvious
reasons, we set the multiplicity of the tropical curve appeared in
the above proposition to be one. Now the corresponding holo-
morphic curve is nothing but ϕa.

3.2 SYZ transformations for toric Fano man-

ifolds

In this section, we will define the SYZ mirror transformation
for the toric Fano manifold X̄ as a combination of the semi-flat
SYZ transformation and taking fiberwise Fourier series.

We equip the cover X̃ with the symplectic structure π∗(ωX),
which by abusing notations again, will still be denoted as ωX .
We also use µ to denote the fibration

µ : X̃ → P.

Analog to the semi-flat case, consider the fiber product

X̃ ×P Y = P × i(N × TN × TM)

of the fibrations µ : X̃ → P and ν : Y → P . Note that we have a
covering map X̃×P Y → X×P Y . Pulling back F ∈ Ω2(X×P Y ),
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we get the fiberwise universal curvature two-form on X̃ ×P Y

which we still denote by F . In terms of coordinates, we can
write F = i

∑n
j=1 dyj∧duj, just as before. We further define the

holonomy function hol : X̃ ×P Y → C by

hol(x, v, u, y) = hol∇y
(v) = e−i〈y,v〉

for (x, v, u, y) ∈ X̃ ×P Y = P × i(N × TN × TM).

Definition 3.2.1. The SYZ mirror transformation for toric
Fano manifolds F : Ω∗(X̃) → Ω∗(Y ) is defined by

F(α) = πY,∗(π∗X̃(α) ∧ eFhol) =

∫

N×TN

π∗
X̃

(α) ∧ eFhol

where πX̃ : X̃ ×P Y → X̃ and πY : X̃ ×P Y → Y are the two
natural projections.

Before stating the basic properties of F , we introduce a class
of functions on X̃:

Definition 3.2.2. A TN -invariant function f : X̃ → C is said
to be admissible if for any (x, v, u) ∈ X̃ = P × i(N × TN),

f(x, v, u) = fve
−〈x,v〉

for some fv ∈ C, and the fibrewise Fourier series

f̂ :=
∑

v∈N

fve
−〈x,v〉hol∇y

(v) =
∑

v∈N

fve
−〈z,v〉,

where z = (z1, . . . , zn) = x + iy, is convergent and analytic.

For functions f, g ∈ C∞(X̃), we again define their convolution
product f ? g ∈ C∞(X̃) by

f ? g(x, v, u) =
∑

v1+v2=v

f(x, v1, u)g(x, v2, u).
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If f, g are admissible, so is f ? g. Let A(X) be the ring of
admissible functions on X̃ equipped with the product defined
by convolution. Notice that Φq, Ψ1, . . . , Ψd ∈ C∞(P ×N), now
regarded as functions on X̃, are all admissible.

Let φ ∈ O(Y ) be a holomorphic function on Y . Recall that
Y = P × iTM . Restricting φ to a fiber ν−1(x) = TM gives a
function φx on the torus TM = (TN)∗. Define φ̂ : X̃ → C by

φ̂(x, v, u) = φ̂x(v),

where φ̂x(v) is the Fourier coefficient of the function φx at v ∈ N .
This is called the fiberwise Fourier coefficients of φ and it is
clearly admissible. The following lemma follows from the theory
of Fourier series.

Lemma 3.2.1. Taking fiberwise Fourier series

A(X) → O(Y ), f 7→ f̂

is an isomorphism of rings and its inverse is given by taking

fiberwise Fourier coefficients. In particular,
ˆ̂
f = f .

The basic properties of the SYZ mirror transformation are
summarized in the following theorem.

Theorem 3.2.1. Let A(X)eωX := {feωX : f ∈ A(X)} ⊂ Ω∗(X̃)
and O(Y )ΩY := {φΩY : φ ∈ O(Y )} ⊂ Ω∗(Y ).

(i) For any f ∈ A(X),

F(feωX) = f̂ΩY ∈ O(Y )ΩY .

(ii) If we define the inverse SYZ mirror transformation F−1 :
Ω∗(Y ) → Ω∗(X̃) by

F−1(α) = i−nπX̃,∗(π
∗
Y (α)∧e−Fhol−1) = i−n

∫

TM

π∗Y (α)∧e−Fhol−1
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where hol−1 : X̃ ×P Y → C is the function defined by

hol−1(x, v, u, y) = hol∇y
(v)−1 = ei〈y,v〉,

then
F−1(φΩY ) = φ̂eωX

for any φ ∈ O(Y ).

(iii) The restriction map F : A(X)eωX → O(Y )ΩY is a bijection
with inverse F−1 : O(Y )ΩY → A(X)eωX , i.e.

F−1 ◦ F = IdA(X)eωX , F ◦ F−1 = IdO(Y )ΩY
.

Proof. Suppose f ∈ A(X) is given by f(x, v, u) = fve
−〈x,v〉.

Then, by observing that both π∗
X̃

(f) and hol are TN -invariant,
we have

F(feωX) =

∫

N×TN

π∗
X̃

(feωX) ∧ eFhol

=
∑

v∈N

π∗
X̃

(f) · hol

∫

TN

π∗
X̃

(eωX) ∧ eF

=

( ∑

v∈N

π∗
X̃

(f) · hol

)(∫

TN

π∗X(eωX) ∧ eF

)
.

The last equality is due to the fact that π∗
X̃

(eωX) = π∗X(eωX) and

eF are independent of v ∈ N . By Proposition 2.2.1, we already
have ∫

TN

π∗X(eωX) ∧ eF = ΩY ,

while the first factor is given by
∑

v∈N

π∗
X̃

(f) · hol =
∑

v∈N

fve
−〈x,v〉e−i〈y,v〉

=
∑

v∈N

fve
−〈z,v〉

= f̂ .
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This proves (i). For (ii), expand φ ∈ O(Y ) into a relative Fourier
series φ(z) =

∑
w∈N φ̂x(w)e−i〈y,w〉. Then

F−1(φΩY ) = i−n

∫

TM

π∗Y (φΩY ) ∧ e−Fhol−1

= i−n
∑

w∈N

(
φ̂x(w)

∫

TM

ei〈y,v−w〉π∗Y (ΩY ) ∧ e−F

)
.

Here comes the key observation: if v − w 6= 0, then, using (the
proof of) the second part of Proposition 2.2.2, we have

∫

TM

ei〈y,v−w〉π∗Y (ΩY ) ∧ e−F =

∫

TM

ei〈y,v−w〉
(

n∧
j=1

(dxj + idyj)

)
∧ ei

∑n
j=1 duj∧dyj

= ineωX

∫

TM

ei〈y,v−w〉dy1 ∧ . . . ∧ dyn

= 0.

Hence,

F−1(φΩY ) = i−nφ̂x(v)

∫

TM

π∗Y (ΩY ) ∧ e−F = φ̂eωX .

(iii) follows from (i), (ii) and Lemma 3.2.1.

From now on, we will also use F to denote the fiberwise
Fourier series, i.e.

F : A(X) → O(Y ), f 7→ f̂ ,

which we regard as an SYZ mirror transformation. Which one
we are referring to should be clear from the context. Theorem
1.2.1, which we recall as follows, is now a corollary of Theorem
3.2.1.

Theorem 3.2.2 (=Theorem 1.2.1). The SYZ transformation of
the generating function Φq for holomorphic discs counting on the
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toric Fano manifold X̄ gives the superpotential W on the mirror
manifold Y ∼= (C∗)n:

F(Φq) = eW ∈ O(Y ).

Furthermore, we can incorporate the symplectic structure ωX on
X to give the holomorphic volume form on the Landau-Ginzburg
model (Y, W ) in the sense that

F(Φqe
ωX) = eWΩY .

Proof. Recall that

Φq(x, v, u) =
∑

β∈π+
2 (X̄,Lx), ∂β=v

1

w(β)
e−

∫
β

ωX̄ .

For β ∈ π+
2 (X̄, Lx) with ∂β = v, we have

∫
β ωX̄ = 〈x, v〉+const.

So Φq is admissible. It remains to show that the fiberwise Fourier
series F(Φq) = Φ̂q = eW . Remember that the superpotential
W is given, in our coordinates, by W =

∑d
i=1 e−〈z,vi〉+λi. For

z = x + iy,

Φ̂q(z) =
∑

v∈N

( ∑

β∈π+
2 (X̄,Lx), ∂β=v

1

w(β)
e−

∫
β

ωX̄

)
hol∇y

(v)

=
∑

k1,...,kd∈Z≥0

1∏d
i=1 ki!

e
−∑d

i=1 ki

∫
βi

ωX̄e−
∑d

i=1 kii〈y,vi〉

=
d∏

i=1

( ∑

ki∈Z≥0

1

ki!

(
e
− ∫

βi
ωX̄e−i〈y,vi〉)ki

)

=
d∏

i=1

exp
(
e−〈z,vi〉+λi

)

= eW .
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The form Φqe
ωX can be viewed as the symplectic structure

weighted (or corrected) by holomorphic discs. That we call
eWΩY the holomorphic volume form of the Landau-Ginzburg
model (Y, W ) can be justified in several ways. For instance, in
the theory of singularities, one considers the complex oscillating
integrals

I =

∫

Γ
eWΩY

where Γ is some real n-dimensional cycle in Y constructed by
the Morse theory of the function Re(W ). These integrals re-
semble the periods of holomorphic volume forms on Calabi-Yau
manifolds, and they satisfy certain Picard-Fuchs equations (see,
for example, Givental [19]).

3.3 Quantum cohomology vs. Jacobian ring

The purpose of this section is to give a proof of Theorem 1.2.2.
But before that, let’s recall the definition of the Jacobian ring
Jac(W ). Recall that the mirror manifold Y is given by

Y =
{

(Z1, . . . , Zd) ∈ (C∗)d :
d∑

i=1

QiaZi = ra, a = 1, . . . , l
}

.

For convenience, from now on we will, instead of Z1, . . . , Zd, use
the exponential coordinates, i.e. we replace e−Zi by Zi. Then Y

can be written as

Y =
{

(Z1, . . . , Zd) ∈ (C∗)d :
d∏

i=1

ZQia

i = qa, a = 1, . . . , l
}

where qa = e−ra, a = 1, . . . , l, are the Kähler parameters as
before. In these coordinates, the ring C[Y ] of regular functions
of Y is given by

C[Y ] = C[Z1, . . . , Zd]
/〈 d∏

i=1

ZQia

i − qa : a = 1, . . . , l
〉
,
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where C[Z1, . . . , Zd] is the ring of polynomials in d variables, and
the superpotential W : Y → C is just the sum of coordinates

W = Z1 + . . . + Zd.

Similarly, we change the coordinates on Y by replacing e−zj by
zj, so that the equation Zi = 〈z, vi〉 − λi becomes

Zi = eλizvi = eλiz
v1

i
1 . . . zvn

i
n

for i = 1, . . . , d. In these coordinates, W is written as

W = eλ1zv1 + . . . + eλdzvd

and C[Y ] = C[z±1
1 , . . . , z±1

n ]. Now, the Jacobian ring is defined
as the quotient of C[Y ] by the ideal generated by the logarithmic
derivatives of W :

Jac(W ) = C[Y ]
/〈

zj
∂W

∂zj
: j = 1, . . . , n

〉

= C[z±1
1 , . . . , z±1

n ]
/〈

zj
∂W

∂zj
: j = 1, . . . , n

〉
.

Theorem 1.2.2 follows from:

Theorem 3.3.1. The induced transformation

F : C[Ψ±1
1 , . . . , Ψ±1

n ]/L → Jac(W )

is an isomorphism of C-algebras. In particular, the SYZ mirror
transformation induces a natural isomorphism of C-algebras

F : QH∗(X̄)
∼=−→ Jac(W )

provided that X̄ is a product of projective spaces.

Proof. First of all, obvious that F(Ψi) is the monomial Zi =
eλizvi for i = 1, . . . , d. Indeed, in the new coordinates, if f ∈
A(X) is given by f(x, v, u) = fve

−〈x,v〉, then

F(f) = f̂ =
∑

v∈N

fvz
v.
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Hence F(Ψi) = eλizvi and in particular F(Ψi) = zi for i =
1, . . . , n. Next, note that

zj
∂W

∂zj
=

d∑
i=1

zj
∂

∂zj
(eλiz

v1
i

1 . . . zvn
i

n ) =
d∑

i=1

vj
i e

λiz
v1

i
1 . . . zvn

i
n =

d∑
i=1

vj
i Zi

for j = 1, . . . , n. The inverse SYZ transformation of zj
∂W
∂zj

is
thus given by

F−1(zj
∂W

∂zj
) =

d̂∑
i=1

vj
i Zi =

d∑
i=1

vj
i Ψi.

The theorem now follows from the fact that all linear equiv-
alences are generated by the relations

∑d
i=1 vj

i Ψi = 0 for j =
1, . . . , n.

We give two examples to illustrate the SYZ mirror transfor-
mation and origination of quantum corrections.

Example 1: X̄ = P2. In this case, N = Z2. Let {e1, e2} be
the standard basis of N . The primitive generators of the fan
of X̄ are given by v1 = e1 = (1, 0), v2 = e2 = (0, 1) and v3 =
−e1− e2 = (−1,−1), and the polytope P̄ ⊂ MR ∼= R2 is defined
by the inequalities

x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ t,

where t > 0. The mirror manifold is given by

Y = {(Z1, Z2, Z3) ∈ C3 : Z1Z2Z3 = q} ∼= (C∗)2,

where q = e−t is the Kähler parameter, and the superpotential
W : Y → C can be written as

W = Z1 + Z2 + Z3 = z1 + z2 +
q

z1z2
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in the coordinates (z1, z2) of Y . By our derivation, the Jacobian
ring Jac(W ) is then given by

Jac(W ) = C[Z1, Z2, Z3]
/〈

Z1 − Z3, Z2 − Z3, Z1Z2Z3 − q
〉

= C[Z]
/〈

Z3 − q
〉
.

There are three toric divisors D1, D2, D3 corresponding to three
admissible functions Ψ1, Ψ2, Ψ3 : X̃ → C defined by

Ψ1(x, v, u) =

{
e−x1 if v = (1, 0)

0 otherwise,

Ψ2(x, v, u) =

{
e−x2 if v = (0, 1)

0 otherwise,

Ψ3(x, v, u) =

{
e−(t−x1−x2) if v = (−1,−1)

0 otherwise,

respectively. The quantum cohomology ring is given by

QH∗(X̄) = C[D1, D2, D3]
/〈

D1 −D3, D2 −D3, D1 ∗D2 ∗D3 − q
〉

= C[H]
/〈

H3 − q
〉

where H is the hyperplane class. Corrections appear only in one
relation, namely,

D1 ∗D2 ∗D3 = q.

Fix a point x ∈ P . Then the correction is due to the unique
holomorphic curve ϕ : (P1; x0, x1, x2, x3) → X̄ of degree 1 (i.e. a
line) with 4 marked points such that ϕ(x0) = p and ϕ(xi) ∈ Di

for i = 1, 2, 3. The tropical curve corresponding to this line is
Γ, which is glued from three half lines emanating from the point
gP (x) ∈ NR in the directions v1 = (1, 0), v2 = (0, 1) and v3 =
(−1,−1). These half lines are the tropical discs corresponding
to the Maslov index two holomorphic discs ϕ1, ϕ2 and ϕ3 which
intersect at one point with the corresponding toric divisors D1,
D2 and D3 respectively and whose boundaries are mapped to



CHAPTER 3. MIRROR SYMMETRY FOR TORIC FANO MANIFOLDS45

the Lagrangian torus Lx. See Figure 1 below.

.
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Example 2: X̄ = P1×P1. Again let {e1, e2} be the standard basis
of N = Z2. The primitive generators of the fan of X̄ are given
by v1,1 = e1 = (1, 0), v2,1 = −e1 = (−1, 0), v1,2 = e2 = (0, 1) and
v2,2 = −e2 = (0,−1), and the polytope P̄ ⊂ MR ∼= R2 is defined
by the inequalities

0 ≤ x1 ≤ t1, 0 ≤ x2 ≤ t2

where t1, t2 > 0. The mirror Landau-Ginzburg model (Y, W )
consists of

Y = {(Z1,1, Z2,1, Z1,2, Z2,2) ∈ C4 : Z1,1Z2,1 = q1, Z2,1Z2,2 = q2} ∼= (C∗)2,

where q1 = e−t1 and q2 = e−t2 are the Kähler parameters, and

W = Z1,1 + Z2,1 + Z1,2 + Z2,2 = z1 +
q1

z1
+ z2 +

q2

z2
.

The Jacobian ring Jac(W ) is then given by

Jac(W ) =
C[Z1,1, Z2,1, Z1,2, Z2,2]〈

Z1,1 − Z2,1, Z1,2 − Z2,2, Z1,1Z2,1 − q1, Z1,2Z2,2 − q2
〉

= C[X,Y ]
/〈

X2 − q1, Y
2 − q2

〉
.

There are four toric divisors D1,1, D2,1, D1,2, D2,2 corresponding
to the admissible functions Ψ1,1, Ψ2,1, Ψ1,2, Ψ2,2 : X̃ → C defined
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by

Ψ1,1(x, v, u) =

{
e−x1 if v = (1, 0)

0 otherwise,

Ψ2,1(x, v, u) =

{
e−(t1−x1) if v = (0,−1)

0 otherwise,

Ψ1,2(x, v, u) =

{
e−x2 if v = (0, 1)

0 otherwise,

Ψ2,2(x, v, u) =

{
e−(t2−x2) if v = (0,−1)

0 otherwise,

respectively. The quantum cohomology is given by

QH∗(X̄) =
C[D1,1, D2,1, D1,2, D2,2]〈

D1,1 −D2,1, D1,2 −D2,2, D1,1 ∗D2,1 − q1, D1,2 ∗D2,2 − q2
〉

= C[H1, H2]
/〈

H2
1 − q1, H

2
2 − q2

〉

where H1 and H2 are pullbacks of the hyperplane classes in the
first and second factors respectively. The corrections appear in
two relations

D1,1 ∗D2,1 = q1 and D1,2 ∗D2,2 = q2.

We will consider only the first one. For any x ∈ P , there are two
Maslov index two holomorphic discs ϕ1,1 and ϕ2,1, each intersects
at one interior point with the corresponding divisor, and whose
boundaries are mapped to Lx. In this case, the two holomorphic
discs glue together directly to give the holomorphic curve ϕ1 :
(P1 : x0, x1, x2) → X̄, which is of degree 1 (again a line) and
passes through Lx, D1,1, D2,1. ϕ1 accounts for the quantum
correction involved in the relation D1,1 ∗D2,1 = q1.
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3.4 Correspondences of cycles

This section is an attempt to understand the correspondences
between A-branes on a toric Fano manifold X̄ and B-branes
on the mirror Landau-Ginzburg model (Y, W ) using the SYZ
framework.

We will deal with the simplest case of the correspondence.
Let Lx = µ−1

X (x) be a Lagrangian torus fiber of X̄ over x ∈ P

equipped with a flat U(1)-bundle Ly = (L × C,∇y) where as
before, ∇y is a flat U(1)-connection on the trivial line bundle
over Lx. This gives us an A-brane (Lx,Ly). According to the
SYZ Mirror Conjecture, the mirror of this A-brane is given by
the B-brane (z = x + iy ∈ Y,Oz). In other words, the corre-
spondence between the objects is the same as in the semi-flat
case. The difference emerges when we consider morphisms.

According to Hori (see [27], Chapter 39.), the endomorphism
algebra End(z,Oz) of the B-brane (z,Oz) is given by the coho-
mology of the complex

(Cl(TzY, Hess(W )z), δ = ι∂Wz
)

where Cl(TzY, Hess(W )z) denotes the Clifford algebra gener-
ated by the tangent space TzY equipped with the bilinear form
given by the Hessian of W at the point z, and ι∂Wz

is the contrac-
tion with the vector ∂Wz. The following elementary proposition
shows that the introduction of the superpotential W ”localizes”
the category B-type D0-branes to the critical locus of W .

Proposition 3.4.1. The endomorphism algebra End(z,Oz) is
nontrivial if and only if z ∈ Y is a critical point of the superpo-
tential W : Y → C. In this case, End(z,Oz) = Cl(TzY, Hess(W )z).

On the other hand, the endomorphism algebra of the A-brane
(Lx,Ly) is given by the Floer cohomology ring1 HF (Lx,Ly),

1To avoid technicalities, we use C as the coefficient ring, instead of the Novikov ring Λ.
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which is in turn, as a module, given by the cohomology of the
complex [13], [12]

(H∗(Lx,C) =
∧∗

H1(Lx,C), δ = m1)

where m1 = m1(Lx,Ly) denotes the Floer differential. In [13],
[12], Cho and Oh explicitly computed the Floer differential m1.
Recall that H1(Lx,C) is canonically isomorphic to TzY . Let
C1, . . . , Cn be the basis of H1(Lx,C) corresponding to (z1

∂
∂z1

)z,

. . ., (zn
∂

∂zn
)z. Then the intersection number Cj · ∂βi = vj

i and

m1(Cj1 ∧ . . .∧Cjk
) =

d∑
i=1

m1,βi
(Cj1 ∧ . . .∧Cjk

)e
− ∫

βi
ωXhol∇y

(∂βi)

where m1,βi
(Cj1 ∧ . . .∧Cjk

) =
∑k

α=1(−1)k−1(Cjα
· ∂βi)Cj1 ∧ . . .∧

Ĉjα
∧ . . .∧Cjk

. It follows that m1 coincides with ι∂Wz
under the

canonical isomorphism

H∗(Lx,C) ∼=
∧∗

TzY

which maps Cj1 ∧ . . . ∧ Cjk
to (zj1

∂
∂zj1

)z ∧ . . . ∧ (zjk

∂
∂zjk

)z. Hence

HF (Lx,Ly) is isomorphic to End(z,Oz) as vector spaces. More-
over, Cho [12] proved that the Floer cohomology ring HF (Lx,Ly),
equipped with the product structure given by m2 = m2(Lx,Ly),
has a Clifford algebra structure generated by H1(Lx,C) with the

bilinear form given by Q(Cj, Ck) =
∑d

i=1 vj
i v

k
i e
− ∫

βi
ωXhol∇y

(∂βi).
We conclude that

Proposition 3.4.2 (=Proposition 1.2.3). The Floer cohomol-
ogy HF (Lx,Ly) is isomorphic to End(z,Oz) as C-algebras. In
particular, HF (Lx,Ly) is nontrivial if and only if z = x+iy ∈ Y

is a critical point of W : Y → C.

2 End of chapter.
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Future directions

The work in this thesis represents the first step in our program
which is aimed at exploring mirror symmetry via SYZ mirror
transformations. Our results showed that these transformations
can indeed be applied successfully to explain how quantum cor-
rections arise. There are certainly much more work remains to
be done in the future. In this final chapter, we will comment on
several possible future research directions.

Toric Fano manifolds

We have seen that the simplest correspondence between A-branes
on a toric Fano manifold X̄ and B-branes on the mirror Landau-
Ginzburg model (Y, W ), namely

(Lx,Ly) ←→ (z,Oz),

is compatible with the SYZ philosophy. It is desirable to see how
other A-branes on X are transformed to B-branes on (Y, W ).
An interesting and important example would be the Lagrangian
submanifold RPn ⊂ CPn, which can be viewed as a multi-section
of the moment map of CPn, equipped with the trivial flat U(1)-
bundle. Employing the SYZ approach, The mirror B-brane is
expected to be a rank-2n holomorphic vector bundle over Y ,
equipped with some additional information related to W . A

49
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possible choice of this additional information would be a ma-
trix factorization of W ; currently, it is widely believed that the
category of B-branes on (Y, W ) is given by the category of ma-
trix factoriztions of W (this was first proposed by Kontsevich,
see Orlov [39] for details). The relation between these matrix
factorizations and the computation of Floer cohomology will be
the key to a complete understanding of the correspondences.

On the other hand, we have not even touch the correspon-
dence between B-branes on X̄ and A-branes on (Y, W ). As we
mentioned in the introduction, the results of Seidel [40], Ueda
[44], Auroux-Katzarkov-Orlov [6], [7] and Abouzaid [1], [2] have
provided substantial evidences for this half of the Homologi-
cal Mirror Symmetry Conjecture. In particular, Abouzaid [2]
made use of an idea originated from the SYZ Mirror Conjec-
ture, namely, the mirror of a Lagrangian section should be a
holomorphic line bundle. His results also showed that the cor-
respondence should be in line with the SYZ picture. It is an
interesting question whether one can identify B-branes on X̄ di-
rectly with A-branes on (Y, W ) using SYZ fibrations and SYZ
mirror transformations. In particular, we would like to identify
geometrically the SYZ mirrors of Hermitian-Yang-Mills connec-
tions on holomorphic bundles over X̄.

Toric non-Fano or non-toric Fano manifolds

In our work, we made heavy use of Lagrangian torus fibration
provided by the moment map associated to the Hamiltonian
T n-action on a toric Fano manifold X̄. This is not available
in the case of non-toric Fano manifolds (e.g. Grassmanians,
flag varieties). While the mirror symmetry for these non-toric
Fano manifolds has been studied for some time by Givental [17]
and others, new tools and new ideas are needed if we want to
apply SYZ mirror transformations to understand the quantum
corrections in these cases.
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On the other hand, the mirror symmetry for toric non-Fano
manifolds is also not understood well. As can be seen from the
works of Givental [21], [18], the mirror map between the Kähler
and complex moduli spaces in this case is a nontrivial coordinate
change, instead of an identity map as in the toric Fano case.
Hence, the definitions of the SYZ mirror transformations may
have to be adjusted to incorporate the nontrivial mirror map. In
this respect, also deserve investigation would be Fano complete
intersections in toric varieties.

Calabi-Yau manifolds

The ultimate goal of our program is no doubt the mirror symme-
try for Calabi-Yau manifolds and the SYZ Mirror Conjecture.
Works of Fukaya [15], Kontsevich-Soibelman [31] and Gross-
Siebert [24] have laid a very solid foundation for understanding
the mirror symmetry for Calabi-Yau manifolds. In view of the
fact that toric varieties have played an important role in the
constructions of Gross and Siebert, it would nice if we can in-
corporate our methods with their new techniques to study SYZ
mirror transformations for Calabi-Yau manifolds; and hopefully,
this would let us reveal the secret of mirror symmetry for Calabi-
Yau manifolds.

2 End of chapter.
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