A Note on Lower Semicontinuous Set-valued Maps*)

by

KA-SING LAU

Presented by K. KURATOWSKI on April 10, 1975

Summary. Let \(X \) be a topological space, \(K \) a compact subset of a locally convex space \(Y \) and \(c(K) \) the family of closed convex subsets of \(K \). It is shown that a map \(\Phi : X \to c(K) \) is lower semicontinuous if the set \(\{ x : \Phi(x) \cap H \neq \emptyset \} \) is open for any \(H = \{ x : f(x) > r \} \) where \(f \) is a continuous functional on \(Y \). A simple example in \(R^2 \) shows that the compactness assumption on \(K \) is essential.

1. **Introduction.** Let \(X, Y \) be topological spaces. We use \(2^Y \) to denote the family of closed subsets of \(Y \). A set-valued map \(\Phi : X \to 2^Y \) is called lower semicontinuous if for any open set \(U \) in \(Y \), the set \(\{ x \in X : \Phi(x) \cap U \neq \emptyset \} \) is open in \(X \). It is well known that the lower semicontinuous set-valued maps play a significant role in the continuous selection theories (cf. [3, 4]). If \(Y \) is a locally convex (Hausdorff) linear topological space and \(K \) a closed subset of \(Y \), we let \(c(K) \) denote the family of closed convex subsets of \(K \). A set-valued map \(\Phi : X \to 2^Y \) is called weakly lower semicontinuous if the set \(\{ x \in X : \Phi(x) \cap H \neq \emptyset \} \) is open for any open half space \(H = \{ y \in Y : f(y) > r \} \), where \(f \in Y^*, \ r \in R \). Our main purpose is to prove

Theorem 1. Suppose \(X \) is a topological space, \(Y \) a locally convex space and \(K \) a compact subset of \(Y \). Let \(\Phi : X \to c(K) \) be a set-valued map. Then \(\Phi \) is lower semicontinuous if and only if it is weakly lower semicontinuous.

Although the given topology and the \(w(Y, Y^*) \) topology coincide in \(K \), it is not immediate that the sets \(\{ x \in X : \Phi(x) \cap H_i \neq \emptyset \}, \ i = 1, \ldots, n \) are open, will imply that \(\{ x \in X : \Phi(x) \cap \bigcap_{t=1}^n H_t \neq \emptyset \} \) is open. Hence one side of the theorem is non-trivial.

2. **Proof of the theorem.** Theorem 1 will result from the following lemmas. In the proofs, we will make use of the Vietoris topology [1]. Let \(X \) be a topological space. A subbase for the Vietoris topology on \(2^X \) consists of all sets having one of the following forms:

\[\{ F \in 2^X : F \cap U \neq \emptyset \}, \quad \{ F \in 2^X : F \subseteq U \}, \]

where \(U \) is an arbitrary open set in \(X \).

*) Revised version received on August 5, 1975.

[271]
Lemma 2. Let X be a topological space and let 2^X be given the Vietoris topology, then

(i) if X is compact, so is 2^X.

(ii) if X is regular, let $\{F_a\}_{a \in I}$ be a net in 2^X converging to F_0, then for each $x \in X$, we have an equivalence: $x \in F_0$ if and only if there exists a net $\{x_\alpha\}_{\alpha \in I}$, $x_\alpha \in F_a \forall \alpha \in I$, converging to x in X.

Proof. (i) follows from Theorem 15 in [1]. Suppose the necessity part of (ii) were not true, there exist a subnet $\{F_\beta\}_{\beta \in J}$ of $\{F_a\}_{a \in I}$ and an open neighborhood U of x such that $F_\beta \cap U = \emptyset$ for each β. Note that $\{F_\beta\}_{\beta \in J}$ converges to F_0. The family

$$\mathcal{J} = \{F \in 2^X : F \cap U = \emptyset\}$$

is a closed subset in 2^X and $F_\beta \in \mathcal{J}$ for all $\beta \in J$. But $F_0 \notin \mathcal{J}$ (for $x \in F_0 \cap U$), a contradiction. The sufficiency follows immediately from the definition of the Vietoris topology and the regularity of the space X.

Lemma 3. Let X be a subset of a locally convex space and let $c(X)$ be the family of closed convex subsets of X, then $c(X)$ is closed in 2^X.

Proof. Let $\{F_a\}_{a \in I}$ be a net in $c(X)$ converging to F_0. We only need to show that F_0 is convex. Consider $\lambda x + (1 - \lambda) y, x, y \in F_0, 0 < \lambda < 1$. By Lemma 2 (ii), there exist two nets $\{x_\alpha\}_{\alpha \in I}, \{y_\alpha\}_{\alpha \in I}, x_\alpha, y_\alpha \in F_a \forall \alpha \in I$, converging to x, y, respectively. Since F_a is convex, $\lambda x_\alpha + (1 - \lambda) y_\alpha$ is in F_a for each $\alpha \in I$. That $\lambda x + (1 - \lambda) y$ and Lemma 2 (ii) imply that $\lambda x + (1 - \lambda) y$ is in F_0. Hence F_0 is convex.

Our key step is to prove the following proposition.

Proposition 4. Let Y be a locally convex space, K a compact subset of Y, $y_0 \in K$ and U an open neighborhood of y_0 in Y. Then there are open half spaces $H_1, ..., H_n$ in Y containing y_0 such that every closed convex subset $S \subseteq K$ which intersects $H_1, ..., H_n$ must intersect U.

Proof. Let $D = K \setminus U$. Then D is compact, and so is 2^D with the Vietoris topology. By Lemma 3, $c(D)$ is closed and hence compact in 2^D. Let \mathcal{H} be the collection of open half spaces in Y containing y_0. Since Y is locally convex, by the separation theorem, each F in $c(D)$ is a subset of $Y \setminus \mathcal{H}$ for some $H \in \mathcal{H}$. Hence the sets

$$\mathcal{U}_H = \{F \in 2^D : F \subseteq Y \setminus H\}, \quad H \in \mathcal{H}$$

form an open cover of $c(D)$. There exists a finite subcover $\mathcal{U}_{H_1}, ..., \mathcal{U}_{H_n}$. These $H_1, ..., H_n$ satisfy the requirement. Indeed, if S is a closed convex subset in K such that $S \cap U = \emptyset$, then $S \subseteq D$ and $S \subseteq \mathcal{U}_{H_i}$ for some $i = 1, ..., n$. This implies that $S \cap H_i = \emptyset$ for some $i = 1, ..., n$.

Proof of Theorem 1. The necessity is clear. To prove the sufficiency, it is enough to prove that for any open set U in Y such that $\Phi(x_0) \cap U = \emptyset$, the set $\{x \in X : \Phi(x) \cap U \neq \emptyset\}$ is a neighborhood of x_0. Let $y_0 \in \Phi(x_0) \cap U$ and let
H_1, \ldots, H_n be the open half spaces constructed in the above proposition. Since each $\Phi(x)$ is closed and convex, it follows that

$$\bigcap_{i=1}^{n} \{x \in X : \Phi(x) \cap H_i \neq \emptyset\} \subseteq \{x \in X : \Phi(x) \cap U \neq \emptyset\}.$$

By assumption each set on the left side is an open neighborhood of x_0, hence so is $\{x \in X : \Phi(x) \cap U \neq \emptyset\}$.

3. Remarks. Combining Theorem 1 and the Michael selection theorem, we have

COROLLARY 5. Suppose X is a compact Hausdorff space, Y a metrizable locally convex space and K a compact subset of Y. Let $\Phi : X \rightarrow c(K)$ be a weakly lower semicontinuous map and let f be a continuous function defined on a closed subset F in X with values in Y and such that $f(x) \in \Phi(x)$ for each $x \in F$. Then f can be extended to a continuous function \overline{f} on X such that $\overline{f}(x) \in \Phi(x)$ for each $x \in X$.

An application of this corollary is shown in [2]. We finally remark that Theorem 1 will not be true if we do not assume that each of the $\Phi(x)$ is contained in a compact subset of Y. Consider the map Φ from $X = [0, 1]$ into $c(R^2)$ with $\Phi(0) = \{(1, y_2) : y_2 \in R\}$ and $\Phi(x) = \{(y_1, y_2) : x \cdot y_2 = y_1, y_1, y_2 \in R\}$ for $x \neq 0$. Then Φ is not lower semicontinuous. But for any open half space H in R^2, the set $\{x \in X : \Phi(x) \cap H \neq \emptyset\}$ is either $[0, 1]$ or $[0, 1] \setminus \{x'\}$ for some x' in X, hence Φ is weakly lower semicontinuous. If $Y = R$, the two conditions will be equivalent even without the compactness condition. For in this case we have

$$\{x \in X : \Phi(x) \cap (a, b) \neq \emptyset\} = \{x \in X : \Phi(x) \cap (-\infty, b) \neq \emptyset\} \cap \{x : \Phi(x) \cap (a, \infty) \neq \emptyset\}$$

for any a, b in R with $a < b$.

UNIVERSITY OF PITTSBURGH, PITTSBURGH, PA. 15260 (U.S.A.)

REFERENCES

Ка-Синг Лоу, Заметка о полунепрерывных снизу многовалентных преобразованиях

Содержание. Пусть X будет топологическим пространством, K — компактным множеством локально выпуклого пространства Y, $c(K)$ — семейством замкнутых выпуклых подмножеств. Докажем, что преобразование $\Phi : X \rightarrow c(K)$ есть полунепрерывное снизу если множество $\{x : \Phi(x) \cap H \neq \emptyset\}$ открыто для любого $H = \{x : f(x) > r\}$, где f является непрерывным функционалом на Y. Простейший пример в R^2 показывает, что предположение компактности K существенно.