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Multifractal and correlation analyses of protein sequences from complete genomes
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A measure representation of protein sequences similar to the measure representation of DNA sequences
proposed in our previous paper@Yu et al., Phys. Rev. E64, 031903~2001!# and another induced measure are
introduced. Multifractal analysis is then performed on these two kinds of measures of a large number of protein
sequences derived from corresponding complete genomes. From the values of theDq ~generalized dimensions!
spectra and relatedCq ~analogous specific heat! curves, it is concluded that these protein sequences are not
completely random sequences. For substrings with lengthK55, theDq spectra of all organisms studied are
multifractal-like and sufficiently smooth for theCq curves to be meaningful. TheCq curves of all bacteria
resemble a classical phase transition at a critical point. But the ‘‘analogous’’ phase transitions of higher
organisms studied exhibit the shape of double-peaked specific heat function. But for the classification problem,
the multifractal property is not sufficient. When the measure representations of protein sequences from com-
plete genomes are considered as time series, a method based on correlation analysis after removing some
memory from the time series is proposed to construct a phylogenetic tree. This construction is shown to be
reasonably satisfactory.
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I. INTRODUCTION

Since the sequencing of the first complete genome of
free-living bacteriumMycoplasma genitaliumin 1995 @1#,
more and more complete genomes have been deposite
public databases such as Genbank@34#. Complete genomes
provide essential information for understanding ge
functions and evolution. To be able to determine the patte
of DNA and protein sequences is very useful for study
many important biological problems such as identifying n
genes and establishing the phylogenetic relationship am
organisms.

A DNA sequence is formed by four different nucleotide
namely, adenine (a), cytosine (c), guanine~g!, and thymine
(t). A protein sequence is formed by 20 different kinds
amino acids, namely, alanine (A), arginine (R), asparagine
(N), aspartic acid (D), cysteine (C), glutamic acid (E),
glutamine (Q), glycine (G), histidine (H), isoleucine (I ),
leucine (L), lysine (K), methionine (M ), phenylalanine
(F), proline (P), serine (S), threonine (T), tryptophan
(W), tyrosine (Y), and valine~V! ~Ref. @2#, p. 109!. The
protein sequences from complete genomes are trans
from their coding sequences~DNA! through the genetic cod
~Ref. @2#, p. 122!.

A useful result is the establishment of long memory
DNA sequences@3–6#. Li and Kanero@3# found that the
spectral density of a DNA sequence containing mostly
trons shows 1/f b behavior, which indicates the presence
long-range correlation when 0,b,1. The correlation prop-
erties of coding and noncoding DNA sequences were a
studied by Penget al. @4# in their fractal landscape or DNA
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walk model. Penget al. @4# discovered that there exists long
range correlation in noncoding DNA sequences while
coding sequences correspond to a regular random walk
undertaking a more detailed analysis, Chatzidimitrio
Dreismann and Larharmmar@5# concluded that both coding
and noncoding sequences exhibit long-range correlation
subsequent work by Prabhu and Claverie@6# also corrobo-
rated these results. From a different angle, fractal analys
a relatively new analytical technique that has proved use
in revealing complex patterns in natural phenomena. B
thelsenet al. @7# considered the global fractal dimension
human DNA sequences treated as pseudorandom w
Vieira @8# carried out a low-frequency analysis of the com
plete DNA of 13 microbial genomes and showed that th
fractal behavior does not always prevail through the en
chain and the autocorrelation functions have a rich variety
behaviors including the presence of antipersistence.

Although statistical analyses performed directly on DN
sequences have yielded some success, there has been
indication that this method is not powerful enough to ampl
the difference between a DNA sequence and a random
quence as well as to distinguish DNA sequences themse
in more details@9#. One needs more powerful global an
visual methods. For this purpose, Haoet al. @9# proposed a
visualization method based on counting and coarse grain
the frequency of appearance of substrings with a giv
length. They called it theportrait of an organism. They
found that there exist some fractal patterns in the portr
which are induced by avoiding and underrepresen
strings. The fractal dimension of the limit set of portra
was also discussed@10,11#. There are other graphical meth
ods of sequence patterns, such as the chaos g
representation@12,13#.

Multifractal analysis is a useful way to characterize t
spatial heterogeneity of both theoretical and experime
r
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YU, ANH, AND LAU PHYSICAL REVIEW E 68, 021913 ~2003!
fractal patterns@14#. Yu et al. @15# introduced a representa
tion of a DNA sequence by a probability measure ofK
strings derived from the sequence. This probability meas
is in fact the histogram of the events formed by all theK
strings in a dictionary ordering. It was found@15# that these
probability measures display a distinct multifractal behav
characterized by their generalized Re´nyi dimensions~instead
of a single fractal dimension as in the case of self-sim
processes!. Furthermore, the correspondingCq curves ~de-
fined in Ref. @16#! of these generalized dimensions of a
bacteria resemble classical phase transition at a critical p
while the ‘‘analogous’’ phase transitions~defined in Ref.
@16#! of chromosomes of nonbacteria exhibit the shape
double-peaked specific heat function. These patterns led
meaningful grouping of archaebacteria, eubacteria, and
karyote. Anhet al. @17# took a further step in providing a
theory to characterize the multifractality of the probabil
measures of complete genomes. In particular, the resu
parametric models fit extremely well theDq curves of the
generalized dimensions and the correspondingKq curves of
the above probability measures of the complete genom
Based on the measure representation of DNA sequence
the technique of multifractal analysis in Ref.@15#, Anh et al.
@18# discussed the problem of recognition of an organi
from fragments of its complete genome.

Works have been done to study the phylogenetic relat
ship based on correlation analyses of theK strings of com-
plete genomes@19# and protein sequences from complete g
nomes@20,21#. Qi et al. @20# pointed out that a phylogeneti
tree based on the protein sequences from complete gen
is more precise than a tree based on the complete geno
~DNA! themselves, and removing the random backgrou
from the probabilities ofK strings of protein sequences ca
improve a phylogenetic tree from the biological poi
of view.

In this direction, we introduce in this paper the notion
measure representation of protein sequences similar to th
DNA sequences introduced in Ref.@15#. We then perform
multifractal analyses on this kind of measure representa
of protein sequences. We also construct a different mea
by subtracting some memory from the original measu
Then multifractal analyses are performed on these new m
sures, and a phylogenetic tree is constructed based on
correlation analyses.

II. MEASURE REPRESENTATION

Each coding sequence in the complete genome of an
ganism can be translated into a protein sequence using
genetic code~Ref. @2#, p. 122!. Then we can link all trans-
lated protein sequences from a complete genome to for
long protein sequence according to the order of the cod
sequences in the complete genome. In this way, we obta
linked protein sequence for each organism. In this paper
only consider this kind of linked protein sequences and v
them as symbolic sequences.

We call any string made ofK letters from the alphabet$A,
C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y% which
corresponds to 20 kinds of amino acids aK string. For a
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givenK, there are in total 20K differentK strings. In order to
count the number of each kind ofK strings in a given protein
sequence, 20K counters are needed. We divide the interv
@0,1@ into 20K disjoint subintervals, and use each subinter
to represent a counter. Lettings5s1•••sK , siP $A, C, D, E,
F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y%, i
51, . . . ,K, be a substring with lengthK, we define

xl~s!5(
i 51

K
xi

20i
, ~1!

where

xi5

¦

0, if si5A,

1, if si5C,

2, if si5D,

3, if si5E,

4, if si5F,

5, if si5G,

6, if si5H,

7, if si5I ,

8, if si5K,

9, if si5L,

10, if si5M ,

11, if si5N,

12, if si5P,

13, if si5Q,

14, if si5R,

15, if si5S,

16, if si5T,

17, if si5V,

18, if si5W,

19, if si5Y,

~2!

and

xr~s!5xl~s!1
1

20K
. ~3!

We then use the subinterval@xl(s),xr(s)@ to represent sub-
string s. Let NK(s) be the number of times that substrings
with length K appears in the linked protein sequence a
NK(total) the total times of all substrings with lengthK
appear in the linked protein sequence@we use an open read
ing frame and slide one position each time to count
times;NK(s) may be zero#. We define

FK~s!5NK~s!/NK~ total! ~4!

to be the frequency of substrings. It follows that
($s%FK(s)51. We can now define a measuremK on @0,1@ by
dmK(x)5YK(x)dx, where
3-2
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FIG. 1. Histograms of substrings with lengthsK51 and 4 of protein sequence from complete genome ofBuchnera sp. APS
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YK~x!520KFK~s!, when xP@xl~s!,xr~s!@ . ~5!

It is easy to see that*0
1dmK(x)51 and mK(@xl(s),xr(s)@)

5FK(s). We call mK the measure representationof the
linked protein sequence of the organism corresponding to
given K. As an example, the histogram of substrings in
linked protein sequence ofBuchnera sp. APSfor K51 and 4
are given in Fig. 1.

For simplicity of notation, the indexK is dropped in
FK(s), etc., from now on, where its meaning is clear. We c
order all theF(s) according to the increasing order ofxl(s).
We then obtain a sequence of real numbers consisting ofK

elements which we denote asF(t),t51, . . . ,20K.
Remark 1. As in Ref.@15#, the ordering of 20 letters in Eq

~2! follows the natural dictionary ordering ofK strings in the
one-dimensional space. A different ordering of 20 lett
02191
e
e

n

0

s

would change the correlation structure of the measure. H
ever, by its construction, different orderings of 20 letters
Eq. ~2! give almost the same multifractal spectrum and
Dq curve, which will be defined in the following section
when the absolute value ofq is relatively small~In Ref. @15#
we have the same property for the measure representatio
DNA sequence!. We shown in Fig. 2 theDq curves for four
different orderings to support this statement. Hence, our
sults based on multifractal analysis are considered indep
dent of the ordering. In a comparison of different organis
using this measure representation, once the ordering is gi
it is fixed for all organisms.

If s8 is one of the 20 letters, we denote byP(s8) the
frequency of letters8 in the linked protein sequence. The
for any K substrings5s1•••sK , siP $A, C, D, E, F, G, H,
I, K, L, M, N, P, Q, R, S, T, V, W, Y%, i 51, . . . ,K, we define
d
FIG. 2. TheDq curves based on four different orders of the 20 kinds of amino acids in Eq.~2! for measure representation of the linke
protein sequences ofBuchnera sp. APS~left! andMycoplasma genitalium~right!. Order0 is the dictionary order; Order1 is$L,A,M ,C,N,D,
P,E,Q,F,R,G,S,H,T,I ,V,K,Y,W%; Order2 is$C,L,D,M ,E,N,F,P,G,Q,H,R,I ,S,K,T,V,W,Y,A%; and Order3 is$Y,C,W,A,L,D,M ,E,
N,F,P,G,Q,H,R,I ,S,K,V,T%.
3-3
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YU, ANH, AND LAU PHYSICAL REVIEW E 68, 021913 ~2003!
F8~s!5P~s1!P~s2!•••P~sK!.

We next define

Fd~s!5F~s!2F8~s! ~6!

and denote byFad(s) the absolute value ofFd(s). For all
20K differentK strings, we can also order theFd(s) sequence
andFad(s) sequence according to the dictionary order ofs.

From the point of view of Ref.@20#, we need to subtrac
the random background from the sequence$F(s)% in order to
get a more satisfactory evolutionary tree. Qiet al. used a
Markov model to do this. Here we use the frequencies of
20 kinds of amino acids appearing in the linked protein
quence. By the nature of its generation, this probability m
sure behaves as a multiplicative cascade and displays
memory. Hence, subtracting out the fractal backgrou
F8(s) as described above has the effect of reducing lo
memory in the measure representation.

Based on the sequence$Fad(s)%, we obtain a different
measure via a similar way described above~see also Ref.
@22#! after normalization. We denote this measure bym8.

III. MULTIFRACTAL ANALYSIS AND CORRELATION
ANALYSIS

Common numerical implementation of multifractal ana
sis is based on thefixed-size box-counting algorithms@23#. In
the one-dimensional case, for a given measurem with sup-
port E,R, we consider thepartition sum

Ze~q!5 (
m(B)Þ0

@m~B!#q, ~7!

qPR, where the sum runs over all different nonempty box
B of a given sidee in a grid covering of the supportE, that
is,

B5@ke,~k11!e@ . ~8!

The exponentt(q) is defined by

t~q!5 lim
e→0

ln Ze~q!

ln e
~9!

and the generalized fractal dimensions of the measure
defined as

Dq5t~q!/~q21!, for qÞ1 ~10!

and

Dq5 lim
e→0

Z1,e

ln e
, for q51, ~11!

where Z1,e5(m(B)Þ0m(B)ln m(B). The generalized fracta
dimensions are numerically estimated through a linear
gression of
02191
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q21
ln Ze~q!

against lne for qÞ1, and similarly through a linear regres
sion of Z1,e against lne for q51. For example, we show
how to obtain theDq spectrum using the slope of the line
regression in Fig. 3.D1 is theinformation dimensionandD2
is the correlation dimensionof the measure. TheDq of the
positive values ofq give relevance to the regions where th
measure is large, i.e., to theK strings with high probability.
The Dq of the negative values ofq are associated with the
structure and properties of the most rarefied regions of
measure.

Figure 3 shows that the linear fitting becomes relativ
worse when the absolute value ofq increases. In order to
overcome the finite-size effects~due to the small size of a
single protein! and to attain statistical convergence, all t
protein sequences, translated from coding sequences in
complete genome, are linked together into a long seque
of proteins which we called a linked protein sequence. F
such an extended sequence, the size is sufficiently long
the asymptotic results of multifractal analysis to hold or
approximately correct. Second, the values ofDq used in this
study are those corresponding toq with smaller absolute val-
ues, and as a result the estimation is fairly accurate.

Some sets of physical interest have a nonanalytic dep
dence ofDq on q. Moreover, this phenomenon has a dire
analogy to the phenomenon of phase transitions
condensed-matter physics@24#. The existence and type o
phase transitions might turn out to be a worthwhile char
terization of universality classes for the structures@25#. The
concept of phase transition in multifractal spectra was int
duced in the study of logistic maps, Julia sets, and ot
simple systems. Evidence of phase transition was found
the multifractal spectrum of diffusion-limited aggregatio
@26#. By following the thermodynamic formulation of multi
fractal measures, Canessa@16# derived an expression for th
analogous specific heat as

FIG. 3. The linear slopes in theDq spectra.
3-4



MULTIFRACTAL AND CORRELATION ANALYSES OF . . . PHYSICAL REVIEW E 68, 021913 ~2003!
FIG. 4. Dimension spectra of measure representationm of protein sequences of some organisms.
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Cq[2
]2t~q!

]q2
'2t~q!2t~q11!2t~q21!. ~12!

He showed that the form ofCq resembles a classical pha
transition at a critical point for financial time series. In th
following section, we discuss the property ofCq for mea-
suresm andm8 defined in Sec. II.

For two random variablesX and Y with samples
X(1),X(2), . . . ,X(N) and Y(1),Y(2), . . . ,Y(N), respec-
tively, let

^X&5
1

N (
i 51

N

X~ i !, ^Y&5
1

N (
i 51

N

Y~ i !,

d~X!5A1

N (
i 51

N

@X~ i !2^X&#2,

d~Y!5A1

N (
i 51

N

@Y~ i !2^Y&#2.
02191
Then, the sample covariance ofX andY is

Cov~X,Y!5
1

N (
i 51

N

@X~ i !2^X&#@Y~ i !2^Y&#. ~13!

The sample correlation coefficient betweenX andY is there-
fore given by

r~X,Y!5
Cov~X,Y!

d~X!d~Y!
. ~14!

We have21<r(X,Y)<1. If it is equal to zero, the random
variablesX andY are considered uncorrelated. We next d
fine thecorrelation distanceby

Dist~X,Y!5
12r~X,Y!

2
. ~15!

Remark 2. We arrange the order of theFd(s) sequence
according to the dictionary order of the 20K kinds of K
strings, then calculate the distance matrix and construct
3-5
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FIG. 5. ‘‘Analogous’’ specific heat of measure representationm of protein sequences of some organisms.
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phylogenetic tree. It is easy to see that different orders of
Fd(s) sequence do not change the value of the correla
distance between two organisms using the above definit
A consequence is that different orders of theK strings yield
the same phylogenetic tree.

IV. DATA AND RESULTS

Currently there are more than 50 complete genomes
Archaea and Eubacteria available in public databases,
example Genbank at@34#. These include eight Archa
Euryarchaeota—Archaeoglobus fulgidusDSM4304 ~Aful !,
Pyrococcus abyssi~Paby!, Pyrococcus horikoshiiOT3
~Phor!, Methanococcus jannaschiiDSM2661~Mjan!, Halo-
bacterium sp. NRC-1 ~Hbsp!, Thermoplasma acidophilum
~Taci!, Thermoplasma volcaniumGSS1~Tvol!, andMetha-
nobacterium thermoautotrophicumdeltaH ~Mthe!; two Ar-
chae Crenarchaeota:Aeropyrum pernix~Aero! and Sulfolo-
bus solfataricus~Ssol!; three Gram-positive Eubacteria~high
G1C)—Mycobacterium tuberculosisH37Rv ~MtubH!, My-
cobacterium tuberculosisCDC1551~MtubC!, andMycobac-
terium lepraeTN ~Mlep!; twelve Gram-positive Eubacteri
02191
e
n
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or

~low G1C)—Mycoplasma pneumoniaeM129 ~Mpne!, My-
coplasma genitaliumG37 ~Mgen!, Mycoplasma pulmonis
~Mpul!, Ureaplasma urealyticum~serovar 3!~Uure!, Bacillus
subtilis 168 ~Bsub!, Bacillus haloduransC-125 ~Bhal!, Lac-
tococcus lactisIL 1403 ~Llac!, Streptococcus pyogenesM1
~Spyo!, Streptococcus pneumoniae~Spne!, Staphylococcus
aureus N315 ~SaurN!, Staphylococcus aureusMu50
~SaurM!, and Clostridium acetobutylicumATCC824 ~Ca-
ceA!. The others are Gram-negative Eubacteria, which c
sist of two hyperthermophilic bacteria—Aquifex aeolicus
~Aqua! VF5 andThermotoga maritimaMSB8 ~Tmar!; four
Chlamydia—Chlamydia trachomatis~serovar D! ~Ctra!,
Chlamydia pneumoniaeCWL029 ~Cpne!, Chlamydia pneu-
moniaeAR39 ~CpneA!, and Chlamydia pneumoniaeJ138
~CpneJ!; two Cyanobacterium—Synechocystissp. PCC6803
~Syne!, andNostoc sp. PCC6803~Nost!; two Spirochaete—
Borrelia burgdorferi B31 ~Bbur! and Treponema pallidum
Nichols ~Tpal!; and sixteen Proteobacteria. The sixteen P
teobacteria are divided into four subdivisions, which area
subdivision—Mesorhizobium lotiMAFF303099 ~Mlot!, Si-
norhizobium meliloti~smel!, Caulobacter crescentus~Ccre!,
and Rickettsia prowazekiiMadrid ~Rpro!; b subdivision—
3-6
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FIG. 6. Dimension spectra of measurem8 ~after subtracting some memory! of protein sequences of some organisms.
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Neisseria meningitidisMC58 ~NmenM! andNeisseria men-
ingitidis Z2491 ~NmenZ!; g subdivision—Escherichia coli
K-12 MG1655~EcolK!, Escherichia coliO157:H7 EDL933
~EcolO!, Haemophilus influenzaeRd ~Hinf!, Xylella fastid-
iosa 9a5c ~Xfas!, Pseudomonas aeruginosaPA01 ~Paer!,
Pasteurella multocidaPM70 ~Pmul!, andBuchnerasp. APS
~Buch!; ande subdivision—Helicobacter pyloriJ99~HpylJ!,
Helicobacter pylori26695~Hpyl!, andCampylobacter jejuni
~Cjej!. Besides these prokaryotic genomes, the genome
three eukaryotes: the yeastSaccharomyces cerevisiae~yeast!,
the nematodeCaenorhabdites elegans~chromosome I-V, X!
~Worm!, and the flowering plantArabidopsis thaliana~Atha!
were also included in our analysis.

We downloaded the protein sequences from the comp
genomes of the above organisms and calculated the dim
sion spectra and analogous specific heat of the measure
resentationsm and m8 after subtracting some memory. Th
numerical results showed that it is appropriate to use
measures ofK55 ~see Ref.@20#!. The caseK56 is worth
trying but beyond our computing power for the time bein
For K55, we calculated the dimension spectra, analog
02191
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specific heat ofm and m8, and the correlation distance
based on$F(s)%, $Fd(s)%, and $Fad(s)% of all the above
organisms. As an illustration, we plot theDq curves of the
measurem in Fig. 4; and theCq curves of measurem in Fig.
5. Because all theDq are equal to 1 for completely random
sequences, it is apparent from these plots that theDq andCq

curves are nonlinear and significantly different from those
completely random sequences. Hence, all protein seque
from the complete genomes studied are not completely
dom sequences. We plot theDq curves of the measurem8 in
Fig. 6 and theCq curves of the measurem8 in Fig. 7.

From the plot ofDq , the dimension spectra of the me
suresm andm8 are seen to exhibit a multifractal-like form

If only a few organisms are considered at a time, we c
use theDq curve to distinguish them. This strategy is clear
not efficient when a large number of organisms are to
distinguished. For this purpose, we find that it is more p
cise to use C0 ,C1 ,C2, in conjunction with the two-
dimensional vectors (C0 ,C1) and (C1 ,C2). The distribu-
tions of the two-dimensional vectors (C0 ,C1) and (C1 ,C2)
3-7
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FIG. 7. ‘‘Analogous’’ specific heat of measurem8 ~after subtracting some memory! of protein sequences of some organisms.

FIG. 8. Distribution of two-dimensional points (C0 ,C1) and (C1 ,C2) of organisms selected.
021913-8
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FIG. 9. The neighbor-joining
phylogenetic tree based on th
correlation distance using$Fd(s)%
with K55.
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based on the measurem8 give more useful patterns for th
classification than those based on the measure represen
m. We show the result based on the measurem8 in Fig. 8.

But the above results based on multifractal analysis
do not yield a satisfactory phylogenetic relationship for t
organisms selected. For a further improvement, we use
distance matrices from the correlation analysis to const
the phylogenetic tree with the help of neighbor-joining pr
gram in the PHYLIP package of Felsenstein@27#. We find
that the phylogenetic tree based on the correlation dista
using $Fd(s)% is more precise than the trees using$F(s)%
and$Fad(s)%. We show the phylogenetic tree using$Fd(s)%
with K55 in Fig. 9.

V. DISCUSSION AND CONCLUSIONS

Deviation of protein sequences from pure randomnes
correlation between monomers along the sequences mig
of importance@28#. The measure representation of prote
sequences provides a simple yet useful vizsualization me
to amplify the difference between a protein sequence an
completely random sequence as well as to distinguish pro
sequences themselves in more details.

From the measure representation and the values ofDq and
Cq , it is seen that there is a clear difference between
protein sequences of all organisms considered here and
pletely random sequences.

We calculated theDq andCq values of two kinds of mea
suresm and m8 for protein sequences from all organism
selected in this paper forK55. We found that theDq spectra
of all organisms are multifractal-like and sufficiently smoo
so that theCq curves can be meaningfully estimated.

With K55, we found that theCq curves of all bacteria
resemble a classical phase transition at a critical poin
shown in Figs. 5 and 7. But the analogous phase transit
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of higher organisms are different. They exhibit the shape
double-peaked specific heat function which is known to
pear in the Hubbard model within theweak-to-strongcou-
pling regime@29#.

Although the existence of the archaebacterial urkingd
has been accepted by many biologists, the classificatio
bacteria is still a matter of controversy@30#. The evolution-
ary relationship of the three primary kingdoms, name
archeabacteria, eubacteria, and eukaryote, is another cr
problem that remains unresolved@30#.

Figure 8 shows some patterns which are useful for
classification problem, namely, the points corresponding
organisms from the same category are located more clo
to each other. But multifractal analysis is still not sufficie
to give a satisfactory phylogenetic relationship for the org
isms selected. The correlation distance based on$Fd(s)% af-
ter subtracting some memory from the original informati
gives a more satisfactory phylogenetic tree. Figure 9 sho
that all Archaebacteria exceptHalobacterium sp. NRC-1
~Hbsp! stay in a separate branch with the Eubacteria a
Eukaryotes. The three Eukaryotes also group in one bra
Almost all other bacteria in different traditional categori
stay in the right branch. At a general global level of comple
genomes, our result supports the genetic annealing mode
the universal ancestor@31#. The two hyperthermophilic bac
teria: Aquifex aeolicus~Aqua! VF5 and Thermotoga mar-
itima MSB8 ~Tmar! stay in the Archaebacteria branch. W
noticed that these two bacteria, like most Archaebacteria,
hyperthermophilic. It has previously been shown th
Aquifex has close relationship with Archaebacteria from t
gene comparison of an enzyme needed for the synthes
the amino acid trytophan@32#.

It has been pointed out@20# that the subtraction of random
background is an essential step. Our results show that
subtraction of some memory is also an essential step in
3-9
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correlation method. The correlation analysis is more prec
than the multifractal analysis for the phylogenetic proble
Although the result from the correlation method of Ref.@20#
is slightly better than the result from our correlation meth
@Halobacteriumsp. NRC-1~Hbsp! stays with other Archae
bacteria in their phylogetic tree#, our algorithm seems sim
pler, faster and more efficient in using computer space.
reason is that Qiet al. @20# used the Markov model to sub
tract the random background. Hence, their algorithm ne
to retain all information ofK, (K21), and (K22) strings.
When K is large, considerable computer space is neede
store this information. On the other hand, our method o
requires the information ofK strings and the frequencies o
20 kinds of amino acids. Similar to the method in Ref.@20#,
lateral gene transfer@33# might not affect our results sinc
,

o,

re

. A

ta

ns
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the correlation method does not depend on the selection
specific gene.
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