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Abstract

The Cauchy transform of a measure has been used to study the analytic capacity and
uniform rectifiability of subsets in C. Recently, Lund et al. (Experiment. Math. 7 (1998) 177)
have initiated the study of such transform F of self-similar measure. In this and the
forecoming papers (Starlikeness and the Cauchy transform of some self-similar measures, in
preparation; The Cauchy transform on the Sierpinski gasket, in preparation), we study the
analytic and geometric behavior as well as the fractal behavior of the transform F. The main
concentration here is on the Laurent coefficients {a,},-, of F. We give asymptotic formulas
for {a,},-, and for F®)(z) near the support of y, hence the precise growth rates on |ay| and
|F®)| are determined. These formulas are connected with some multiplicative periodic
functions, which reflect the self-similarity of u and K. As a by-product, we also discover new
identities of certain infinite products and series.
© 2002 Elsevier Inc. All rights reserved.
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1. Introduction

Harmonic analysis plays a central role in the study of fractal measures. The
aspects of Fourier transform of such measures have been investigated in detail by
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Strichartz [St1,St2,St3] and one of the authors [L1,L2,LW]. For the complex case a
natural consideration is on the Cauchy transform defined by

F(z)—/d'u—(w)

KZ—M/,

where p is a bounded regular Borel measure with support K. The study of such
transform can be traced back to that of Cauchy-type integral, which is fundamental
in the study of the boundary-value problems for analytic functions. The Cauchy
transform is also a useful tool in geometric measure theory [Ma,G]. Two
typical examples are the Painlevé Theorem and the Vitushkin conjecture [Ma,G,
pp. 265-273, pp. 1-3]. The Painlevé Theorem says that a compact set K is removable
(or vanishing analytic capacity) if its one-dimensional Hausdorff measure ' (K) is
0, its proof depends on the Cauchy transform, and a direct consequence of the
theorem is that the Cauchy transform F of y with support K cannot be bounded on
C\K. The Vitushkin conjecture is that if K is a compact set with #' (K) < oo then K
is removable if and only if K is purely 1-unrectifiable, it is equivalent to some Cauchy
transforms that cannot be bounded on C\K [Ma, p. 272]. This conjecture has been
solved by David recently [D]. In a new direction, Strichartz et al. [LSV] have initiated
an investigation of the self-similar measures through the Cauchy transform. They
proved some basic analytic and geometric properties of such F; they also raised some
interesting questions based on the computational observations of F on the Sierpinski
triangle.

Recently, we have carried out a detail study of the Cauchy transform of self-
similar measures in the spirit of [LSV]. We consider the following questions: (i) the
asymptotic behavior of the Laurent coefficients of F; (ii) the growth rate and the
chaotic behavior of F near the support of y; (iii) the region of starlikeness of F. Since
the proofs require certain fine estimations and are quite long, we will present the
results separately. The present paper will concentrate on the Laurent coefficients
{an},=, of F; our first goal is to estimate the order of the growth of |a,], i.e., to find
the maximum « such that {n*|a,|},-, is a bounded sequence; then we discuss the limit
behavior of n*|a,|. A related discussion of such limit behavior is Hayman’s regularity
theorem which asserts that the modulus of the nth coefficient of the areally mean p-
valent function, p > 1, is asymptotic to a constant multiple of n7~! (see [H1,H2,Du,
pp. 150-161; pp. 163-166]).

The results in the topics (ii) and (iii) will appear elsewhere [DL1,DL2,Do].

We assume that the iterated function system (IFS) {Sj}_}’;1 is of the form

Sjz = zj +1j(z = 2), (L.1)

where 0<r;<1, |z|<1 with at least one |z;| = 1, and the {S;}_, satisfies the open
set condition (OSC), a basic condition to ensure separation in the iteration [F]. Let K
be the attractor and let u be the self-similar measure associated with a set of positive
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probability weights {p;}7":

m
,u:Zpiuon*I. (1.2)
=1

Let F(z) be the Cauchy transform of u. Obviously, F is analytic in C\K, hence it has
a Laurent expansion

F(z) = Z az™", |z| > 1 with a4 :/K w' du(w). (1.3)
n=1

This coefficients have been studied by Strichartz et al. [LSV]. For 1<j<m, let
a = logp;/logr; and o :=min{o;: 1</ <m}. (1.4)
They gave a crude estimate:

Theorem A. If{.S’,}jm:1 satisfies the OSC and if p;<r;, 1<j < m, then for any <o,
there exists C such that

nPla,|<C  for all n > 0. (1.5)

In this paper, one of our main efforts is to give the precise growth rate of the
Laurent coefficients {a,},-,. We let

Ji=1{Jj:lz1=1} and o =min{e;:je 7 }. (1.6)

Theorem 1.1. Let {S,};":] satisfy the OSC and let p be the self-similar measure defined
by (1.2). Then the Laurent coefficients {ay},-, defined by (1.3) satisfies

oy log> n
apt1 = Z n ij (Dj(n) + O(W)7
JeS

where the ®; are analytic multiplicative periodic functions on R" with period r;, i.e.,
Di(t) = ®;(r;t) (hence ®; is bounded).

Theorem 1.2. (i) If {S;}}_; satisfies the OSC, then there exists C > 0 such that
n*la,|<C, nx=1.

(i) If {S;}/L, satisfies the separated OSC, then

lim n*|a,| > 0.
n— o0
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If we only assume the OSC in (ii), we have the following lower bound estimate:

Proposition 1.3. If {S;}/, satisfies the OSC and if 0<o<mn/0y, then

lim n*|a,| >0, (1.7)

where 0y = infjc 4, o, —,(sup{arg(w — z;) —arg(& — z;) 1w, e K\{z;}}).

We remark that the supremum in the above expression is the angle subtended by K
at the vertex z; and is less than = (Lemma 2.3(i)). In particular, when m = 2 we have
0o = 0, hence (1.7) always holds for this case. The case for Sierpinski triangle
(m = 3) also holds as n/0y = 3 > o = log 3/log 2~ 1.5849.

As a remark of Theorem A and our theorems, we note that if {S;}"

-1 satisfies the
OSC, then

S 1 % o
Zn—l— VJ\E:V./’

J=1 J J=1

m m m

where s = dim_ K is the Hausdorff dimension of K. Hence 0 < o* <s. In addition the
condition p; <r; implies «* > 1. It follows that

l<oa*<s<2

for the case in Theorem A. On the other hand, the « in Theorems 1.1 and 1.2 lies in
(0,+00) depends on the weights.

Our proof is different from [LSV], it is based on some accurate estimations of
ani1 = [ W' du(w), making use of the self-similar properties of {Sj};'il and u as well
as a special decomposition of the integral [, w” du(w) (see (3.1), (3.2)). The extra
condition on o in Proposition 1.3 is used to justify an auxiliary function Hy(z)#0
(see (4.2)), a seemingly trivial statement but technically difficult to prove. We believe
that the statement lim,,_, ., n%|a,| > 0 is true without such condition.

For the special case when z; = ¢>//™ r; = r and p; = 1/m, the attractor K and the
self-similar measure u are m-fold symmetric, so is the Cauchy transform F. The
Laurent series can be expressed as

F2)=z"+Y dympz ", |z > L

n=1

In this case, we find constants p,, (see (5.5)) such that for 0<r<p,,, {Sj},m:1 satisfies

the OSC; the functions @; in Theorem 1.1 are all equal (denoted by @) and can be
expressed more explicitly by an infinite product (Corollary 3.5 or (5.7)). The growth

rate of the {@un+1},-, can be described more precisely as follows.
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Theorem 1.4. For 0<r<p,,, dimy K =a =logm/|logr|, there exists C >0 such
that the sequence of Laurent coefficients {aumi1},-, satisfies

C71 < (nm + l)aamn+] < C, Vn>0

Furthermore, except for the case m =2,4 with r = p,, :%, the sequence {(nm +
1) Gpms1 Yo s dense in the non-degenerated line segment m®y([r,1]). In this case

lim (nm + 1)*@pny1 = max m®g(1);

n— o r<t<l
lim (nm+ 1)* @y, = min m®(1).
n—ow r<t<l

When m = 2,4 with r = p,, = 1, the sequence {(nm + 1)*@yn+1},-, is very simple
and the limits exist (see (5.15), (5.18)). This and Theorem 1.1 allow us to obtain a few
identities of certain infinite products and series (Section 5; see also Section 3).

From the first part of Theorem 1.4, we can also conclude the behavior of the kth
derivative F*) near 1 (and hence for the vertices z; = ¢*/™).

Corollary 1.5. For 0<r<p,, (except for m =2,3,4 withr = p,, = %), ifk+1—o>
0, then

0< lim (r— 1)"*F®0 (1) < lim (1 — D FR) ()| < o0
t—1+

t—>1+

The corollary also holds for m =3, r=p, =1 but it needs a different proof
which is given in [DL2]. While for the case m =2, 4 and r = p,, = %, the lim and the
lim are actually equal (see Section 5).

For the organization of the paper, we give some preliminary results in Section 2.
We introduce the multiperiodic functions @; and prove some basic estimations in
Section 3. Theorems 1.1, 1.2 and Proposition 1.3 are proved in Section 4. In Section
5 we consider the special cases of the self-similar m-gasket; Theorems 1.4 and
Corollary 1.5 are proved there.

2. Preliminaries

The following proposition is probably known and we include it here for
completeness.

Proposition 2.1. Let u be a positive, bounded regular Borel measure on C and has a

compact support K. Then F(z) = [i.(z — w) ' du(w) is analytic on C\K but is not
analytic on K.
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Proof. The analyticity of F on C\K is clear and the main concern is on the non-
analyticity of F on K. We first note that for any R > 0,

/ / w—z| ' dL?(2) du(w) < oo
K ‘_—Z[)‘SR

hence the Fubini theorem implies that F(z) exists #*-a.e. on K. Let zoe K and let
B, (z9) denote the ball with center at zy, and radius r. We claim that

1

w(B(z9)) = i /| . F(z)dz, reR", Z-ae. (2.1)

Indeed we apply the Fubini theorem and the polar coordinate on the above double
integral to conclude that

/ / |d |<oo, reR", ZL-ae., (2.2)
|z—zo|=r ‘Z - W|

we also exclude the countably many r such that u({|z — zo| = r}) > 0in (2.2). For the
remaining r, we apply the Fubini theorem again to the right-hand side of (2.1) to

obtain
1 1 dz
— F(z)dz = — d .
2ni |z—zo|=r (Z) g /]{(27‘51 /|zzo—rz - W> H(W)

The integral inside the parentheses equals 1 if |w — zo| <r, and equals 0 if |w — zo| > r
(by the Cauchy formula). This together with u({|z — zo| = r}) = 0 implies that the
integral equals u(B,(zo)) and the claim follows.

Now if F(z) were analytic for some zy € K, then there exists ¢ > 0 such that F is
analytic on {z: |z — z9| <e}. By using the Cauchy theorem,

1
— F(z)dz=0 for all 0<r<g,
2ni )|

Z0|=r
so that u(B,(z9)) = 0. This contradicts that u(B,(z9)) > 0 since zoe K = suppp. 0O
Throughout the paper we assume that the IFS {S; } ", is of the form
Siz=z+r(z=2), j=12....,m, (2.3)

where 0<r;<1 and |z|<1 with equality holding for some j (we let z; =1 for
convenience). Also, we assume {5, j};‘n:l satisfies the OSC [Hu]: there exists an open set
U such that

S/‘UQU and SlU('\S/U:Q) for l#]



X.-H. Dong, K.-S. Lau | Journal of Functional Analysis 202 (2003) 67-97 73

If in addition S;UNS;U =0 for i#j, we call it separated OSC; in this case K is
totally disconnected. Let K be the attractor and let u be the self-similar measure
associated with a set of positive probability weights {pj};":1 Let 7 ={1,...,m}
denote the index sets for the S;’s; for the multi-indices, we write J = (ji, ..., /), S;r =
Sj 008, Ky=2S8;K and p; = p; ---p;,. Under the OSC, the measure p has the
measure separation property [S]:

w(S;KnSyK)=0 for J#J and |[J|=|J|. (2.4)

Since we are only interested on the self-similar measures, we will assume
that u is such a measure if we make no specification. The above proposition is
applied to yield a Laurent series expansion on |z| > 1 as in (1.3). Our goal in
this section is to set up some basic tools for the estimation of the coefficients of the
series.

Proposition 2.2. Suppose that {S; } _, satisfies the OSC and y is a self-similar measure.
Then for any feL'(n) and for any Borel subset E,

£y due) = pr [ F(Sw) du(w).

S,E

Moreover, for any je ¢, and k=0,

o0

w)du(w) = pf S7(w)) dp(w).

S"K K K\S; K

Proof. It suffices to prove the first identity for f =y, where A is any Borel
subset in S;E. Let B = S;'4, then by applying the self-similar identity and the OSC,
we have

w(A4) = u(Sj, -, (B)) = pji i(Sjs-j, (B)) = -+ = psu(B)

and the identity follows directly from this and y,(S;w) = yz(w). For the second
identity, it is observed that under the OSC,

SRz} = S/ KIS K).
/=0

The measure separation property (2.4) implies that the measure of the intersection of
any two sets in the union is zero. We can apply the first identity in the proposition to
conclude the second identity, noting that u({z;}) =0 (as u is a continuous
measure). [
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For our later estimations, we will express (S}‘(z))" into an exponential form as
follows: for je #,, keN" and for any ze K\S;K,

(Sjk(z))n :Zj’-l(l + r]k(Z,z _ 1))11 _ 2}1671 log(l+r]’.‘(2/ﬂzfl))

n

=7 e*ﬂl‘f(l*f/l)+0(nl};/c) (25)

where O(nr];k) is uniform with respect to ze K\S;K. In the sequel we make some
considerations on the two expressions (1 — Zjz) and nrj’-C in the above exponent.

For |zo| = 1, a (symmetric) closed Stolz angle with vertex zy and angle 20 <7 is a
set of the form

A, (0) ={z:]z|<1, |arg(l — Zpz)| <0} u{zo0},

ie., a sector at vertex zp with an angle 20 symmetric to [0,zy]. Note that
y = arg(l — Zoz) = arg(zp — z) —argzo is the angle (<n/2) of zy and zy— z;
Re(1 — Zpz) = |z9 — z|cos y is the projection of zy — z along z.

Lemma 2.3. For je #,, we have

() K is contained in the Stolz angle A (0;) for some 0<0;<m/2;
(i) n; = inf{Re(l — Z;z) : ze K\S; K} > 0;
(iii) there exists 2> 0 such that |z| <1 — ir! for ze S;K\S} 'K, n=1.

Remark. We do not need the OSC in {S;}7", here.

Proof. By a rotation of Z;, we can assume for simplicity that z; = z; = 1. Let G be

the convex hull of {zy,...,z,}. Then G={|z|<1} and S;G=G for each 1<i<m.

Hence K< (), Uysjzn SsG [F]. The strict convexity of the boundary of the unit

disc yields a 0<0; <=/2 such that G lies in the Stolz angle 4,(60,). This implies (i).
For (ii), we observe that for 2<i<m, 1¢S;G, hence 1¢S;K. Therefore

= z>dist<1,U S,~K> =0>0, VzeK\SK. (2.6)
i=2

This implies that Re(1 — z)>d cos0; > 0 for ze K\S| K.
To prove (iii), we apply the isometric contractive property of Si(z) =1+r (z — 1)
to (2.6) inductively and obtain |1 — z|>r] for zeS’fK\S’l’“K so that

Il —z|=dr, VzeK\S{'K.

Next note that by (i), K is contained in the Stolz angle A4;(6;). It is clear that
S1(A41(01)) is a “fan-shape” set within the 4,(0;) and its circular arc is bounded
away from {z :|z| = 1}. Hence from elementary geometry, there exists 1 > 0 such
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Fig. 1. |l —z| = ar", |2 = (1 — @ cos 0,)* + (@ sin 0,)*.

that S (4;(01))\{z: |z — 1|=0r}}(= A) is a subset of {|z]<1 — Ar]} (see Fig. 1 for
the special z with maximum length in the set A4). Statement (iii) follows from
this. O

For the sequence {nr*} in (2.5), we proceed as follows. For fixed 0<r<1, and for
any n>=1, we can choose a unique sequence

N(n) such that r<n™™ <1; let x, = nr¥™. (2.7)
Note that N(n) = 1 + [logn/|logr|].

Proposition 2.4. For 0<r<1, the sequence {x,},-, defined above is dense in [r, 1], but
it is not uniformly distributed.

Proof. Observe that {N(n)},~, is a monotonic increasing sequence with jumps at
most 1 at each n. We define i, to be the n such that the kth jump occurs, i.e., iy =n
where N(n) = k. It follows that

Nn) =k for i <n<ipy.
Hence x, = n* for iy <n<iy,;. This implies that {x;,x; i1, .eeyXi,,—1} has equal

spacing r* and lies in [r, 1]; also 0<x;, — r<rf and 0<1 — x;,_, -1 <r*. Hence {x,},,
is dense in [r, 1].
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For the non-uniform distribution of {x,},-,, it suffices to show that for a function
f(x) %0 continuous on [r, 1], frl f(x)dx =0 but

N I .
nlingo . ;f(x,) does not exist,

[KN, p. 2]. Indeed let {ix};~, be defined as above, then by using the partition
{r,xi., ..., Xi,,—1, 1} of [r, 1], it is easy to show by the definition of Riemann integral
that for i <n<ip. — 1,

rkif(X/) - /x”f(x) dx=o0(l) as k- + oo,
o r

in particular, Z;‘*;k "f(x;) = o0(1) as k— co. Consequently, for ix <n<igy — 1
and for k— o0,

1 n k iy —1 ko gr—l
DR DL SN SRS T}
/=1 o\ /=1 q=ko /=iy /=i
k
=0(*) +o (Z >+fo,
Xn /=iy,
f )dx + o(1).

Noting that {x,},~, is dense in [r, 1], it is clear that the last term does not have
limit. O

3. Estimations of the coefficients

Let {p;}/_, be a set positive probability weights associated with {S;}7,. Let « be
defined by (1.6). We are aiming to show that a,,; = O(n~*). Let A > 0 be defined
by Lemma 2.3(iii), i.e., |z|<1— /Ir;‘ for all zeSjK\S]’?K and je #,. For each
J€J 1, n=2, we define a positive integer j,(= /;(n)) by

927! logngm_’li”<y/1*1(logn)/rj, (3.1)

where the positive constant y is to be chosen later (see (4.1)); write

nyl = / w'du(w) = / / / w" du(w)
K e A\ I, SiK jes, SK\S K jes S/”

= A(n) + B(n) + C(n) (3.2)
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(note that the measure separation property (2.4) is applied to the decomposition of K
into the sums).

Lemma 3.1. With the above notations and the choice of j, for a giveny > 0, we have for
some 0<p<l,

Proof. Note that for je #\#,, |rjj<l. Hence there exists 0<p<1 such that
S;K ={|w|<p}. This yields [4(n)|< [i [w|" du(w)<p". The estimation of |B(n)|
follows from (3.1):

Bwl< Y [ wPdun<( -y < <ot O
/7, Jsmisi

The main difficulty is to handle C(n). For this we first establish an elementary
estimation: for » > 1, > 0 and for sufficiently large a, we have

00

> e < 2o (3.3)

e
yaur a*logb

In fact, note that (x) = b**e~*" is a decreasing function on x for large a, the left-
hand side of (3.3) is less than

o0 N 1 0
pox —ab dx = o—1 =¥ dy.
/0 ¢ YT logb/a yoen @

By using y* e’ <e /2, we get (3.3). In the following proof, we see that the choice
of j, is to make the a large enough to apply (3.3).

For simplicity, we slightly abuse the notation by writing Y, ¢, + O(¢,) >, |c/| as
(14 O(€n))>_, ¢, in Lemma 3.2 and Theorem 4.1.

Lemma 3.2. For je ¢, let j, be defined as in (3.1). Then for sufficiently large n,

n logz n n o (jutt) —nr/:"w(l—f»z)
whdp(w)=(140 z Z r e 7 du(z)
5'K n reZ K\SK

+ ooy,

where n = min{n;:je 7}, n; > 0 is given by Lemma 2.3(ii), A by Lemma 2.3(iii) and
y by (3.1).
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Proof. We will make use of the expression of (S]’-‘(z))" in (2.5). From the choice of j,
we have e2"") = (1 4+ O(log® n/n)) for k> j,, hence

(SK(2))" = e ™ =5 (1 4 O(log? n/n))  for k=j,.

By Proposition 2.2 and noting the uniformity of O(log®n/n) with respect to
zeK\S;K and k=j,, we have

0
w" du(w) = ”H/ j”” du(w
/Sj’f"K ; K\S;K " )
log n)> N 0 +/)/ i (1-32)
1+ z7 r/" e s d,u 34
( DL (). (4)

To put it in the sum for /€7 as in the statement of the lemma, we need to estimate

R, =z" p Ut / e (1-52) du(z).
DI

/<—1

By making use of the choice of j, in (3.1),

- (u—"t) =’ logn Y& / ’
oi(ju—t) — in—¢ —oil —ar
eSS e < (B2 e
/=1 n /=1

where C| = (y/l’lrj‘l)“f and a = ny) 'logn, n= min{n;:je 7.}, n; > 0 is defined
in Lemma 2.3(ii). By (3.3)

|R,| < Con W+ % i)
and the lemma follows. [J

In view of the expression in the above lemma, we introduce two auxiliary
functions: for je #,, let

Pi(z) = (zr'.’)“f/ e~ 0= dp(w), (3.5)

J ; J K\S/K

Y.(t) = ' °‘-"/ e RU=E) gy (). 3.6
(1) };( 7) sk (w) (3.6)

Lemma 3.3. For je ¢4, let 0; be given by Lemma 2.3(i), then

() ¥;(¢) is bounded above and bounded away from 0 on R;
(ii) @;(z) is analytic in |arg z| <m/2 — 0};
(i) @;(r;z) = @;(z) for |argz|<m/2 — 0; and ¥;(r;t) = W;(t) for all te R*.
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Proof. Write r = ry for simplicity. In view of Lemma 2.3(ii), it suffices to prove (i) by
showing that for O0<r<1,a > 0,7 > 0, there exists C;, C; > 0 such that

<Y () e <0, Ve (0, ). (3.7)

neZ

Indeed for each ¢ > 0 we can choose an integer N (depends on 7) such that r< 'V <1.
Let k = [o] + 2. Then

(the first inequality follows from e’>y*/k!,y >0). Also ZiNH(tr”)“e"””'" <
>y r". Hence the upper bound in (3.7) follows.
To prove the lower bound, we observe that the sum in (3.7) > (& )“e’””’N =rte .
For (ii), we let 0 > 0 be sufficiently small and let D} = {z:|argz|<n/2 — (0; +
9),0<|z|<d7'}. It follows from Lemma 2.3(i), (i) that

larg(z(1 = Zjw))|<m/2 -6 and [l —Zw|>y;

for ze D¥ and we K\S;K. Hence

Re(z(1 — Zjw)) > dn; cos (g - 5) = on.

Similar to the above estimate, we have for ze D,

Z |Zr/|% efRe{zr/(lfijw)} d,u(w)
GEY K\S;K

+o -
=>4 > ()<CEE" + 50 as no + oo,

/=n /=—0

Hence as a function term series @;(z) converges uniformly on D%, so ®;(z) is analytic
in |argz|<n/2 —0;.
Property (iii) follows from a direct check of the definition. [

In the following, we show that for some special cases, @;(z) can be expressed as an
infinite product. We will use it at the end of the paper.
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Proposition 3.4. Suppose in addition we assume that {S;},._, satisfies rj = r for each j.
Then for je ¢,

- w1 TT Ak
(z) = 2 lim (w IT ¢ ><z>>,

k=-n
k _ _z.
where O (z) = py' S, pie* (115,

Proof. By r;/ = p;, we have

=Yg [ e dut)
]

neZ

Let 7,(¢) be the expression inside the sum. Then by the measure separation property
of uin (2.4),

In(Z) :p]}?efzr”/ 7r "Ziw d,Ll W n 7"1” Z/ A“z/u d,u
K\S;K i#]

By Proposition 2.2,

/ I du(w) = Pl’/ IS du(w) = Pf_lpi/ eSS dp(w),
SK K S/'K

hence (note that Si(S;'w) = w + Si(z) — z))

z) :p;’ef""" Z pjflpiefz"'z(lffisi(Zf))/ eI du(w).

i#] S;iK

By Proposition 2.2 again, we can write

o0 0
zr"Ziw /o —zr" (1-Zw) -n
e d,u(w):E pie / e du(w) = p;"e” E L./(2).
/SjK ! K\S;K "

/=1 /=1

Let hy(z) =37, I,(z). Observe that e=*"(1=55(%) = |; by combining the above

identities, we have
o0
_ < IZPl 2 (1-58; z]))> ( Z I/(z)>

i#j /=n+1

= < IZ pi€ 7”” 1=55i(z >)>hn+l(z) _hn+l(z)'
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Let Q;'” (z) denote the term inside the parantheses. By moving £, 1(z) to the left, the

identity reduces to h,(z) = Qj(n)

a(z) = (f[ Qﬁ’”(z))fznmz). (3.8)

k=—n

(z2)hy41(2). Inductively, we have

For h,.1(z), we have the following estimate:

o0
a1 (2) = Z KE) = 3 [ e )
k=n+1 k= n-H K\SK
n+1 / —zrkE (1-25w) d,u(w)
K\SK

We note that the last integral fK\SjK eizrkﬂﬂ(l*zjw) d'u(m;) converges uniformly to

((K\S;K) =1 —p; as n— + oo for |z <&~ where § > 0 is sufficiently small, hence
pj’”’lh,,ﬂ(z)—»l uniformly on |z]<d~' as n— + o0. (3.9)

The proposition follows from @;(z) = z%lim,, o, #_,(z) and (3.8), (3.9). O

0 (z) and

| P (p,Qj(k) (2)) converge uniformly on each compact subset of |arg:z|<m/2 —0;.

Corollary 3.5. With the hypotheses of Proposition 3.4, then [~

Hence

Pj(z) =2V Q]H()(Z) H (PjQ]('k>(Z))7 largz| <m/2 — 0;.

Proof. Let ¢ >0 be sufficiently small. For e<|z|<¢™! and |argz|<n/2 — 0, —¢,
noting that |arg(z(1 — Z;z;))| <|arg z| + |arg(1 — Z;z;)| <m/2 — ¢ (Lemma 2.3(i)), we
have

|Qj( _ 1| — lzpl —zr " (1—=r)(1-zZ))

i#j

IZ pie” "(1—=r)|z(1=Zjz;)|cos(n/2—€)

i#j
\1 Pj —b(()(l —r)r
bj

<Cr

where b(e) > 0 is defined in an obvious way. This implies that
1-C"<|0V(2)|<1+ C" for n> 0. (3.10)
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On the other hand, QJ@ (z2) = p; ' (1 4+ O(™)) uniformly for e<|z|<¢" as n— + 0.
These show that

H |Q]<-7")(z)| and H (pj\Q](-">(z)|) converge uniformly (3.11)
n=1 n=0

on each compact subset of |argz| <n/2 — 0;. The corollary follows by Proposition
3.4 and (3.11). O

A similar argument as Proposition 3.4 and Corollary 3.5, we have

Proposition 3.6. With the hypotheses of Proposition 3.4 and let ¥;(t) be defined by
(3.6), then

o0 0

i) =1L O 1L (ma" ), 1eR”

k=1 k=0

where q}“(t) :pj—l Z;ilpie—ll‘k(l—r)(l—Re(Ej:,-)).
It is easy to see that if z; = e¥™/" and p; = L for j = 1,2, ..., m in Proposition 3.4,
then all the @; are equal. Write a = logm/|logr|.

Example 1. Let m =2, z; = ¢¥™/2 p, =1 j=1,2 and the contraction ratio r = 1.

Then the attractor K is [—1,1],u = %3 (Lebesgue measure), o = 1 and

@;(z) —zﬁ (1 +e_2kz)ﬁ ﬂzl for |ar z\<z
T k=0 2 2 )

(The last identity follows from [[2,(1+e2%)=(1—e¢2)"" and
[T (1 +e2'9) /2 = e [[2, cosh(2*z) = e Zsinh z/z.)
If r :% instead. Then the y is the Cantor measure, o = log 2/log 3 and

o0

.
Di(z) =~ l—|—e‘4'3kz 1+e_4‘37kz 2 for |argz <E.
0 ==« L« )2 for fargz| <

Example 2. Letm =3, z; = e¥™/3 p; =1 j=1,2,3, r =1 Then the attractor K is
the Sierpinski gasket, p is the Hausdorff measure s#* restricted and normalized on K
with o = log 3/log 2 and

QJ('k>(Z) =1+ e‘z(%)k+](“"2"i/3) + e_:(%)k+l(‘—672”i/3)
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hence

8

O . 0 1 2 _3.0 k=2, 3 ) 27}(72
Di(z) =" (1+ 20732 ‘cos(\/§ . 21(722)) H + Ze C;)S(\/_ z)

k=1 k=0

for |arg z| <m/3.

Example 3. Let m=4, z; =e¥™/4 p; =1 j=1234, r=1 Then the attractor
K is the square with vertices z;, = %32, o =2 and
k k+1 k+1
090 =14 @ 4 s 00 4 ) 0
1 k+1 X 1 k+1 .
:(1 +e—z(§> (1+l))(1 +€—z(§) (1—1))
hence

1+e 2" 422 2cos(27512)
4

o0 0
@j(z) =2 H (1+ 727 +2e7 Zcos(28712)) H
k= k=0

1
1 +i 1—i\ 1
=2P 7 z)P( 3 Z>:§’ larg z| <m/4

where P(z) is the product z ]2, (1 4 ¢ %) [T;2(1 + ¢ 2 %)/2 in Example 1.

4. The theorems
In this section we will prove the theorems of the Laurent coefficients.

Theorem 4.1. Let {S;}; be the IFS as in (2.3) and satisfy the OSC; let o; =

log pj/logr; and oo = min{w; : je #,}. Then

log’ n
n = E % n@ o )
o jer e+ <n““ )

where ®;(t) satisfies ®;(rjt) = ®;(t) (as in (3.5)).

Proof. We use the expression of @, in (3.2). It is clear from Lemma 3.1 that |4 (n)]
can be absorbed in O(n=*"!); the same for |B(n)| if we choose

y> o4 142in7" (4.1)
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in (3.1). It remains to estimate the term [, w" du(w) in Cy: for je #,, by Lemma
7

3.2 and (4.1) we have

/_ w" du(w)
S"K
J
1 o _pdn (1 =
— (1 + O(Og n))Z," i / e 075 dp(z) + O
leZ K\S;K

_ (1+0<log n)) N 2y (N+0') /1<\st€ w7 (125 ) du(z) + O+

e
(where /' =/ + j, — N; with N; := N;(n) is defined in (2.7))

log® n N o’ - (1-3 —a—1
=11+ O( )) Nyl K / X ”’)" Zjz) d + O o—
( DL u(z) + O+ Y)

l'e?

—o n lOg n
= s + 025

the last identity is by |®;(x)|<¥;(x) and Lemma 3.3. This gives the estimate of C(n)
and the theorem follows (note that ®;(x;(n)) = ®;(n)). O

By some obvious modifications of the above proof, we have

Proposition 4.2. With the same notations as in Theorem 4.1, then
_ log“n
/K|w|"d,u w Zn“f‘[’ (na+1>’
JeS

where W;(t) satisfies W;(rjt) = V;(t) and 0<c;<V;(t)<ca< o (as in (3.6) and
Lemma 3.3).

To show that « in Theorem 4.1 is the best possible, we need the auxiliary function
Hj(z) defined by

_ rle’l dﬂ(M})
Hilz) = ; /K\Kl (z—r(w— 1))V 42)

where S| K = K, and k >[o] (the largest integer less that «). Let H," (z)(H, (z)) be the
sum of n>0 (n< — 1, respectively) of the above series. By Proposition 2.2 (with
j =1 and k = 0 there), we have

Y
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Let A;(t;m/2) be the Stolz angle as in Lemma 2.3(i) where 0<7; <1. Note that

(I4+11) <arg(w—1)<(3—rl)§ for we K\{1}.

NS |

Hence F®)(z + 1) is analytic in D = {z: |argz| < (1 + 7{)n/2} by Lemma 2.3(i).

Lemma 4.3. (i) H, (z) is analytic on DuA where A= {z:|z|<r 'd} with d =
dist(1, K\K;); (ii) Hy(z) is analytic on D.

Proof. Obviously |w — 1|=d > 0 for we K\K; and

HE () = 3 e /K 2uln) (44)
n=1

& (z — (w— 1)

For small 6 > 0, let D; = {z:|argz|<(l 4+ 7; — J)n/2}, then a direct check shows
that

|7’z —(w—1)|=d sin(%r)

for ze Ds and we K\K;. This shows that the series in (4.4) is uniformly convergent on
D; and hence H, (z) is analytic in D. Similarly, we can prove that H, (z) is analytic
in |z| <r~'d also and (i) follows.

By (4.3), H, (z) is analytic on D, hence (i) implies (ii). O

Lemma 4.4. [f{S;}]", satisfies the separated OSC, then for any &y € K and ¢ > 0, there
exists a simply connected domain Q with piecewise smooth boundary 0Q such that

EoeQc{|w—¢&)l<e} and 9QNK =0.

Proof. Let U be an open set in the separated OSC, then S;UnS;U = 0 for i/ and
KcU|[F, p. 115]. It follows that

min dist(K;, Kj) > 0. (4.5)

i<j
We choose Sy, K with |Jo| = /< oo such that &y eS8, K ={|w — &|<iec}. By (4.5)

01 = min diSt(S]K, S]OK) > 0.
0o =t

Let 0 = min{d;,¢}. By compactness, we can find open balls O; (j =1,2,...,p) of
radius 46 such that S;, K = U, O;. Assume that C is a connected component of the
union that contains &g, then

toeC{lw—&l<3¢} and KndC=0. (4.6)
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If C is a multiply connected domain, then the union of C with its holes is also
contained in {|w — &|<3}. Hence we may assume that C in (4.6) is a simply
connected domain and let it be Q. By (4.6) the lemma follows. [

Theorem 4.5. If {S;}7", satisfies the OSC, then there exists C > 0 such that
n*la,|<C  for all n=1. (4.7)
Furthermore if {S,};”:1 satisfies the separated OSC (see Section 2), then

lim n*|a,| > 0. (4.8)

n— oo

Proof. Since |®;(7)|<¥;(¢) and ¥;(¢) is a bounded function (Lemma 3.3(i)),
Theorem 4.1 implies that n*|a,|< C for all n > 0. The main proof is for the second
assertion.

Let z; = 1 as before, and write o = a; = log p; /logr; and r = r; for simplicity. A
technical step is to show that for k + 1 > o,

Hi(2)#0 for zeD ={z:|argz|<(1 +1)n/2}.
If this is proved, let h(z) = zK+1=*H, (z) (here and throughout this paper z5*!1~* is the
principal branch in —w<argz<m, i.e., ZF17* is real for z = xeR"), then A(z) is a
non-zero analytic function on D, by (4.2) it satisfies

h(rz) = h(z) for zeD. (4.9)

From Lemma 4.3(i) and (4.2)—(4.4), there exists C > 0 such that

-1 k —u —o| ry— -
( k!) K- p®) (4 —h(z)| = |Z|k+1 |H, (z)|<C|z‘k+1 (4.10)

for ze D and small |z| > 0. Hence we have

T ko) (k) (4,0 N i0
Tim 4O 4 1)) = Tim KJa(e”)] > 0 (4.11)

for all |0]<(1 +11)%. Let f(z) = F®(z7!), then

[M]s

flz)=(=1)F nn+1)-(n+k—1)a,z"** = zkz b,z"

n=1 n=1

is analytic in |z| < 1. Suppose that (4.8) does not hold, i.e.,

lim n”a, =0, (4.12)

n— oo
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then b, = o(n*~*) as n— 0. By the Bernoulli series expansion we conclude that
f(@)=o((1— )"y as r—1". It follows that

FO@t+1) = o(r7*=+1) as 0%,

This contradicts (4.11). Hence (4.12) does not hold and lim,_, ., n*|a,| > 0 follows.
It remains to prove that Hy(z)#0 on D, we assume the contrary, then (4.2) and
(4.3) imply that

<‘k‘!>k FO4 1) = —H () = 3 Ao / . —du(w) (4.13)

= rz = (w— 1)

for ze D. By Lemma 4.3(i) and (4.13), there exists a function ¢(z) analytic on Du 4
such that

F®(z+1)=¢(z) for zeD. (4.14)

Since Du 4 is a simply connected domain, we can find a function ¢, (z) analytic on
the domain Du 4 such that

F(z+1)=¢(2), zeD. (4.15)

To apply Lemma 4.4, we take & = 0 K — 1 and € = 3r~'d where r~'d is given by
Lemma 4.3(i). Then there exists a simply connected domain € such that

Qc27'4, 0eE:=(K—-1)nQ and (K—1)ndQ=0. (4.16)

By the separated OSC, K is compact, totally disconnected [F, p. 116]; by (4.16) the
same conclusion is true for E. It follows that Q\E is a connected open set [Mo, p. 93],
ie., Q\E is a domain.

Now, note that F(z + 1) is analytic on the domain Q\E, ¢,(z) is analytic on Q by
Lemma 4.3(i) and (4.16), and DnQ =1 is a non-empty open set. It follows from
(4.15) and the uniqueness principle for analytic functions that

F(z+1) = ¢u(z) for ze Q\E. (4.17)
Since E has no interior points, F(z + 1) has a unique continuous extension to Q by
(4.17), and it must be analytic as ¢, (z) is analytic on Q. This contradicts Proposition

2.1 as F(z+ 1) is not analytic at ze E, and Hy(z)#0 follows. O

For the second statement in Theorem 4.5, if we only assume the OSC, then we
obtain the following partial conclusion.
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Proposition 4.6. If {S;}]", satisfies the OSC and if 0<o<mn/0y, then

lim n*a,| >0, (4.18)

where 0y = inf,»efl_,“j:a(sup{arg(w —z;) —arg(é —z;) : w,Ee K\{z;}}).

Remark. In the next section, we see that in some cases, (4.18) can still hold without
satisfying the condition in Proposition 4.6. In fact our conjecture is that

lim,, ., n*|a,| > 0 is true without any extra assumption.
Proof. We assume without loss of generality that z; = 1 attains 6, in the statement

of the theorem, hence o; = . Write r = r;. From the proof of Theorem 4.5, we only
need to prove Hy(z)#0. For this, we consider

1
/ H, (te") = dt.
;

By using a change of variable ¢ = x#", the above integral reduces to

/c «
—ilk+1)0 du(w).
/K\K1 / (x — e~ 0(w— 1)) #w)

If o is an integer, then k = o, the above improper integral [;° is equal to ek~ (w

1)71‘ by a direct calculation; otherwise k = [¢]#a (in this case 0<k + 1 — a< 1), the
integral equals

(=) o = 1)+ (o — k)

27 :
(1 = erre) (w — 1)?

by the residue theorem. Consequently, we have

/ H, tet()) k— & Jt — 19’ k— )()/ d,u(w)“
K\K; (W - 1)

for some constant C #0 (depends on ). Let 6y be the angle in the hypothesis, we can
choose 7 such that |arg(w — 1) — 7| <0y/2 for all we K\K. Since 0 <o <m/0,

. du(w) / pargv—1)-2)
e ot Blul UL 7d’u v ?éo
‘/K\KI (w—1) KK W 1 (w)

Hence Hi(z)#20 on D. O
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5. Special cases
In this section we consider the IFS of the form
Siz=¢+r(z—¢), j=0,1,....m—1, (5.1)

where ¢; = e>™i/™ and 0 <r< 1 (note that we have shifted the indices of j to start from
0 for convenience). Let

,u:—ZuoS]fl. (5.2)

Our first step is to prove the measure u defined by (5.2) is invariant under e2*/"-

rotation and its Cauchy transform F is m-fold symmetric. In fact, consider the new
measure i defined by

m—

A(B) = w(cB) = — > u(S;' (1))

il
m 0

=~
i

for all Borel set B. By making use of (5.1) and a direct calculation, we have
Sl aw) = a8t (w), 0<k<m —1 (where S_; = S,,_1), hence

—1

1 13 1 &
A(B) =— werSeti(B)) = — wa S (B) =— A(sc ' (B)),
mis M= " kZ:%

i.e., fi also satisfies (5.2). The uniqueness implies the g = u [Hul].

Let K denote the attractor of the IFS, then ¢**/"K = K and suppu = K. By a
change of variable, we have

1 1 m—1 1
F(z) :/Kz_édﬂ(f) :E/KAZ% mdﬂ(“’)~

For fixed z, we define for we C\{z, e 2"/"z, ... e~ 2m=1i/mz1

1 _
m— M 1

3
m f= 7z~ eka/mW om _yym’

We remark that /2(w) has a simple pole at w = ze~?**/" and has residue 0, hence A(w)

has a removable singularity for w = e~ *%/"z Because h(o0) = 0, we have h(w) = 0.

This gives
Zm—l
Fz) = /K drlw) _ /K du(w), (5.3)

zZ—Ww zm — whm
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hence F(¢1z) = F(z), i.e., F is m-fold symmetric, its Laurent series has the form
Fz) =24 @z ™, |z > 1. (5.4)
n=1

Our next goal is to give a condition on r so that the IFS {AS’J};”::O1 in (5.1) satisfies

the OSC. Let G be the regular m-polygon defined by the vertices {ej}jm:_ol. If
SQ(G)O NS1(G)’ =0 and So(G)NS1(G) #0,

then we have from [St4, p. 1716] that

. . . (2g+1
r=p,= smn/ <s1nn + mnwt), (5.5)
m m m

where g = [m/4]. Tt follows immediately that

Proposition 5.1. Let {Sj}jm:_()1 be as in (5.1) and suppose r<p,,. Then {Sj}jm:_o1 satisfies
the OSC.

Note that for r = p,,, the Hausdorff dimension of the attractor K of {S/}]’-”:BI is
o, = logm/|logp,,|. Some values of p,, and «,, calculated by using Mathematica are
given in Table 1.

If 0<r<p,,, then the u in (5.2) is the Hausdorff measure #* restricted on the
attractor K [F]. By [LSV], the coefficient a,,,,; can be determined by the following
recursive relation:

1 —r nm n—1 nm r km
Anm+1 = % 2 (km) (1 — r) Akem+1, (5.6)
where a; = 1. However, the formula is not easy to handle. In the following we will
sharpen the asymptotic behavior of a,,,,; in Theorem 4.1 for these special cases.

We remark that some of the cases do not satisfy the condition a<n/0, in
Proposition 4.6. For example for m =5,6,7,8 and r = p,,, we have n/0y = m/
(m—2)<a, =logm/|log p,,| from Table 1.

Table 1

Values of p,, and o,, for 2<m<8

m 2 3 4 5 6 7 8

P 0.5 0.5 0.5 0.38196 0.33333 0.30797 0.29289

O 1 1.58496 2 1.67228 1.63093 1.65226 1.69343
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Theorem 5.2. For 0<r<p,,, let a=1logm/|logr| and let F(z) be the Cauchy
transform. Then the Laurent coefficients {a,,mﬂ},‘jil satisfy

Cl'<(mm+ 1) a0 <C, n=1

for some C > 0.

Proof. That z; = ¢; = e¥™/™ r; = r and p; = L imply that all the &;() in Corollary
3.5 are equal. We write

2T 1 1+ bi(t
@o() =TT (14 byl [T (57
k=1 k=0 m
where
m-] k 2/7i/m
be() =Y e U= " ez, (5.8)
/=1
We claim that there exists C > 1 such that
C'<®y(1)<C for teR™. (5.9)

Note that X0 }e*™™/m =0 if /#nm, and =m if /=nm. By expressing the
exponential term in (5.8) as a power series, we have

0 ) ) nm

7n (1—r tV
1+ bk( z; nm
n=

This gives
me" (171 < 1 +br(t)<m for r<i<l, keZ. (5.10)

Hence

S 1+ by (t
e’l<H+7k()<l for r<e<l1.
k=0 m

Also (3.10) and (5.10) imply that there exists C; > 1 such that

o0
(L+b_4(2))<Cy for r<e<l.
k:l

Hence the claim follows. The theorem follows from this, a,.1 >0 and
(Theorem 4.1)

(nm + 1) appyr = m®Po((nm + 1)) + O(log® n/n) as n— oo. d (5.11)
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Corollary 5.3. For any k such that k +1 — o > 0, there exists C > 0 such that

CillkJrl k Ctk+1
- - _ (k) (41 k
(l_t)kﬂfﬁ DPFE(T) < max |F (z)|<4(1_t)k+lfa

for 0<t<1. Moreover, we can find constants n > 0,0 > 0 and ¢ > 0 such that

IFO1 +2)|=clz]* " for 0<|z|<d, |argz|<n.

Proof. We take the kth derivatives of F(z) in (5.4), then the coefficients of
(=) F®(2) are {(mnm+1)---(nm+ k)awni1},.o which are bounded above and
below by positive multiples of #~*. The inequality follows by comparing with the
binomial series expansion of (1 — t’")f(k“*“).

For the second assertion we use the function /4(z) in the proof of Theorem 4.5. By
(4.9), (4.10) and the first inequality in the first assertion, there exists ¢ > 0 such that

h(x)=3¢>0 for xeR".

The continuity and the multiplicative periodicity of & give that |A(z)| > 2¢, |arg z| <y
for some n > 0. By (4.10) again, there is a constant 6 > 0 such that

IFR1 +2)[=clz]**" for 0<|z|<é and |argz|<y. O

Theorem 5.2 describes the exact “order” of a,,.; at infinity; in the next
proposition we like to discuss the “limit behavior” of (nm + 1)@y, 1. We will need
the Hy(z) (in (4.2)) for the u given by (5.2) and with r; = r<p,,. Note that H;(z) is
analytic for |arg z| < (%—F 1/m)7r (Lemma 4.3); also note that the main part of the
proofs of Theorem 4.5 and Proposition 4.6 are to show that /(z) = z¥"1=*H(z) #£0.
In the following lemma, we prove that /(z) is again a non-constant analytic function.

Lemma 5.4. For 0<r<p,,, m=2, except the cases m =2,3,4 withr =p,, = %, and
for k+1—o>0, then h(z) = ZX"'"*Hy(z) is a non-constant analytic function on
D ={z:|argz|<n/2 + n/m}.

Proof. We only need to prove that A(z) is a non-constant function. By (5.5), the
assumption on r implies that O<r<% in all the cases.

We first prove the lemma for the cases m>3. Let z, = (1 4 £)e*™/™ — 1 for t > 0.
Clearly, z,e D and zy = 2 sin(n/m)e!/>+1/™ e 9D\{0}. By (4.2)-(4.4),

_ (*1)/C (k) - pUett=m gy ()
Hk(Z[) —TF (1 +Z;) +nz:; Kk W (512)

(We replace the K in Hi(z) in Theorem 4.5 by Kj because of the change of the
indices). To prove /(z)# constant, it suffices to prove Hy(z,)— oo as t—-0" (note
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that zo#0). A simple geometric consideration shows that [w — 1|>1/e; — 1| = sinZ
for we K\K,. It follows from 0<r<% that

|Fzo| <r|zo| = 275in£<sin£<|w -1
m m
for n=1,we K\Ky. Hence there are zy > 0,0 > 0 such that
|F'zy — (w—=1)|=|w—=1] = r"z|=0
for 0<t<ty,n>=1,we K\Ky. This together with (5.12) and Corollary 5.3 imply that

k
Hy(z,) = %F(")(l +z)+0(1)> o0 ast—>0"
(here we have used the m-fold symmetry: |[F®((1 4 £)e>™/™)| = [FO(1 + 1))).

For the case m =2, the above z,¢ D. Alternatively, we choose z¥ = —2 — e
where # is given in Corollary 5.3, then zfeD and zjeodD\{0}. Since o=
log2/|logr|<1 and |F(1+z¥)| = |F(—1— te")| = |F(1 + te")|=c*~! (Corollary
5.3), we have

F(1+zZf)> o0 ast-0.

In view of 0<r<3 and K\Ko=[—1,—1+ 2r], we have |w — 1|>1+ (1 —2r) > 2r =
rlz§| =1"|z5] for n>1 and we K\K,. Similar to the case m>3, we can use (5.12) to
prove that Hy(z¥)— oo as t—0. O

Proposition 5.5. For 0<r<p,,, m=2, except the cases m =2,3,4 withr = p,, = %,
and for k+ 1 —o >0, then

0< lim (r— 1D"*F®0 (1)< lim (7~ D=2 FO (1)) < o0
t—1+ g

Proof. By Theorem 5.2 and in view of F*)(¢) preserves sign for te (1, c0), it suffices

to show that lim,_, - (£ — 1)*™'* F®) (1) does not exist. But this follows from A(7) is
non-constant (Lemma 5.4) and the same reasoning as in (4.11). O

Remark. Proposition 5.5 also holds form =3, r=p, = %, but it needs a different
proof, the case k = [¢] = 1 is given in [DL2].

Theorem 5.6. For 0<r<p,,, m=2, except the cases m = 2,4 with r = p,, = %, then
the Laurent coefficients {(nm + 1) a1 },- of F is dense in the non-degenerated line
segment m®Py([r,1]) where ®y(t) is given by (5.7) and (5.8) and o =logm/|logr|.
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Moreover

lim (nm + 1)*@uny1 = max m®P(t),

n— oo r<t<l
lim (nm +1)"aum1 = min m®g(z).
n— o r<t<l1

Proof. By a slight modification of Proposition 2.4, we know that the sequence x/, :
= (nm + 1)rN"+1) is dense in [r,1]. Since @ is continuous on R*, ®y([r, 1]) is a
bounded interval by (5.9). From (5.11) and noting that @ (r7) = ®(¢), we have

(nm + 1) appiy = mPo((nm + 1)r¥"+)) 4+ O(log? n/n) as n— oo

Proposition 5.5 shows that lim,,_, o, (nm + 1)*au,+1 does not exist (the argument is
the same as in (4.12)), with one remaining unjustified case m = 3,r = p,, = % Hence
m®y(x) is not constant and m®,([r, 1]) must be a non-degenerated interval; {(nm +
1) @um+1},- is dense in the non-degenerated line segment m®,([r, 1]).

It remains to show that @y(¢) is not a constant function when m = 3,r = p,, = 1.
We can proceed as Lemma 5.4 to prove this, but there are some added complication
because of r :% (see [DL2]). We give an alternate proof here. It suffices to find a
toe 3, 1] such that & (7)) #0. From Example 2 in Section 3 and noting that (5.9), we
have for ¢ > 0,

D) o I —2v3sin(n/3 + /326 1) Sk p=3211
Do(1) 1 =14 2e7 32 cos(V/32k 1)

zw: —2V/3sin(n/3 + /3274 1) ke p-32k
£ ] 4 2¢32" " cos(v/327F 1) ’

(5.13)

where o =log3/log2. Let R;,l), R£12> denote the tails >, >, of the first and
second series in (5.13). For %szg 1,

o0

3 (k—2)
(1) k —3:20
IR, K 2 E 2%

23 o .
h 12\/;2“’” 2y e=3207 i
T p-1
8y/3e 32"
3000y = b (P)
3 10g 2(1 e )
and for ;<r<1,

~0\/3sin(n/3 + /327 (@1))
1 4+ 2e=327 cos(2‘<q+1)\/§) ’

|R1<;2)|< = b1(q).



X.-H. Dong, K.-S. Lau | Journal of Functional Analysis 202 (2003) 67-97 95

It follows that for any p, ¢ > 1 (see (5.13))

—1

p—1
i < +Z )+ ‘)) = bi(p) — ba2(q).

1

'S
Q

=~
Il

It we take p=15, ¢ =10 and ¢ = %, then by using Mathematica, the right-hand
side  ~0.002265 — 0.000041 — 0.000978 ~0.0011. This implies that &;(3/5)/
®(3/5)>0. O

Whenm =3andr = p; = %, the case of Sierpinski triangle K, we find numerically

min 3P (1) ~ 1.42668, max 3Py(t) ~1.42676.

1/2<1<1 1/2<i<1

This shows that {(3n + 1)*as,41},-, is a sequence with small oscillation in between
these two values.

The remaining untreated case in Proposition 5.5 and Theorem 5.6 is for m = 2,4
and r=p,, = % In fact they are the simple exceptional cases. For m =2, the

attractor K = [—1, 1] obviously, the self-similar measure y = 1 % and « = 1, hence its
Cauchy transform is
1 d?(x) 1, z+1
F(z) = = =_log=—— C\[-1, 1 5.14
@=3 [, oy =qlerty el (5.14)

where the logarithmic function is the principal branch, i.e., log(z + 1) and log(z — 1)
are real for z = x > 1. It is easy to show from the above that

a1 =1/2n+1) for n=0. (5.15)

This implies that lim, - (f — 1)*|[F®(¢)| exists for k>1, and that lim,_
(2n + 1)az,+1 = 1. By using this, we can directly obtain the interesting identity in
Section 3, Example 1:

= l+e 2 1 n
ZH Hf 5 |argZ|<§.

k=1 k=0

It is because from Theorem 4.1 (or (5.11)) and (5.15), we have

log2 n

1 =2n+ Dagyy =20¢(2n+ 1) + 0( ) for n— 0. (5.16)

By the periodicity, ®o(2n+ 1) = dy(x,) where x, = (1/2)Y*"V(2n + 1)e 3, ) and
is dense in [}, 1]. Hence (5.16) and the continuity of @y(x) on R* give ®y(x) =1 for
xef},1]. It follows by Lemma 3.3(ii) and the uniqueness principle for analytic

functions that ®¢(z) =1 for |argz|<m/2.
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1
2
0<j<3, the self-similar measures p = %32 and o = 2. Its Cauchy trans-

d$2 1—x 1
F(Z)_2/K zZ—w / / [z—|—x yz+z—x yi .

A direct calculation gives

For the case m =4 and r =
eZm’j/4,

the attractor K is the square with vertices

form is

1< A ‘
_ 5 Z e2mn/4) log (1 _ E211[11/42—1) (517)
n=0

for ze C\K. (For the logarithmic branches, for log(1 — z~!) and log(1 4 z7!), we take
real values for z = x > 1, and for log(1 +iz™!") = log|l +iz"!| + iarg(1 +iz"'), we
take for z=x>1, O<arg(l +iz"')<n/2; it is necessary that log(l —iz"!) =
log|l — iz +i arg(l — iz7!) satisfies —n/2 <arg(l —iz™!) = —arg(1 + iz~ ') <0 for
z=2x> 1since F(x) > 0 for x > 1.) It is easy to see that

- 1
Fz) =Y ———— %D forz|>1 (5.18)
s 2n+1)(4n+1)
and that
d" S £ 3 2(=1)Fk!
Fk) () = =2 =
2) dzk 1118,—8, z—¢ lz: Hs,—s, (z — &)
J#i /#l

where k>0 and ¢ = e¥™/4. Hence (4n+ 1)%asi1 =2—1/2n+1) and lim,
(1 — D FR (1) = (k —2)!/2 where k>2 and o = 2.

Note that F is analytic in C\K and has an analytic extension Fy in
C[-L,1Ju[—ii}. But F(z)#Fy(z) for ze K\{[-1,1]u[—i,i]} since F is not
analytic for any ze K by Proposition 2.1.

As a simple consequence of the Laurent series of F' and (5.17), we have

= 1 In2 =
S — o
< (2n+1)(4n+1) 2 4
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