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HAUSDORFF DIMENSION OF RANDOM FRACTALS
WITH OVERLAPS

Z.G. Yu, V.V. A N H AND K.S. LAU

This paper considers random fractals generated by contractive transformations which
satisfy a separation condition weaker than the open set condition. This condition
allows overlaps in the iterations. Estimates of the Hausdorff dimension of this kind
of random fractals are obtained.

1. INTRODUCTION

The term fractal was first introduced by Mandelbrot to denote sets with highly
irregular structures. Mandelbrot and others have then used fractals to model various
natural phenomena (for example, [19, 2]). A mathematical development of fractals via
the theory of (non-random) self-similar sets and measures was given by Hutchinson [12].
A family of contractive maps {Sj}^ on E m is called an iterated function system ([2]). An

N

iterated function system generates an invariant compact subset K = \J Sj(K), which

is usually referred to as its fractal set. For the given probability weights {WJ}JLU it

generates an invariant measure

The invariant sets and measures play a central role in the theory of fractals. In practice
it is often assumed that the maps are similitudes, and in the iteration, they satisfy a
nonoverlapping condition called the open set condition ([12]). One of the advantages of
the open set condition is that the points in K can be represented in a symbolic space
(except for /x-zero sets) and the dynamics of the iterated function system can be identified
with the shift operator in this space. Without the open set condition, the iteration has
overlaps and such representation will break down, and it is more difficult to handle this
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situation ([15]). The simplest example of an iterated function system with overlaps is

given by the maps

Si{x)=px, S2{x)=px + (l-p), l/2<p<l,x£R.

The invariant measure /ip associated with the weights uj\ = bj2 = 1/2 is called the
Bernoulli convolution ([4, 8]). Recently there has been a great deal of interest in the
problem whether fj,p is absolutely continuous. Erdos [4] first proved that if p~x is a Pisot-
Vijayaraghavan number, then fj,p is singular. Solomyak ([27, 22]) proved that for almost
all p, Up is absolutely continuous. The density argument used in [22] has also been used
to consider a variety of iterated function systems with overlaps ([23, 24]). There are
other examples of the overlapping case, such as those given in [14] and [26].

In another direction Lau and Ngai introduced a weak separation condition on iter-
ated function systems of similitudes ([16]). This condition is weaker than the open set
condition and includes many of the important overlapping cases. Under the weak sepa-
ration condition, several significant results have been obtained (see the review paper [15]
and the references therein).

But natural phenomena are' more complex and often are better modelled by random
sets. In the early 1980's, there was a large amount of works on self-similar random
sets in the study of self-similar processes such as stable processes and Brownian motion.
Many results have been obtained for fractal properties such as singularity spectrum,
generalised dimensions for self-similar random sets (see, for example, [1, 5, 10, 20, 21,
13]). In practical applications, it is necessary to consider sets which are only generated
by contractive maps, for example in the study of flux in condensed-matter physics ([28])
and fractional diffusion equations for transport phenomena in random media ([9]). In
this direction Liang and Ren [18] investigated a class of general random fractals, namely,
random net fractals.

But all these works on random fractals require the nonoverlapping condition. Apart
from Pesin and Weiss [25] which considered a special Cantor-like case, there has been
no known result in the overlapping case. In this paper, we investigate a class of random
net fractals generated by contractive maps with overlaps. Estimates of their Hausdorff
dimension under a random weak separation condition will be given. This condition is
related to the weak separation condition introduced by Lau and Ngai [16] in the non-
random case.

2. RANDOM NET FRACTALS GENERATED BY CONTRACTIVE MAPS

2.1. SEQUENCES AND TREES. Let a = (ix, i2 , . . . , in) be a sequence of positive inte-
gers and let \a\ = n denote the length of the sequence. For a = (t!, z2j... ,in), a\k =
(ii, i2 , . . . , ik), k ^ n denotes the sequence obtained by restricting a to its first k terms.
If a' — (i[,i'2,...,i'p), then a,a' is the sequence (h,i2, • • • ,in,i\,i'2> • •• ,i'p) obtained by
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juxtaposition of the two sequences a and a'. We write a -< T to mean that the sequence r
is an extension of a, that is r = a, a' for some sequence a'. We adopt a similar convention
if r is an infinite sequence of positive integers and assume that the null sequence 0 -< a

for any sequence a.

A tree is a collection T of finite sequences of positive integers such that a G T

implies a' G T for any a' -< a. The sequences of T may be identified with the vertices of
a directed graph with a being joined to a, i in the obvious way. We write

\a\ =

for the set of sequences of length k and

for the number of outgoing edges from the vertex a in a graph of T. Let T be the set
of infinite sequences r such that a G T for every finite curtailment a < T. We allow
N(a) = 0, but always assume that N(a) < oo.

REMARK 1. We always assume that the trees used in this paper are random trees rep-
resenting a branching process, that is, a typical individual a € T has N(a) "offspring",
where N(a),a € T are independent and identically distributed. Moreover, the offspring
of a may be labelled as (a, 1 ) , . . . , (a, N(a)).

2.2. RANDOM NET FRACTAL GENERATED BY CONTRACTIVE MAPS. Fix a Euclidean

space Km and a compact subset / of E m such that I = cl(int / ) . Write | • | for the diameter
of a subset of Km. Let (Q,,Q,P) be a probability space. Let Con denote the set of all
contractive transformations in Rm. For each to 6 Cl, let

w) : cr e T,<S)a{ijj) € Con and

dc(u>)\x-y\ ^ \^>a{w,x)-<j)a{uj,y)\ ^ ca{u)\x -

be a family of random contractive maps satisfying the following properties:

(1) h(uj) = I for almost all w G Cl;

(2) for every cr £ T, N(a), da(cj) and cCT(w) are random variables. Moreover
the random vectors

(dff,i, • • •, d<7,Ar(<r)) and (cCTii,..., cCTiw(ff)), a 6 T

are independent and identically distributed, and

0 < d{ui) = ini{da(ui) : a £ f } ^ sup{ca{u)) : a G ?} = c(w) < 1.
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We denote Sa(uj) = (j>a^ (u>) o • • • o (j>a\M (w) for any a € T- Assume that

Ia{u)) = 4>ah M o • • • o 4>alM (w)(/) C / .

We denote /fc(w) = \J /^(w). It is easy to see that /jt(w) C Ik-i(w). Define the random

set K{u) by °e3r"

The set K(w) is called a random net fractal generated by a family $(w) of random
contractive transformations.

Liang and Ren [18] assumed that

(*) For almost all w £ fi and for every a £ T, <payi(w)(I) and <j)aj(cj)(I), i ^ j , are

non-overlapping compact subsets.

They then obtained an estimate of the Hausdorff dimension of the random net fractal

K(u).

For k £ N,ui € Q,a £ T, we define a stopping time tk(cr,u>) by

t*(a,w) = minji : |5ff(w)(/)| ^ d*(w)}

and let

Afc(w) = H , ^ ) : (7 6 7 } .

We now replace condition (*) by the following weaker condition which allows over-
laps.

DEFINITION 2.1: For almost all u> e fi, a family $(o») of random contractive trans-
formations is said to have the random weak separation property if every closed d*(w)-ball
intersects with at most I distinct Sa(w)(I), a £ AA(w), where Sa(u)(I) can be repeated
(that is, it is allowable that Sa(u>)(I) = Sai(w)(I) for a, a1 £ Ak(u)),a ^ a').

REMARK 2. In the case of non-random fractal, the condition (*) corresponds to that
for net fractals without overlaps (it obviously satisfies the open set condition). For net
fractals with overlaps, iterated function systems can still satisfy the open set condition
(see Rao and Wen [26]). There are also many net fractals which do not satisfy the open
set condition but have the weak separation property (see [16] for several examples).

REMARK 3. $(w) without overlaps obviously has the random weak separation property.

In this case, we can take 1=1. If all <j>a{w) are similitudes with the same contraction ratio

and <£(w) is an iterated function system, from Corollary 2.6 of [17], our definition of the

random weak separation property becomes the random version of a condition equivalent

to the weak separation property introduced by Lau and Ngai [16].

For a £ A*(w), we denote

[a] = {</e A*(w) : 5a(/) = 5
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and
Mfc(w) = max{#[a] : a e Ajt(w)}.

For any set A C l m , if {Ui} is a countable (or finite) collection of sets of diameter

at most 6 that cover A, we say that {C/J is a 6-cover of A. For any 6 > 0,s ^ 0, we

define

"H^A) = inf < \ J |[/i|s : {t/j} is a 5-cover of A

Then
HS(A) = UmHUA)

is called the s-dimensional Hausdorff measure of A Moreover

dimH{A) = inf {s : W(A) = 0} = sup{s : HS(>1) = oo}

is called the Hausdorff dimension of A (see [6]).

We now state the main result of this paper.

THEOREM 2 . 2 . Consider a family $(w) of random contractive transformations

which have the random weak separation property and satisfy (1) and (2). Let K(w) be

the random net fractal generated by $(w). Then K(UJ) — 0 with probability q and

lOET A^tr (uj\

t + lim inf — r ^ \ ^ dim# K(u>) ^ minis, m}
*:—voo A;Ioga(u/)

with probability 1 - q, where q is the unique non-negative solution less than 1 of the
00

equation x = ]T] P(A^(0) = k)xk and m is the dimension of the Euclidean space, t and

s are the solutions of the expectation equations EY^d\(uj) = 1 and E^2c%(w) = 1

respectively. '~ '~

The proof of Theorem 2.2 will be given at the end of this paper.

REMARK 4. If we have the nonoverlapping condition, then

. logMfc(w)
lim inf —f—-7—r = 0,
k—K» fclogrf(w)

which is the result obtained by Liang and Ren [18].

We next recall [6, p. 113] that the S-parallel body As of a non-empty compact set
A C / is defined by

As = {x € I: \x - a\ < 6 for some point a e A}

and the Hausdorff metric is defined by

dH{A, B) = inf{<5: A C Bs and S C ̂ } .

We now have



320 Z.G. Yu, V.V. Anh and K.S. Lau [6]

PROPOSITION 2 . 3 . For each u e f i and any non-empty compact subset A of

I, if we define

Aa(u>) = 4>ail(u) o • • • o (j>a\M{u)(A) and Ak{u>) = ( J Aa{w),

thenAk(cu) l£*K(w).

PROOF: If 5 is such that the ^-parallel body (Sa(ui)(A))s contains SCT(u;)(/) for each

a, then ( \J Sa(u)(A)) contains |J Sa(u)(I). Hence

dH{Ak{u),Ik{u)) =dH

< sup dH(Sa(w)(A), Sa(u)(I))
oeFk

^ sup C|, ...ca\MdH{A,I)

< ckdH{A, I) —»• 0 (as A: —> oo).

From the definition of K(u>), we then have Ak(uj) —̂> K(UJ). D

The above proposition allows us to construct K(w) starting from any point x0 6 /.
If we take A0{w) — {XQ} and

Ak(u) = {S,(w)(x0) : a € Tk),

then Ak(u) -^> K(w).
Regarding a random net fractal K(LJ) as a branching process, Liang and Ren [18]

proved the following result:

LEMMA 2 . 4 . ([18]) For each w € Q, let Zn(u) = £ Nw(a).
creFn

(1) If E(NU(<D)) ^ 1, then either K(LJ) - 0 almost surely or K(w) is a point
almost surely

(2) If E(NU(®)) > 1, then Zn[u) -+ oo almost surely and K(w) ^ 0 almost
surely.

3. RANDOM SELF-SIMILAR FRACTALS AND AUXILIARY RANDOM VARIABLES

In the definition of K{u>), if for all u 6 fi, o 6 Tk and da(w) = ca(w) (the common
value being denoted as pa{uj)), then <pa(u>) is a similitude, that is, (^(w, x) - (f>a(w, y)\ =
pa(w)\x-y\. In this case, <j>a(u,x) — pa{u)Ra(u>)x + ba(u), where Ra(u) is an orthogonal
matrix and ba(u) E M™. We also assume

0 < p(w) = inf {/9ff(w) : f f £ 7 } < sup{/}<T(w) : cr e T) = p(w) < 1
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and
b = sup{6a : a € T} < oo.

Then K(UJ) is called a random self-similar fractal.

Let K(LJ) be a random self-similar fractal. Without loss of generality, we can assume

|/ | = 1 and define the random variable

n=l

In this section, we suppose that for almost all w € fi,

&a\n (<*>) —> 0 as n —> oo if a = (ilt i2, . . .) € T.

/ " « « \
Since p(w) < 1, from [5, Lemma 8.2], g(s) = £M ^Z Pi(w) ) is strictly decreasing in s.

Hence there exists s > 0 such that

For any n € N, w S fi, let £„ denote the a-algebra of subsets of fi:

£„ = B(£n_i;Afw((T); I / ^ M I : CT € J"n_i, 1 < i < Nu{a)),

where

£ , = 5 ( ^ ( 0 ) ; ^ ( w ) | : 1 ^ i ^ NW(<D))-

Then Liang and Ren [18] proved

LEMMA 3 . 1 . ([18]) For any w e l l and for each keN,

(1) £ E W I 4 - , = E B'M) (25 £ kM,
/ AT(0) \ k

(2) 2? £ 2?;(w)= i ? £ p ? M ,

(3) lim £ -B*(w) = X(LO) almost surely, where X(w) is a bounded random

variable,

(A) for any a € T, define a random variable Xa(u>) by

n

Xa{w) = YvmTa.n{uj), where Ta.n(u>) = ^

Then Xa(w) exists almost surely and EXo(w) ^ 1.
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For k e N, w G Q, o G F, the stopping time is then

tk(a,u>) = min{i : pall(u) • • • paU(w) ^ pk{w)}

and

Ajt(u>) = {o\tk(a<w) : a G T).

REMARK 5. As in the proof of (3) in Lemma 3.1, we can have

lim V^ B'a{w)=X[uj) almost surely.

We define

i*(w) = min{|<7| : a e Ak(uj)}.

If we take

then as in the proof of Proposition 2.3, it can be proved that Ak(uj) —̂> -K"(w).

We now follow the method used in [18] and [20] by denning for almost all u a
bounded Borel measure //w on Rm such that

(a) Hu has total mass X(w),

(b) ^{K{UJ)) = X(u>).

Let Cc(Km) = {/ G Cc(Rm) : / has compact support}. For / € Cc(Rm), any z0 G / ,
consider the limit

H ( ) ( w ) , where xff(w) = 5<,(w)(x0).

Let

0 ' = {w G H : VCT 6 J , Xa(ui) exists and lim |/cr|n(w)| = O}.
n—>oo

From Lemma 3.1, Xa(uj) exists almost surely. Hence P(fi') = 1. For any / G Cc(Km)
and p, q G N, we write

, w G n.
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Fix k £ N and assume p,q ^ k, then for any w € fi

J = l

- £
sup

sup

B'(w)diam(/(/(,H))(Tffitl>_tM+T(7it,_t(w))

If u e fi', then

limsupeM(w) ^ 2 2 J Bs
a(u

= 2 sup d iam( / ( l a (w)) )x(w) .

Since / is continuous, lim diamf/Y/^u;)) ) = 0. Thus lim epjw) = 0 if w £ fi'. That
Jfc-»oo \ / P,9-»oo

is, for almost all w, the limit lim ^2 f(xa{w))Bs
a((jj) exists. Write

Clearly, Fw(/) is a positive linear functional and for any / 6 Cc{B.m) such that I C / ' (I) ,
we have Fw(/) = lim ^Z Bs

a{u) = X{u>). By the Riesz representation theorem, for

almost all w £ fi, there is the Borel measure /xw on Rm such that

•fu(/) — / f(x)dHu(x)t

and it is obvious that supp(fj,u) — K(cu). If E{NU{%) > 1 for any compact subset A of
Mm, we then have

= lim y Bs
a{(jj)Xa(u)) almost surely. (3.1)

k—>oo ^—^
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Recalling that we have denned T in Subsection 2.1 to be the set of infinite sequences r
such that a £ T for every finite curtailment a -< r. Let TT be the projection of T to E m

denned by

For a cylinder set Cff(w) with base u € T, we denote by Pw the measure on .F such that

PU(CO(UJ)) = B'a{u)Xa{u>). Then / ^ = i^oTr"1. Let Cw(w) = (J CCT<(w); then for

CT £ Afc(w) we have

( ) M*). (3.2)

Moreover, if the random weak separation property holds, it intersects with at most I
distinct Sa(w)(I), a 6 Afc(w) for any pfc-ball B(x,pk). This means that there are at most
/ different [a]'s such that ir(Ca(ii))) intersects with B(x,pk). If we denote these different
[CT]'S as [<7i], [CT2], • • •, [CJ], where i < /, then

i

^ ^ B'sXAw). (3.3)

4. HAUSDORFF DIMENSION OF SELF-SIMILAR RANDOM FRACTALS

Consider a branching process with probability distribution Nu(%) and generating
function

k)xk. (4.1)
jt=i

It follows from [11] and [5, p. 567] that the extinction probability q of the process equals

the smallest non-negative root of the equation f(x) = x. If E(NU(<1))) ^ 1 then q = 1

(except in the trivial case when Nw{jb) = 1 almost surely), but if E{NUJ(%)) > 1 then

0 ^ q < 1.

THEOREM 4 . 1 . Suppose a family $(w) of random similitudes has the random

weak separation property and satisfies (1) and (2) in Subsection 2.2, and K{u>) is the

self-similar random fractal generated by $(w). Then K{u>) = 0 with probability q and

s + lim inf — —r- < dim# K(u>) < minis, m]
k—K» klogp(u)

with probability 1 — q, where m is the dimension of the Euclidean space, dim// K(w) is
JV(fl)

the Hausdorff dimension ofK(w), s is the solution of the expectation equation E J2 Pi (w)
- 1.
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P R O O F : For any w e Q, if the branching process becomes extinct, then K(LJ) = 0

and the extinction probability is equal to q. Otherwise, with probability 1 - q, either

K(LJ) is a point or K(w) ^ 0 for an infinite number of points by Lemma 2.4. For the first

case s = 0, hence our conclusion obviously holds. Now we need to consider the second

case E(Nu(®)) > 1 in which the process does not become extinct.

To obtain an upper bound for dimK(u>), we note that, for any k e N, {/ff(cc) : a 6

Afc(w)} is a natural cover of K(ui), hence

%'{K[w)) ^ lim ^2 \IC(LJ)\S = X(u) <oo almost surely

by Lemma 3.1. Thus dim K(CJ) ^ s. Because K{UJ) is a subset of Km, it is obvious that

dimK(UJ) ^ m. Hence dimK(w) ^ min{s,m}.

We next obtain a lower bound for dimK(u>). For a fixed c > 0 and /? < s, from the

proof of [18, Theorem 3.1] and the definition of Afc(w), we know that for k sufficiently

large and a € Afc(w), we have

Ba(w)'Xa((j) = (pai, • • • pa\M)'Xa{ui) ^ c(/V|, • • -Pa\Mf *S c(pk)p almost surely.

It was shown in Section 3 that there exists a Borel measure /zw on K(w) almost surely.
From the random weak separation property, (3.2) and (3.3), for any p*-ball B(x,pk)} we
have

Hw(B(x,pk)) ^ lMk(u)c(ph)0 almost surely.

Hence
log liu(B(x,pk)) logic + log Mk(u)

r^ =—- ^ —2—, , .—^—- + P almost surely
fclogp k\ogp

if k is sufficiently large. But log/c/(felogp) —> 0 almost surely, as k —> oo; thus with
probability one

,. . ,logMo;(-B(a;,/»)) ^ . . . logMfc(w)
hm inf -\ =-^- ^ hm inf —7-—^—^ + p .
*»oo klogp k-*oo klogp

Therefore with probability one

. Iog/iu,(B(a;,p*)) . AogMk(ij)hm inf -^ =—- ^ hm inf —7 —- + s.
k-too klOgp k->oo klogp

Since fiu(K(uj)) = X(cu) > 0, by the Kinney-Pitcher-Billingsley theorem ([3] or [7,
Proposition 10.1]), we have

klogp []

REMARK 6. In the non-random case, Si{x) = x/2, S2(x) - x/2 + 1/2, S3(x) - x/2 + 1,

x G K, is an iterated function system related to the wavelet two-scale dilation equation.
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It does not satisfy the open set condition but has the weak separation property ([16]).
In an extensive computer simulation, we find that the maximum number of repetitions
Mk = ak, where {a*} is the Fibonacci sequence. As a result,

lim mi = ; .
k log p log 2

The Hausdorff dimension of the invariant set is then equal to 1. It obviously satisfies the
nonrandom version of our result.

We can now prove Theorem 2.2 for the case of random net fractals generated by

contractive maps.

P R O O F OF T H E O R E M 2.2: From the definition of K{w) in Subsection 2.2, we

denote

*'(w) = {&(w) : < 7 6 f , \4>'a(u,x) - &(w,y)| = da(uj)\x - y\]

and
$"H = { C M : o 6 T, \tf(u>,x) - <%(u>,y)\ = ca(w)\x - y\).

Then $'(o)) and $"(u;) are two families of random similitudes. It is seen that

for any a € T. If we denote by K'{OJ) and K"{u) the self-similar random fractals
generated by $'(w) and $"(LJ) respectively, then we have K'(UJ) C K(w) C K"(UJ).

Theorem 2.2 now follows from Theorem 4.1. D
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