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Abstract. We establish various relationships of the Hausdortf dimension, entropy dimension and
[P-dimension of a measure without assuming that the local dimension of p exists u-a.e. These extend
a well known result of Young.
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1. Introduction

In the study of fractals and dynamical systems, there are two most frequently
used dimensions for a probability measure 1 on RY, namely the Hausdorff
dimension dimy s and the entropy dimension dim,u. The former is defined by

dimgp = inf{dim F : p(F°) = 0}
where dimF denotes the Hausdorff dimension of F. To define the latter, let £, be
the partition of R? into grid boxes Hf:1[2‘”ji, 27"(j; + 1)] with j; € Z. Let

Hy(pn) == > u(Q)log u(Q)

0eP,

and define

H,
dimyp = lim (1)
n—oo log 2"

A well known theorem of Young [20] states that

Theorem 1.1. If the local dimension
=a p-ae., (1.1)

then dim,p = dimgp = a.
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For a probability measure, condition (1.1) does not hold in general, and is not
easy to verify except for some special cases. In this note we will give a detailed
consideration of the dimensions of measures without assuming (1.1). The key of
the proof is the following device. Let D(y,x) and D(u, x) be the lower and upper
local dimensions of 1 at x as an obvious modification of (1.1). We define

dimyp = essinf D(p,x), dim*u = esssup D(p, x),
Dimypu = essinf D(y,x), Dim™*u = esssup D(p, x),
where the ess inf and ess sup are taken with respect to p. It is obvious that
dimsp<dim*p  and Dimyp<Dim™p.

A systematic study of dimsy and dim™ ; was first carried out by Fan in [7], [8] and
the first two statements in the following theorem were proved there. They are
related to the Hausdorff dimensions of the supports of the measure, of particular
interest is the second statement that dim™y is the Hausdorff dimension of the
measure. A parallel theory concerning the packing dimensions of the supports was
then developed by Tamashiro in [18], which contains the last two statements in the
following theorem.

Theorem 1.2. Let ;1 be a probability measure on RY, then
dimsp = sup{a=0:VE,dimE < o = u(E) = 0},
dim*p = inf{dim F : u(F°) = 0} (= dimgp),
Dimxp = sup{a >0 : VE,DimE < o = p(E) = 0},
Dim*y = inf{Dim F : u(F¢) = 0},
where Dim E denotes the packing dimension of E.

In view of these alternative expressions, we call the first two the lower and
upper Hausdorff dimensions of 1 and the last two the lower and upper packing
dimensions of . We can also make simple modification of dim,u to define the
upper and lower entropy dimensions dim,u, dim, . Our first theorem is

Theorem 1.3. For a probability measure 1. on RY, we have
dim*u<dim?u<ﬁeu<Dim*u.

We will show by example that dim™y (and Dims ) is not comparable with
dim, z or dim, p (Section 3). Observe that Young’s theorem is a direct consequence
of Theorem 1.3 and the second statement of Theorem 1.2.

Now let us consider the L?-dimensions of a measure. Let £, be the dyadic
partition of R? as above. For ¢ > 0, let s,(q) = > ocp, #(Q)" and define the lower
and upper Li-dimensions (q # 1) by

, _ logsu(q) dim. = Tm 1089 (@)
g = lim —2om% g = lim ———="———.
im,p = lim o g dimen = i e
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The concept of L?-dimension was first introduced by Rényi in order to generalize
the entropy dimension [17], chapter 9. Nowadays we use

(q) = i 10831(a)

log s,(q)
lim =222
Jfim 22 and 7T(q) =

n—oo log 27"

to investigate the multifractal structure of a measure [6], in particular we use 7(q)
(often omitting the underline in literature) because it is a concave function. We can
rewrite

(q) T(q) .
dlmqlud—q—17 dlmq,u:q_1 ifg > 1,
di_mqu:ﬂ, dim,p = ™9 o<g<t.

g—1 q—1

(Note the reversal of the upper and the lower signs in the second case because
g — 1 is negative). In [14], Ngai showed that

7, ()< D(p,x) < D(p,x) < 7(1)  p-ae,

where 7 and Tjr denote the left and right derivatives of 7 (later these are obtained
independently by Heurteaux [12] and Olsen [15]). Then by the concavity of 7(g)
and Theorem 1.2, we have

dim, pu < dimsp  ifg > 1 (1.2)
and
dim*p < dim,p ifp < 1. (1.3)
We write these inequalities into Theorem 1.3 to get in a more complete comparison.
Theorem 1.4. For 0 < p <1 < g, we have
dim, ¢ < dimsp < dim,p < dim,p < Dim*p < dim, p. (1.4)

We point out that in [14], [12] and [15] the proofs rely on the above mentioned
Theorem 1.2 or some proofs of Theorem 1.2 were redone. We will provide a direct
proof for the first inequality in Theorem 1.4 without using any established results.
So the proof is more accessible and simpler than those in [14], [12] and [15]. The
last inequality follows the same argument. Heurteaux recently told us that Theorem
1.4 is also proved in [1].

After proving the theorems, we will use Bernoulli products to construct a class
of measures to show that the inequalities in the theorems cannot be improved, and
that the four dimensions dim™ 1, dim, s, dim, ., Dims 2 are not comparable, except
dim, pp < dim, 4.

2. Proof of the Theorems
Proof of Theorem 1.3. Let Q,(x) be the box in 2, containing x and let

logp(Qn(x))

Dn(x) = log2—n

= log, 4(Q,(x)). (2.1)
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It is clear that D,(x) is constant on any box in £, and
Hy(p) _
“log2 D, (x)du(x).
By applying the Fatou lemma we have

g@mz@qgmwmm>jpwwmw.

n—oo RA

The definition of dimxu implies that D(u, x) = dimxp for p-a.e. x and hence the
first inequality follows.

The second inequality is trivial. To prove the third inequality, we assume
without loss of generality that y is supported by the unit cube |0, l]d. Define, for
N=1,

Ay ={x:D,(x) <d+1 foralln > N}.

Since D(u,x) = lim, ..D,(x) < d for p-almost every x (see [19]), we have
w(Un=; An) = 1. Notice that Ay is increasing on N so that limy_u(Ay) = 1.
Therefore for any 0 < € < 1, there exists N > 1 such that u(Ay)=>1—e. Write

| Dowant) = [ Duwaute) + | Dyt

R? Ay A,

On Ay the functions D, (x),n = N, are uniformly bounded by d + 1, hence we can
use the Fatou lemma to get

o< Jim | D,Wdu(x) + Fim | D, ()dut

n—oo n—o0
Ay A5,

<Dim*p + n@c LC D, (x)du(x).
N

For fixed n > N, we have

| Duwdnt) = |

mwww+j Do(x)dpu(x)
o AGN{D,(x) <d+1}

AGN{D, (x)>d+1}

<(d+1)e + J Dy
m=d+1 YAy {m<Dy,(x) <m+1}
=(d+ e+ E

J D, (x)dp(x).
m=d+1 Qe, J QN {m<D,(x) <m+1}

Notice that D,(x) > m means p(Q,(x)) <27, hence

J Dy, (x)dp(x) < (m + 1)27 . 2M,
0e?, ) ON{m<Dy(x)<m+1}

Here we have used the fact that the unit cube [0, l]d contains 2" boxes in 2,.

However
o0

Z (m + 1)27mn+dn — 0(2711)'

m=d+1
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It follows that for any & > 0, dim,u < Dim™p 4 (d + 1)e. This completes the
proof. O

Theorem 1.1 can hence be improved as follows

Corollary 2.1. If D(p, x) = lim, o 212D — o for yi-a.e. x, then

dimyp = dim*p = dim,p = dim,p = Dimsp = Dim™p = a.
Proof of Theorem 1.4. We will prove dim,u < dimx . For a > dimx g, let

= i i PG )

n—oo log27n

then p(B) > 0. For n>1, let
F,=J{Qe 2, : uQ) >27}.
Note that B C (y_; U,~y Fn- Then

0 < u(B)< lim ,u(LJVF> (2.2)
We claim that there exists a subsequence {n;} such that
1
W(Fy)=— forall j. (2.3)
n:
J
Otherwise,
. - o o |
g ()< fim Soutr < Jim 3 <0
n=N n=N n=N

which will contradict (2.2). By (2.3) we have

I, = ————1log J (0 ()T dp(x
= on | @, ()
1 J »
<——1o O, (X)) dp(x
TR AT
<L tog,@ e u(r,)
(g — D
ot 1 210g2nj.
(@-1) n

This implies that dim, s <limj_oo1,, < so that dim, 0 < dimse .
The inequality Dim™* <mpu with 0 < p < 11in (1.2) can be proved similarly

by considering
1 .,
n—oo  log2"

where 3 < Dim™* . ]
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We can establish some further relationship of the ”-dimension and the entropy
dimension, besides Theorem 1.4.

Proposition 2.2. For 0 < p < 1 < g, we have
di—mq,u<di—me,u and di_meuédi_mpu.
Proof. For g > 1, by the convexity of —logx, we have

logsa(q) 1 -
(g—1)log2™  (g—1)n < — log, JM(QH(X)) dﬂ(x)>

< l J —log, 1(Qn(x))dp(x)

- JDn(X)du(X)

where D, (x) is defined as in (2.1). It follows that mq,u <dim,p. The proof of the
second inequality is similar. O

3. Examples and Remarks
For 0 < x < 1, we write
h(x) = —xlog, x — (1 — x) log,(1 — x),
and for a sequence {p,} with 0 < p, < 1, we write
h({pc}) = lim — Zh(p h({pi}) = Tim Zh(pn

We define a probability measure p on [0, 1], called Bernoulli product, by

En

pul(x)) = pi'---py
where x = > g2 withe; =0or 1, I,(x) = >0, £27" +[0,27"] and p = pa,
Pg =1-pu
Proposition 3.1. For the Bernoulli product p defined above, we have
dimyp = dim* p = dim,p = h({p,})
Dimyp = Dim*p = dim,p = h({p,}).
Proof. First we claim that for p-almost all x,
D(p,x) = h({pa}), D(u,x) = h({ps}).
Indeed we have

log 1u(Qn(x
Dn (x) = W Z logzp
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Since {log, pi'};°, are p-independent and E,(—log, p;') = h(p;), we have, by the
law of large numbers,

1 n
lim D,(x) = — lim ;Z(logzp + h(p;)) + lim — Zh(p)

n—o0 oo n T n—oo 1l

= lim — Zh(p (3.1)

n—o0 n

The claimed expression of D(y,x) follows. Similarly we get the expression of
D(u, x). Consequently

dimyp = dim*p = h({p,}), Dimyp = Dim* i = h({p,}).
For the entropy dimension, it suffices to notice that

Hn 1% 3 € - & Y
10;; _ Z P (Zlogzpj) = Zh(Pj)~ (3-2)
j=1 j=1

ElseensEn

O

We will see that it is possible to choose {p,} such that h({p,}) < h({p.}).

In the following we will consider the sum of two Bernoulli products. Let i be
defined as above and let v be another Bernoulli product defined by {g,} with
0 < g, < 1. Consider the measures

oy=su+(l—=s)r, (0<s<l1).
By Theorem 1.2, it is easy to see that

dimxo,; = min{dimxp, dimxv}, (3.3)

dim*oy; = max{dim*;, dim*v}, (3.4)

and similarly for Dim«o, and Dim™ 0. Notice that the right-hand side is indepen-
dent of s.

Proposition 3.2. Let o, (0 < s < 1) be defined as above, then

dim,o, = lim — ( Zh p)+ (1 _s)jilh(%))’

n—oo

dim, o, = Tim — ( Zh(p] +(1-5) Zh q,)

Proof. First we see that

H,(oy) = —J log o(1,,(x)do(x)

[Rd
= —skE,logo(I,(x)) — (1 — s)E, log o5(L,(x)).
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Since

1—s o
os(I(x)) = spy' - <1 + qEI—qn)’

P pi'
then

3 (3 1 — Sq?l qn
log o(1,(x)) = logs + log(p}' - - - p;') +log( 1 + Tpfl IR

and therefore
n 1 —s €1 En
E,.log 0(I(x) = logs — > h(pi) + E, log<1 +Tzl7q>
=1

Note that the last expression is nonnegative; the concavity of log(1 Tsx)
implies that it is bounded by

1_ el ., En
10g<1+ S[Eﬂ<qél " >>
s Pl p

Eu( 5,,> > ogitgy =1,
Pl o

Since

we see that
E, 103030 () = — 3 hlp) + O(1).

We can obtain an analogous identity for the expectation with respect to v. Finally
we have

logZ” Z (pi) +—th, )+ 0(1

and the lemma follows. ]

For further discussion, we suppose that ;2 and v are mutually singular. A the-
orem of Kakutani [13] states that if 0 < infp, <supp, < 1, then

ply iff Z(p,, —qu)? = co.
n=1

We will adjust the choice of the {p,} and {g,} to get oy = su + (1 — s)v which
illustrates various possible relationships of the dimensions of a measure.
Let a,b,c,d, € (0,%) be fixed and distinct, define
B {a if 2-28<n <22k 42k
Pr=b if 2.2t42k<n <226
fe if 2-2%<n<2-28 425
TTVd it 225 2kn <22k
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Then the criterion of Kakutani implies that x and v are mutually singular. The
local dimension D(o, x) (as well as D(oy, x)) takes two values, one on a support of
1 and the other on a support of v. More precisely, there are two disjoint Borel sets
A and B with y(A) =1 and v(B) = 1 such that for 0 < s < 1

D(05,x) = h({pa})1a(x) + £({g.})15(x) os-ace,
D(05,x) = h({pa})14(x) + h({g:})15(x) os-ae.

where

h({pn}) = min{ 2h(a) + h(b) h(a) + h(b) }

3 )
h({pa}) = max{ 2h(a) 3+ h(b) h(a) er h(b) }

and similar expressions hold for 2({g,}) and h({g,}). We have the liberty to
choose a,b,c,d € (0,1/2) to exhibit different situations. For example,

1. dim*oy < Dimsoy if a < b.

2. dim* o, > Dimyo, if 0 < s < 1,a < b,c < d and & >

We can construct more examples by the following procedure. Assume 0 < a <
b<land 0 <d < c<1i(tisnot c <d!). Then

(@)+h(b) _ h(c)+h(d)
3 2 :

A= tim 3 = DI 5 i S iy MO D),
n—oo Ty =

B tim 3" hlg) = MOND 5 i 3 gy - 2R,
n—oo Ty ‘=

Hence for o, = s+ (1 — s)v, we have
dim* o, = max{A, B},
Dimxo, = min{A, B},

dim,o; = min{sA + (1 — 5)B,sA + (1 — s)B},

dim,o; = max{sA + (1 — 5)B,sA + (1 — s)B}.

For these four dimensions, we can choose a,b, c,d, so that
3. We can choose a < b,d < ¢ so that A < A < B < B. Then

Dimyo, = A < B = dim,0;.
We can adjust the s to fit dim,o; and dim,o; in between A and B:
dim,o; < Dimxo; < dim,o, < dim*o,, forsnearl,
Dimso, < dim,o, < dim*o, < dim,o,, forsnear0,

Dimxo, < dim,o, < dim,o; < dim*co,, for s suitable.
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4. For A < B < A < B, then we have similarly
dim,o; < dim*o, < dim,o, < dimso,, forsnearl,
dim*o, < dim,o, < Dimxo, < dim,o,, forsnear0,
dim*o, < dim,o, < dim,o; < Dimxo,, for s suitable.

We conclude from these examples that the four dimensions dim™* i, dim, 4,
dim, 1, Dimy e are not comparable, except dim, z < dim, .

The idea of using Bernoulli measure comes from [7] where it was called dyadic
Riesz product. It is then natural to use barycenters o; of Bernoulli measures to
construct more exotic measures. Such constructions also appear in [12], [1], [2].
There are some results similar to ours in [12], [1].

Finally we remark that for the invariant measure p generated by any
contractive IFS [10], or for measures which are ergodic with respect to a map
preserving Hausdorff dimension [9],

D(u,x) =d and D(p,x)=d p-ae.

Thus dim«p = dim*p = d, Dimsp = Dim™ . = d. A natural question is to know
whether D(p,x) = D(u,x) = constant y-a.e. for self-similar measures of self-
conformal measures. The statement is true if the conformal IFS satisfies the open
set condition (see [11]). It is conjectured that the open set condition is superfluous.
Eckmann and Ruelle [5] suggested that D(yu,x) = D(u,x) = constant y-a.e. for
any ergodic measure. Later, Cutler [4] showed by a counterexample that it is not
true in general. However, an affirmative answer was obtained by Barreira, Pesin
and Schmeling for hyperbolic measures [3].

For Li-dimension and entropy dimension, Peres and Solomyak [16] have
recently proved that dim, u = dim,p and dim,x = dim,p for any self-conformal
measure without the open set condition.
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