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Abstract
This paper develops a theory for characterization of DNA sequences based on
their measure representation. The measures are shown to be random cascades
generated by an infinitely divisible distribution. This probability distribution
is uniquely determined by the exponent function in the multifractal theory of
random cascades. Curve fitting to a large number of complete genomes of
bacteria indicates that the gamma density function provides an excellent fit to
the exponent function, and hence to the probability distribution of the complete
genomes.

PACS numbers: 05.45.Df, 05.10.Gg, 87.14.Gg

1. Introduction

DNA sequences are of fundamental importance in understanding living organisms, since all
information on their hereditary evolution is contained in these macromolecules. One of the
challenges of DNA sequence analysis is to determine the patterns of these sequences. It is
useful to distinguish coding from noncoding sequences. Problems related to the classification
and evolution of organisms using DNA sequences are also important.

Fractal analysis has proved useful in revealing complex patterns in natural objects.
Berthelsen et al [2] considered the global fractal dimension of human DNA sequences treated as
pseudorandom walks. Vieira [3] carried out a low-frequency analysis of the complete DNA of
13 microbial genomes and showed that their fractal behaviour does not always prevail through
the entire chain and the autocorrelation functions have a rich variety of behaviours including
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the presence of anti-persistence. Provata and Almirantis [14] proposed a fractal Cantor pattern
of DNA. They mapped coding segments to filled regions and noncoding segments to empty
regions of a random Cantor set and then calculated the fractal dimension of this set. They found
that the coding/noncoding partition in DNA sequences of lower organisms is homogeneous-
like, while in the higher eucariotes the partition is fractal. Yu and Anh [16] proposed a time
series model based on the global structure of the complete genome and found that one can
get more information from this model than that of the fractal Cantor pattern. Some results on
the classification and evolution relationship of bacteria were found in [16]. The correlation
property of length sequences was discussed in [17].

Although statistical analysis performed directly on DNA sequences has yielded some
success, there has been some indication that this method is not powerful enough to amplify
the difference between a DNA sequence and a random sequence as well as to distinguish DNA
sequences themselves in more details. One needs more powerful global and visual methods.
For this purpose, Hao et al [7] proposed a visualization method based on coarse-graining
and counting of the frequency of appearance and strings of a given length. They called it the
portrait of an organism. They found that there exist some fractal patterns in the portraits which
are induced by avoiding and under-represented strings. The fractal dimension of the limit set
of portraits was discussed in [8, 18]. There are other graphical methods of sequence patterns,
such as the chaos game representation (see [5, 10]).

In the portrait representation, Hao et al [7] used squares to represent substrings and
discrete colour grades to represent the frequencies of the substrings in the complete genome.
It is difficult to know the accurate value of the frequencies of the substrings from the portrait
representation. And they did not discuss the classification and evolution problem. In order to
improve it, Yu et al [15] used subintervals in one-dimensional space to represent substrings to
obtain an accurate histogram of the substrings in the complete genome. The histogram, viewed
as a probability measure and was called the measure representation of the complete genome,
gives a precise compression of the genome. Multifractal analysis was then proposed in Yu
et al [15] to treat the classification and evolution problem based on the measure representation
of different organisms.

In this paper, we go one step further and provide a characterization of the DNA sequences
based on their measure representation. This is given in the form of the probability density
function of the measure. We first show that the given measure is in fact a multiplicative cascade
generated by an infinitely divisible distribution. This probability distribution is uniquely
determined by the exponent K(q), q � 0, in the multifractal analysis of the cascade. This
theory will be detailed in the next section. We then apply the theory on a large number of
typical genomes. It will be seen that the gamma density function provides an excellent fit to
the K(q) curve of each genome. This characterization therefore provides a needed tool to
study the evolution of organisms.

2. Measure representation of complete genome

We first outline the method of Yu et al [15] in deriving the measure representation of a DNA
sequence. Such a sequence is formed by four different nucleotides, namely adenine (a),
cytosine (c), guanine (g) and thymine (t). We call any string made of K letters from the set
{g, c, a, t} aK-string. For a givenK there are in total 4K differentK-strings. In order to count
the number of each kind of K-strings in a given DNA sequence, 4K counters are needed. We
divide the interval [0, 1[ into 4K disjoint subintervals, and use each subinterval to represent a
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counter. Letting s = s1 . . . sK, si ∈ {a, c, g, t}, i = 1, . . . , K , be a substring with length K ,
we define

xl(s) =
K∑
i=1

xi

4i
(2.1)

where

xi =




0 if si = a

1 if si = c

2 if si = g

3 if si = t

(2.2)

and

xr(s) = xl(s) +
1

4K
. (2.3)

We then use the subinterval [xl(s), xr(s)) to represent substring s. Let N(s) be the number
of times substring s appears in the complete genome. If the number of bases in the complete
genome is L, we define

F(s) = N(s)

(L−K + 1)
(2.4)

to be the frequency of substring s. It follows that
∑

{s} F(s) = 1. Now we can define a measure
µK on [0, 1) by

µK(dx) = YK(x) dx

where

YK(x) = 4KFK(s) x ∈ [xl(s), xr(s)). (2.5)

We then have µK([0, 1)) = 1 and µK([xl(s), xr(s))) = FK(s). We call µK(x) the measure
representation of an organism. As an example, the measure representation of M. genitalium
for K = 3, . . . , 8 is given in figure 1. Self-similarity is apparent in the measures.

More than 33 bacterial complete genomes are now available in public databases. There are
six Archaebacteria (Archaeoglobus fulgidus, Pyrococcus abyssi, Methanococcus jannaschii,
Pyrococcus horikoshii, Aeropyrum pernix and Methanobacterium thermoautotrophicum);
five Gram-positive Eubacteria (Mycobacterium tuberculosis, Mycoplasma pneumoniae,
Mycoplasma genitalium, Ureaplasma urealyticum, and Bacillus subtilis). The others are
Gram-negative Eubacteria, which consist of two Hyperthermophilic bacteria (Aquifex aeolicus
and Thermotoga maritima); five Chlamydia (Chlamydia trachomatisserovar, Chlamydia
muridarum, Chlamydia pneumoniae and Chlamydia pneumoniae AR39); two Spirochaete
(Borrelia burgdorferi and Treponema pallidum); one Cyanobacterium (Synechocystis sp.
PCC6803); and 13 Proteobacteria. The 13 Proteobacteria are divided into four subdivisions,
which are the alpha subdivision (Rhizobium sp. NGR234 and Rickettsia prowazekii); gamma
subdivision (Escherichia coli, Haemophilus influenzae, Xylella fastidiosa, Vibrio cholerae,
Pseudomonas aeruginosa and Buchnera sp. APS); beta subdivision (Neisseria meningitidis
MC58 and Neisseria meningitidis Z2491); epsilon subdivision (Helicobacter pylori J99,
Helicobacter pylori 26695 and Campylobacter jejuni). The complete sequences of some
chromosomes of higher organisms are also currently available. We selected the sequences of
chromosome 15 of Saccharomyces cerevisiae, chromosome 3 of Plasmodium falciparum,
chromosome 1 of Caenorhabditis elegans, chromosome 2 of Arabidopsis thaliana and
chromosome 22 of Homo sapiens.
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Figure 1. Histograms of substrings with different lengths.

In our previous work [15], we calculated the numerical dimension spectra Dq (defined in
next section) for all above organisms and for different K . For small K , there are only a few
different K-strings, so there is not enough information for any clear-cut result. We find that
theDq curves are very close to one another forK = 6, 7, 8 for each organism. Hence it would
be appropriate to take K = 8 if we want to use the Dq curves to discuss the classification and
evolution problem. It is still needed to know what is the analytical expression of the dimension
spectra. The main aim of this paper is to establish a theoretical model to give such an analytical
expression.
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3. Multifractal models

Let ε(t) be a positive stationary stochastic process on a bounded interval of R, assumed to be
the unit interval [0, 1] for convenience, with Eε(t) = 1. The smoothing of ε(t) at scale r > 0
is defined as

εr(t) = 1

r

∫ t+r/2

t−r/2
ε(s) ds. (3.1)

For 0 < r < u < v, we consider the processes

Xr,v(t) = εr(t)

εv(t)
t ∈ [0, 1].

Following Novikov [13], we assume the following scale invariance conditions:

(i) The random variables Xr,u and Xu,v are independent.
(ii) The probability distribution of each random variable Xu,v depends only on the ratio u/v

of the corresponding scales.

These conditions imply the power-law form for the moments of the processesXu,v if they
exist. In fact, we may write

E(Xu,v(t))
q = gq

(u
v

)
q � 0 (3.2)

from condition (ii) for some function g which also depends on q. From the identity

Xr,v(t) = Xr,u(t)Xu,v(t)

and condition (i) we get

gq

( r
v

)
= gq

( r
u

)
gq

(u
v

)
. (3.3)

Since u is arbitrary, we then have

gq

( r
v

)
=
( r
v

)−K(q)
(3.4)

for some function K(q) with K(0) = 0. It follows that

K(q) = lnE(Xr,v(t))q

ln(v/r)
.

Writing Y for Xr,v we obtain

K ′(q) = 1

ln(v/r)

E(Y q ln Y )

E(Y q)

K ′′(q) = 1

ln(v/r)

(EY q)E(Y q(ln Y )2)− (E(Y q ln Y ))2

(EY q)2
.

Since

(E(Y q ln Y ))2 = (E(Y q/2Y q/2 ln Y ))2

� (EY q)E(Y q(ln Y )2) (3.5)

by Schwarz’s inequality and v/r > 1, we get K ′′(q) � 0, that is, K(q) is a convex function.
It is noted that equality holds in (3.5) only if K(q) is a linear function of q; other than this,
K(q) is a strictly convex function.

For 0 < q < 1, we assume thatK(q) < 0, which reflects the fact that, in this range, taking
a qth-power necessarily reduces the singularity of Xu,v . Also, we assume that the probability
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density function of Xu,v is skewed in the positive direction. This yields that K(q) > 0 for
q > 1. These assumptions, in conjunction with the strict convexity of K(q), suggest the
assumption that

K(1) = 0. (3.6)

This implies that

EXu,v = 1 for arbitrary 0 < u < v. (3.7)

In this paper, we will consider smoothing at discrete scales rj = 2−j+1, j = 0, 1, 2, 3, . . . .
Then the smoothed process at scale rj is

Xj(t) = εrj (t) = 1

2−j+1

∫ t+2−j

t−2−j
ε(s) ds. (3.8)

Under the condition Eε(t) = 1, it is reasonable to assume that

X0(t) = 1 t ∈ [0, 1]. (3.9)

Then, at generation J ,

XJ (t) = X0(t)
X1(t)

X0(t)

X2(t)

X1(t)
· · · XJ (t)

XJ−1(t)

= X1(t)

X0(t)

X2(t)

X1(t)
· · · XJ (t)

XJ−1(t)
. (3.10)

Under the scale invariance conditions (i) and (ii), the random variables Xj/Xj−1 of (3.10) are
independent and have the same probability distribution. Let W denote a generic member of
this family. Note that EW = 1 from (3.7). Then (3.10) can be rewritten as

XJ (t) = XJ−1(t)
XJ (t)

XJ−1(t)

= W1(t)W2(t) · · ·WJ (t) t ∈ [0, 1]. (3.11)

In other words, XJ (t) is a multiplicative cascade process (see [6, 9]). Denote by µJ the
sequence of random measures defined by the density XJ (t), that is,

µJ (dt) = XJ (t) dt J = 1, 2, 3, . . . .

It can be checked that µJ a.s. has a weak* limit µ∞ since for each bounded continuous
function f on [0, 1], the sequence

∫
[0,1] f dµJ is an L1 -bounded martingale (see [9, 11, 12]).

We denote the density corresponding to µ∞ by X∞(t). Then it is seen from (3.8) that

X∞(t) = ε(t) t ∈ [0, 1]. (3.12)

Summarizing, we have established that

The positive stationary process ε(t) is the limit of a
multiplicative cascade with generator W .

We next want to characterize this random cascade. We first note that, for j = 1, 2, 3, . . . ,

Xj

Xj−1
= 2

∫ t+2−j

t−2−j ε(s) ds∫ t+2−(j−1)

t−2−(j−1) ε(s) ds
� 2 (3.13)

from the positivity of ε(t). Thus,

E

(
Xj

Xj−1

)q
� 2q .
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This inequality together with (3.4) imply

K(q) � q q � 0. (3.14)

We then have

∞∑
q=0

(
E

(
Xj

Xj−1

)2q
)− 1

2q

=
∞∑
q=0

(
1

2

)K(2q)
2q

= ∞.

In other words, the Carleman condition is satisfied (see [4], p 224). As a result, we get

The probability density function fW of the generator W is
uniquely determined by the set {K(q), q = 0, 1, 2, . . .}.
It is seen that, if the functionK(q) has analytic continuation into the complex plane, then

the characteristic function of lnW has the form

ψ(x) = E(eix lnW) = ( 1
2 )

−K(ix). (3.15)

Defineψn(x) = (1/21/n)−K(ix) for an arbitrary integer n. Thenψn is the characteristic function
of the probability distribution corresponding to smoothing with scales (21/n)−j+1. Also, it holds
that

ψ(x) = (ψn(x))
n.

Thus ψ(x) is infinitely divisible (see [4], p 532); in other words,

lnW has an infinitely divisible distribution. (3.16)

It is noted from (3.13) that − ln W
2 � 0. The most general form for the characteristic function

ϕ(x) of positive random variables is given by

ϕ(x) = exp

{∫ ∞

0

1 − eixs

s
P (ds) + iax

}
(3.17)

where a � 0 and P is a measure on the open interval (0,∞) such that
∫∞

0 (1+s)−1P(ds) < ∞
(see [4], p 539). On the other hand, it follows from (3.2) and (3.4) that the characteristic function
of − ln W

2 is given by

E(e−ix ln W
2 ) = 2ixE(W)−ix

= 2ix( 1
2 )

−K(−ix). (3.18)

Using q = −ix and equating (3.17) with (3.18) then yields

K(q) =
(

1 − a

ln 2

)
q −

∫ ∞

0

1 − e−qs

s

P (ds)

ln 2
. (3.19)

As constrained by (3.6), the following condition must be satisfied by the measure P(ds):∫ ∞

0

1 − e−s

s

P (ds)

ln 2
= 1 − a

ln 2
� 1. (3.20)

Equations (3.19) and (3.20) provide the most general form for the K(q) curve of the positive
random process {ε(t), 0 � t � 1}.

In practice, fitting thisK(q) curve to data requires a proper choice of the measure P(ds).
Novikov [13] suggests the use of the gamma density function, namely,

f (x) = Axα−1 exp(−x/σ) (3.21)
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where P(dx) = f (x) dx and A, α, σ are positive constants. From (3.19) and (3.21) we get

K(q) =



κ

(
q − (qσ + 1)1−α − 1

(σ + 1)1−α − 1

)
α 
= 1

κ

(
q − ln(qσ + 1)

ln(σ + 1)

)
α = 1

(3.22)

where κ = 1 − a/ ln 2, and from (3.20) we have

A = κ ln 2

σα−1)(α − 1)
(1 − (σ + 1)1−α)−1.

The form (3.22) will be used for data fitting in this paper. It is seen from (3.2) and (3.4)
that the data for the K(q) curve is provided by

K(q) = lim
J→∞

lnE(XqJ )

− ln 2−J+1
(3.23)

where it should be noted from (3.12) that X∞(t) = ε(t), the given positive random process.
Since each smoothed processXJ may possess long-range dependence (see [1]), the ergodic

theorem may not hold for these processes. As a result, the computation of E(XqJ ) as sample
averages may not be sufficiently accurate. There is an alternative form of the ergodic theorem
developed by Holley and Waymire [9] for random cascades which we now summarize.

For random cascades with density ε(t), limit measure µ∞, branching number b and
generator W , define

MJ(q) =
∑
k

′
(µ∞(-J

k ))
q (3.24)

τ(q) = lim
J→∞

lnMJ(q)

J ln b
(3.25)

Dq = τ(q)/(q − 1) (3.26)

χb(q) = logb E(W
q)− (q − 1) (3.27)

where the prime in (3.24) indicates a sum over those subintervals -J
k of generation J which

meet the support of µ∞.

Theorem 1 [9]. Assume that W > a for some a > 0 and W < b with probability 1, and that
E(W 2q)/(EWq)2 < b. Then, with probability 1,

τ(q) = −χb(q). (3.28)

In our case as developed above, b = 2, and (3.13) gives W � 2. In fact the scale
rj = 2−j+1 used in (3.8) is arbitrary; it can be b−j+1 and the inequality W � b still holds by
definition of the smoothing and the positivity of ε(t). In our development,

−K(q) = lim
J→∞

lnE(XqJ )

ln 2−J+1

= lim
J→∞

J lnE(Wq)

(J − 1) ln 2−1
using (3.11)

= − lnE(Wq)

ln 2
.

Consequently,

K(q) = −τ(q) + q − 1. (3.29)



Multifractal characterisation of complete genomes 7135

The above formula then provides a way to compute K(q) via (3.25) and (3.29) using sums
of qth powers of the limit measure instead of (3.23) using expectations. In fact, the ergodic
theorem now takes the following form:

lim
J→∞

lnE(XqJ )

(J − 1) ln 2
= lim

J→∞
ln
∑′

k(µ∞(-J
k ))

q

J ln 2
+ q − 1.

4. Data fitting and discussion

For K = 8, we first calculated K(q) of the measure representation of all the above organisms
directly from the definition of K(q) (3.23). Figure 2 shows how to calculate this K(q) curve.
We give theK(q) curves of E. coli, S. cerevisiae Chr15, C. elegans Chr1, A. thaliana Chr2, and
Homo sapiens Chr22 in figure 3. From figure 3, it is seen that the grade of the organism is lower
when the Kq curve is flatter. Hence the evolution relationship of these organisms is apparent.
We denote byKd(q) the value ofK(q) computed from the data using its definition (3.23) and
define

error =
J∑
j=1

∣∣∣∣κ
(
qj − (qjσ + 1)1−α − 1

(σ + 1)1−α − 1

)
−Kd(qj )

∣∣∣∣
2

.

Then the values of κ, σ and α can be estimated through minimizing error. In this minimization,
we assume

0 � κ, σ, α � 20.

After obtaining the value of κ , σ andα, we then get theK(q) curve from (3.22). The data fitting
based on the form (3.22) was performed on all the organisms and shown in table 1 (from top to

4.5 5 5.5 6 6.5 7 7.5 8 8.5
0

2

4

6

8

10

12

14

ln(1/r)

ln
 E

(Y
rq (t

))

q=2
q=4
q=6
q=8

Figure 2. An example to show how to obtain the value of K(q) directly using its definition.
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0 1 2 3 4 5 6 7 8 9 10
– 0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

q

K
(q

)

E. coli
Yeast Chr15
C. elegans Chr1
A. thaliana Chr2
Human Chr22

Figure 3. The values ofK(q) of chromosome 22 of Homo sapiens, chromosome 2 of A. thaliana,
chromosome 1 of C. elegans, chromosome 15 of S. cerevisiae and E. coli.

0 1 2 3 4 5 6 7 8 9 10
– 0.5

0

0.5

1

1.5

2

2.5

3

3.5

q

K
(q

)

E. coli
Yeast Chr15
C. elegans Chr1

Figure 4. The data fitting of E. coli, chromosome 15 of S. cerevisiae and chromosome 1 of
C. elegans based on the gamma model. The symbolled curves represent Kd(q) computed from
data, while the continuous curves represent K(q) computed from formula (3.22).
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Table 1. The values of κ, σ, α, error of all the organisms selected.

Species κ σ α error

Aquifex aeolicus 0.210 967 0.034 741 20.000 000 1.149 058E−03
Haemophilus influenzae 0.250 405 0.026 628 20.000 000 1.718 141E−04
Synechocystis sp. PCC6803 0.252 695 0.023 009 14.895 300 2.551 734E−04
Mycoplasma pneumoniae 0.260 598 0.028 227 14.468 067 1.367 545E−04
Chlamydia pneumoniae AR39 0.261 441 0.015 080 20.000 000 1.109 025E−02
Rhizobium sp. NGR234 0.269 307 0.141 332 1.974 406 1.037 725E−05
Chlamydia muridarum 0.282 757 0.021 999 20.000 000 5.528 718E−03
Chlamydia trachomatis 0.285 242 0.016 422 20.000 000 3.569 117E−03
Neisseria meningitidis MC58 0.287 688 0.021 525 20.000 000 3.869 811E−04
Helicobacter pylori 26695 0.296 316 0.042 743 20.000 000 3.999 003E−03
Helicobacter pylori J99 0.300 842 0.039 837 20.000 000 4.532 450E−03
Methanococcus jannaschii 0.305 624 0.034 413 19.737 016 9.356 220E−05
Rickettsia prowazekii 0.312 790 0.036 216 19.484 758 1.681 558E−04
Neisseria meningitidis Z2491 0.316 484 0.021 405 20.000 000 4.444 530E−04
Bacillus subtilis 0.325 036 0.015 238 20.000 000 5.327 829E−03
Aeropyrum pernix 0.325 043 0.024 461 20.000 000 1.056 628E−02
Mycoplasma genitalium 0.326 433 0.033 756 20.000 000 1.517 762E−03
Campylobacter jejuni 0.342 793 0.044 513 20.000 000 1.316 877E−03
M. tuberculosis 0.345 510 0.020 729 19.509 203 4.187 475E−04
Borrelia burgdorferi 0.350 140 0.045 101 20.000 000 2.282 837E−03
Thermotoga maritima 0.364 864 0.017 640 20.000 000 1.094 542E−03
Treponema pallidum 0.365 539 0.011 555 20.000 000 7.890 963E−03
Ureaplasma urealyticum 0.371 367 0.067 125 12.859 609 2.250 143E−04
Escherichia coli 0.386 280 0.024 556 6.404 487 2.418 786E−04
M. thermoautotrophicum 0.388 544 0.015 769 13.884 240 1.474 283E−03
Pseudomonas aeruginosa 0.412 200 0.753 456 0.918 436 4.798 280E−05
Caenorhabditis elegans Chr1 0.440 354 0.030 755 20.000 000 1.087 368E−02
Chlamydia pneumoniae AR39 0.484 163 0.018 637 20.000 000 2.701 796E−03
Archaeoglobus fulgidus 0.487 055 0.016 984 11.046 987 1.435 727E−03
S. cerevisiae Chr15 0.511 099 0.014 271 11.487 615 2.237 813E−03
Pyrococcus abyssi 0.513 144 0.016 623 7.295 978 7.294 311E−04
Buchnera sp. APS 0.536 577 0.031 866 20.000 000 4.064 171E−03
Arabidopsis thaliana Chr2 0.546 252 0.014 951 13.096 780 2.629 544E−03
Pyrococcus abyssi 0.562 316 0.015 389 11.328 229 1.574 777E−03
Vibrio cholerae 0.604 051 0.028 218 3.209 793 3.147 899E−04
Plasmodium falciparum Chr3 0.769 704 0.049 365 20.000 000 4.257 000E−02
Xylella fastidiosa 1.014 092 0.010 085 7.503 579 1.194 219E−02
Homo sapiens Chr22 1.290 643 0.008 267 12.966 19 1.900 450E−01

bottom, in the increasing order of the value of κ). It is found that the form (3.22) gives a perfect
fit to the data for all bacteria. As an example, we give the data fitting of E. coli, S. cerevisiae
Chr15 and C. elegans Chr1 in figure 4. But for higher organisms, for example, Homo sapiens
chromosome 22, the fitting is not as good. Note that we only selected one chromosome for
each higher organism. If all chromosomes for each higher organism are considered, the data
fitting for Kq will be better. The fit for human chromosome is the worst in table 1. Since
the length of human chromosome 22 is not larger than those of the complete genomes of all
bacteria, there does not seem to be any relationship between the quality of fit and the length
of the complete genome.

The parameterκ provides a tool to classify bacteria. From table 1, one can see Helicobacter
pylori 26695 and Helicobacter pylori J99 group together, and three Chlamydia almost group
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together. But this parameter κ alone is not sufficient, it must be combined with other tools to
classify bacteria.

We also calculated the values of τ(q) using its definition (3.25). We found the values of
Kd(q) coincide with those obtained from (3.29). Hence we indeed can use (3.29) to calculate
K(q). Formula (3.22) gives an analytical expression for the quantity Kq . An analytical
expressions for τ(q) can therefore be obtained from (3.29) and Dq from (3.26).

5. Conclusions

The idea of our measure representation is similar to the portrait method proposed by Hao
et al [7]. It provides a simple yet powerful visualization method to amplify the difference
between a DNA sequence and a random sequence as well as to distinguish DNA sequences
themselves in more details. From our measure representation we can exactly know the
frequencies of all the K-string appearing in the complete genome. But the representations
alone are not sufficient to discuss the classification and evolution problem. Hence we need
further tools.

In our previous work [15], when the measure representations of organisms were viewed
as time series, it was found that they are far from being random time series, and in fact
exhibit strong long-range dependence. Multifractal analysis of the complete genomes was
performed in relation to the problem of classification and evolution of organisms. In this
paper, we established a theoretical model of the probability distribution of the complete
genomes. This probability distribution, particularly the resulting K(q) curve, provides a
precise tool for their characterization. Numerical results confirm the accuracy of the method
of this paper.

For a completely random sequence based on the alphabet {a, c, g, t}, we have Dq = 1,
τ(q) = q− 1,K(q) = 0 for all q. From theK(q) curves, it is seen that all complete genomes
selected are far from being a completely random sequence.
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