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Li-spectrum of the Bernoulli convolution
associated with the golden ratio

by

KA-SING LAU (Hong Kong and Pittsburgh, Penn.) and
SZE-MAN NGAI (Ithaca, N.Y.)

Abstract. Based on a set of higher order self-similar identities for the Bernoulli
convolution measure for (v/5 — 1)/2 given by Strichartz et al., we derive a formula for the
L-spectrum, q > 0, of the measure. This formula is the first obtained in the case where
the open set condition does not hold.

1. Introduction. Let u be a positive bounded regular Borel measure on
R¢ with compact support. For A > 0 and g > 0, we define the L?-(moment)
spectrum of p by

b0+ Inh ’
where {Q;(h)}; is the family of h-mesh cubes
[n1h, (n1 4+ 1)B) X ... X [ngh, (ng + 1)R),  (na,...,nq) € Z%.
We also define the (lower) Li-dimension of p by
dim (u) =7(9)/(¢—1), ¢>1.

These notions were first used by Rényi [Ré] to extend the entropy dimension
(corresponding to ¢ = 1). Some variants of these definitions and “the basic
properties of 7(g) can be found in [LN1], [St]. We prefer to use lim rather
than lim because the 7(q) defined by using lim is concave.

Recently there are a large number of papers in the mathematics and
physics literature investigating the relationship of the L%-spectrum and the
local dimension of the measures that arise from dynamical systems (the
multifractal formalism) (e.g., Frisch and Parisi [FP], Halsey et al. [H], Collet
et al. [CLP], Lopes [Lo], Rand [R], Cawley and Mauldin [CM], Edgar and
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Mauldin [EM], Lau and Ngai [LN1], Olsen [O], Riedi [Ri], Daubechies and
Lagarias [DL]). The multifractal formalism asserts, heuristically, that the
Legendre transformation of 7(q), i.e., 7*(a) := inf{ga — 7(q) : ¢ € R}, is
equal to the Hausdorfl dimension of the set
ln p(Bp(x
K(a):= {m € supp(p) : lim —Lgn—%(——)l = a},

h-—0+

where supp(u) denotes the support of 41, By (z) is the closed h-ball centered
at x, and the quantity

lim 2 p(Bn(z))

h—0t Inh
is known as the local dimension of y at z. The Hausdorff dimension of K (o),
as a function of a, is the well-known dimension spectrum, and if the mul-
tifractal formalism holds, then it can be obtained indirectly by calculating
7(q)-

For a rigorous verification of the multifractal formalism and an explicit

calculation of the L%-spectrum, it is customary to restrict to the class of
self-similar measures (or its variants), i.e., probability measures u satisfying

m
(1.2) p=> ajuoS;",
j=1

where {S;}72, are contractive similitudes and {a;}]_, are probability
weights [Hut]. A further restriction is that the similitudes must satisfy a
certain separation condition, called the open set condition ([Hut], [F]). The

formula for 7(q) is then given by

(q)

q —7q) _
E a;0; =1,
Jj=1

where p; is the contraction ratio of §; ([CM], [EM], [LW], [St]).
Very little is known when the similitudes do not satisfy such a condition:
the simplest case is when m = 2 and

(1.3) Si(@) =z, Sale) =0+ (1-0),

where 1/2 < o < 1 and the weight on each map is 1/2. The corresponding
self-similar measure u equals the distribution measure of the random variable
(1—0)> 02 0"y where {e,}52 are i.i.d. random variables taking values 0
and 1 with probability 1/2. The measure in such context has been studied for
a long time and is called the infinitely convolved Bernoulli measure (ICBM).

In contrast to the case where 0 < ¢ < 1/2, which gives a Cantor type
measure, the case of 1/2 < ¢ < 1 is rather complicated due to the over-
lapping of the two sets S1[0,1] and S2[0,1], where [0,1] is the support of
p. There is still no satisfactory condition to determine whether a measure
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# in this class is singular or absolutely continuous. Recently Solomyak [So]
proved the important result that for almost all 1/2 < ¢ < 1, the correspond-
ing p is absolutely continuous. However, his theorem does not tell us which p
gives an absolutely continuous or a singular measure. So far the only known
condition for such i to be singular is due to Erdés ([E], [S]): ¢~ is a P.V.
number. (Recall that 8 > 1 is a Pisot—Vijayaraghavan (P.V.) number if it
is an algebraic integer and all its conjugates have moduli less than 1. The
most celebrated P.V. number is the golden ratio 8 = (v/5 + 1)/2.)

Recently the authors introduced a weak separation condition on the gen-
erating similitudes {S;}72; [LN1]. This new condition covers the previous
open set condition and is satisfied by the maps in (1.3) when ¢! is a P.V.
number. Under this condition the multifractal formalism was proved to hold.
This makes the computation of 7(¢) an important and natural problem.
However, the explicit calculation of the L4-spectrum in general is still an
unsettled question. It is hence desirable to obtain a complete understanding
of such spectrum for the ICBM p defined by the P.V. numbers.

Historically the interest has been in the entropy dimension (i.e., ¢ = 1,
see Section 4) of the measure (Garsia [G]). This dimension has been re-
examined more recently by Alexander and Yorke [AY], Alexander and Zagier
[AZ], Lalley [La], Ledrappier and Porzio [LP], Przytycki and Urbariski [PU].
On the other hand, the L?-dimension has been calculated in [L1], [L.2], and
the method used there has been extended to study the L9-dimension when
q is a positive integer [LN2]. Also the L°°-dimension (see Section 4) of the
measure studied in this paper has been obtained by Hu [Hu].

In this paper our goal is to obtain an exact formula for the L?-spectrum,
q > 0, for the ICBM when ¢ = (v/5 — 1)/2. The basic idea is to use a
device introduced by Strichartz et al. [STZ] to decompose the overlapping

of §1[0,1] and 53[0, 1] into nonoverlapping sets by compositions of S; and
Sg. Let

Tox = S151z = %z,
Tz = 81828 = 525,512 = o°z + 02,
(1.4) Tox = SoSox = 0’z + .

Then T;[0,1] = [0, ¢%], T1[0,1] = [¢?, 0], T2[0,1] = [0, 1] are three intervals
with disjoint interiors. In terms of these maps, the self-similar identity (1.2)

(more precisely (2.1)) yields three sets of second-order identities: For A C
[0, 1],

. w(ToT: A) u(ToA)
w(TT;A) w(T2A)
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where
100 0 7 O 010
MO:%;-%O,Ml:O%O,Mz—O%lé—
0 3 O 0 3 0 00 %
For any integer k > 0, let J = (j1,..-,Jx), Ji = 0 or 2, and let
1 1
(1.6) CJZZ[O 1 0] My i )

where My = M, ... Mj;,. Define

Fg,a) = i Q—(2k+3)a( Z 63),
k=0

(1.7) |J|=k

D= {(q’a) 1q >0, F(q’a) < OO},

i.e., D is the domain of convergence of the series. Our main theorem con-
cerning the L%-spectrum of p is

TuEOREM A. If ¢ > 0, then 7(q) is equal to the unique o satisfying
F(q,a) = 1. Moreover, the domain of convergence D 1is open and T is diffe-
rentiable at q.

The differentiability of 7(¢) implies that its Legendre transformation 7*
is strictly concave. Hence we can apply Theorem 6.6 of [LN1] to obtain the
following >

COROLLARY. For'the above p, the multifractal formalism holds for q > 0,
i.e., T*(n) is equal to the Hausdorff dimension of K(n) where n=17'(q).

The proof of Theorem A depends on an accurate estimation of
1
§ u(Ba(T12))" da,
0
where By (x) is the ball of radius h centered at . This term is gquivalent to
h= Y. u(Q;(h))? in the definition of 7(g) (see [St], [L1]). By using (1?) and
(1.5) we establish a functional equation for &(®) () in terms of the c; s (see
(3.8)), which is of the form of a renewal equation [Fe]. We then apply thg
renewal theorem to show that if (g, @) = 1, then 0 < limp,_,o+ & (h) < oo.
This is used to show that 7(¢) = . A similar method had been used in [Ll]
and [LW] to calculate the L2-dimension of some self-similar measures.

By changing bases we can simplify (1.6) by replacing My, M> with

1 0
m=[g q] m=1 9],

qs(a)(h) = Fira

e e A A A A R @#rwﬁm_.ﬂ
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and show that

1 1

where Py = Pj, ... P;,, jix = 0 or 2 (Proposition 2.3). For the case where ¢
is a nonnegative integer, we can prove the following result, which simplifies
the calculation of 7(g) for such g.

THEOREM B. For'q a nonnegative integer, the equation F(q,a) =1 can
be reduced to a polynomial equation P(z) =0 (with z = 299%). In this case,
7(q) = In(2/27)/In o, where z is the largest positive root of P.

Theorem B corresponds to Theorem 4.1 where P(z) = 0 is expressed
as a rational function equation instead. We remark that for nonnegative
integers g, the values for 7(q) obtained by solving the polynomial equation
in Theorem B coincide with those obtained in [L1], [L2] and [LN2] by using
different methods. Also we apply Theorem A and conclude that

THEOREM C. The Hausdorff dimension of u is the same as its entropy
dimension and equals

(1) = ! Z Z cylney (= 0.9957).

n o =5 77
THEOREM D.
In2 1
dim, () = |3~ | = 5 (= 0.9404)

The above approximate value of the entropy dimension agrees with those
computed in [AY], [AZ] and [La], and the L°°-dimension of y coincides with
the result obtained in [Hu].

We organize this paper as follows. In Section 2, we give a detailed study
of the second-order identities for u associated with Ty, Ty and T, and obtain
initial estimations for the c¢;. We also investigate the domain of convergence
D as defined in (1.7) and show that it is open. This is essential in the proof
of Theorem A. In Section 3, we derive the basic functional equation (3.8)
and prove Theorem A by using the renewal theorem. The proof depends on
a technical lemma on estimating the error term (Lemma 3.3). For clarity
we postpone its proof to Section 5. In Section 4, we prove Theorem B (i.e.,
Theorem 4.1). We also derive formulas for the L?-dimension for q a positive
integer, the Hausdorff and entropy dimensions, and the L°*°-dimension of u.

Acknowledgements. The authors would like to thank Dr. Qiyu Sun
for providing the proof of Proposition 2.5(i), which is crucial in justifying
that the formula defining 7(q) is valid for all ¢ > 0. The first author likes
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Fig. 1. Graph showing the approximate local density for the measure associated with the
golden ratio g = (v/5 — 1)/2 over the support of the measure [0, 1]

to thank Professor R. Strichartz for arranging a visit to Cornell University
where part of this research was carried out.

2. Second-order identities. For ¢ = (v/5 — 1)/2, we have ¢* + ¢ = 1
and the self-similar identity (1.2) of the ICBM u becomes

(2.1) W(E) = 3u(e™B) + 3u(e” E — o).
The measure is supported by [0,1] and is symmetric about 1/2. For any
integer k > 0, we use J = (j1,...,Jk), ji = 0 or 2, to denote a multi-index

and let |J| denote the length of J. (By convention, J=0if|J] =0.) We
also write Ty =T, 0... 0Ty,

We remark that by 1terat1ng the T;’s, 1t is easy to see that the subintervals
in the collection {T1T;T1[0,1] : |J| > 0, j; = 0 or 2} are disjoint and fill up
the interval T3 [0, 1]. It will become clear in Section 3 that this explains why
only those J with 7; = 0 or 2 appear in formulas (1.6) and (1.7).

The following proposition is most useful in deriving the formula of the

L9-gpectrum of p.
PROPOSITION 2.1. Let c; be*defined as in (1.6).
(i) If AC[0,1], then w(T1TyT1A) = cyu(T1A);
(ii) if A C [-1,2], then csu(T1A) < w(MTyThA) < 2cyp(T1A).
Proof. (i) The assertion follows by repeated applications of (1.5). Let
J = (j1,J’). Then
W(ToTyTLA)
,LL(T]_TJ/TlA) =...
W(ToTH Ty A)

w(MT;TA) =0 1 0]M;

e
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pw(ToT1A)
=[0 1 0]M; | pu(TiTh )
w1211 A)

M(TOA)
—[0 1 0]MsM,

=[0 1 O]MJ %] (T A) = cyju(T1A).
i

(ii) Let B = AN [-1,0]. By applying (2.1) twice, we have

1
#(ToTy B) 1 0

(Note that this identity is different from the expression in (1.5), which only
holds for subsets in [0,1].) Another application of (2.1) yields

w(TiB) = zu(eB + 1) + ju(eB + ¢*) and w(TyB+0) = {1(eB +1)

so that u(T1B + ¢) < u(T1B). Now we can repeat the same iteration as in
(i) and obtain

[ (ToT1B)
,u,(TlTJTlB)=[O 1 O]MJ ,U,(TlTlB)

| w(T2T1 B)

_% 0 T\B
1 1| LK(TLB)

L4 4

m 1
4

<[0 1 0]M;|$|pu(TiB)<2cu(TiB).

1

L 2

The lower bound estimate can be more easily obtained by using

1
w(ToT1 B) 4
w(TiTiB) | 2 | 1 | w(TuB).
'LL(T2T1.B) %

The same argument holds for AN [1,2]. Now the result follows by summing
the three components of A in [—1,2] and using (i). =
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COROLLARY 2.2. If A C [0,1] and J = (j1,...,Jk) with ji = 0 or 2,
then'
w(TsT;A) < 2¢5, j=0or2
Proof. By using (1.5) and a similar derivation as in the proof of Propo-
sition 2.1(i) we have

H(ToA) 1
WTiTToA) = [0 1 0] M;M, | w(T14) | <[0 1 0]My 31 < 2.
wT2A)] i

The same argument holds for u(TyTyT2A). =

We will now sunphfy the ¢;'s by replacmg the 3 x 3 matrices Mp and

M, with the 2 x 2 matrices |
1 1 1 0
PO:[O 1] and P2=[1 1].
PROPOSITION 2.3. Let k > 0 and J = (jq,.- ’j’,“) with j; = 0 or 2.

Then

1
C']Zm[l 1]PJ[1].

Proof. We will prove the proposition when the last index iy of J is 0,

ie., M;, = My and Pj, = Po. By using the matrices

0 2 0 1 -1 2 0
S=11 10|, Sst==-|1 0 0},
2 01 2 -4 2
we define 1
110 10}
Qo:=S"'MeS==0 1 0f, Q:=8"MS=7|1 120
0 0 O 0 0 0
Hence
1 1 1
-1
=110 1 oMy 1| =400 1 01(SQs--QaST |1
4 1 1
1 P P 0 !
¥y e s e ¥ -1 -
———4k+1[0 1 0]5[ 1 o Jk O]S 1 (use Qj, = Qo)
_ [1 1]P ! (by a direct calculation).
9 . 4k+1 J11 . ;
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In the case where the last index ix of J is 2, i.e., M, = M> and P;, = P,
we use

1 0 2 (2 4 2
T:Oll,T'1:§001
020 0 2 -1

instead of S and S~! and the proof follows as above. m
ProposITION 2.4. Let J = (j1,...,Jk), ji =0 or 2. Then

(1)2 Z cg=1, and

k=0 |J|=k
1 1

(ii) max{c; : |J| = k} < (ao)F S 5kpz

for all k > 0. Moreover, max{cy : |J| = k} has the same order as 1/(40)*
(~ (0.4045)*) as k — co.
Proof. (i) We note that by Proposition 2.3,
k
1
Y o= Z P 4k+1 [1 1]P; [ J {1 1] ( (P0+P2)) H :
|J]=k

A direct calculation yields

() =4[ 3

S S a=tn ufi-dmem) [} =1

k=0|J|=k

so that

We remark that the above result can also be derived from Proposition
2.1(i) with A = [0, 1], by using the fact that the subintervals TlTJT]_ [0,1]
are disjoint and fill up 710, 1]. :

(ii) We observe that the products Py Py, PyP,, Ps Py, Py Ps are

o il [l L] B

respectively. It follows by induction that for even k, the alternating product
(PoP,)*/? (resp. (PyPy)*/?) maximizes simultaneously [1 1]P; [i] and

the first (resp. second) column sum of P; over all J with |J| = k. For odd &,
this holds for the alternating products (PoPy)*~1/2P, and (PyP,)*~1)/2 P,

respectively. Hence the maximum of [1 1]P; [ ] for |J| = k is attained
by multiplying Py and P» alternately. Both Py P, and PPy have maximum
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eigenvalue (v/5+3)/2, which equals o0~2. This implies that max{cy : |J| = k}
is of the same order as 1/(40)* as k — oo.

To prove the stated upper bound estimate for ¢y we diagonalize PoPs

(and similarly P,Pp) by using the matrix S = [: _19] whose columns are

eigenvectors of Py P, associated with the eigenvalues 0~ 2 and o? respectively.
If k = 21, 1 > 0, then

o s [t s[5 2

240+ i) 0% < 20~ 2.
= <

Similarly, if & = 2l + 1, 1 > 0, then

(2+o-0""") o~ (@D < 9= |

[1 1](PP)'Po [ﬂ = 1+ o2

In both cases we see that ¢y < 1/(4(40)%). =

We now examine the domain of convergence of D for the series F'(q, @)
in (1.7).

PROPOSITION 2.5. Let F(g,a) and D be given by (1.7). Then

(i) D is an open convex set; ' .
(ii) if (g,&) € 8D, the boundary of D, then & = &g is an increasing
concave function of gq;
(iii) there ezists a unique o such that (g,) € D and F(q,2) = 1.
Moreover, o = a(q) is a differentiable, strictly increasing concave function.

Proof. We first prove the following claim: Let {ax} be a nonnegative
sequence of real numbers such that amyk < amay for all m,k. Suppose
limg—oo ax < 1. Then there exist some 0 <7 < 1 and a constant C > 0 such
that ay < Cr* for all k.

To prove the claim we observe that by the assumption, there exists ko
such that ag, < 1. Hence for k > ko,

k/ko k
2 . =
an < Gy Gh—ko < Qg * Ah—2ko < - S C - agy cr,

where r = a,lcék" <1
Now assume ¢ > 0 and let

sk = Y <[1 1]PJ[”)Q.

|J|=k
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We first observe that spy4+x < Smsk. In fact,

Smsk= Y ([1 1]PJ“Dq. > ([1> 1]PJ'[”)q

|7j=m 7' |=k .
Z,%m|£k({l 1]12,[”[1 1]PJ/HD
> |§m|£k ([1 1] Py Py [”) = Sm+k-

Write s, = ar R, where R = limy_,c0 &/sk. Then sy, < s; 5k implies that
mik < amax. By the claim just proved and the definition of {ax}, we have
limy_, 00 ax > 1. Consequently for (q,&) € 0D, F(q,a) tends to infinity as
« tends to & and

Fg,0) = i Q—(2k+3)&( ) C?I) =073 ia’k = oo0.
k=0 k=0

|J )=k

Hence D is open and the solution (g, @) for F(q,a) = 1 satisfies (¢,a) € D.
Hélder’s inequality applied to F'(g,«) implies that D is convex and the
Weierstrass M-test shows that for (go, ao) € D, F(q, a) converges uniformly
on the region {(q, ) : ¢ > go, @ < ap}. Hence &y is an increasing concave
function of ¢. Lastly, it is obvious that a(q), defined by F(q,a(q)) = 1,
is strictly increasing. The differentiability of a(q) follows by applying the
implicit function theorem, and the concavity of a(g) can be verified by simple
applications of Holder’s inequality. m

We will show that a(q) = 7(¢). See Figure 2 for the graphs of &, and
7(a)-

3. Formula for the L?-spectrum. For ¢ > 0 the L%-spectrum 7(q) in
(1.1) can be expressed as ‘

(3.1) 7(g) = inf {a : lim = Z,u(Qi(h))q > O}

h—0+ h®

- 1
: = 1
= inf {oz : hli)rng ita (S),U(Bh(x))q dr > 0}.

In our approach, we find it more convenient to use h=172 S(l) w(Bp(x))? dz
instead of A= 3", u(Qi(h))?. (Note that these two expressions dominate
each other by positive constants [L1], [St].) In the proof it is necessary to
convert the above expression into an integral in terms of the map T1. Thus
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we let
1

(32 p(h) = |u(Bu(Tim)) e and () = oo p(h).
0

PROPOSITION 3.1. If 0 < limp,_,o+ $(%)(h) < 0o, then T(q) = a.

Proof. To find 7(q) it suffices to look for a so that
1

1
(3.3) 0< hlug+ yRET { u(Br(z))? dz < oo.
0

We can further replace u(Bp(z)) in the integrand by u(Br(T1x)) as follows:
Observe that by a change of variables,

p(h) = | u(Br(e®z + 0*))" de = 072 | u(Bn(z))? da.
0 0?

By (2.1) and another change of variables, we have

| na@)rdo = | (GuBuale ') + ulBuale =) de
> | wBele” ) do = o § W(Bhy o)) d.

[

Similarly, we use the part u(Bp /Q(g‘lm — 0)) in the above expression to

obtain
2

[ w(Ba(@)do 2 o | 1(Bhyo())? da.
o* 0
If we write
Jiu(Br(@))rde = ((§ + | +1 ) u(Bu(e)) dz,

then the three terms are bounded above and below by some constant mul-
tiples of ((h). This implies (3.3) and hence the proposition follows. w

Next we will derive a functional equation for sﬁ(a)(h), i.e., the equation
n (3.8). Note that

9  em=( § + § + | ) (B (T12))1 da
To[0,1] T41[0,1] T2[0,1]
1 1
= 0 | W(Bw(T1Toz))" dz + ¢° { w(Bu(T1Ti2))? da
0 0
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1
0\ u(Bw(T1Ta))? da.
0

We keep the middle term TyT; and repeat the above process on the first
and third terms. There are six terms 717} Ty where j =0,2 and k =0, 1, 2.
We again keep the two terms T17;T; and iterate the other four terms. By
repeating this process for N + 1 steps, we have

N 1
(3.5) o) = > T u(Ba(TiTyTi2)) dz + €' (h),

k=0 |J|=k 0

where
1

el(h) = 92(N+1) z S,u,(Bh(TlTJCE))q dz.
|J|=N+10
If By gp2x+s(z) C [0, 1], then by Proposition 2.1(i),
[,L(Bh(TlTJle)) = ;L((TlTJTl(Bh/sz+s (:E))) = CJ/.L(Bh/Q2k+3 (Tlm))
for |J| = k. This implies that '

1 1
{ w(BL(TyTiz))? dz = & | w(Bh govss (Tyz))? da + €3 (h) — 85 (h)
0 0
where
. h/g2k+6 1
e3(h) = ( S + S )H(Bh(TlTJTla?))q dz,
0 1—h/g2k+6
h/g2k+6 1
g?](h) = c?,( S + S )H(Bh/22k+3 (lev))q dm
1] 1—h/g2k+6

Let N be the largest integer such that 0 < h < 10N+, We can write (3.5)
as

: — al 2k+3 i L ‘ el e2
39 om=3c ( > to( -z ) ) SR+ )
where ' . | :
N
7 =Y (Y (e h)—eJ(h)))
o k=0, =k
It follows that o
(3.8) v 45(0‘) (h) = Zg—k(2k+3 Z cqgs(a)( 2k+3) +E(h)

|J|=Fk
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where E(h) = h™1~%(el(h) + €(h)). Let F(g,0) and D be defined as in
(1.7). Our main theorem is
THEOREM 3.2. Let ¢ > 0 and suppose (g, ) satisfies .
(3.9) ZQ'(2k+3)a( Z c?,) =1.
k=0 |J|=k

Then (g,c) € D, 0 < Timp_,o+ ¥ (h) < co and hence 7(q) = a. Moreover,
T is differentiable on (0, 00). : ‘

The proof of this theorem depends on the renewal equation ([Fe], [L1],
[LW]). The major technical difficulty is to prove the following lemma.

LEmmMA 3.3. Suppose (q,a) € D. Then there exists ¢ > 0 such that
E(h) = o(h®) as h — 0%.

We will postpone its proof to Section 5.

Proof of Theorem 38.2. Let N be the largest 1nteger such that h <
102N+6, Then for k> N +1,

: h 2 i4al 7 0 1o
@(a)(92k+3) < (E) SM(Bh/sz+3(T1m))qd$ < (g ) .

By Proposition 2.5, D is open and (g, ) € D. Thus we can choose € > 0 so

that
Z Q——(2Ic+3)a( Z CJ) (hE)

k=N-+1 |J|=k

This implies that

Z RS Cq@m)( 2k+3) =o(h) ash— 0%

k=N+1 |J|=k

For 0 <h<1,let z=—Inh >0, and f(z) = &(®) (e~*). Then by (3.8),

N
g) =Y o 2 N "l f(z+ (2k +3)Ing) + E(e™).

[J|=Fk

Let v be the measure with weight o~ (2k+3)2 21|k ¢t at —(2k+3)Inp,
k=0,1,2,... Now, (3.9) implies that v is a probability measure w1th sup-
port contamed in [0, 00). Hence for z > 0, '
(310)  f(z)= | flz—y)dv(y) + B(e™) = | f(z —y) dv(y) + S(2),

0 0
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where S(z) = E(e™®) + {* f(z — y) dv(y). Note that E(e™®) = o(e™5%) as
 — oo (by Lemma 3.3), and

o0

[ £z — 1) dv(y) = Ewo(h)

T

is also of order o(e™¢*) as x — oo. Since v is a probablhty measure and
(g, ) € D, the moment of v satisfies

oo

S ydv(y)=—Ing- Z(% +3)g Pk H3)e Z ¢ < 0.

0 k=0 |J|=k

The renewal theorem applied to (3.10) implies that there is a nonzero
bounded multiplicatively periodic function p(h) of period o such that
limp,_,o+ (8(*)(R) — p(h)) = 0 ([Fe], [LW]). Thus, 0 < limp,_,o+ $(*)(h) < 0o
and Proposition 3.1 implies that 7(¢) = a. The differentiability of 7 follows
from Proposition 2.5(iii). m ' :

4. Calculation of the Li-spectrum. In this section we will study 7(q)

as a solution of
Zg—(2k+3)a( Z > L

[J|=k

By Proposition 2.3, F'(g,) = 1 is equivalent to

(1) éi%ﬁlgk<[1 1]PJ“DQ=1.

We are going to derive a simple matrix equation for F'(q,a) = 1 when
g > 0 is an integer. For ¢ € N, we define

OGN (@
o (%) (7Y ()
AP = S
0 0 @ @
| 0 0 0 1 ]
i 0 0 0 7
@ @ o 0
A((Jl) _ ; s :
(B (TH .. (@) o
L@ O @ - O
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and let Ag = AE{’) + AE,”. For example,

1 2 1 100
A,=10 1 1|+]1 1 0
0 01 1 2 1
and
1 3 3 1 1 0 00
01 2 1 1100
=10 0 1 1|T]|1 210
0 0 01 1 3 3 1
THEOREM 4.1. For q € N, the equation F(q,a) =1 can be reduced to
(4.2) 3@ @) - Qlu-2A97 ] =1,

with z = 299%. Furthermore, 7(q) = In(z/29)/In p where z is the largest real
root of equation (4.2).

Proof. We first show that (4:2) implies that F(q,a) = 1. Let ¢ =
[1 0],e1=[0 1] and set

11\¢
_ |Ti=k
Then by the binomial theorem,

=3 <(eo+e1)PJ[i]>q= > <60PJH +61PJ“Dq

[J|=k [J=k

- EEO 6L ) - £

1=k .

+ Y (wmmi[}])" (pp[}])

|T|=Fk

|J|=k i=0
where .
1" ?
’Yi(.k) = Z <€0PJ 1 ) (€1PJ [ ]) .
|T|=k L=
Since ‘
(1] 17\
’Yz'(k+1) = Z (GOPOPJ 1 ) (eIPOPJ [ } )

by substituting
eoPo=eo+e1, ePo=e, ePa=e, ePa=e+er
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into the above expression, we have

- 225 L)) en L)

| J|=k =0
I NGICAHNNCAH)E
|J|=k =0
The matrix form of these identities for 0 < < qis
’ k
WYl
(k+1) (k)
v Y
1 — Aq 1
ol L

Thus we see that

() - Ol
|

and

(4.3) F(g,0) = éé’"w {(9 G)

Now let 2 = 29® and write the series F(q,a) in (4.
1

war=[() () - @o-rnr |

If z is the largest real solution of (4.2), then by Theorem 3.2, T(q) =a=
In(z/2%)/Inp. If 2’ is also a solution of (4.2) and if 2’ = 299, then the
uniqueness of the solution of F'(g, @) = 1 forces (g, o) to lie above D.w

REMARK. We can use (4.3) to find the point (g,a,4) on 8D. Let A be
the maximum eigenvalue of A, and let v be the corresponding eigenvector
with ||v|| = 1. Then each coordinate of v is less than 1 and the matrix A,
is nonnegative and irreducible. By the Perron—Frobenius theorem [Se|, each
coordinate of v is also strictly positive. If we let v be the smallest coordinate

w
o
wn
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of v, then
: L 1 1
Ny = A’;v < A’; < A’;(—v> = \k (—v),
v v
1
and hence
- 1 1
AN K1 "1, ) 1
w0 (-ggm) =3 (m) || = (-mm) ()
k=0 1
If &, is the unique number such that A\/(499%%4) = 1, then (4.4) implies that
F(g,a4) = 0.

We also remark that it is more convenient to write the rational function
equation (4.2) into a polynomial equation P(z) = 0 as in the following
table, which shows some numerical values obtained. See Figure 2 for graphs
showing &, and 7(q).

g F(g,a)=1 7(q) L?-dimension
2 2°—22-2242=0 0.9923994  0.9923994
3 22-9222-424+2=0 1.9794268 0.9897134
4 22-24 783 -92,4+2=0 2.9623955  0.9874652
5 25 -2z —1128—-822-202+10=0 3.9421547 0.9855387
14 100.
(04 ol
.12 50.
10 &q Ua) 20.
» 8
10.
6
5
4
2 2
0 2 4 6 8 10 12 14 11 2 5 10. 20. 50. 100.
q q

(a) (b)

Fig. 2. (a) Graphs of r(q) and &, plotted by using integer values of g for 0 < g < 15..It
can be seen that 7(q) < &,. (b) The same graphs are plotted using the log-log scale for
larger values of g.

For any bounded regular Borel measure v on R? with compact support,
we have defined dim (v) = 7(q)/(¢— 1) for 1 <g < c0. For ¢ =1, 7(q) =0
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and dim, (v) is undefined in this way. Thus we need to adjust the definition
for ¢ = 1 and co. We define

. . Insupv(Q;(h)
dim,  (v) = Jim, =220,

where Q;(h) is the family of h-mesh cubes on R in (1.1). We replace dim, (v)

by the entropy dimension of v. For convenience we assume that v is a prob-

ability measure. For a finite Borel partition P of supp(v), we let |P| be the

maximum of the diameters of elements of P. For § > 0, let o
h(v,6) = inf{— Z v(A)Inv(A) : P a finite Borel partition

Aaer of supp(v), [P| < 5}.

The entropy dimension (or Rényi dimension [Ré]) of v is defined as
h(v, 6)

dime(v) = lim =35

(If the limit does not exist, we replace it by lim or lim.) We also recall that
the Hausdorff dimension of v is defined as

dimy (v) = inf{dimg(E) : v(R? \ E) = 0}.
The following result is proved in [N].

THEOREM 4.2. Let v be a Borel probability measure on R with compact
support. If the Li-spectrum 7(q) of v is differentiable at the point q¢ = 1,
then dimg(v) = dime(v) = 7/(1).

We now return to the ICBM p defined by o = (v5 —1)/2.

THEOREM 4.3.

. : 1 &
dlmH(,u,) = dlme(ﬂf) = mz Z cylney (% 09957)
k=0 |J|=k

Proof. Observe that F(q, o) is differentiable on a neighborhood of (1, 0).
By Theorem 3.2 and a direct calculation, it can be shown that
Py 2opaj=k C7Incy

)= Ing 3737 o(2k +3) X k€

We can use

> er=gi 1(jeer) 1]

|JI=k
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(Proposition 2.4(i)) and the derivative of 3 ;2 o~ FT3(37, ;_, c;) at @
= 0 to conclude that Y oo (2k + 3)(2_1s1=k €7) = 9. The result now follows
from Theorem 4.2. w

THEOREM 4.4.
In2

1
— = (= 0.9404).
Inp ,2( )

dim () =

Proof. In Proposition 2.4(ii), we have shown that the maximum value
of the c;’s has the same order as 1/(49)* as k — oo. Hence there exists a
positive constant C' so that for (¢,a) € D,

Q-—Zk:oz
C < F(g,a) forall k>0.

(4)*a
For ¢ > 0, F(q,7(q)) = 1 (Theorem 3.2) and hence C(4g) %0~27(@ < 1.
This implies that

(4.5) lim 7(q)/q < [In2/Ing| - 1/2.

To prove the reverse inequality, we first note that for each fixed k, the
sum Q—(2k+3)r(q)(Z|J|=k c?) tends to 0 as ¢ — oco. In fact, if we let a =
limg_,00 7(q)/q and write v v

1/q\q
Q—(2k+3?r(4)( 3 cfz]) = (g—(2+3/k)kr(Q)/q( ¥ 63) ) :
|J|=k 7=k

we see that as ¢ — oo, (4.5) and Proposition 2.4(ii) imply that

1 1
(2+3/k)kT(9)/q 2 : < o~ (2+3/k)ka < < 1.
qh—%log (IJI kc ) ¢ : A(do)k ) ~ 4%

Now fix an arbitrary kg > 1. Then for all ¢ > 0,
ko—1

e —(2k+3)7(q) (2k+3)7(
1= )o@ 3 ) + > o "(Z ),

=k = k=ko | )=k

and consequently there exists go = go(ko) such that for all ¢ > go,

e Ze)<E (Cage) (52)

k=Fo |TI=k I71=k
—(2+3/k)7(q) o
o
< sup (—_) ( CJ).
Kz \ (40)777 k;;o !JZI::k

(The second inequality follows from the upper bound estimate of ¢y in
Proposition 2.4(ii).) The last sum is less than 1 (Proposition 2.4(i)), and

Bernoulli convolution 245

hence there exists k > kg such that
1 p~(@+3/k)r(a)
25 (g
By letting ¢ — oo and then ky — oo, we get

In(40)
—2lnp’

for all ¢ > qq.

lim 7(q)/q >
g—o0

This is the reverse inequality of (4.5). Finally, the theorem follows by ob-
serving that dim__ () = lim,—, 7(q)/q (see [LN1]). m

We remark that the same result is also obtained in [Hu] by using a
completely different algebraic method. _

In the multifractal formalism (see, e.g., [CM]), the spectrum 7(q) for
g < 0 is also very interesting and has significant meaning. We have not
considered the computation of 7(g) in that region yet. Also we do not know
if there is an analogous calculation for P.V. numbers other than (v/5+41)/2.

5. Proof of Lemma 3.3. We first establish a few basic estimations. Let
v=|In2/lng| (=~ 1.4404).

PROPOSITION 5.1. Let a = g or o*>. Then there exist positive constants
C1,Cy such that :

C1h"|Inh| < u(Bp(a)) < Coh™|Inh|  for 0 < h < g%

Proof. We consider the case a = p only. The other case a = p? is the
same since (B (0)) = u(Br(e?)) (by the symmetry of u about 1/2). Let 0 <
h < 0*. Then there exists a unique integer m such that p™12 < h < p™+1.
The self-similar identity (2.1) implies that p(Bj k(1)) = %,U/(Bh/gk+1(1)),
1<k <m, and

W(BA()) = 5a(Baso() + 2 4(Base(e?)

= 2 #(Brso()) + 51(Buso(e)) = ...

=3 oeti(Basr (1) + i (Basom (0).
k=1

Since 1/4 < p(Bp/m (1)) < u(Bh/om(0)) < 1, we have

1 m+1 m+1
- B < .
1 o < u(Br(@) < T

The assertion now follows by observing that (m + 1)/2™ is bounded above
and below by constant multiples of h”|lnh|. m
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LeEMMA 5.2. Let J = (j1,...,Jk) with j; =0 or 2. Then for0 <z < 1,
CJ;J,(Bh/Q%-H’, (Tlx)) < u(Br(TiTyTix)) < 2CJ,,1/(Bh/Q2k+3 (Thz)).

If further 0 < x < h/o***t8 < 1/2, then there exist constants C1,Cy > 0
such that :

w(Br(TyTyTiz)) < Ci4kcs|inh|hY < Co2%Inh|hY.

Proof. The first part follows from Proposition 2.1(ii). For the second
part, we note that for 0 < z < h/e**5, By, ,an4s (Tix) C Bappor+s(0®).
Hence using the inequality in the first part, followed by Proposition 5.1,

u(Br(TyTyTiz)) < 2c5p(Bapg2v+3(0°))
< Cscy|In(2h/**2)|(2h/**+2)7

k
S C4CJ (Q%) lln h|h’7 = C44kcJ|ln h|h7

The last inequality in the lemma now follows from Proposition 2.4(ii). =

We now apply Lemma 5.2 to obtain the desired estimation for the error
term e2(h). (See (3.7) for the definition of e2(h).)

LEMMA 5.3. Suppose (g,a) € D, ¢ > 0. For 0 < h < 1, let N be the
largest integer satisfying h < 30*N*5. Then there exists € > 0 such that
e?(h) = o(h1+2*¢) as h — 0Ot.

Proof. We first estimate the part of e?(h) determined by the €% (h), i.e.,

N h/@**+e
(5.1) SN | BT Tiz)) da.
k=0 [J=k O

(The integral over [1 — h/g***6 1] is the same by the symmetry property
of p.)
CrAamM. If (q,a) € D, then
(5.2) N
To see this we note that for J = (0,...,0) with |J| = k, we have

c_l[ll]lk'l_k-l-l
I = 9 4kt 0 1 1|~ 2. 4k+1"

Hence for a > ~q,

S of E+1 N\ o3 & e
Flg,a) 2 kZQ e (2.4k+1) T T8 ;Q%(W '(k+1)7 = oo,
-~ k=0 =0 - b

a<vg=|n2/lnplg, ie, 2% >1.

proving the claim.
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To estimate (5.1) we let (g,a) € D with ¢ > 0. Use the fact that D is
open to choose € > 0 small enough so that (¢,a + ¢) € D. It then follows
from the claim above that we also have a + ¢ < yq. Hence (5.1) is bounded
above by

N
Cy Z ok +3 Z (4% cs|inA|n7)? - h/o?**5  (by Lemma 5.2)
k=0 [J]=F

N
< C2|lnh|qh1+fyq Z(4q02(a+5))Icg—(2k+3)(a+e) Z 63
k=0 |J|=k

< Cy|ln B|TRM7292N (a+6—w)(z = (FH¥ete) N7 (o )
k=0 |Jl=k

— 0(h1+a+€/2).

The second inequality is because 4 = =27 and p?(®+e=79) > 1.) It remains
q y
to estimate the part determined by €%(h), i.e.,

N ) g?HtE
Z 92k+3 Z C?] S ;J,(Bh/gzrc+3 (Tla;))q dx.
k=0 =k 0

But this sum is dominated by the one in (5.1) (by the first inequality in
Proposition 2.1(ii)), and hence it has the desired convergence rate.

The lemma follows by combining the above estimations. m

In order to estimate e!(h), we will first establish the following proposi-
tion.

PROPOSITION 5.4. Let B C [—p,0] and J = (j1,...,jk) with j; =0 or 2.
Then

(i) ,u,(TlTJTzB) S Cy.
(i) If J=(J,2,0,...,0), |J'| =1, then

k—1+2

w(MT;ToB) < =

cjr.
(iii) If J = (0,...,0), then

p(hT;ToB) < WS

A dual statement holds for B C [1,1 + g| by interchanging the roles of T
and Ts.
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Proof. (i) By applying (2.1) as in the proof of Proposition 2.1 we have

WToT2B) i |
w(iTeB) | = | 1 | w(T2B)
uw(ToToB) 1

and hence

(5.3) w(TiTyT2B) = cju(12B) < cy.

(ii) For any F C [-1,0], (2.1) yields

(5.4) ME+0) = (e ' E+1) + 3u(e ' E + 0°)
= i@ PE+ o)+ jue PE+1)

and

(5.5) WE+1) = 3u(e ' E+1) < w(E + o).

If E = T¢H(B)(C [-1,0]), then by applying (5.4) repeatedly and by using
(6.5), we obtain

WTLE) = p(0®E + o) = ju(E + o) + {u(E +1) =
1 k—Il+1 1
— S p—26-1)
= gomk(B o) + Z; zhle E+1)
1 k—1+1
< '475T+1'U‘(B+9)+ —4;;7;_‘1"—#(34‘ 1)
k—1+2
< o M

It follows from (5.3) that

(B+ o).

k—142

qk=ig1 CJ'

,LI,(T]_TJT()B) =cpu(ToE) <

(iii) Let E = T¢+(B). Then the above calculation (replacing k — I by
k + 1) yields ;
kE+3

M(E+Q)+1M(E+1) s

w(TE) = 8 = 9. gk+2’

LEMMA 5.5. Under the same hypotheses as in Lemma, 5.3, there exists
€ > 0 such that e'(h) = o(h1*2*€) as h — 0F.
Proof. Recall from (3.5) that

1
et(h) = W) 3" | W(Bu(TiTy)) da,
|J|=N+10
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where N is the largest integer such that 0 < h < (1/2)0?N+6. Consider
T\ TyTp with |J| = N. Since By pev+s(z) C [—0,1+ ¢ for 0 <z < 1, it
follows from Corollary 2.2 and Proposition 5.4 (applied:to [0,1], (—p,0),
(1,1 + p) respectively) that

Z M(Bh(TlTJTOQ)))q < Z 2CJ q+ Z Z (]\J;N k;c:_lzc,]>

|J=N |J|=N k=0 |J|=k
2.
|J|=N
N
N-k+2 \?
5012 Z ( AN —k+1 CJ)
k=0 |J|=k

The same estimate holds for >/ _ n u(Br(T1TsTox))?.

Now we choose £ > 0 so that (g, +¢) € D. Then 299(+€) > 1 (see
(5.2)) and ’

N-k+2 \?
ooy s (Noke)

k=0 |J|=k

<Oy S eI (Y 2 Y o

k=0 [J|=Fk

h « - o
< Cogy, (420" )V (I +2>"Z@ Erraete Y | o
|J|=Fk

4Nq

= Csh'tote/2 o

Lemma 3.3 follows from the estimations in Lemmas 5.3 and 5.5.
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