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Abstract Using variational analysis techniques, we study convex-composite
optimization problems. In connection with such a problem, we introduce several new
notions as variances of the classical KKT conditions. These notions are shown to be
closely related to the notions of sharp or weak sharp solutions. As applications, we
extend some results on metric regularity of inequalities from the convex case to the
convex-composite case.
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1 Introduction

Let X be a Banach space and φ : X → R ∪ {+∞} be a proper lower semicontinuous
function. Recall that φ is said to have a sharp minimum at x̄ ∈ X if there exist two
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positive numbers η and δ such that

η‖x − x̄‖ ≤ φ(x)− φ(x̄) ∀x ∈ B(x̄, δ),

where B(x̄, δ) denotes the open ball with center x̄ and radius δ. Let � be a subset of
X , λ := inf{φ(x) : x ∈ �} and S := {x ∈ � : φ(x) = λ}. Suppose that λ is finite.
Following Burke and Ferris [5], we say

(a) S is a set of weak sharp minima for φ over � if there exists η > 0 such that

ηd(x, S) ≤ φ(x)− λ ∀x ∈ �;

(b) x̄ ∈ � is a local weak sharp minimum for φ over� if there exist η, δ ∈ (0, +∞)

such that

ηd(x, S(x̄)) ≤ φ(x)− φ(x̄) ∀x ∈ � ∩ B(x̄, δ),

where S(x̄) := {x ∈ � : φ(x) = φ(x̄)}. The notions of sharp minima and weak
sharp minima have many important consequences for convergence analysis and sta-
bility analysis of many algorithms. The readers can look at [3–5,9,25,28,29] and
references therein for the history and motivation for the study of sharp minima and
weak sharp minima. In terms of normal cones and subdifferentials, Burke and Ferris
[5] established some valuable duality characterizations for weak sharp minima in finite
dimensional spaces; Burke and Deng [3], with the help of the Fenchel dual technique,
extended these results to a infinite dimensional space setting and established results
on local weak sharp minima in a Hilbert space; the authors [28], using the Banach
space geometrical technique, provided some characterizations for a local weak sharp
minimum in a general Banach space. All the works mentioned above are under the
convexity assumption. In this paper, we will relax the convexity assumption by con-
sidering the “convex-composite” situation, that is, the functions φ involved are given
in the form φ = ψ ◦ f , where f is a smooth function from a Banach space X to
another Banach space Y and ψ is a convex real-valued function on Y . Such a function
(which is usually referred to as a convex-composite function) is not necessarily convex
but shares many interesting and useful properties with convex functions. The class of
such functions is huge (in particular it contains amenable functions due to Poliquin
and Rockafellar (see [23, P. 442])) and these functions arise naturally in mathemat-
ical programming (see Rockafellar [21] where he gave many interesting examples
showing that a wide spectrum of problems can be cast in terms of convex-composite
functions).

Let φ0, . . . , φm be proper lower semicontinuous functions on X and let C be a
closed set in X . Consider the following constrained optimization problem

min φ0(x)

s.t. φi (x) ≤ 0, i = 1, . . . ,m, (1.1)

x ∈ C.
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Taking account of not only the objective function φ0 but also the constraint
functions φ1, . . . , φm and the geometric constraint set C , we adopt the following
penalty functions (of l1 type):

pτ (x) := φ0(x)+ τ

m∑

i=1

[φi (x)]+ + τd(x,C) ∀x ∈ X, (1.2)

where τ > 0 is constant and [φi (x)]+ = max{φi (x), 0}. It is natural and useful to
consider relationship between solutions of (1.1) and unconstrained minimizers of the
above penalty functions. Let� denote the feasible set of the above optimization prob-
lem, that is, � = {x ∈ C : φi (x) ≤ 0, i = 1, . . . ,m}. Suppose that φ0 is Lipschitz
and that the constraint system of (1.1) has an error bound in the following sense: there
exists η > 0 such that

ηd(x,�) ≤
m∑

i=1

[φi (x)]+ + d(x,C) ∀x ∈ X;

it is known and easy to verify (cf. [6, Proposition 2.4.3]) that x̄ ∈ � is a solution
of (1.1) if and only if it is an unconstrained minimizer of some penalty function pτ .
In this paper, we consider weak sharp solutions of (1.1) in terms of weak sharp minima
of the penalty functions pτ .

When each φi is smooth, under some constraint qualification (e.g. the Slater condi-
tion or the Mangasarian–Fromowitz condition), it is well known that if a feasible point
x̄ is a local solution of (1.1) then the Karush–Kuhn–Tucker (KKT in short) condition
is satisfied at x̄ , namely there exist λi ∈ R+ such that

0 ∈ φ′
0(x̄)+

∑

i∈I (x̄)

λiφ
′
i (x̄)+ N (C, x̄),

that is,

0 ∈ φ′
0(x̄)+

∑

i∈I (x̄)

R+φ′
i (x̄)+ N (C, x̄), (1.3)

where I (x̄) := {1 ≤ i ≤ m : φi (x̄) = 0}. In the nonsmooth setting, one can take the
Clarke–Rockafellar subdifferentials ∂φi (x̄) (for the definition and some basic proper-
ties, see Sect. 2) to replace the derivatives φ′

i (x̄), and the KKT condition can then be
rewritten as

0 ∈ ∂φ0(x̄)+
∑

i∈I (x̄)

R+∂φi (x̄)+ N (C, x̄), (1.4)

where R+∂φi (x̄) = ⋃
r≥0

r∂φi (x̄) and 0∂φi (x̄) := ∂∞φ(x̄) denotes the singular sub-

differential. It is known that if the Slater condition is satisfied and each φi is locally
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Lipschitz then (1.1) satisfies the KKT condition at every local solution of (1.1) (for the
details see [6, Sects. 6.1, 6.3]). As a strengthened condition of the Lagrange multiplier,
the KKT condition plays an important role in mathematical programming and has been
extensively studied by many authors (see [2,12,22,26] and references therein). As a
condition stronger than (1.4), we say that (1.1) satisfies the strong KKT condition at
a feasible point x̄ if

0 ∈ int

⎛

⎝∂φ0(x̄)+
∑

i∈I (x̄)

R+∂φi (x̄)+ N (C, x̄)

⎞

⎠. (1.5)

We show that if x̄ ∈ � is a sharp minimum of some penalty function pτ and each φi

is locally Lipschtz (without any constraint qualification) then x̄ is an isolated solution
of (1.1) and the strong KKT is satisfied at x̄ .

In this paper, our main aim is to study (1.1) under the assumption (which is always
assumed in the remainder of this paper) that

φi (x) := ψi ( fi (x)) ∀x ∈ X, (1.6)

where each fi : X → Y is a smooth function and ψi : Y → R ∪ {+∞} is a proper
lower semicontinuous convex function (i = 0, 1, . . . ,m), and that C is a closed
convex set in X . Many authors have studied the convex-composite problems (see
[10,11,14,15,19,27]). In contrast to (1.5), now we define another stronger condition:
(1.1) is said to satisfy the strong KKT+ condition at a feasible point x̄ if

0 ∈ int

⎛

⎝( f ′
0(x̄))

∗(∂ψ0( f0(x̄))+
∑

i∈I (x̄)

( f ′
i (x̄))

∗(R+∂ψi ( fi (x̄))+ N (C, x̄)

⎞

⎠, (1.7)

We prove, in Sect. 3, that if (1.1) satisfies the strong KKT+ condition at a feasible
point x̄ then it is a sharp minimum of some penalty function pτ . In particular, in the
case when each φi is locally Lipschtz and each f ′

i (x̄) is surjective, x̄ ∈ � is a sharp
minimum of some penalty function pτ if and only if (1.1) satisfies the strong KKT
condition at x̄ . Moreover, we also prove that (1.1) satisfies the strong KKT condition
at a feasible point x̄ if and only if there exist η, r, τ ∈ (0, +∞) such that

ηBX∗ ⊂ r BX∗ ∩ ∂φ0(x̄)+
∑

i∈I (u)

r BX∗ ∩ [0, τ ]∂φi (x̄)+τ BX∗ ∩ N (C, x̄), (1.8)

where BX∗ denotes the closed unit ball of the dual space X∗.
For a feasible point of (1.1), let

Sx̄ := {x ∈ � : φ0(x) ≤ φ0(x̄)}.

It is easy to verify that if x̄ is a local solution of (1.1) then each point of Sx̄ close to x̄
is also a local solution of (1.1). Clearly, Sx̄ ∩ B(x̄, δ) = {x̄} for some δ > 0 if and only
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if x̄ is a local isolated solution of (1.1). Note that Nc(Sx̄ , x̄) = N̂ (Sx̄ , x̄) = X∗ if x̄ is
an isolated solution of (1.1), where Nc(·, ·) and N̂ (·, ·) denote respectively the Clarke
normal cone and Fréchet normal cone (see Sect. 2 for their definitions). In order to
take care the non-isolated solution case, we make the following definition as a natural
extension of (1.8): for any x̄ ∈ �, (1.1) is said to satisfy the quasi-strong KKT condi-
tion around x̄ if there exist η, r, τ, δ ∈ (0, +∞) such that for all u ∈ Sx̄ ∩ B(x̄, δ),

ηBX∗ ∩ Nc(Sx̄ , u) ⊂ r BX∗ ∩ ∂φ0(u)+
∑

i∈I (u)

r BX∗ ∩ [0, τ ]∂φi (u)

+τ BX∗ ∩ N (C, u). (1.9)

Similarly, we say that (1.1) satisfies the quasi-strong KKT+ condition around x̄ ∈ �
if there exist η, r, τ, δ ∈ (0, +∞) such that for all u ∈ Sx̄ ∩ B(x̄, δ),

ηBX∗ ∩ Nc(Sx̄ , u) ⊂ A(r, τ ; u)+ τ BX∗ ∩ N (C, u), (1.10)

where

A(r, τ ; u) := ( f ′
0(u))

∗(r BY ∗ ∩ ∂ψ0( f0(u)))

+
∑

i∈I (u)

( f ′
i (u))

∗(r BY ∗ ∩ [0, τ ]∂ψi ( fi (u))).

With the Fréchet normal cone replacing the Clarke normal cone in (1.9), one has a
weaker notion: we say that (1.1) satisfies the sub-quasi-strong KKT condition around
x̄ ∈ � if there exist η, r, τ, δ ∈ (0, +∞) such that for all u ∈ Sx̄ ∩ B(x̄, δ),

ηBX∗ ∩ N̂ (Sx̄ , u) ⊂ r BX∗ ∩ ∂φ0(u)

+
∑

i∈I (u)

r BX∗ ∩ [0, τ ]∂φi (u)+ τ BX∗ ∩ N (C, u). (1.11)

In Sect. 4, we prove that if (1.1) satisfies the quasi-strong KKT+ condition around
x̄ ∈ � then there exists τ > 0 such that the following results hold: (1) x̄ is a local weak
sharp minimum of pτ over X , and (2) each x close to x̄ is a local minimizer of pτ over
X if and only if x is a local solution of (1.1). Under the assumption that φ1, . . . , φm

are locally Lipschitz around x̄ , we prove (a) if x̄ is a local weak sharp minimum of a
certain penalty function pτ over X and every local minimizer close to x̄ of pτ over
X is feasible for (1.1) then (1.1) satisfies the sub-quasi-strong KKT condition around
x̄ , and (b) if f0 = · · · = fm and f ′

0(x̄) is surjective then the conditions being quasi-
strong KKT+, quasi-strong KKT and sub-quasi-strong KKT are mutually equivalent.
As applications, in Sect. 5, we extend some existing results on metric regularity for
inequalities from the convex case to the nonconvex case.
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2 Preliminaries

To facilitate our discussion, we review some standard notions in variational analysis.
Let X be a Banach space with the closed unit ball denoted by BX , and let X∗ denote the
dual space of X . For a closed subset A of X , let int(A), cl(A) and bd(A) respectively
denote the interior, closure and boundary of A. For a ∈ A, let Tc(A, a) denote the
Clarke tangent cone of A at a, which is defined by

Tc(A, a) = lim inf
x

A→a,t→0+

A − x

t
,

where x
A→ a means that x → a with x ∈ A. Thus, v ∈ Tc(A, a) if and only if, for

each sequence {an} in A converging to a and each sequence {tn} in (0, ∞) decreasing
to 0, there exists a sequence {vn} in X converging to v such that an + tnvn ∈ A for
all n.

We denote by Nc(A, a) the Clarke normal cone of A at a, that is,

Nc(A, a) := {x∗ ∈ X∗ : 〈x∗, h〉 ≤ 0 for all h ∈ Tc(A, a)}.

Let N̂ (A, a) denote the Fréchet normal cone of A at a, that is,

N̂ (A, a) :=
⎧
⎨

⎩x∗ ∈ X∗ : lim sup
x

A→a

〈x∗, x − a〉
‖x − a‖ ≤ 0

⎫
⎬

⎭.

If A is convex, then Tc(A, a) = lim sup
t→0+

A−a
t and

Nc(A, a) = N̂ (A, a) = {x∗ ∈ X∗ : 〈x∗, x〉 ≤ 〈x∗, a〉 for all x ∈ A}.

The following approximate projection result for a general closed set (recently estab-
lished in [31]) will be useful in the proofs of our main results.

Lemma 2.1 Let X be a Banach (resp. Asplund) space and A a closed nonempty subset
of X. Let γ ∈ (0, 1). Then for any x �∈ A there exist a ∈ bd(A) and a∗ ∈ Nc(A, a)
(resp a∗ ∈ N̂ (A, a)) with ‖a∗‖ = 1 such that

γ ‖x − a‖ < min{d(x, A), 〈a∗, x − a〉}.

Let φ : X → R ∪ {+∞} be a proper lower semicontinuous function,

dom(φ) := {x ∈ X : φ(x) < +∞} and epi(φ) := {(x, t) ∈ X × R : φ(x) ≤ t}.
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For x ∈ dom(φ) and h ∈ X , let φ↑(x, h) denote the generalized directional derivative
introduced by Rockafellar [20], that is,

φ↑(x, h) := lim
ε↓0

lim sup
z
φ→x,t↓0

inf
w∈h+εBX

φ(z + tw)− φ(z)

t
,

where the expression z
φ→ x means that z → x and φ(z) → ψ(x). Let ∂φ(x) denote

the Clarke–Rockafellar subdifferential of φ at x , that is,

∂φ(x) := {x∗ ∈ X∗ : 〈x∗, h〉 ≤ φ↑(x, h) ∀h ∈ X}.
Recall that the Fréchet subdifferential of φ at x ∈ dom(φ) is defined as

∂̂φ(x) :=
{

x∗ ∈ X∗ : lim inf
z→x

φ(z)− φ(x)− 〈x∗, z − x〉
‖z − x‖ ≥ 0

}
.

It is well known (cf. [17]) that

∂̂φ(x) ⊂ ∂φ(x). (2.1)

When φ is convex, the Clarke–Rockafellar and Fréchet subdifferentials reduce to the
one in the sense of convex analysis, that is,

∂φ(x)= ∂̂φ(x)={x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ φ(y)− φ(x) ∀y ∈ X} ∀x ∈ dom(φ).

For a closed set A in X , let δA denote the indicator function of A. It is known (see [6])
that

Nc(A, a) = ∂δA(a) ∀a ∈ A

and

∂φ(x) = {x∗ ∈ X∗ : (x∗,−1) ∈ Nc(epi(φ), (x, φ(x)))} ∀x ∈ dom(φ).

Let ∂∞φ(x) denote the singular subdifferential of φ at x ∈ dom(φ) and be defined by

∂∞φ(x) := {x∗ ∈ X∗ : (x∗, 0) ∈ Nc(epi(φ), (x, φ(x)))}.
If φ is locally Lipschitz near x then ∂∞φ(x) = {0}.

The following lemma (which is a consequence of [31, Proposition 2.2] and [17,
Theorem 1.17]) will be useful for us.

Lemma 2.2 Let X, Y be Banach spaces, f : X → Y a smooth function and let A be
a closed convex subset of Y . Let u ∈ f −1(A) and suppose that f ′(u) is surjective.
Then

Nc( f −1(A), u) = ( f ′(u))∗(N (A, f (u))).
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In the case when ψ is directionally Lipschitz, the following lemma is known (see
[6, Theorem 2.99]).

Lemma 2.3 Let X,Y be Banach spaces, f : X → Y a smooth function andψ : Y →
R ∪ {+∞} a proper lower semicontinuous convex function. Let φ(x) := ψ( f (x)) for
all x ∈ X. Let x̄ ∈ dom(φ) and suppose that f ′(x̄) is surjective. Then, there exists
δ > 0 such that for any u ∈ dom(φ) ∩ B(x̄, δ),

∂φ(u) = ( f ′(u))∗(∂ψ( f (u))) and ∂∞φ(u) = ( f ′(u))∗(∂∞ψ( f (u))). (2.2)

Proof Since f is smooth and f ′(x̄) is surjective, there exists δ > 0 such that f ′(u) is
surjective for all u ∈ B(x̄, δ). Define F : X × R → Y × R by

F(x, t) := ( f (x), t) ∀(x, t) ∈ X × R.

Then, F ′(x, t)(h, r) = ( f ′(x)(h), r) for all (x, t), (h, r) ∈ X × R and so F ′(u, t)
is surjective for all (u, t) ∈ B(x̄, δ) × R. Noting that epi(φ) = F−1(epi(ψ)), the
convexity of ψ and Lemma 2.2 imply that for all u ∈ dom(φ) ∩ B(x̄, δ),

Nc(epi(φ), (u, φ(u))) = (F ′(u, φ(u)))∗(N (epi(ψ), ( f (u), ψ( f (u))))

= {(( f ′(u))∗(y∗), r) : (y∗, r) ∈ N (epi(ψ), ( f (u), ψ( f (u))))}.

It follows that (2.2) holds.

Remark In the case when ψ is convex and f is smooth, one always has that

( f ′(x))∗(∂ψ( f (x))) ⊂ ∂φ(x) ∀x ∈ dom(φ)

[cf. [23, Theorem 10.6] and (2.1)]. This and (2.1) imply the following implications
hold:

[strong KKT+ ⇒ strong KKT] and [quasi-strong KKT ⇒sub-quasi-strong KKT].

3 Strong KKT condition and sharp solution

Recall our standing assumption (1.6). The definition of sharp minimum for the penalty
functions and that of the strong KKT+ and strong KKT conditions for constraint
optimization problem (1.1) were defined in Sect. 1. Their interrelationships will be
explored in this section.

Proposition 3.1 Let x̄ be a point in the feasible set� of (1.1). Then (1.1) satisfies the
strong KKT+ condition at x̄ if and only if there exist η, γ, τ ∈ (0, +∞) such that

ηBX∗ ⊂ ( f ′
0(x̄))

∗(γ BY ∗ ∩ ∂ψ0( f0(x̄)))+
∑

i∈I (x̄)

( f ′
i (x̄))

∗(γ BX∗ ∩ [0, τ ]∂ψi ( fi (x̄)))

+τ BX∗ ∩ N (C, x̄). (3.1)
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Proof The sufficiency part is trivial. To prove the necessity part, suppose that (1.1)
satisfies the strong KKT+ condition. Then there exists r > 0 such that

r BX∗ ⊂ ( f ′
0(x̄))

∗(∂ψ0( f0(x̄)))+
∑

i∈I (x̄)

( f ′
i (x̄))

∗(R+∂ψi ( fi (x̄)))+ N (C, x̄).

Hence,

r BX∗ ⊂
∞⋃

k,n=1

(Ak,n + nBX∗ ∩ N (C, x̄)), (3.2)

where

Ak,n := ( f ′
0(x̄))

∗(k BY ∗ ∩ ∂ψ0( f0(x̄)))+
∑

i∈I (x̄)

( f ′
i (x̄))

∗(k BY ∗ ∩ [0, n]∂ψi ( fi (x̄))).

Since ( f ′
i (x̄))

∗ is weak∗–weak∗ continuous and since both k BY ∗ ∩ ∂ψ0( f0(x̄)) and
k BY ∗ ∩ [0, n]∂ψi ( fi (x̄)) are weak∗-compact, Ak,n is weak∗-compact. Therefore,
Ak,n + nBX∗ ∩ N (C, x̄) is weak∗-compact and so is (norm-) closed. Since every
open subspace of a complete metric space is a Baire space (cf. [18, Theorem 48.2
and Lemma 48.4]), int(r BX∗) is a Baire space. It follows from (3.2) that there exist
x∗

0 ∈ int(r BX∗), r0 > 0, k0 and n0 such that

x∗
0 + r0 BX∗ ⊂ Ak0,n0 + n0 BX∗ ∩ N (C, x̄).

On the other hand, (3.2) implies that there exist natural numbers k1 and n1 such that
−x∗

0 ∈ Ak1,n1 + n1 BX∗ ∩ N (C, x̄). Hence, by convexity, one has

r0

2
BX∗ ⊂ Ak̃,ñ + ñBX∗ ∩ N (C, x̄)

with k̃ = max{k0, k1} and ñ = max{n0, n1}. This completes the proof.

Similarly, we can prove the following proposition.

Proposition 3.2 Let x̄ ∈ �. Then (1.1) satisfies the strong KKT condition at x̄ if and
only if there exist η, γ, τ ∈ (0, +∞) such that

ηBX∗ ⊂ γ BX∗ ∩ ∂φ0(x̄)+
∑

i∈I (x̄)

γ BX∗ ∩ [0, τ ]∂φi (x̄)+ τ BX∗ ∩ N (C, x̄).

The following theorem provides a relationship between the strong KKT+/KKT
condition and the sharp minimum property for the penalty function pτ given by (1.2).

Theorem 3.1 Let x̄ ∈ �. The following statements are valid.
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(i) If (1.1) satisfies the strong KKT+ condition at x̄ then x̄ is an isolate solution of
(1.1) and it is a sharp minimum of some penalty function pτ .

(ii) Suppose that φ1, . . . , φm are locally Lipschitz around x̄. Then (1.1) satisfies the
strong KKT condition at x̄ whenever there exists τ > 0 such that x̄ is a sharp
minimum of the penalty function pτ .

(iii) Suppose that φ1, . . . , φm are locally Lipschitz around x̄ and that each f ′
i (x̄) is

surjective. Then (1.1) satisfies the strong KKT condition at x̄ if and only if x̄ is a
sharp minimum of some penalty function pτ .

Proof Suppose that (1.1) satisfies the strong KKT+ condition at x̄ . By Proposition 3.1,
there exist η, γ, τ ∈ (0, +∞) such that (3.1) holds. Fix an ε in (0, η

(m+1)γ ) and take
δ > 0 such that

‖ fi (x)− fi (x̄)− f ′
i (x̄)(x − x̄)‖ ≤ ε‖x − x̄‖ ∀x ∈ B(x̄, δ).

Hence

〈y∗, f ′
i (x̄)(x − x̄)〉≤〈y∗, fi (x)− fi (x̄)〉+‖y∗‖ε‖x− x̄‖ ∀(y∗, x) ∈ Y ∗×B(x̄, δ),

that is, for all (y∗, x) ∈ Y ∗ × B(x̄, δ),

〈( f ′
i (x̄))

∗(y∗), x − x̄〉 ≤ 〈y∗, fi (x)− fi (x̄)〉 + ‖y∗‖ε‖x − x̄‖. (3.3)

To prove (i), let x ∈ B(x̄, δ). By the Hahn–Banach theorem (cf. [24, P. 59, Corollary]),
there exists x∗ ∈ ηBX∗ such that

η‖x − x̄‖ = 〈x∗, x − x̄〉. (3.4)

By (3.1), there exist y∗
0 ∈ γ BY ∗ ∩ ∂ψ0( f0(x̄)), y∗

i ∈ γ BY ∗ ∩ [0, τ ]∂ψi ( fi (x̄)) and
y∗ ∈ τ BX∗ ∩ N (C, x̄) such that

x∗ = ( f ′
0(x̄))

∗(y∗
0 )+

∑

i∈I (x̄)

( f ′
i (x̄))

∗(y∗
i )+ y∗. (3.5)

Noting that ∂d(·,C)(x̄) = BX∗ ∩ N (C, x̄) (by the convexity of C), one has

〈y∗, x − x̄〉 ≤ τd(x,C). (3.6)

By (3.3) and the convexity of ψ0, we have

〈( f ′
0(x̄))

∗(y∗
0 ), x − x̄〉 ≤ 〈y∗

0 , f0(x)− f0(x̄)〉 + ‖y∗
0‖ε‖x − x̄‖

≤ φ0(x)− φ0(x̄)+ γ ε‖x − x̄‖. (3.7)

Let

I0(x̄) := {i ∈ I (x̄) : y∗
i ∈ ∂∞ψi ( fi (x̄))}.
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Noting that ∂∞ψi ( fi (x̄)) = N (dom(ψi ), fi (x̄)) (because ψi is convex),

〈y∗
i , fi (u)− fi (x̄)〉 ≤ 0 ∀i ∈ I0(x̄) and ∀u ∈ dom(φi )

Hence,

〈y∗
i , fi (u)− fi (x̄)〉 ≤ τ [φi (u)]+ ∀i ∈ I0(x̄) and ∀u ∈ X.

This and (3.3) imply that

〈( f ′
i (x̄))

∗(y∗
i ), x − x̄)〉 ≤ τ [φi (x)]+ + γ ε‖x − x̄‖ ∀i ∈ I0(x̄). (3.8)

Now let i ∈ I (x̄)\I0(x̄). Then, there exist ti ∈ (0, τ ] and v∗
i ∈ ∂ψi ( fi (x̄)) such that

y∗
i = tiv∗

i . By (3.3) and the convexity of ψi , it is easy to verify that

〈( f ′
i (x̄))

∗(y∗
i ), x − x̄)〉 ≤ 〈y∗

i , fi (x)− fi (x̄)〉 + γ ε‖x − x̄‖
= ti 〈v∗

i , fi (x)− fi (x̄)〉 + γ ε‖x − x̄‖
≤ tiφi (x)+ γ ε‖x − x̄‖
≤ τ [φi (x)]+ + γ ε‖x − x̄‖.

It follows from (3.5), (3.6), (3.7) and (3.8) that

〈x∗, x − x̄〉 ≤ φ0(x)− φ0(x̄)+ τ
∑

i∈I (x̄)

[φi (x)]+ + (m + 1)γ ε‖x − x̄‖ + τd(x,C)

This and (3.4) imply that

(η − (m + 1)γ ε)‖x − x̄‖ ≤ φ0(x)− φ0(x̄)+ τ

⎛

⎝
∑

i∈I (x̄)

[φi (x)]+ + d(x,C)

⎞

⎠

= pτ (x)− pτ (x̄).

Hence, x̄ is a sharp minimum of pτ . Noting that pτ (x) = φ0(x) for all x ∈ �, it
follows that (i) holds.

To prove (ii), suppose that η, τ, δ ∈ (0, +∞) such that

η‖x − x̄‖ ≤ φ0(x)− φ0(x̄)+ τ

m∑

i=1

[φi (x)]+ + τd(x,C) ∀x ∈ B(x̄, δ).

Let x∗ be an arbitrary point in BX∗ . Then,

〈ηx∗, x − x̄〉 ≤ η‖x − x̄‖ ≤ φ0(x)− φ0(x̄)

+τ
m∑

i=1

[φi (x)]+ + τd(x,C) ∀x ∈ B(x̄, δ).
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Noting x̄ ∈ �, this implies that x̄ is a local minimizer of the function

x �→ −〈ηx∗, x − x̄〉 + φ0(x)− φ0(x̄)+ τ
∑

1≤i≤n

[φi (x)]+ + τd(x .C).

Since φi (1 ≤ i ≤ m) is locally Lipschtz at x̄ , it follows from [6, P. 105, Corollary 1]
and [6, Proposition 2.3.12] that

ηx∗ ∈ ∂φ0(x̄)+ τ

n∑

i=1

∂[φi ]+(x̄)+ τ∂d(·,C)(x̄)

⊂ ∂φ0(x̄)+ τ
∑

i∈I (x̄)

[0, 1]∂φi (x̄)+ τ BX∗ ∩ N (C, x̄).

Therefore,

ηBX∗ ⊂ ∂φ0(x̄)+
∑

i∈I (x̄)

R+∂φi (x̄)+ N (C, x̄).

This shows that (ii) holds.
(iii) is immediate from (i), (ii) and Lemma 2.3. The proof is completed.

Remark The full smoothness assumption of each fi was used only for the part (iii).
Under the assumption of Theorem 3.1 (iii), φi = ψi ◦ fi is an amenable function (cf.
[23, P. 442]).

4 Relationship between quasi-strong KKT conditions and weak sharp solutions

In this section, we consider the non-isolated solution case. We explore interrela-
tionships between local weak sharp minima of a certain penalty function pτ and
quasi-strong KKT conditions. Let x̄ be in the feasible set � of optimization problem
(1.1), and recall that Sx̄ := {x ∈ � : φ0(x) ≤ φ0(x̄)}. For τ > 0, let

Sx̄ (τ ) := {x ∈ X : pτ (x) ≤ pτ (x̄)}.

Clearly, Sx̄ ⊂ Sx̄ (τ ). Also it is easy to verify that if x̄ is an isolated local minimum of
a certain penalty function pτ over X then x̄ is an isolated local solution of (1.1), that
is, there exists δ > 0 such that

Sx̄ (τ ) ∩ B(x̄, δ) = Sx̄ ∩ B(x̄, δ) = {x̄}.

Now suppose that x̄ is a nonisolated local minimum of a certain penalty function pτ
over X . Thus there exists δ > 0 such that Sx̄ (τ ) ∩ B(x̄, δ) is not a singleton and each
point x in Sx̄ (τ ) ∩ B(x̄, δ) is a minimum of pτ on B(x̄, δ). In this case, a natural
question arises: whether or not there exists δ > 0 such that

Sx̄ (τ ) ∩ B(x̄, δ) = Sx̄ ∩ B(x̄, δ); (4.1)
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clearly, (4.1) means that each point x in Sx̄ (τ ) ∩ B(x̄, δ) is a local solution of (1.1).
Unfortunately, the answer to the above question is not positive. Indeed, (4.1) does
not necessarily hold for all δ > 0 even when x̄ is a local weak sharp minimum of
pτ over X (see the example at the end of this section). This leads us to define the
following notion: x̄ ∈ � is said to be a local weak sharp solution of (1.1) if there exist
τ, δ ∈ (0, +∞) such that (4.1) holds and x̄ is a local weak sharp minimum of pτ over
X . Since Sx̄ is a closed subset of Sx̄ (τ ), it is clear that x̄ is a local weak sharp solution
of (1.1) if and only if there exist η, τ, σ ∈ (0, +∞) such that

ηd(x, Sx̄ ) ≤ φ0(x)− φ0(x̄)+ τ

m∑

i=1

[φi (x)]+ + τd(x,C) ∀x ∈ B(x̄, σ ). (4.2)

Theorem 4.1 Let x̄ ∈ � and suppose that (1.1) satisfies the quasi-strong KKT+
condition around x̄. Then x̄ is a local weak sharp solution of (1.1).

Proof By the assumption, there exist η, r, τ, δ ∈ (0, +∞) such that (1.10) holds for
all u ∈ Sx̄ ∩ B(x̄, δ). Since each fi is smooth, we can assume further that

‖ fi (x)− fi (u)− f ′
i (u)(x − u)‖ ≤ η

2r(m + 1)
‖x − u‖ ∀x, u ∈ B(x̄, δ) (4.3)

(consider smaller δ if necessary). Let x ∈ B(x̄, δ2 ). We need only show that

1

2
ηd(x, Sx̄ ) ≤ φ0(x)− φ0(x̄)+ τ

m∑

i=1

[φi (x)]+ + τd(x,C). (4.4)

For this, we can assume that x �∈ Sx̄ . Then 0 < d(x, Sx̄ ) ≤ ‖x − x̄‖ < δ
2 . Let γ ∈

(max{ 2d(x,Sx̄ )
δ

, 1
2 }, 1). By Lemma 2.1, there exist u ∈ Sx̄ and u∗ ∈ Nc(Sx̄ , u) ∩ BX∗

such that

γ ‖x − u‖ ≤ min{d(x, Sx̄ ), 〈u∗, x − u〉}. (4.5)

Thus, u ∈ Sx̄ ∩B(x̄, δ). It follows from (1.10) that there exist y∗
0 ∈ r BY ∗ ∩∂ψ0( f0(u)),

y∗
i ∈ r BY ∗ ∩ [0, τ ]∂ψi ( fi (u))) ∀i ∈ I (u) (4.6)

and y∗ ∈ τ BX∗ ∩ N (C, u) such that

ηu∗ = ( f ′
0(u))

∗(y∗
0 )+

∑

i∈I (u)

( f ′
i (u))

∗(y∗
i )+ y∗.
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By (4.3) and the convexity of ψ0, one has

〈ηu∗, x − u〉 = 〈y∗
0 , f ′

0(u)(x − u)〉 +
∑

i∈I (u)

〈y∗
i , f ′

i (u)(x − u)〉 + 〈y∗, x − u〉

≤ 〈y∗
0 , f0(x)− f0(u)〉 +

∑

i∈I (u)

〈y∗
i , fi (x)− fi (u)〉 + 〈y∗, x − u〉 + η

2
‖x − u‖

≤ φ0(x)− φ0(u)+
∑

i∈I (u)

〈y∗
i , fi (x)− fi (u)〉 + 〈y∗, x − u〉 + η

2
‖x − u‖

= φ0(x)− φ0(x̄)+
∑

i∈I (u)

〈y∗
i , fi (x)− fi (u)〉 + 〈y∗, x − u〉 + η

2
‖x − u‖.

By (4.5) and d(x, Sx̄ ) ≤ ‖x − u‖, it follows that

(
γ − 1

2

)
ηd(x, Sx̄ ) ≤ φ0(x)− φ0(x̄)+

∑

i∈I (u)

〈y∗
i , fi (x)− fi (u)〉 + 〈y∗, x − u〉

≤ φ0(x)−φ0(x̄)+
∑

i∈I (u)

〈y∗
i , fi (x)− fi (u)〉+τd(x,C) (4.7)

(the last inequality holds because y∗ ∈ τ BX∗ ∩ N (C, u) = τ∂d(·,C)(u)). Next we
show that

〈y∗
i , fi (x)− fi (u)〉 ≤ τ [φi (x)]+ ∀i ∈ I (u) (4.8)

To do this, let i ∈ I (u). By (4.6), we have two cases to consider: (a) y∗
i ∈ ∂∞ψi ( fi (u))

or (b) y∗
i = tiv∗

i for some ti ∈ (0, τ ] and v∗
i ∈ ∂ψi ( fi (u)). In the later case, we have

〈y∗
i , fi (x)− fi (u)〉 = ti 〈v∗

i , fi (x)− fi (u)〉
≤ ti (φi (x)− φi (u))

= tiφi (x) ≤ τ [φi (x)]+
and so (4.8) holds. In the case (a), by the definition of the singular subdifferential, the
convexity of ψi implies that

〈y∗
i , fi (z)− fi (u)〉 ≤ 0 ∀z ∈ f −1

i (dom(ψi ))

and so 〈y∗
i , fi (x) − fi (u)〉 ≤ τ [φi (x)]+. Therefore (4.8) is true. By (4.7) and (4.8),

one has
(
γ − 1

2

)
ηd(x, Sx̄ ) ≤ φ0(x)− φ0(x̄)+

∑

i∈I (u)

[φi (x)]+ + τd(x,C)

= φ0(x)− φ0(x̄)+
m∑

i=1

[φi (x)]+ + τd(x,C).
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This gives (4.4) by letting γ → 1. The proof is completed.

Theorem 4.2 Let x̄ ∈ � and τ > 0. Suppose that x̄ is a local weak sharp solution
of (1.1) and that φ1, . . . , φm are locally Lipschtz around x̄. Then (1.1) satisfies the
sub-quasi-strong KKT condition around x̄.

Proof Take η, σ, L ∈ (0, +∞) such that (4.2) holds and

|φi (x1)− φi (x2)| ≤ L‖x1 − x2‖ for all x1, x2 ∈ B(x̄, σ ) and 1 ≤ i ≤ m. (4.9)

Let u ∈ Sx̄ ∩ B(x̄, σ2 ) and u∗ ∈ N̂ (Sx̄ , u) ∩ BX∗ . Noting that N̂ (Sx̄ , u) ∩ BX∗ =
∂̂d(·, Sx̄ )(u) (cf. [17, Corollary 1.96]), it follows that for any ε > 0 there exists σ1 ∈
(0, σ

2 ) such that

〈u∗, x − u〉 ≤ d(x, Sx̄ )+ ε‖x − u‖ ∀x ∈ B(u, σ1).

This and (4.2) imply that

〈ηu∗, x − u〉 ≤ φ0(x)− φ0(x̄)+ τ

m∑

i=1

[φi (x)]+ + τd(x,C)

+ηε‖x − u‖ ∀x ∈ B(u, σ1).

Since φ0(x̄) = φ0(u) [by (4.2) and the fact that u ∈ Sx̄ ], this means that u is a
minimum of the function g over B(u, σ1) defined by

g(x) := −〈ηu∗, x − u〉 + φ0(x)− φ0(x̄)+ τ

m∑

i=1

[φi (x)]+
+τd(x,C)+ ηε‖x − u‖ ∀x ∈ X.

Then 0 ∈ ∂g(u). Thus, by [6, P. 105, Corollary 1] and [6, Proposition 2.3.12], one has

0 ∈ −ηu∗ + ∂φ0(u)+ τ

m∑

i=1

∂[φi ]+(u)+ τ∂d(·,C)(u)+ ηε∂‖ · −u‖(u)

= −ηu∗ + ∂φ0(u)+ τ
∑

i∈I (u)

[0, 1]∂φi (u)+ τ BX∗ ∩ N (C, u)+ ηεBX∗ .

Letting ε → 0, one has ηu∗ ∈ ∂φ0(u)+ ∑
i∈I (u)

[0, τ ]∂φi (u)+ τ BX∗ ∩ N (C, u). This

and (4.9) imply that

ηu∗ ∈ r BX∗ ∩ ∂φ0(u)+
∑

i∈I (u)

r BX∗ ∩ [0, τ ]∂φi (u)+ τ BX∗ ∩ N (C, u)

with r = (1 + mL)τ + η. This shows that (1.11) holds for all u ∈ B(x̄, σ2 ) and hence
the proof is completed.
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Remark We cannot use x̄ is a local weak sharp minimum of a certain penalty pτ over
X” to replace the corresponding assumption in Theorem 4.2 (see the example at the
end of this section).

Proposition 4.1 Let x̄ ∈ � and suppose that C = X, Yi = Y , fi = f (0 ≤ i ≤ m)
with f ′(x̄)(X) = Y . Then the following statement are equivalent.

(i) (1.1) satisfies the quasi-strong KKT+ condition around x̄.
(ii) (1.1) satisfies the quasi-strong KKT condition around x̄.

(iii) (1.1) satisfies the sub-quasi-strong KKT condition around x̄.

Proof By the smoothness of f and f ′(x̄)(X) = Y , there exists δ > 0 such that f ′(u)
is surjective for all u ∈ B(x̄, δ). We claim that

Nc(Sx̄ , u) = N̂ (Sx̄ , u) ∀u ∈ Sx̄ ∩ B(x̄, δ). (4.10)

Let A := {y ∈ Y : ψ0(y) ≤ ψ0( f (x̄)) and ψi (y) ≤ 0 for 1 ≤ i ≤ m}. Then A is a
closed convex subset of Y and Sx̄ = f −1(A). By Lemma 2.2, one has

Nc(Sx̄ , u) = ( f ′(u))∗(N̂ (A, f (u)) ∀u ∈ Sx̄ ∩ B(x̄, δ).

This and [17, Theorem 1.17] imply that (4.10) holds. From (4.10) and Lemma 2.3, it
is easy to verify that (i)⇔(ii)⇔(iii). The proof is completed.

Let ψ : Y → R∪{+∞} be a proper lower semicontinuous convex function; recall
that for any y ∈ dom(ψ) and v ∈ Y , the directional derivative d+ψ(y, v) always exists
(as an extended real number) and is defined by d+ψ(y, v) = lim

t→0+
ψ(y+tv)−ψ(y)

t .

Proposition 4.2 Let x̄ , C, Yi = Y , fi = f be as in Proposition (4.1) and suppose that
φ1, . . . , φm are locally Lipschitz around x̄. Let η, τ ∈ (0, +∞). Then the following
statements are equivalent.

(i) Nc(Sx̄ , x̄) ∩ ηBX∗ ⊂ ∂φ0(x̄)+ ∑
i∈I (x̄)

[0, τ ]∂φi (x̄).

(ii) ηd(h, Tc(Sx̄ , x̄)) ≤ d+ψ0( f (x̄), f ′(x̄)(h))+τ ∑
i∈I (x̄)

[d+ψi ( f (x̄), f ′(x̄)(h))]+
for all h ∈ X.

Proof Since f ′(x̄) is surjective, the local Lipschitz assumption implies that for 1 ≤
i ≤ m, f (x̄) ∈ int(dom(ψi )) and so d+ψi ( f (x̄), ·) is Lipschitz. Let φ̃i (h) :=
d+ψi ( f (x̄), f ′(x̄)(h)) for all h ∈ X (i = 0, 1, . . . ,m). By Lemma 2.3, one has

∂φ̃i (0)=( f ′(x̄))∗(∂d+ψi ( f (x̄), ·)(0))=( f ′(x̄))∗(∂ψi ( f (x̄)))=∂φi (x̄). (4.11)

First, suppose that (ii) holds. Similar to the proof of Theorem 4.2, one has

N̂ (Tc(Sx̄ , x̄), 0) ∩ ηBX∗ ⊂ ∂φ̃0(0)+
∑

i∈I (x̄)

[0, τ ]∂φ̃i (0). (4.12)
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Since Tc(Sx̄ , 0) is convex,

N̂ (Tc(Sx̄ , x̄), 0) = Nc(Tc(Sx̄ , x̄), 0) = Nc(Sx̄ , x̄).

It follows from (4.11) and (4.12) that (i) holds.
Now suppose that (i) holds. Let h ∈ X\Tc(Sx̄ , x̄) and γ ∈ (0, 1). Then, by

Lemma 2.1, there exist u ∈ Tc(Sx̄ , x̄) and u∗ ∈ Nc(Tc(Sx̄ , x̄), u)) ∩ BX∗ such that

γ ‖h − u‖ ≤ 〈u∗, h − u〉
Since Tc(Sx̄ , x̄) is a closed convex cone,

Nc(Tc(Sx̄ , x̄), u)) ⊂ Nc(Tc(Sx̄ , x̄), 0)) = Nc(Sx̄ , x̄)

and 〈u∗, u〉 = 0. Hence, γ d(h, Tx (Sx̄ , x̄)) ≤ γ ‖x − u‖ ≤ 〈u∗, h〉; moreover (i) and
(4.11) imply that there exist x∗

i ∈ ∂ψi ( f (x̄)) and ti ∈ [0, τ ] such that

ηu∗ = ( f ′(x̄))∗(x∗
0 )+

∑

i∈I (x̄)

ti ( f ′(x̄))∗(x∗
i ).

It follows that

γ ηd(h, Tc(Sx̄ (τ ), x̄)) ≤ 〈( f ′(x̄))∗(x∗
0 )+

∑

i∈I (x̄)

ti ( f ′(x̄))∗(x∗
i ), h〉

= 〈x∗
0 , f ′(x̄)(h)〉 +

∑

i∈I (x̄)

ti 〈x∗
i , f ′(x̄)(h)〉

≤ d+ψ0( f (x̄, f ′(x̄)(h))+
∑

i∈I (x̄)

ti d
+ψi ( f (x̄), f ′(x̄)(h))

≤ d+ψ0( f (x̄, f ′(x̄)(h))+
∑

i∈I (x̄)

τ [d+ψi ( f (x̄), f ′(x̄)(h))]+.

Letting γ → 1, one sees that (i) holds. The proof is complete.

Remark It is easy to verify that x̄ ∈ � is a local weak sharp solution of (1.1) if and
only if there exist τ, δ ∈ (0, +∞) such that Sx̄ (τ ) ∩ B(x̄, δ) is contained in � and
x̄ is a local weak sharp minimum of pτ over the entire space X . On the other hand,
when x̄ ∈ � is a local weak sharp minimum of some penalty function pτ over X , x̄ is
not necessarily a local weak sharp solution of (1.1), and it may even happen that all
other local minimizers x �= x̄ of pτ over X may be infeasible for (1.1). For example,
let X = R, m = 1, φ0(x) = −x2 and φ1(x) = x2 for for all x ∈ R, and let C = R.
Then 0 is the unique feasible point. Let τ = 1; then pτ (x) = 0 for all x ∈ R. In
particular, x̄ = 0 is a weak sharp minimum of pτ over R. On the other hand, noting
that Sx̄ = {0} and

lim
x→0

p′
τ (x)− p′

τ (0)

d(x, Sx̄ )
= lim

x→0
(−1 + τ ′)|x | = 0 ∀τ ′ ∈ [0, +∞),

the feasible point 0 is not a local weak sharp solution of (1.1).
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Even in the convex case, we do not know whether a point x̄ in � is a weak sharp
solution of (1.1) if there exists τ̃ > 0 such that x̄ is a local weak sharp minimum of
pτ over the entire space X for all τ ∈ [τ̃ , +∞).

5 Applications to metric regularity for convex-composite inequalities

Let φ : X → R ∪ {+∞} and consider the following inequality

φ(x) ≤ 0. (5.1)

Let S denote the solution set of (5.1), that is, S := {x ∈ X : φ(x) ≤ 0}. Following
Lewis and Pang [13], we say that (5.1) is metrically regular at x̄ ∈ S if there exist
η, δ ∈ (0, +∞) such that

ηd(x, S) ≤ [φ(x)]+ ∀x ∈ B(x̄, δ). (5.2)

In some references (cf. [4,28]), the metric regularity of (5.1) is named as the local
error bound property of (5.1). It is known (cf. [28]) and easy to verify that (5.1) is
metrically regular at x̄ if and only if x̄ is a weak sharp minimum of [φ]+ over X .

In terms of the normal cones of the solution set and the subdifferential of the con-
cerned function in the solution set, many authors (cf. [3,5–8,13,16,28,29] and refer-
ences therein) studied the metric regularity (with various names) of inequality (5.1). For
example, under the assumption when X = R

n and φ is convex, Lewis and Pang [13]
proved that the metric regularity of (5.1) at x̄ ∈ S implies N (S, x̄) = cl(R+∂φ(x̄)), a
condition which is of course weaker than the well known basic constraint qualification
(BCQ for short) of (5.1) at x̄ : N (S, x̄) = R+∂φ(x̄). In the case when φ is a smooth
convex function, Li [16] proved that (5.1) is metrically regular at x̄ if and only if
(5.1) satisfies BCQ at each point of S close to x̄ . Following their line of investigation,
using a Banach space geometrical technique, the authors [29] proved that under the
convexity assumption on φ, (5.1) is metrically regular at x̄ if and only if there exist
τ, δ ∈ (0, +∞) such that for all u ∈ S ∩ B(x̄, δ),

N (S, u) ∩ BX∗ ⊂ [0, τ ]∂φ(u). (*)

With the help of the Fenchel dual technique, Burke and Deng [3] proved the same
result for the special case when X is a Hilbert space; the readers can find other inter-
esting characterization as well as results on (∗) and BCQ in their paper [3]. The above
inclusion (∗), first appeared in Burke and Ferris [5], is stronger than the BCQ of (5.1)
at u and so is named as strong BCQ in [29]. By giving a counterexample, the authors
[29] also showed that (5.1) is not necessarily metrically regular at x̄ if (5.1) satisfies the
Strong BCQ only at the point x̄ alone. Later, Hu [7,8] further considered relationships
among the BCQ, the strong BCQ and the metric regularity for a convex inequality.
Recently, Burke and Deng [4] considered the differentiable convex inclusion, and the
authors [30] extended the above-mentioned results to more general setting, namely
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for the following so-called generalized convex equation

b ∈ F(x) subject to x ∈ C

(where F is a convex multifunction between two Banach spaces X and Y , b ∈ Y and
C is a closed convex subset of X ). All these previous works are under the convexity
assumption. As applications of Theorems 4.1, 4.2 and 4.3, we can now establish the
corresponding results (on the metric regularity) for inequality (5.1) in a nonconvex
situation: φ is not necessarily convex but convex-composite.

In the remainder of this section, let φ = ψ ◦ f , where f is a smooth function
between Banach spaces X and Y and ψ : Y → R is a continuous convex function.
The corresponding inequality (5.1) is said to satisfy
(α) strong BCQ around x̄ if there exist τ, δ ∈ (0, +∞) such that

Nc(S, u) ∩ BX∗ ⊂ [0, τ ]∂φ(u) ∀u ∈ S ∩ B(x̄, δ); (5.3)

(β) sub-strong BCQ around x̄ if the same as (α) but the Clarke normal cone Nc(S, u)
is replaced with the Fréchet normal cone N̂ (S, u), that is,

N̂ (S, u) ∩ BX∗ ⊂ [0, τ ]∂φ(u) ∀u ∈ S ∩ B(x̄, δ); (5.4)

(γ ) strong BCQ+ around x̄ if there exist τ, δ ∈ (0, +∞) such that

Nc(S, u) ∩ BX∗ ⊂ ( f ′(u))∗([0, τ ]∂ψ( f (u))) ∀u ∈ S ∩ B(x̄, δ). (5.5)

Theorem 5.1 Let φ = ψ ◦ f and S be explained above. Let x̄ ∈ S and consider the
following statements:

(i) Inequality (5.1) is metrically regular at x̄ .
(ii) (5.1) satisfies the strong BCQ+ around x̄.

(iii) (5.1) satisfies the strong BCQ around x̄.
(iv) (5.1) satisfies the sub-strong BCQ around x̄.
(v) There exist η, δ ∈ (0, +∞) such that

ηd(h, Tc(S, u)) ≤ [d+ψ( f (x̄), f ′(x)(h))]+
for all u ∈ S ∩ B(x̄, δ) and all h ∈ X.
Then the following assertions are valid.

(a) (ii)⇒(iii)⇒(iv) and (ii)⇒(i) always hold.
(b) Suppose that f ′(x̄) is surjective. Then (i)–(v) are equivalent.

Proof (a) Note that ( f ′(x))∗(∂ψ( f (x)) ⊂ ∂φ(x) for all x ∈ X and N̂ (S, u) ⊂
Nc(S, u) for all u ∈ S. The implications (ii)⇒(iii)⇒(iv) are trivial. To prove (ii)⇒(i),
suppose that there exist τ, δ ∈ (0, +∞) such that (5.5) holds. Let C = X , φ0 = 0
and φi = φ for i = 1, . . . ,m. Then (1.1) reduces to inequality (5.1), Sx̄ = S, and x̄ is
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a weak sharp solution of (1.1) if and only if (5.1) is metrically regular at x̄ . Since f is
smooth and ψ is continuous and convex, we can assume that there exists L > 0 such
that

sup{‖y∗‖ : y∗ ∈ ∂ψ( f (u)) for all u ∈ B(x̄, δ)} ≤ L

(considering smaller δ if necessarily). It follows from (5.5) that

Nc(S, u) ∩ BX∗ ⊂ ( f ′(u))∗(Lτ BY ∗ ∩ [0, τ ]∂ψ( f (u))) ∀u ∈ S ∩ B(x̄, δ).

Hence (1.1) satisfies the quasi-strong KKT+ around x̄ . This and Theorem 4.1 imply
that x̄ is a weak sharp solution of (1.1), and hence (5.1) is metrically regular at x̄ . This
shows that (a) holds. Moreover, by Propositions 4.1 and 4.2, we have that (i–v) are
equivalent. The proof is completed.

Theorem 5.1b extends the corresponding results in [3,5,29] (cf. [3, Theorem 2.2],
[5, Theorem 5.2] and [29, Theorems 2.2 and 2.3]), where they considered the special
case when X = Y and f is the identity mapping of X .

The study of the present paper proceeds in terms of the normal cones of the solu-
tion set and the subdifferentials of φ at points in the solution set. Different from our
study, some authors considered the metric regularity of inequality (5.1) in terms of
various properties of φ at points outside the solution set; the readers can see [1] and
references therein for details. Let F : X ⇒ Y be a multifunction and recall another
important metric regularity: F is called to be metrically regular at (x̄, ȳ) if there exist
η, δ ∈ (0, +∞) such that

ηd(x, F−1(y)) ≤ d(y, F(x)) ∀(x, y) ∈ B(x̄, δ)× B(ȳ, δ).

Such a metric regularity is stronger and has been well studied. Ioffe [9] gave an excel-
lent summary for the metric regularity of multifunctions.

Acknowledgments The authors wish to thank the referees for many valuable comments and for reference
[1,4,9] as well as drawing authors’ attention to amenable functions due to Poliquin and Rockafellar and
the use of penalty functions.
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