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1 Introduction

It is well known that separation theorems for convex sets play a fundamental
role in the classical theory of functional analysis as well as in many aspects of
nonlinear analysis and optimization. In particular, using separation theorems
and convex approximation techniques, some problems with nonconvex and
nonsmooth initial data can be solved efficiently. However, there is a large class
of optimal control and optimization-related economic problems where the use
of convex approximations are either impossible or do not lead to satisfactory
results (cf. [14–16,21,28]). For two closed sets (not necessarily convex) with
extremal property, Mordukhovich and Shao [17,18] established what is known
as the extremal principle in Asplund spaces by using the fuzzy sum rule.
Their work has led to an important progress in this topic and has found many
applications in establishing optimality condition for nonconvex functions. For
more detailed background information and motivations we refer the reader
to the informative two-volume book [14,15]. In this paper, we attempt to
unify and improve some geometric results in variational analysis. Much of
our study here has been inspired by the works by Mordukhovich and his
collaborators (see, in particular, [13–15,17,19]; see also Zhu [29]). The authors
would like to express their sincere thanks to Professor Boris Mordukhovich
for valuable suggestions. Our analysis is based on the consideration of the
following minimization problem

min
x∈A

d(0, F (x)) (MP)

in conjunction with the inclusion problem

find x ∈ A such that F (x) = 0 (IP)

where F is a mapping from a Banach space X to another Banach space Y
and A is a closed subset of X. Clearly, if x is a solution of (IP) then x is also
a solution of (MP). It is known that many optimization problems (the best
approximation problem, the feasibility problem and the nonlinear least square
problem) can be cast as (MP); see [7,22]. In terms of abstract subdifferential
and normal cone, we provide a necessary condition for a point to be an outer ε-
minimizer (see the definition given in section 2) for the minimization problem
(MP). By specializing in different types of F and A, we provide several non-
convex geometric consequences in section 3, including an approximate projec-
tion result, an extended extremal principle, a nonconvex separation theorem, a
generalized Bishop-Phelps theorem and a separable point result, which extend
and improve the existing geometric results in variational analysis. In section 4,
some stronger results are reported under suitably strengthened assumptions;
in particular we extend the classical result of Dieudonné (on separating two
convex sets in a finite dimensional space) to a nonconvex setting.
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2 Preliminaries

Let X be a Banach space. We use BX(x, ε) (resp. BX(x, ε)) to denote the open
(resp. closed) ball in X with center x and radius ε. We denote the unit sphere
(resp. open unit ball, closed unit ball) in X by SX (resp. BX , BX). Given a
subset A of X, we denote the interior (resp. topological boundary, topological
closure, affine hull) of A by int(A) (resp. bdA, A, aff(A)). As in [23], we denote
the relative interior of A by ri(A), i.e.,

ri(A) =




{a ∈ A : ∃ r > 0, B(a, r) ∩ aff(A) ⊆ A} if aff(A) is closed,

∅ otherwise.
(1)

When A is a subset of a Banach dual space, A
w∗

denotes the weak∗-closure
of A. For a function f : X → R ∪ {+∞}, let epi(f) and dom(f) respectively
denote the epigraph and the domain of f , that is,

epi(f) := {(x, t) ∈ X ×R : f(x) ≤ t} and dom(f) := {x ∈ X : f(x) < +∞}.

For a subset A of X, let d(·, A) and δ(·, A) respectively denote the distance
function and the indicator function of A, that is

d(x,A) = inf{‖x− a‖ : a ∈ A} and δ(x,A) =





0 if x ∈ A,

∞ otherwise.

Sometimes, we also write dA(x) for d(x,A) and δA(x) for δ(x,A). As usual let
X∗ denote the Banach dual space of X; for x ∈ X, x∗ ∈ X∗ we sometimes
write 〈x∗, x〉 for x∗(x). For Banach spaces X1, X2, . . . , Xm, let

∏m
i=1 Xi denote

the product space which is also a Banach space under the following “l1-norm”:
for any (x1, x2, . . . , xm) ∈ ∏m

i=1 Xi

‖(x1, . . . , xm)‖ =
m∑

i=1

‖xi‖.

For any Ai ⊆ Xi (i = 1, 2, . . . , m) and x := (x1, . . . , xm) ∈ ∏m
i=1 Xi, we have

the following relation

d(x,
m∏

i=1

Ai) =
m∑

i=1

d(xi, Ai) and δ(x,
m∏

i=1

Ai) =
m∑

i=1

δ(xi, Ai). (2)

We identify x∗ with (x∗1, . . . , x
∗
m) when x∗ ∈ (

∏m
i=1 Xi)

∗, x∗i ∈ X∗
i and

〈x∗, (x1, . . . , xm)〉 =
m∑

i=1

〈x∗i , xi〉 for all (x1, . . . , xm) ∈
m∏

i=1

Xi. (3)
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Note that (
∏m

i=1 Xi, ‖ · ‖)∗ = (
∏m

i=1 X∗
i , ‖ · ‖∞) is also a Banach space where

the corresponding dual norm on
∏m

i=1 X∗
i is defined as: ‖(x∗1, x∗1, . . . , x∗m)‖∞ =

max
1≤i≤m

‖x∗i ‖ for any (x∗1, x
∗
2, . . . , x

∗
m) ∈ ∏m

i=1 X∗
i . Consequently, the closed unit

ball in
∏m

i=1 X∗
i is the Cartesian product

∏m
i=1 BX∗

i
defined by

∏m
i=1 BX∗

i
=

BX∗
1
×. . .×BX∗

m
. Given two Banach spaces X,Y , we use L(X; Y ) to denote the

Banach space of all continuous linear operators from X to Y . For F : X → Y
and x ∈ X, we say that F is (Gatéaux) differentiable at x with derivative
∇F (x) ∈ L(X; Y ) if

lim
t↓0

F (x + th)− F (x)− 〈∇F (x), th〉
t

= 0 ∀ h ∈ X.

If X =
m∏

i=1

Xi, we use ∇iF (x) to denote the ith partial derivative of F at x

which is defined to be an element of L(Xi; Y ) such that the following holds:

lim
t→0

F (x + thi)− F (x)− 〈∇iF (x), thi〉
t

= 0 ∀ hi ∈ Xi, (4)

where hi is the element in
m∏

i=1

Xi defined by hi = (t1, t2, . . . , tm) with ti = hi

and tj = 0 for all j 6= i. Thus, if F is differentiable at x then 〈∇iF (x), hi〉 =
〈∇F (x), hi〉, ∀ hi ∈ Xi. Consequently, we have

m∑

i=1

〈∇iF (x), hi〉 = 〈∇F (x), (h1, . . . , hm)〉, for all (h1, . . . , hm) ∈
m∏

i=1

Xi. (5)

We say that F : X → Y admits a strict derivative at x, an element of L(X; Y ),
denoted by DsF (x), provided that the following holds:

lim
x′→x
t↓0

F (x′ + th)− F (x′)− 〈DsF (x), th〉
t

= 0, ∀ h ∈ X

and provided that the convergence is uniform for h in compact sets. From
the definition, it is clear that if F is strictly differentiable at x then F is
differentiable at x and ∇F (x) = DsF (x). We recall that, if F is strictly
differentiable at x, then F is Lipschitz near x (cf. [6, Proposition 2.2.1]). In
what follows we denote by X a class of some Banach spaces such that

∏m
i=1 Xi ∈

X for any Xi ∈ X (i = 1, . . . , m), for instance, the class of all smooth Banach
spaces, the class of all reflexive Banach spaces, or the class of all Asplund
spaces. For X in X , Γ(X) denotes the set of all lower semicontinuous functions
from X to R ∪ {+∞}. We consider an abstract subdifferential ∂a associated
with the pair {X , Γ} as a mapping which associates to any X in X , f ∈ Γ(X),
x ∈ X a subset ∂af(x) of X∗ such that it satisfies the following properties
(P1)-(P7):
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(P1) Let X ∈ X . If f ∈ Γ(X) is convex and x ∈ dom(f), then ∂af(x) coincides
with the subdifferential ∂f(x) of f at x in convex analysis.

(P2) Let X ∈ X and x ∈ X. Then ∂af(x) = ∂ag(x) for any f, g ∈ Γ(X) if they
coincide near x.

(P3) Let Xi ∈ X (i = 1, 2, . . . ,m) and X =
∏m

i=1 Xi. If f ∈ Γ(X) is given by

f(x) =
m∑

i=1

fi(xi) ∀ x = (x1, . . . , xm) ∈ X,

where each fi ∈ Γ(Xi) (i = 1, 2, . . . ,m), then ∂af(x) ⊆ ∂af1(x1) × . . . ×
∂afm(xm) for all x ∈ X.

(P4) Let X, Y ∈ X . If F : X → Y is strictly differentiable, then ∂a‖F (·)‖(x) ⊆
{y∗ ◦ ∇F (x) : y∗ ∈ ∂a‖ · ‖(F (x))}.

(P5) Let X ∈ X . For any closed set A of X, it holds that ∂ad(x,A) ⊆ Na(x, A)
for all x ∈ A where Na(x,A) denotes the abstract normal cone of A at x
and is defined by Na(x,A) = ∅ if x /∈ A and

Na(x,A) = ∂aδA(x) if x ∈ A. (6)

(P6) Let X ∈ X . If f ∈ Γ(X) and f attains a global minimum at x ∈ dom(f),
then we have 0 ∈ ∂af(x).

(P7) (Fuzzy sum rule) Let X ∈ X . Let f1, f2 ∈ Γ(X), x ∈ dom(f1) ∩ dom(f2)
and x∗ ∈ ∂a(f1 + f2)(x). If f1 or f2 is locally Lipschitz near x then for any
ε > 0 there exists x1, x2 ∈ B(x, ε) such that |fi(xi) − fi(x)| < ε (i = 1, 2)
and x∗ ∈ ∂af(x1) + ∂af2(x2) + εBX∗ .

Remark 2.1 Let X, Y ∈ X and F : X → Y be strictly differentiable. From
(P1) and [23, Corollary 2.4.16], we know that for any y ∈ Y ,

∂a‖ · ‖(y) = ∂‖ · ‖(y) = {y∗ ∈ BY ∗ : 〈y∗, y〉 = ‖y‖}. (7)

Thus it follows from (P4) that

∂a‖F (·)‖(x) ⊆ {y∗ ◦ ∇F (x) : y∗ ∈ BY ∗ , 〈y∗, F (x)〉 = ‖F (x)‖}. (8)

(If F (x) 6= 0, then the closed unit ball BY ∗ in (8) can be replaced by the unit
sphere SY ∗.)

Remark 2.2 Let X ∈ X . Let f be a locally Lipschitz function on X and
A be a closed subset of X. Let x ∈ domf ∩ A and let x∗ ∈ ∂a(f + δA)(x).
By (6) and (P7), we know that for any ε > 0 there exists x1 ∈ B(x, ε),
x2 ∈ A ∩ B(x, ε) such that |f(x1) − f(x)| < ε, x∗1 ∈ ∂af(x1), x∗2 ∈ Na(x2, A)
and x∗ − (x∗1 + x∗2) ∈ εBX∗.

Remark 2.3 Let Xi ∈ X and let Ai be a closed subset of Xi (i = 1, 2, . . . ,m).
By (2), (3), (6) and property (P3) we know that for any x = (x1, . . . , xm) ∈
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∏m
i=1 Xi

∂ad(·,
m∏

i=1

Ai)(x) ⊆
m∏

i=1

∂ad(·, Ai)(xi) and Na(x,
m∏

i=1

Ai) ⊆
m∏

i=1

Na(xi, Ai). (9)

Remark 2.4 Let ρ > 0 and X ∈ X . Let A be a closed subset of X and x ∈ A.
For any x ∈ A∩BX(x, ρ), it is easy to verify that δA(·) = δA∩BX(x,ρ)(·) near x

and hence it follows from (P2), (6) that Na(x,A) = Na(x,A ∩BX(x, ρ)).

Remark 2.5 Let X ∈ X and let A be a closed subset of X with x ∈ A.
If Na(x,A) 6= {0} then x ∈ bdA. Indeed, if x ∈ intA, then δA(·) = 0 on
a neighborhood of x. Thus properties (P1) and (P2) imply that Na(x,A) =
∂aδA(x) = {0}.

Remark 2.6 Let X ∈ X and let A be a closed subset of X. For any x ∈ A,
it is easy to verify that x is a minimum point of d(·, A) hence it follows from
(P6) that 0 ∈ ∂ad(·, A)(x).

An abstract subdifferential ∂a is said to be complete if the following additional
conditions are satisfied:

(P4+) Let X, Y, Z ∈ X . If G : X → Y is locally Lipschitz and F : Y → Z is
strictly differentiable, then ∂a(G ◦ F )(x) ⊆ {y∗ ◦ ∇F (x) : y∗ ∈ ∂aG(F (x))}.

(P7+) (Exact sum rule) Let X ∈ X and let f1, f2 ∈ Γ(X), x ∈ dom(f1)∩dom(f2). If
f1 and f2 are both locally Lipschitz, then ∂a(f1+f2)(x) ⊆ ∂af1(x)+∂af2(x).

(P8) Let X ∈ X and let f ∈ Γ(X), x ∈ X and α > 0. Then ∂a(αf)(x) = α∂af(x).
(P9) Let X ∈ X and x ∈ X. Suppose that f ∈ Γ(X) is locally Lipschitz near

x. Then for any nets (generalized sequences) {xn}, {x∗n} such that xn→x,
x∗n ∈ ∂af(xn) and x∗n →w∗ x∗, we have x∗ ∈ ∂af(x), where →w∗ denotes the
convergence with respect to the weak∗ topology.

For example, consider the following cases:
(C1) X is the class of all Banach spaces and ∂a is the Clarke-Rockafellar
subdifferential ∂c;
(C2) X is the class of all β-smooth Banach spaces and ∂a is the corresponding
viscosity subdifferential ∂β;
(C3) X is the class of all Asplund spaces and ∂a is the limiting subdifferential
∂L;
(C4) X is the class of all weakly compact generated Asplund spaces and ∂a is
the limiting subdifferential ∂L.
(C5) X is the class of all Asplund spaces and ∂a is the Fréchet subdifferential
∂F .
It is known that ∂a is an abstract subdifferential in each of the above 5 cases,
and it is complete in each of the cases (C1) and (C4) (cf. [4,6,14,17]).
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3 Fuzzy Results in Banach Spaces

3.1 Outer ε-minimizers and separation

In this section, we study (MP) and (IP) defined as in the introduction. We
begin with the following definition.

Definition 3.1 Let X, Y ∈ X . Let F be a mapping from X to Y and let
A be a closed subset of X. Consider the minimization problem (MP) and
the inclusion problem (IP). We say that x ∈ A is an ε-minimizer of (MP)
provided that ε > 0 and

‖F (x)‖ < d(0, F (A)) + ε2. (10)

Moreover, x is called an outer ε-minimizer of (MP) if it is an ε-minimizer of
(MP) and

0 /∈ F (A ∩BX(x, ε)), (11)

(that is, each point in BX(x, ε) is not a solution of (IP)).

Our analysis is based on the following result providing a necessary condition
for outer ε-minimizers of (MP).

Theorem 3.2 Let X, Y ∈ X and let F : X → Y be a strictly differentiable
mapping. Suppose that x is an outer ε-minimizer of the minimization problem
(MP) for some ε > 0. Then the following assertions hold:
(i) There exists u ∈ A ∩BX(x, ε), v ∈ BX(x, ε) and y∗ ∈ SY ∗ such that

〈y∗, F (v)〉 = ‖F (v)‖ 6= 0, (12)

−y∗ ◦ ∇F (v) ∈ Na(u,A) + εBX∗ . (13)

(ii) Suppose the abstract subdifferential ∂a is complete and that F is Lipschitz
on X with rank L. Then there exists x ∈ A∩BX(x, ε) and y∗ ∈ SY ∗ such that
〈y∗, F (x)〉 = ‖F (x)‖ 6= 0 and

−y∗ ◦ ∇F (x) ∈ (L + ε)∂ad(·, A)(x) + εBX∗ (14)

(and hence (12) and (13) hold with u = v = x).

Proof. (i) By the given assumption, (10) and (11) hold. Define a lower semi-
continuous function f : X → [0,∞] by f(·) = δA∩BX(x,ε)(·) + ‖F (·)‖. Then it
follows from (10) that
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f(x) = ‖F (x)‖< d(0, F (A)) + ε2

= inf{‖F (x)‖ : x ∈ A}+ ε2

≤ inf{‖F (x)‖ : x ∈ A ∩BX(x, ε)}+ ε2

= inf
x∈X

f(x) + ε2.

Denoting α = [f(x) − inf
x∈X

f(x)]1/2, we have α < ε and f(x) = inf
x∈X

f(x) + α2.

Hence, by the Ekeland variational principle (cf. [23, Theorem 1.4.1]), there
exists a vector x ∈ A with

‖x− x‖ ≤ α (15)

such that x is a minimal point of the function g : X → [0,∞] defined by

g(·) = f(·) + α ‖ · −x‖
= δA∩BX(x,ε)(·) + ‖F (·)‖+ α ‖ · −x‖. (16)

Note that x ∈ B(x, ε) since α < ε and thanks to (15). It follows from (11)
that ‖F (x)‖ > 0 and so ‖F (·)‖ > 0 on B(x, η) for some η ∈ (0, ε− α). Hence,
by Remark 2.1, for any z ∈ B(x, η)

∂a‖F (·)‖(z) ⊆ {y∗ ◦ ∇F (z) : y∗ ∈ SY ∗ , 〈y∗, F (z)〉 = ‖F (z)‖}. (17)

Since B(x, η) ⊆ B(x, ε) (by (15) and the fact that α + η < ε), we also have
from (P2), (P5) and Remark 2.4 that for any z ∈ B(x, η),

∂aδA∩B(x,ε)(z) = ∂aδA(z) = Na(z, A). (18)

On the other hand, by (P6) and (P7) and Remark 2.2, there exists u, v, w ∈
B(x, η) with u ∈ A such that

0 ∈ ∂aδA∩BX(x,ε)(u) + ∂a‖F (·)‖(v) + ∂a(α ‖ · −x‖)(w) + ηBX∗ .

It follows from (17) and (18) that 0 = u∗ + y∗ ◦ ∇F (v) + w∗ + x∗ for some
u∗ ∈ Na(u, A), y∗ ∈ SY ∗ with 〈y∗, F (v)〉 = ‖F (v)‖, w∗ ∈ ∂a(α ‖ · −x‖))(w)
and x∗ ∈ ηBX∗ . By (P1) and (7), ‖w∗ + x∗‖ ≤ α + η < ε and so

−y∗ ◦ ∇F (v) = u∗ + w∗ + x∗ ∈ Na(u, A) + εBX∗ .

Thus (13) holds. Also, from the first relation in (17) and v ∈ B(x, η), we see
that (12) holds and so does the conclusion of (i).
(ii). We suppose ∂a is complete and that F is Lipschitz on X with rank L.
Recalling that α < ε and that x is a minimizer of g defined in (16), we have
‖F (x)‖ ≤ ‖F (·)‖ + α‖ · −x‖ ≤ ‖F (·)‖ + ε‖ · −x‖ on A ∩ B(x, ε). Noting
that ‖F (·)‖ + ε ‖ · −x‖ is Lipschitz on X with rank L + ε, it follows from
[6, Proposition 2.4.2] that the function h : X → [0, +∞] defined by h(·) :=
‖F (·)‖+ ε ‖ ·−x‖+(L+ ε)d(·, A∩BX(x, ε)) attains global minimum at x over
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X. Hence, noticing that F (x) 6= 0, by property (P6), (P7+), (P8) and Remark
2.1, we obtain

0 ∈ (L + ε)∂ad(·, A ∩BX(x, ε))(x) + y∗ ◦ ∇F (x) + ε ∂a(‖ · −x‖)(x)

for some y∗ ∈ SY ∗ satisfying 〈y∗, F (x)〉 = ‖F (x)‖ 6= 0. Thus we have −y∗ ◦
∇F (x) ∈ (L + ε)∂ad(·, A ∩ BX(x, ε))(x) + εBX∗ , because by (P1) we have
∂a(‖ · −x‖)(x) = ∂(‖ · −x‖)(x) ⊆ BX∗ . By (15) and α < ε, x is in the interior
of the ball BX(x, ε). This yields that ∂ad(·, A ∩ BX(x, ε))(x) = ∂ad(·, A)(x)
thanks to property (P2). Hence

−y∗ ◦ ∇F (x) ∈ (L + ε)∂ad(·, A)(x) + εBX∗ . (19)

This completes the proof. 2

Theorem 3.3 Let Xi ∈ X (i = 1, . . . , m) and Y ∈ X . Let X =
∏m

i=1 Xi

and F : X → Y be strictly differentiable. Let A :=
∏m

i=1 Ai where each Ai

is a closed subset of Xi and let x = (x1, . . . , xm) ∈ A. Suppose that x is an
outer ε-minimizer for the corresponding minimization problem (MP). Then
the following assertions hold:
(i) There exists y∗ ∈ SY ∗, u = (u1, . . . , um) ∈ A

⋂
B∏m

i=1
Xi

(x, ε) and v =

(v1, . . . , vm) ∈ B∏m

i=1
Xi

(x, ε) such that

〈y∗, F (v)〉 = ‖F (v)‖ 6= 0, (20)

−y∗ ◦ ∇iF (v) ∈ Na(ui, Ai) + εBX∗
i

(i = 1, . . . , m), (21)

where ∇iF denotes the ith partial derivative of F defined as in (4).
(ii) Suppose that the abstract subdifferential ∂a is complete and that F is Lips-
chitz on X with rank L. Then there exists x = (x1, . . . , xm) ∈ A∩B∏m

i=1
Xi

(x, ε)

and y∗ ∈ SY ∗ with 〈y∗, F (x)〉 = ‖F (x)‖ 6= 0 such that

−y∗ ◦ ∇iF (x) ∈ (L + ε)∂ad(·, Ai)(xi) + εBX∗
i
. (22)

Proof. (i). By Theorem 3.2(i), there exists y∗ ∈ SY ∗ , u = (u1, . . . , um) ∈
A ∩ B∏m

i=1
Xi

(x, ε) and v = (v1, . . . , vm) ∈ B∏m

i=1
Xi

(x, ε) such that (20) and

the following (23) hold:

−y∗ ◦ ∇F (v) ∈ Na(u,
m∏

i=1

Ai) + εBX∗ , (23)

By (3), (5), (9) and BX∗ =
∏m

i=1 BX∗
i

(23) implies that

(−y∗ ◦ ∇1F (v), . . . ,−y∗ ◦ ∇mF (v)) ∈
m∏

i=1

Na(ui, Ai) + ε
m∏

i=1

BX∗
i
.
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Thus (21) holds so does the conclusion of (i).
(ii). Assume that the abstract subdifferential ∂a is complete and that F is
Lipschitz on X with rank L. Then by Theorem 3.2(ii), there exists x =
(x1, . . . , xm) ∈ A ∩ B∏m

i=1
Xi

(x, ε) and y∗ ∈ SY ∗ with 〈y∗, F (x)〉 = ‖F (x)‖ 6= 0

such that the following (24) hold:

−y∗ ◦ ∇F (x) ∈ (L + ε)∂ad(·,
m∏

i=1

Ai)(x) + εBX∗ . (24)

Thus, (−y∗◦∇1F (x), . . . ,−y∗◦∇mF (x)) ∈ (L+ε)
∏m

i=1 ∂ad(·, Ai)(xi)+ε
∏m

i=1 BX∗
i

as in the proof of (i). Therefore (22) is seen to hold. 2

3.2 Approximate projection results in Banach spaces

This subsection is devoted to establish some approximate projection results.
The approximate projection results for a single closed set were first established
in [25,27]. Let X ∈ X and let Xm denote the product of m copies of X. Let
Y = X, w = (w1, . . . , wm) ∈ Xm and let F : Xm → X be defined by

F (x1, x2, . . . , xm) =
m∑

i=1

(xi − wi). (25)

Then F is affine and Lipschitz with rank 1. It is easy to verify that for any
x ∈ Xm, ∇F (x) is the linear map (h1, . . . , hm) 7→ ∑m

i=1 hi and ∇iF (x) is the
identity map I on X for all i. Moreover, we have F−1(0) = {(x1, . . . , xm) ∈
m∏

i=1

X :
m∑

i=1

xi =
m∑

i=1

wi}.

Theorem 3.4 Let X ∈ X and let A1, . . . , Am be closed subsets of X. Let
w ∈ X \ (

∑m
i=1 Ai), x = (x1, . . . , xm) ∈ ∏m

i=1 Ai and let ε > 0 be such that

‖w −
m∑

i=1

xi‖ < d(w,
m∑

i=1

Ai) + ε2. (26)

Then the following assertions hold:
(i) There exists ui ∈ Ai ∩BX(xi, ε) and x∗ ∈ X∗ with ‖x∗‖ = 1 such that

〈x∗, w −
m∑

i=1

ui〉 ≥ ‖w −
m∑

i=1

ui‖ − 4ε

and

x∗ ∈
m⋂

i=1

(
Na(ui, Ai) + εBX∗

)
. (27)
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(ii) If we further assume that ∂a is complete, then there exists xi ∈ Ai ∩
BX(xi, ε) and x∗ ∈ X∗ with ‖x∗‖ = 1 such that 〈x∗, w −

m∑

i=1

xi〉 = ‖w −
m∑

i=1

xi‖
and

x∗ ∈
m⋂

i=1

(
(1 + ε)∂ad(·, Ai)(xi) + εBX∗

)
.

Proof. (i). Let A =
∏m

i=1 Ai, wi = w/m (i = 1, . . . ,m) and let F be defined
by (25), that is

F (x1, . . . , xm) = (
m∑

i=1

xi)− w for all (x1, . . . , xm) ∈ Xm.

Then it is easily verified that d(0, F (A)) = d(w,
m∑

i=1

Ai). Consequently (26) can

be rewritten as

‖F (x)‖ < d(0, F (A)) + ε2. (28)

Moreover, one has

F−1(0) ∩
m∏

i=1

Ai = {(x1, . . . , xm) ∈
m∏

i=1

Ai :
m∑

i=1

xi = w} = ∅ (29)

thanks to the assumption that w /∈ ∑m
i=1 Ai. This implies that, for the present

F and A, the problem (IP) does not have any solution and so any ε-minimizer
of the problem (MP) is automatically an outer ε-minimizer. Hence x is an
outer ε-minimizer of the corresponding minimization problem (MP). Applying
Theorem 3.3(i) there exists y∗ ∈ SX∗ , u = (u1, . . . , um) ∈ (

∏m
i=1 Ai)∩BXm(x, ε)

and v = (v1, . . . , vm) ∈ BXm(x, ε) such that

〈y∗,
m∑

i=1

vi − w〉 = ‖w −
m∑

i=1

vi‖ (30)

and

−y∗ ∈ Na(ui, Ai) + εBX∗ (i = 1, . . . , m).

Thus (27) follows by taking x∗ = −y∗. Moreover, from (30), y∗ ∈ SX∗ and the
triangle inequality we see that
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〈x∗, w −
m∑

i=1

ui〉= 〈y∗,
m∑

i=1

ui − w〉

= 〈y∗,
m∑

i=1

vi − w〉+
m∑

i=1

〈y∗, ui − vi〉

= ‖w −
m∑

i=1

vi‖+
m∑

i=1

〈y∗, ui − vi〉

≥ ‖w −
m∑

i=1

ui‖ −
m∑

i=1

‖ui − vi‖+
m∑

i=1

〈y∗, ui − vi〉

≥ ‖w −
m∑

i=1

ui‖ − 2
m∑

i=1

‖ui − vi‖

≥‖w −
m∑

i=1

ui‖ − 2
m∑

i=1

(‖ui − xi‖+ ‖vi − xi‖)

≥‖w −
m∑

i=1

ui‖ − 4ε.

(ii). We further assume that ∂a is complete. Since F is Lipschitz on X with rank
1, by Theorem 3.3(ii) there exists x = (x1, . . . , xm) ∈ (

∏m
i=1 Ai) ∩ BXm(x, ε)

and y∗ ∈ SX∗ with 〈y∗, ∑m
i=1 xi − w〉 = ‖w −∑m

i=1 xi‖ such that

−y∗ ∈ (1 + ε)∂ad(·, A)(xi) + εBX∗ (i = 1, . . . , m).

Thus (ii) is shown by taking x∗ = −y∗. This completes the proof. 2

Corollary 3.1 ([27]) Let X ∈ X and let A be a closed subset of X. Let
w ∈ X \ A. Then for any ε ∈ (0, 1), there exists u ∈ bdA and x∗ ∈ X∗ with
‖x∗‖ = 1 such that 〈x∗, w − u〉 ≥ (1− ε)‖w − u‖ and

x∗ ∈ Na(u,A) + εBX∗ . (31)

Proof. Let ε ∈ (0, min{1, d(w,A)
4
}). Choose x ∈ A such that ‖w − x‖ <

d(w,A) + ε4. Applying Theorem 3.4(i) to the tuple {1, w, x, ε2} in place of
{m, w, x1, ε}, we obtain u ∈ A ∩ B(x, ε2) and x∗ ∈ X∗ with ‖x∗‖ = 1 such
that (31) and the following (32) hold

〈x∗, w − u〉 ≥ ‖w − u‖ − 4ε2. (32)

This together with our choice of ε give that

〈x∗, w − u〉≥ ‖w − u‖ − 4ε2

= (1− ε)‖w − u‖+ ε‖w − u‖ − 4ε2

≥ (1− ε)‖w − u‖+ εd(w, A)− 4ε2

≥ (1− ε)‖w − u‖.
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Finally, from (31) Na(u,A) 6= {0}, and hence Remark 2.5 implies that u ∈
bd(A). This completes the proof. 2

Corollary 3.2 Let X and {Ai}m
i=1 be as in Theorem 3.4. Let xi ∈ Ai be such

that
m∑

i=1

xi ∈ bd(
m∑

i=1

Ai). (33)

Then the following assertions hold:
(i) For any ε > 0 there exists xi ∈ Ai ∩ BX(xi, ε) and x∗ ∈ X∗ with ‖x∗‖ = 1
such that

x∗ ∈
m⋂

i=1

[Na(xi, Ai) + εBX∗ ]. (34)

(ii) If ∂a is assumed to be complete, then (34) can be strengthened to the
following form:

x∗ ∈
m⋂

i=1

[(1 + ε)∂ad(·, Ai)(xi) + εBX∗ ].

Proof. By (33), for any ε > 0 there exists w ∈ X such that w /∈ ∑m
i=1Ai and

‖w −∑m
i=1xi‖ < ε2. Then the conclusion follows by applying Theorem 3.4. 2

3.3 Separation results in Banach spaces

In this subsection, we consider another case when m ≥ 2, Y = Xm, Xi = X
and F : Xm → Xm is defined by

F (x1, . . . , xm) = (0, x2 − x1, x3 − x1, . . . , xm − x1) (35)

It is clear that F is continuous, linear (and hence strictly differentiable with
∇F (x) = F for each x). In addition, it can be verified that F is Lipschitz with
rank m− 1, that is

‖F (x)− F (x′)‖ ≤ (m− 1)‖x− x′‖ for all x, x′ ∈ Xm. (36)

Moreover, it is routine to verfity that

m∑

i=1

∇iF (x) = 0. (37)

Thus by (5) we have for each y∗ ∈ (Xm)∗ that
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〈y∗ ◦ F, x〉 = 〈y∗ ◦ ∇F (x), x〉=
m∑

i=1

〈y∗ ◦ ∇iF (x), xi〉

=
m∑

i=2

〈y∗ ◦ ∇iF (x), xi〉+ 〈y∗ ◦ (−
m∑

i=2

∇iF (x)), x1〉

=
m∑

i=2

(y∗ ◦ ∇iF (x))(xi − x1)

≤ ( max
2≤i≤m

‖y∗ ◦ ∇iF (x)‖) ·
m∑

i=2

‖xi − x1‖

≤ ( max
2≤i≤m

‖y∗ ◦ ∇iF (x)‖) ‖F (x)‖. (38)

Definition 3.5 ([26]) Let {Ai}i∈I be a collection of closed subsets of X for
some index set I. The non-intersection index for {Ai}i∈I is defined by

γ(Ai; I) := inf{∑
i∈I

‖xi − x1‖ : xi ∈ Ai}.

The following result is established in some special case such as when X is the
class of all Banach spaces and ∂a is the Clarke-Rockafellar subdifferential ∂c

(see [26]).

Theorem 3.6 Let X ∈ X and let I = {1, 2, . . . , m}. Let Ai (i ∈ I) be closed

subsets of X with
⋂

i∈I

Ai = ∅. Let x = (x1, . . . , xm) ∈
m∏

i=1

Ai and ε > 0 be such

that ∑

i∈I

‖xi − x1‖ < γ(Ai; I) + ε2. (39)

Then the following assertions hold:
(i) There exists ui ∈ Ai ∩BX(xi, ε) and x∗i ∈ X∗ such that

m∑

i=1

x∗i = 0,
m∑

i=1

‖x∗i ‖ = 1 (40)

and
x∗i ∈ Na(ui, Ai) + εBX∗

i
(i = 1, 2, . . . , m). (41)

(ii) Suppose the abstract subdifferential ∂a is complete. Then there exists xi ∈
Ai ∩BX(xi, ε), x∗i ∈ X∗, K ∈ [ m−1+ε

m(m−1)
,m− 1 + ε] satisfying (40) and

x∗i ∈ K∂ad(·, Ai)(xi) + εBX∗
i

(i = 1, 2, . . . , m). (42)

Proof. (i) Let F be defined by (35) and let A =
∏m

i=1 Ai. Then it is easy to ver-
ify that ‖F (x)‖ =

∑
i∈I ‖xi−x1‖ and that d(0, F (A)) = γ(Ai; I); consequently

(39) can be rewritten as

‖F (x)‖ < d(0, F (A)) + ε2. (43)
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Moreover, one can verify easily that

F−1(0) ∩
m∏

i=1

Ai = {(x, x, . . . , x) ∈ Xm : x ∈
m⋂

i=1

Ai} = ∅, (44)

thanks to the assumption
m⋂

i=1

Ai = ∅. By (43) and (44), it is easy to see that,

for the present F and A, x = (x1, x2 . . . , xm) is an outer ε-minimizer of the
minimization problem (MP). By Theorem 3.3(i), there exists y∗ ∈ (Xm)∗ with
‖y∗‖ = 1, u = (u1, u2, . . . , um) ∈ A ∩ ∏m

i=1 BXi
(x, ε), v = (v1, v2, . . . , vm) ∈∏m

i=1 BXi
(x, ε) such that

−y∗ ◦ ∇iF (v) ∈ Na(ui, Ai) + εBX∗
i
, (i = 1, 2, . . . ,m) (45)

〈y∗, F (v)〉 = ‖F (v)‖ 6= 0. (46)

On the other hand, by (38) (applied to v in place of x), we have

〈y∗, F (v)〉 ≤ max
2≤i≤m

‖y∗ ◦ ∇iF (v)‖ · ‖F (v)‖. (47)

Combining (46) and (47), we have
m∑

i=1

‖y∗◦∇iF (v)‖ ≥ max
2≤i≤m

‖y∗◦∇iF (v)‖ ≥ 1.

Let α =
m∑

i=1

‖y∗◦∇iF (v)‖ and x∗i = −y∗◦∇iF (v)/α. Then α ≥ 1 and
m∑

i=1

‖x∗i ‖ =

1. Moreover, by (37) we have
m∑

i=1

y∗ ◦∇iF (v) = 0, and so
m∑

i=1

x∗i = 0. Thus (40)

holds. Since α ≥ 1, (45) implies that x∗i ∈ Na(ui, Ai) + εBX∗
i

(i = 1, 2, . . . , m).
Thus (41) holds and the proof of (i) is completed.
(ii). Suppose that ∂a is complete. By Theorem 3.3(ii) and (36), there exists
x = (x1, . . . , xm) ∈ A ∩B∏m

i=1
Xi

(x, ε) and y∗ ∈ SY ∗ such that

〈y∗, F (x)〉 = ‖F (x)‖ 6= 0 (48)

and −y∗ ◦ ∇iF (x) ∈ (m− 1 + ε) ∂ad(·, Ai)(xi) + εBX∗
i
. Using (48) in place of

(46), we can show as before that β :=
∑m

i=1 ‖y∗ ◦ ∇iF (x)‖ ≥ 1. In addition,
since ‖y∗‖ = 1 and F is Lipschitz with rank m−1, we have β ≤ m(m−1). Let
x∗i = −y∗ ◦∇iF (x)/β and K := m−1+ε

β
. Then we have K ∈ [ m−1+ε

m(m−1)
,m−1+ ε].

Moreover (40) and the following (49) hold

x∗i ∈ K∂adAi
(x) +

ε

β
BX∗

i
⊆ K∂adAi

(x) + εBX∗
i
. (49)

This completes the proof. 2

As a consequence, we present the following corollary. Part (i) of it is known
as the extended extremal principle (see Mordukhovich et al. in [19] in the
special case when X is the class of all Asplund spaces and ∂a is the Fréchet
subdifferential). To begin with, we recall the definition of extremal point.
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Definition 3.7 Let X ∈ X and m ≥ 2. Let Si : Mi → 2X , (i = 1, 2, ...m)
denote m multifunctions from metric spaces (Mi, di) into X. We say that
x ∈ X is an extremal point of the system (S1, S2, . . . , Sm) at (s1, s2, . . . , sm),
provided that x ∈ S1(s1) ∩ S2(s2) . . . ∩ Sm(sm) and that there exists ρ > 0
such that for any ε > 0 there exists (s1, s2, . . . , sm) ∈ M1 × . . . × Mm with
di(si, si) ≤ ε and d(x, Si(si)) ≤ ε such that

B(x, ρ) ∩ (
m⋂

i=1

Si(si)) = ∅.

Corollary 3.3 Let (s1, . . . , sm) ∈ ∏m
i=1Mi and let x be an extremal point of

the system (S1, . . . , Sm) at (s1, . . . , sm). Suppose that each Si is closed-valued
near si. Then the following assertions hold:
(i) For any ε > 0 there exists si ∈ Mi with di(si, si) ≤ ε, xi ∈ Si(si)∩BX(x, ε)
and x∗i ∈ X∗ such that

x∗i ∈ Na(xi, Si(si)) + εBX∗
i
, (50)

m∑

i=1

x∗i = 0 and
m∑

i=1

‖x∗i ‖ = 1. (51)

(ii) Suppose that abstract subdifferential ∂a is complete. Then (50) can be
strengthened to the following form: there exists K ∈ [ 1

m
,m] such that

x∗i ∈ K∂ad(·, Si(si))(xi) + εBX∗
i
.

Proof. (i). Let I = {1, . . . , m} and take ρ > 0 satisfying the properties stated
in Definition 3.7. By the assumption and considering smaller ρ if necessary, we
can assume that each Si(s) is closed whenever di(s, si) ≤ ρ (i = 1, 2, . . . , m).
Take ε such that 0 < ε < min{ρ, 1}. Then there exists a corresponding
(s1, s2, . . . , sm) ∈ M1 ×M2 . . .×Mm with

di(si, si) <
ε2

8m2
< ε and d(x, Si(si)) <

ε2

8m2
(52)

such that B(x, ρ) ∩ (
⋂m

i=1 Si(si)) = ∅. Thus letting

Ai := Si(si) ∩B(x, ρ). (53)

we have
⋂m

i=1 Ai = ∅. Moreover, by our choice of ρ and ε, it is easy to check that
each Ai is closed. By (52), one can choose x̂i ∈ Si(si) such that ‖x̂i−x‖ < ε2

8m2 .

Since ε < min{1, ρ}, it follows that x̂i ∈ Ai and
∑

i∈I

‖x̂i − x̂1‖ ≤
∑

i∈I

‖x̂i − x‖+

m‖x̂1−x‖ < ε2/4. Therefore we obtain
∑

i∈I

‖x̂i−x̂1‖ < γ(Ai; I)+ε2/4. Applying

Theorem 3.6(i) to the tuple ({x̂i}, {Ai}, ε/2) in place of {{xi}, {Ai}, ε}, there
exists xi ∈ Ai ∩ BXi

(x̂i, ε/2) and x∗i ∈ X∗ with x∗i ∈ Na(xi, Ai) + ε
2
BX∗

i
such
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that
m∑

i=1

x∗i = 0 and
m∑

i=1

‖x∗i ‖ = 1. In particular, (51) is satisfied. To finish the

proof of (i), it remains to verify that

‖xi − x‖ ≤ ε and Na(xi, Ai) = Na(xi, Si(si)). (54)

By the triangle inequality and our choice of ε, we obtain that for each i

‖xi − x‖ ≤ ‖xi − x̂i‖+ ‖x̂i − x‖ < ε < ρ.

It follows from (53) and Remark 2.4 that (54) holds as required.
(ii). Suppose that ∂a is complete. Applying Theorem 3.6(ii) to the tuple
{{x̂i}, {Ai}, ε/2} in place of {{xi}, {Ai}, ε}, there exists K ∈ [ m−1+ε

m(m−1)
,m −

1 + ε] ⊆ [ 1
m

,m], xi ∈ Ai ∩ BXi
(x̂i, ε/2) and x∗i ∈ X∗ such that (51) holds

and x∗i ∈ K∂ad(·, Ai)(xi) + ε
2
BX∗

i
. Similar to the proof of part (i), one can

show that ‖xi − x‖ < ε < ρ and hence that ∂ad(·, Ai)(xi) = ∂ad(·, Si(si))(xi).
Therefore the tuple ({xi}, {x∗i }, {si}) has the desired properties stated in (ii).
2

If X is reflexive and each Ai is weakly closed, then the preceding theorem can
be extended to the case involving infinitely many sets.

Theorem 3.8 Let X ∈ X and suppose that X is reflexive. Let J be an ar-
bitrary index set and {Ai : i ∈ J} be a family of weakly closed subsets of X
with empty intersection. Let {xi : i ∈ J} be elements in X such that xi ∈ Ai

(i ∈ J) and ∑

i∈J

‖xi − x1‖ < γ(Ai; J) + ε2 < ∞. (55)

where ε is a positive constant. Then there exists xi ∈ Ai ∩ BX(xi, ε) and
x∗i ∈ X∗ such that

x∗i ∈ Na(xi, Ai) + εBX∗
i
, (i ∈ J) (56)

∑

i∈J

x∗i = 0 and
∑

i∈J

‖x∗i ‖ = 1. (57)

Proof. Fix ρ ∈ (ε,∞) and define Pi := Ai ∩ BX(xi, ρ) (i ∈ J). Since X is
reflexive and Pi is weakly closed and bounded, Pi is weakly compact in X for
each i ∈ J . Since

⋂
i∈JAi = ∅, ⋂

i∈JPi = ∅ and it follows that
⋂

i∈IPi = ∅ for
some finite subset I of J . Note that

γ(Ai; I) +
∑

i∈J\I
‖xi − x1‖ ≥ γ(Ai; J).

It follows from (55) and Pi ⊆ Ai (i ∈ J) that
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∑

i∈J

‖xi − x1‖=
∑

i∈I

‖xi − x1‖ −
∑

i∈J\I
‖xi − x1‖

< γ(Ai; J) + ε2 − ∑

i∈J\I
‖xi − x1‖

≤ γ(Ai; I) + ε2

≤ γ(Pi; I) + ε2. (58)

Applying Theorem 3.6(i) to {Pi}i∈I in place of {Ai}i∈I , there exists xi ∈
Pi ∩ BX(xi, ε) and x∗i ∈ X∗ with x∗i ∈ Na(xi, Pi) + εBX∗

i
(i ∈ I) such that∑

i∈Ix
∗
i = 0 and

∑
i∈I‖x∗i ‖ = 1. Moreover, since ε < ρ, xi is in the interior of

BXi
(xi, ρ) and so Na(xi, Pi) = Na(xi, Ai) by Remark 2.4. Thus (56) and (57)

are satisfied if we further define, for i ∈ J\I, xi = xi and x∗i = 0. 2

3.4 Extension of the Bishop-Phelps Theorem

The famous Bishop-Phelps Theorem (cf. [20]) can be stated as follows: If A is
a closed convex subset of a Banach space X, then the support points of A are
dense in bdA and the support functionals of A are dense in the barrier cone
barr(A) of A, where barr(A) is defined by

barr(A) = {x∗ ∈ X∗ : sup
a∈A

〈x∗, a〉 < +∞}. (59)

Note that x ∈ A is a support point of A with a support functional x∗ if
and only if x∗ ∈ N(x, A)\{0} where N(x, A) denotes the (convex) normal
cone of A at x. The following theorem 3.10 can be regarded as a nonconvex
extension of the Bishop-Phelps Theorem and is to be established via a lemma
of indepentdent interest. Recall that, given a proper lower semicontinuous
function f : X → R ∪ {+∞}, the conjugate function of f is defined by

f ∗(x∗) = sup
x∈X

{〈x∗, x〉 − f(x)}.

Lemma 3.9 Let X ∈ X and let f : X → R ∪ {+∞} be a proper lower
semicontinuous function. Then the following assertions hold:

(i) dom(∂af) is dense in dom(f).
(ii) R(∂af) is dense in dom(f ∗) where R(∂af) :=

⋃
x∈X ∂af(x).

Proof. (i). Let x ∈ domf . By the lower semicontinuity of f , there exists η > 0
such that f is bounded below on B(x, η). Consider any ε ∈ (0, η). For each n ∈
N, define a function gn : X → R∪{+∞} by gn(·) = f(·)+δB(x,η)(·)+n‖·−x‖.
Each gn is also lower semicontinuous and bounded below. Choose xn ∈ X such
that

gn(xn) < inf
x∈X

gn(x) + ε2/4.
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By the Ekeland variational principle, there exists xn ∈ B(x, η) with ‖xn −
xn‖ ≤ ε/2 such that gn(·) + (ε/2)‖ · −xn‖ attains its minimum at xn, i.e.

gn(xn) ≤ gn(a) + (ε/2)‖a− xn‖ for all a ∈ X. (60)

We claim that
lim inf
n→∞ ‖xn − x‖ = 0. (61)

Granting this there then exists some n0 such that xn0 ∈ B(x, ε/2) ⊆ B(x, η).
Hence (60) and the definition of gn0 imply that xn0 is a local minimizer of
f(·) + n0‖ · −x‖ + (ε/2)‖ · −xn0‖. It follows from (P2), (P6) and (P7) that
there exists y1, y2, y3 ∈ B(xn0 , ε/2) such that 0 ∈ ∂af(y1)+∂a(n0‖ ·−x‖)(y2)+
∂a(

ε
2
‖·−xn0‖)(y3)+

ε
2
BX∗ . In particular, we have y1 ∈ dom(∂af)∩B(xn0 , ε/2) ⊆

dom(∂af) ∩ B(x, ε) and hence (i) holds. Now we turn to the proof of (61).
Suppose on the contrary that there exists α > 0 such that

‖xn − x‖ ≥ α for all n ∈ N. (62)

Substituting a = x in (60) and taking into account of the definition of gn, we
obtain

f(xn) + n‖xn − x‖ ≤ f(x) + (ε/2)‖x− xn‖ for all n ∈ N.

This together with (62) yield that

f(xn) ≤ f(x)− (n− ε/2)‖x− xn‖ ≤ f(x)− (n− ε/2)α for all n ∈ N.

In particular, we have f(xn) → −∞ as n → ∞. This is impossible since
xn ∈ B(x, η) and f is bounded below on B(x, η). Thus (61) holds.
(ii). Let ε > 0 and x∗ ∈ dom(f ∗). By the definition of conjugate function, it
follows that supx∈X{〈x∗, x〉 − f(x)} < ∞. Define g by g(·) := −〈x∗, ·〉 + f(·).
It follows that g is lower semicontinuous and bounded below. Choose x0 ∈ X
such that g(x0) ≤ infa∈X g(a) + ε2/4. By the Ekeland variational principle,
there exists x1 ∈ B(x0, ε/2) such that x1 is a minimal point of h defined by
h(·) := g(·) + (ε/2)‖ · −x1‖. By (P1), (P6), (P7) and Remark 2.2, there exists
x2 ∈ B(x1, ε/2) and x3 ∈ B(x1, ε/2) such that 0 ∈ −x∗ + ∂af(x2) + ∂a(

ε
2
‖ ·

−x1‖)(x3) + ε
2
BX∗ . Hence from Remark 2.1, there exists y∗ ∈ ∂af(x2) such

that ‖x∗ − y∗‖ ≤ ε. Thus (ii) holds and this completes the proof. 2

Theorem 3.10 Let X ∈ X and let A be a nonempty proper closed subset of
X. Then the following assertions hold:

(i) The set P := {x ∈ bdA : Na(x,A) 6= {0}} is dense in bdA.
(ii) Let K :=

⋃
x∈P Na(x,A). Then K is dense in barr(A) i.e., for any x∗ ∈

barr(A) and ε > 0 there exists y∗ ∈ K such that ‖x∗ − y∗‖ ≤ ε.

Proof. (i). In view of Remark 2.5, the proof of (i) is immediate by applying
Corollary 3.2 with m = 2, A1 = A and A2 = {0}.
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(ii). Since A is a proper subset, bdA 6= ∅ and hence P 6= ∅ thanks to (i). Noting
that 0 ∈ Na(x, A) for all x ∈ A (since x is a minimizer of δA(·) for all x ∈ A and
thanks to (P6)), it follows that 0 ∈ K. Fix x∗ ∈ barr(A) and without loss of
generality, we may assume x∗ 6= 0. Consider the indicator function δA of A and
note that dom(δ∗A) = barr(A). Thus we have in particular that x∗ ∈ domδ∗A.
Hence, for any ε ∈ (0, ‖x∗‖), one can apply Lemma 3.9(ii) to δA in place of f
and we conclude that there exists x ∈ X and y∗ ∈ ∂aδA(x) = Na(x, A) such
that ‖x∗− y∗‖ ≤ ε. Since ε < ‖x∗‖, we have y∗ ∈ Na(x,A)\{0}. This together
with Remark 2.5 imply that x ∈ P and so y∗ ∈ K. This completes the proof.
2

Remark 3.11 The nonconvex Bishop-Phelps programme began from the sem-
inal paper [17,18] of Mordukhovich and Shao where they established Theorem
3.10(i) in Asplund spaces. In the Banach space setting, Theorem 3.10(i) is
known when ∂a is the Clarke-Rockafellar subdifferential ∂c (cf. [27]). To the
best of our knowledge, the result given in part (ii) of Theorem 3.10 is new even
for a restricted class X of (Banach or Asplund) spaces.

3.5 Separate Point Theorem in Banach Spaces

This subsection is devoted to establish a separate point theorem and related
results in Banach spaces.

Definition 3.12 Let X ∈ X and m ≥ 1. Let A1, · · · , Am be closed subsets of
X and let ε > 0. We say that x := (x1, . . . , xm) ∈ Xm is an ε-separable point of
the system {A1, . . . , Am} provided that Ai ∩ BX(xi, ε

2/m) 6= ∅ (i = 1, · · · ,m)

and
m∑

i=1

xi /∈
m∑

i=1

Ai.

Theorem 3.13 Let x ∈ Xm be an ε-separable point of the system {A1, . . . , Am}
for some ε > 0. Then the following assertions hold.
(i) There exists xi ∈ Ai ∩BX(x̄i, ε) and x∗ ∈ X∗ with ‖x∗‖ = 1 such that

x∗ ∈
m⋂

i=1

(Na(xi, Ai) + εBX∗). (63)

(ii) If we further assume that ∂a is complete, then (63) can be strengthened to
the following form:

x∗ ∈
m⋂

i=1

[(1 + ε)∂ad(·, Ai)(xi) + εBX∗ ].

Proof. (i). Let A :=
∏m

i=1 Ai and let F : Xm → X be defined by F (x1, . . . , xm) =∑m
i=1(xi − xi). Since x is a ε-separable point of the system {A1, . . . , Am}. We
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see that x is an outer ε-minimizer of the corresponding minimization problem
(MP). Applying Theorem 3.3(i) there exists y∗ ∈ SX∗ , x = (x1, . . . , xm) ∈
(
∏m

i=1 Ai) ∩BXm(x, ε) such that

−y∗ ∈ Na(xi, Ai) + εBX∗ (i = 1, . . . , m).

Thus (63) follows by taking x∗ = −y∗.
(ii). We further assume that ∂a is complete. Since F is Lipschitz on X with
rank 1. The conclusion follows immediately by applying Theorem 3.3(ii). 2

As a consequence, we present the following corollary. The part (i) of it was
proved by Zhu in [29] in the special case when X is the class of all β-smooth
Banach spaces and ∂a is the corresponding viscosity subdifferential. To begin
with we recall the following definition of separable points (cf. [29]) for set-
valued maps.

Definition 3.14 Let X ∈ X and m ≥ 1. Let Si : Mi → 2X (i = 1, ..., m) be
multifunctions from metric spaces Mi with metrics di into a Banach space X.
We say that (x1, . . . , xm) ∈ Xm is a separable point of the system (S1, S2, . . . , Sm)
at (s1, s2, . . . , sm) provided that (x1, . . . , xm) ∈ S1(s1)×S2(s2) . . .×Sm(sm) and
that there exists ρ > 0 with the following property: for any ε > 0 there exists
si ∈ Mi (i = 1, . . . , m) such that di(si, si) < ε, Si(si) ∩BX(xi, ε) 6= ∅ and

m∑

i=1

xi /∈
m∑

i=1

[Si(si) ∩BX(xi, ρ)].

Corollary 3.4 Let (s1, . . . , sm) ∈ ∏m
i=1Mi and let (x1, . . . , xm) ∈ Xm be an

separable point of the system (S1, S2, . . . , Sm) at (s1, s2, . . . , sm). Suppose that
each Si is closed-valued near si. Then the following assertions hold:
(i) For any ε > 0 there exists si ∈ BMi

(si, ε), xi ∈ Si(si) ∩ BX(xi, ε) and
x∗ ∈ X∗ with ‖x∗‖ = 1 such that

x∗ ∈
m⋂

i=1

[Na(xi, Si(si)) + εBX∗ ]. (64)

(ii) If we further assume that ∂a is complete, then (64) can be strengthened to
the following form:

x∗ ∈
m⋂

i=1

[(1 + ε)∂ad(·, Si(si))(xi) + εBX∗ ].

Proof. (i). Take ρ > 0 with the properties stated in Definition 3.14. By the
assumption and considering smaller ρ if necessary, we can assume that each
Si(s) is closed whenever di(s, si) ≤ ρ (i = 1, 2, . . . , m). Consider any ε such
that 0 < ε < min{ρ, 1}. Then there exists a corresponding (s1, s2, . . . , sm) ∈
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M1 × . . .×Mm with di(si, si) ≤ ε2

m
< ε such that

Si(si) ∩BX(xi,
ε2

m
) 6= ∅ and

m∑

i=1

xi /∈
m∑

i=1

[Si(si) ∩BX(xi, ρ)]. (65)

Define Ai := Si(si) ∩ BX(xi, ρ). We see that Ai is closed (by our choice of ε
and ρ) and x is an ε-separable point of the system {A1, . . . , Am}. Applying
Theorem 3.13(i) there exists xi ∈ Ai ∩ BXi

(xi, ε) and x∗ ∈ X∗ with ‖x∗‖ = 1

such that x∗ ∈
m⋂

i=1

[Na(xi, Ai) + εBX∗ ]. Moreover, since ‖xi−xi‖ < ε < ρ. This

and Remark 2.4 imply that Na(xi, Ai) = Na(xi, Si(si)). Thus (i) is seen to
hold.
(ii). We further assume that ∂a is complete. Applying Theorem 3.13(ii), there
exists xi ∈ Ai ∩BXi

(xi, ε) and x∗ ∈ X∗ with ‖x∗‖ = 1 such that

x∗ ∈
m⋂

i=1

[(1 + ε)∂ad(·, Ai)(xi) + εBX∗ ].

Similar to the proof of (i), one can show that ∂ad(·, Ai)(xi) = ∂ad(·, Si(si))(xi).
Thus the tuple ({xi}, {x∗i }, {si}) satisfies the conclusion of part (ii). This fin-
ishes the proof. 2

4 Sharper versions

4.1 Bishop-Phelps type

This section is devoted to give some sharper results of section 3 (but under
stronger assumptions). The first one is on a condition slightly stronger than
that of “sequentially normally compact” introduced by Mordukhovich et al.
(cf. [9,17]), while the second one is on a condition slightly weaker than that of
the concept “closedness of the multifunction Na(·, A)” (cf. [6, P54 corollary]).

Definition 4.1 Let X ∈ X and let A be a closed subset in X. We say that A
is ∂a-normally compact at some given point x ∈ A if the following implication
holds for any nets (generalized sequences) {xn}, {x∗n}:

xn
A→ x, x∗n ∈ Na(xn, A), x∗n →w∗ 0 ⇒ x∗n → 0.

Definition 4.2 Let X ∈ X and let A be a closed subset in X. We say that A
is sequentially ∂a-normally closed at some given point x ∈ A if the following
implication holds for any sequences {xn}, {x∗n}:

xn
A→ x, x∗n ∈ Na(xn, A), x∗n → x∗ ⇒ x∗ ∈ Na(x,A).
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Remark 4.3 It is known that A is sequentially ∂a-normally closed at any
point x ∈ A if A is convex.

For the remainder of this paper, we assume that the abstract sub-
differential ∂a is complete.

Lemma 4.4 Let X ∈ X . Let A1, . . . , Am be closed subsets in X and xi ∈ Ai

be such that
∑m

i=1xi ∈ bd(
∑m

i=1 Ai). Suppose that for some i0 ∈ {1, . . . , m},
Ai0 is ∂a-normally compact at xi0. Then there exists x∗ ∈ X∗\{0} such that

x∗ ∈
m⋂

i=1

∂ad(·, Ai)(xi).

Proof. Let {εk} be a sequence of positive real numbers such that εk → 0.
By Corollary 3.2, for each k, there exists xi

k ∈ Ai ∩ B(xi, εk), x∗k ∈ X∗ with

‖x∗k‖ = 1 such that x∗k ∈
⋂m

i=1

(
(1 + εk)∂ad(·, Ai)(x

i
k) + εkBX∗

)
. Thus there

exists ui∗
k ∈ (1 + εk)∂ad(·, Ai)(x

i
k), vi∗

k ∈ εkBX∗ such that x∗k = ui∗
k + vi∗

k (i =
1, . . . , m). By the Alaoglu theorem (and by passing to subnets if necessary),
we may assume that x∗k →w∗ x∗. Since vi∗

k → 0 (i = 1, . . . , m), this implies
that

ui∗
k →w∗ x∗ (i = 1, . . . ,m). (66)

Since ui∗
k ∈ (1 + εk)∂ad(·, Ai)(x

i
k) and xi

k → xi for each i, it follows from
properties (P9) that x∗ ∈ ⋂m

i=1 ∂ad(·, Ai)(xi). To finish the proof, it suffices to
show x∗ 6= 0. Suppose x∗ = 0. Then (66) implies in particular that ui0∗

k →w∗ 0.
Since ui0∗

k ∈ (1 + εk)∂ad(·, Ai0)(x
i0
k ) ⊆ Na(x

i0
k , Ai0) (by property (P5)), xi0

k ∈
Ai0 ∩B(xi0 , εk), εk → 0 and Ai0 is ∂a-normally compact at xi0 , it follows that
ui0∗

k → 0. However this is impossible since ‖ui0∗
k ‖ = ‖x∗k − vi0∗

k ‖ ≥ ‖x∗k‖ −
‖vi0∗

k ‖ ≥ 1− εk → 1 as k →∞. This completes the proof. 2

Theorem 4.5 Let X ∈ X . Let A be a nonempty proper closed subset of X.
Suppose that A is ∂a-normally compact at x for all x ∈ bdA. Then the follow-
ing assertions hold:

(i) P = bdA, where P := {x ∈ bdA : Na(x,A) 6= {0}}.
(ii) Suppose A is compact and sequentially ∂a-normally closed at any x ∈ bdA.

Then K = barr(A) = X∗, where K :=
⋃

x∈P Na(x,A) and barr(A) is defined
by (59).

Proof. (i) Fix an arbitrary x ∈ bdA. Since x+0 ∈ bd(A+{0}), one can apply
Lemma 4.4 to {A, {0}} in place of {A1, A2} and so there exists x∗ ∈ X∗\{0}
such that x∗ ∈ ∂ad(·, A)(x). Since x is an arbitrary element in bdA, this implies
that

bdA = {x ∈ bdA : ∂ad(·, A)(x) 6= {0}}.
Noting that {x ∈ bdA : ∂ad(·, A)(x) 6= {0}} ⊆ P (by property (P5) and
Remark 2.5) and P ⊆ bd(A), it follows that the conclusion of (i) holds.
(ii) Since A is compact, barr(A) = X∗ ⊇ K. In view of Theorem 3.10, it
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remains to show that K is closed. Take a sequence x∗n ∈ K such that x∗n → x∗.
By the definition of K, there exists xn ∈ P such that x∗n ∈ Na(xn, A). From
the compactness of P and part (i) of this theorem, we assume without lose
of generality that xn → x for some x ∈ bdA = P . This together with the
sequentially ∂a-normally closedness of A give that x∗ ∈ Na(x,A). Hence K is
closed and this completes the proof. 2

Below, we give some criteria ensuring the ∂a-normal compactness. Following
[2], we say that a closed subset A of X is compactly epi-Lipschitzian at x ∈ A
if there exists η > 0, a compact set K ⊆ X and open sets Ω, U respectively
containing x and 0 such that

A ∩ Ω + λU ⊆ A + λK ∀ λ ∈ (0, η).

Theorem 4.6 Let X ∈ X and let A be a closed subset of X. Consider the
following statements:
(i) The set A is ∂a-normally compact at x for all x ∈ A.
(ii) For any x ∈ A, there exists ρ > 0 and a compact subset K in X such that
for all x ∈ A ∩B(x, ρ)

Na(x,A) ⊆ {x∗ ∈ X∗ : ‖x∗‖ ≤ sup
k∈K

〈x∗, k〉}. (67)

(iii) A is a convex set with ri(A) 6= ∅ such that aff(A) is of finite codimension.
(iv) A is a convex set and there exists x ∈ A such that (A−x)◦ is weak∗ locally
compact, where (A− x)◦ = {x∗ ∈ X∗ : 〈x∗, a− x〉 ≤ 0. ∀ a ∈ A}.
(v) X is finite-dimensional.
(vi) A is a convex set with int(A) 6= ∅.
(vii) A is a polyhedron.
Then the following implications hold:

(vi) ⇒ (iii) ⇒ (ii) ⇒ (i)

⇑ ⇑
(vii) ⇒ (iv) (v)

Proof. (vi) ⇒ (iii) : It is easy to verify that aff(A) = X if int(A) 6= ∅. Thus
(vi) ⇒ (iii) holds.
(iii) ⇒ (ii) : Suppose (iii) holds. Then, by [2, Theorem 2.5], A is compactly
epi-Lipschitzian at x for any x ∈ A. Thus using [12, Proposition 3.7], we obtain
that for any x ∈ A, there exists ρ > 0, ε > 0 and a compact set K1 in X such
that for all x ∈ B(x, ρ) ∩ A

N(x,A) ⊆ {x∗ ∈ X∗ : ε‖x∗‖ ≤ sup
k∈K1

〈x∗, k〉}, (68)

where N(·, A) is the usual (convex) normal cone of A. Thus (67) holds with
K = K1/ε, thanks to (P1).
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(ii) ⇒ (i) : Let x ∈ A. Take ρ and K satisfying the corresponding properties
in (ii). Let {xn} ⊆ A and {x∗n} ⊆ X∗ be nets with x∗n ∈ Na(xn, A) such
that xn → x and x∗n →w∗ 0. We assume without loss of generality that xn ∈
A ∩ B(x, ρ) for all n. Then by our choice of ρ and K, one has that ‖x∗n‖ ≤
sup
k∈K

〈x∗n, k〉. Pick k1, . . . , km ∈ K such that K ⊆ ⋃m
i=1B(ki, 1/2). Then

‖x∗n‖≤ sup{〈x∗n, k〉 : k ∈
m⋃

i=1

B(ki, 1/2)}

≤ max
1≤i≤m

〈x∗n, ki〉+
1

2
‖x∗n‖.

It follows that ‖x∗n‖ ≤ 2 max
1≤i≤m

〈x∗n, ki〉 → 0. This means that A is ∂a-normally

compact at x.
(iv) ⇒ (iii) : This shows in [2, Theorem 2.5] (recall (1)).
(vii) ⇒ (iv) : Let A be a polyhedron and take the following form

A = {x : 〈a∗i , x〉 ≤ bi, i = 1, 2, . . . , m}.

It is clear that ri(A) 6= ∅. Moreover, for any x ∈ ri(A), let I(x) denote the
set of all active indices at x i.e., I(x) = {i ∈ {1, . . . , m} : 〈a∗i , x〉 = bi}.
Observing that (A−x)◦ = {0} for all x ∈ int(A), we may assume without loss
of generality that x ∈ bdA. Then by a standard result in convex analysis (cf.
[11, Lemma 2.1]) we obtain

(A− x)◦ = { ∑

i∈I(x)

λia∗i : λi ≥ 0}.

It follows that (A−x)◦ is a closed convex cone of finite dimension hence weak∗

locally compact. Thus (iv) holds.
(v) ⇒ (ii) : Since X is of finite dimension, then the corresponding dual space
X∗ is also of finite dimension. Thus for all x ∈ A ∩B(x, ρ)

Na(x,A) ⊆ X∗ = {x∗ ∈ X∗ : ‖x∗‖ ≤ sup
k∈BX

〈x∗, k〉}.

Thus (ii) holds as BX is compact by (v). This completes the proof. 2

4.2 Separation type

Using the preceding results, we now give the following sharper version of sep-
aration theorem type under some strengthened assumptions.

Theorem 4.7 Let X ∈ X . Let A1 be a closed convex subset of X with
ri(A1) 6= ∅ and let A2 be a closed subset of X. Suppose that affA1 is finite-
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codimensional and ri(A1)∩A2 = ∅. Let x ∈ A1∩A2. Then there exists x∗ ∈ X∗

with ‖x∗‖ = 1 such that

x∗ ∈ Na(x,A2) and 〈x∗, x〉 = inf
x∈A1

〈x∗, x〉. (69)

Proof. By the implication (iii) ⇒ (i) in Theorem 4.6, the given assumptions
ensure that A1 is ∂a-normally compact at each of its element. Let M1 =
R1, M2 = {0} and x0 ∈ ri(A1). We may assume without loss of generality
that x0 = 0 (replace A1, A2 by A1 − x0, A2 − x0 if necessary). Define the
multifunction Si : Mi → 2X (i = 1, 2) as follows: S1(t) = tA1 (∀ t ∈ R1) and
S2(0) = A2. Note that x ∈ S1(1) ∩ S2(0) and that S1(t) ⊆ ri(A1) for each
t ∈ [0, 1) (cf. [1, Lemma 3.1]). It follows from the assumption ri(A1) ∩A2 = ∅
that S1(t) ∩ S2(0) = ∅. Then x is an extremal point for (S1, S2) at (1, 0).
Applying m = 2, s1 = 1, s2 = 0 and ε = 1

n
in Corollary 3.3(ii), for any n ∈ N

there exists tn ∈ (1 − 1/n, 1 + 1/n), Kn ∈ [1
2
, 2], x1n ∈ S1(tn) ∩ BX(x, 1/n),

x2n ∈ A2 ∩ BX(x, 1/n) such that x∗1n ∈ Kn∂ad(·, S1(tn))(x1n) + 1
n
BX∗ , x∗2n ∈

Kn∂ad(·, A2)(x2n) + 1
n
BX∗ and

x∗1n + x∗2n = 0, ‖x∗1n‖+ ‖x∗2n‖ = 1. (70)

By the Alaoglu theorem and by passing to subnets if necessary, we may assume
that x∗2n →w∗ x∗ (hence x∗1n →w∗ −x∗) and Kn → K ∈ [1/2, 2]. This together
with x∗2n ∈ Kn∂ad(·, A2)(x2n) + 1

n
BX∗ , x2n → x and property (P5), (P9) give

that x∗ ∈ K∂ad(·, A2)(x) ⊆ Na(x, A2). On the other hand, since S1(tn) = tnA1

is a convex set, by property (P1) we have Na(x1n, S1(tn)) = N(x1n, S1(tn)) =
N(x1n/tn, A1), where N(·, A1) is the usual (convex) normal cone of A1. Since
x∗1n ∈ Kn∂ad(·, S1(tn))(x1n) + 1

n
BX∗ , this together with (P5) imply that

x∗1n ∈ N(x1n/tn, A1) +
1

n
BX∗ . (71)

Since x1n → x, tn → 1 and x∗1n →w∗ −x∗, it follows that −x∗ ∈ N(x,A1) =
{a∗ : 〈a∗, x− x〉 ≤ 0, ∀x ∈ A1}. Therefore 〈x∗, x〉 = inf

x∈A1

〈x∗, x〉. To finish the

proof, it remains to show that x∗ 6= 0. Suppose x∗ = 0. Then x∗1n →w∗ 0. By
(71) there exists x∗n ∈ N(x1n/tn, A1) such that

x∗1n ∈ x∗n +
1

n
BX∗ and x∗n →w∗ 0. (72)

This together with x1n/tn → x (since tn → 1 and x1n → x) imply that x∗n → 0
as A1 is ∂a-normally compact. Hence x∗1n → 0 by the first relation in (72).
However, this contradicts to (70) and completes the proof. 2

Using the preceding theorem, we now establish the following three interesting
corollaries (The first two of which require no proof).
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Corollary 4.1 Let X ∈ X . Let A1 be a closed convex subset of X with
int(A1) 6= ∅ and A2 be a closed subset of X. Suppose that int(A1) ∩ A2 = ∅.
Let x ∈ A1 ∩ A2. Then there exists x∗ ∈ X∗ with ‖x∗‖ = 1 such that (69)
holds.

Remark 4.8 This corollary was proved in [24, lemma 2.1] in the special case
when X is the class of all Banach spaces and ∂a is the Clarke-Rockafellar
subdifferential ∂c.

Corollary 4.2 Let X be a finite dimensional space in X . Let A1 be a closed
convex subset of X and let A2 be a closed subset of X. Suppose that ri(A1) ∩
A2 = ∅. Let x ∈ A1 ∩ A2. Then there exists x∗ ∈ X∗ with ‖x∗‖ = 1 such that
(69) holds.

Corollary 4.3 Let X ∈ X . Let A1 be a polyhedron in X and let A2 be a
closed subset of X. Let x ∈ A1∩A2. Suppose that ri(A1)∩A2 = ∅. Then there
exists x∗ ∈ X∗ with ‖x∗‖ = 1 such that (69) holds.

Proof. By the assumption and the implication (vi) ⇒ (iii) in Theorem 4.6, we
see that the conditions in Theorem 4.7 are fulfilled and hence the conclusion
follows by applying Theorem 4.7. 2

Finally we present a Dieudónne’s separation theorem type result in finite di-
mensional Banach spaces but applicable to possibly nonconvex sets. Following
[21], we define the horizon cone A∞ of a closed set A by A∞ = {v : ∃λk →
0, ak ∈ A such that λkak → v}. When A is convex, this definition coincides
with the usual recession cone in convex analysis (cf. [21, Theorem 3.6]).

Theorem 4.9 Let X be a finite-dimensional space in X . Let A1, A2 be two
closed subsets of X such that A1 ∩ A2 = ∅ and A∞

1 ∩ A∞
2 = {0}. Then there

exists x1 ∈ A1, x2 ∈ A2 and x∗ ∈ X∗ with ‖x∗‖ = 1 such that x∗ ∈ Na(x1, A1)∩
(−Na(x2, A2)) and

〈x∗, x2 − x1〉 = ‖x2 − x1‖ > 0. (73)

Proof. Define A = A1 − A2. Then 0 /∈ A. We prove that A is a closed subset
of X. Let x ∈ A, and let {xn} be a sequence in A such that xn → x where each
xn = x1

n − x2
n for some x1

n ∈ A1 and x2
n ∈ A2. We claim that {‖x1

n‖+ ‖x2
n‖} is

bounded. Granting this and since X is finite dimensional, it is easy to verify
that x ∈ A. Let us suppose on the contrary that the sequence {‖x1

n‖+‖x2
n‖} is

unbound, i.e., there exists a subsequence nk such that ‖x1
nk
‖+ ‖x2

nk
‖ → ∞ as

k → ∞. Noting that { x1
nk

‖x1
nk
‖+‖x2

nk
‖} and { x2

nk

‖x1
nk
‖+‖x2

nk
‖} are bounded sequences,

by passing to subsequence if necessary, it follows that

a1
k :=

x1
nk

‖x1
nk
‖+ ‖x2

nk
‖ → a1 ∈ A∞

1 and a2
k :=

x2
nk

‖x1
nk
‖+ ‖x2

nk
‖ → a2 ∈ A∞

2 .
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Since ‖a1
k‖+ ‖a2

k‖ = 1, this implies that

‖a1‖+ ‖a2‖ = 1. (74)

Moreover, since

0 = lim
k→∞

x

‖x1
nk
‖+ ‖x2

nk
‖ = lim

k→∞
x1

nk

‖x1
nk
‖+ ‖x2

nk
‖− lim

k→∞
x2

nk

‖x1
nk
‖+ ‖x2

nk
‖ = a1−a2,

we see that a1 = a2 ∈ A∞
1 ∩A∞

2 . This is not possible by (74) and the assumption
that A∞

1 ∩A∞
2 = {0}. This completes the proof that A is closed. Since A is finite

dimensional and 0 /∈ A, it follows that there exists x1 ∈ A1, x2 ∈ A2 such that
‖x1−x2‖ = d(0, A) > 0. Let {εk} be a sequence of positive real numbers such
that εk → 0. Applying Theorem 3.4(ii) to the tuple {2, 0, x1, −x2, A1, −A2}
in place of {m, w, x1, x2, A1, A2}, for each k ∈ N there exists xk

1 ∈ A1 ∩
BX(x1, εk), xk

2 ∈ A2 ∩BX(x2, εk), x∗k ∈ X∗ with ‖x∗k‖ = 1 such that

x∗k ∈
(
(1 + εk)∂ad(·, A1)(x

k
1) + εkBX∗

) ⋂ (
(1 + εk)∂ad(·,−A2)(−xk

2) + εkBX∗
)

(75)
and

〈x∗k, xk
2 − xk

1〉 = ‖xk
2 − xk

1‖. (76)

Since ‖x∗k‖ = 1, by passing to subsequence if necessary, we may assume that
x∗k → x∗ for some x∗ ∈ X∗ such that ‖x∗‖ = 1. Letting k → ∞ in (75)
and noting that ∂ad(·,−A2)(−xk

2) ⊆ −∂ad(·, A2)(x
k
2) (by applying (P4+) to

G = d(·, A2), F = −I and x = −xk
2 where I denotes the identity map from X

to X), it follows from (P9) and (P5) that

x∗ ∈ ∂ad(·, A1)(x1)
⋂−∂ad(·, A2)(x2) ⊆ Na(x1, A1) ∩ (−Na(x2, A2)). (77)

Finally, since x∗k → x∗, xk
i → xi (i = 1, 2), (73) follows by letting k → ∞ in

(76). This completes the proof. 2

Corollary 4.4 ([8]) Let X be a finite-dimensional space in X . Let A1, A2 be
two closed convex subsets of X such that A1 ∩ A2 = ∅ and A∞

1 ∩ A∞
2 = {0}.

Then there exists x∗ ∈ X∗ with ‖x∗‖ = 1 such that

sup
x∈A1

〈x∗, x〉 < inf
x∈A2

〈x∗, x〉.

Proof. From the preceding Theorem, there exists x1 ∈ A1, x2 ∈ A2 and
x∗ ∈ X∗ with ‖x∗‖ = 1 such that x∗ ∈ Na(x1, A1) ∩ (−Na(x2, A2)) and
〈x∗, x2 − x1〉 = ‖x2 − x1‖ > 0. Noting that Na(x,Ai) = N(x,Ai) (i = 1, 2)
where N(x,Ai) is the usual (convex) normal cone, it follows that

sup
x∈A1

〈x∗, x〉 = 〈x∗, x1〉 < 〈x∗, x2〉 = inf
x∈A2

〈x∗, x〉.

This completes the proof. 2
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