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Abstract. For an inequality system defined by a possibly infinite family of proper functions (not necessarily lower

semicontinuous), we introduce some new notions of constraint qualifications in terms of the epigraphs of the conjugates of

these functions. Under the new constraint qualifications, we obtain characterizations of those reverse-convex inequalities

which are consequence of the constrained system, and we provide necessary and/or sufficient conditions for a stable

Farkas lemma to hold. Similarly, we provide characterizations for constrained minimization problems to have the strong

or strong stable Lagrangian dualities. Several known results in the conic programming problem are extended and

improved.
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1. Introduction. Centered around the celebrated Farkas lemma and its extensions, we study in
this paper several (old and new) constraint qualifications for optimization problems of the following
type:

Minimize f(x),
s. t. ft(x) ≤ 0, t ∈ T,

x ∈ C,
(1.1)

where T is an arbitrary (possibly infinite) index set, C is a nonempty convex subset of a locally convex
(Hausdorff topological vector) space X and f, ft : X → R∪{+∞}, t ∈ T , are proper convex functions.
Throughout this paper, we assume that

∅ 6= A := {x ∈ C : ft(x) ≤ 0, ∀t ∈ T}. (1.2)

This problem has been studied extensively under various degrees of restrictions imposed on ft, t ∈ T
or on the underlying space and many problems in optimization and approximation theory such as
linear semi-infinite optimization and the best approximation with restricted ranges can be recast into
the form (1.1), see for example [8, 16, 17, 23, 24, 33, 35, 36, 38, 40, 41, 42]. Another important
and classical example of (1.1) is the following so-called conic programming problem, which recently
received much attention (cf. [2, 3, 5, 6, 9, 18, 28, 29, 30, 31, 32]),

Minimize f(x),
s. t. x ∈ C, g(x) ∈ −S, (1.3)
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2 CONSTRAINT QUALIFICATIONS FOR CONVEX INFINITE PROGRAMMING

where X, C and f are as in (1.1); S is a closed convex cone in a locally convex space Y , g : X →
Y ∪ {+∞} is a S-convex function.

Observe that the most works in the literature mentioned above were done under the assumptions
that for (1.1),

C is closed and f , ft, are lower semicontinuous (lsc) for all t ∈ T (1.4)

and that for (1.3),

C is closed, f is lsc and g is S-epi-closed (1.5)

(or some stronger continuity assumptions). For example, f, ft are continuous in [8] and lsc in [16, 17,
23], f, g are continuous in [9, 18, 28, 29, 30, 32], f is lsc, g is continuous in [31] and g is S-epi-closed in
[5, 6]. Very recently, an optimality condition for (1.1) was established in [41] for the case when ft are
not necessary lsc, and a Lagrangian duality result via the interiority technique for (1.3) was established
in [3] without any continuity assumption on f and g. Indeed, in the mathematical programming, many
of the problems naturally involve non-convex and non-continuous functions. For example, in the DC
infinite programming (see for example [7, 19, 20, 21, 22] and references therein), the objective functions
and constraint functions are, in general, assumed to be DC functions (such a function is, by definition,
a difference of two convex functions and so can be neither convex nor lsc). Another important example
is the convex composite problem which has been studied extensively by many researchers (see [14,
39, 46, 47, 52] and references therein). In particular, Rockafellar [46] gave many interesting examples
showing that a wide spectrum of problems can be cast in terms of convex-composite functions (which
are, in general, non-convex and non-continuous). Another “nonclosed” situation naturally arises when
one considers the best restricted range approximation in complex valued continuous function space
C(Q), which has been studied extensively (see for example [34, 35, 37, 48, 49] and reference therein),
consisting of finding a best approximation to f ∈ C(Q) from PΩ = {p ∈ P : p(t) ∈ Ωt for all t ∈ Q},
whereQ is a compact Hausdorff space, P is a finite-dimensional subspace of C(Q) and Ω = {Ωt : t ∈ Q}
is a system of nonempty convex set in the complex plane C. As done in [34, 35, 37, 48, 49], each Ωt
usually is expressed as a level set of some convex function, which is not lsc if Ωt is not closed. Thus,
our approach can cover the case where Ωt is not necessarily closed.

Our interest for the above optimization problems in the present paper is focused on two aspects:
one is about the extended Farkas lemma and the other is about the strong Lagrangian duality. Farkas-
type results for convex systems are fundamental in convex optimization and in other fields such as
game theory, set containment problems etc. The literature on these areas is very rich (see, e.g., the
survey in [26]); here let us especially mention some recent papers [8, 16, 17, 24, 27, 42] regarding the
problem (1.1) and [18, 30, 31] regarding (1.3). Usually for the extended Farkas lemma for (1.1), one
seeks conditions ensuring the following equivalence:

[f(x) ≥ α, ∀x ∈ A]⇐⇒
[
∃t1, · · · , tm ∈ T and λt1 ≥ 0, · · · , λtm ≥ 0
s.t. f(x) +

∑m
i=1 λtifti(x) ≥ α, ∀x ∈ C.

]
(1.6)

We say that the family {f, δC ; ft : t ∈ T} satisfies the Farkas rule if (1.6) holds for each α ∈ R, and
that it satisfies the stable Farkas rule if the family {f + p, δC ; ft : t ∈ T} satisfies the Farkas rule for
each p ∈ X∗. To our knowledge, not many results are known to provide a complete characterization
for the Farkas rule (or the stable Farkas rule), except the works in [31] where, assuming in addition
that f is lsc and g is continuous on X, a complete characterization was established for the stable
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Farkas rule for the problem (1.3), that is the characterization for the following result of Farkas-type
lemma to hold: For each x∗ ∈ X∗ and each α ∈ R,

[−g(x) ∈ S ⇒ f(x) ≥ 〈x∗, x〉+ α]⇐⇒ (∃λ ∈ S⊕)(∀x ∈ X)f(x) + (λ ◦ g)(x) ≥ 〈x∗, x〉+ α. (1.7)

Their conditions are given in terms of the epigraphs of conjugate functions of f and λ ◦ g, λ ∈ S⊕,
where

S⊕ := {λ ∈ Y ∗ : 〈λ, y〉 ≥ 0, ∀y ∈ S}. (1.8)

Issues regarding the Lagrangian rules for the problems (1.1) and (1.3) are somewhat similar and most
of the results in the literature are under the assumption (1.4) or (1.5), and only concern with providing
sufficient conditions to ensure the (strong/strong stable ) Lagrangian duality to hold, see for example,
[5, 23, 31, 29].

Constraint qualifications involving epigraphs have been studied and extensively used by Jeyaku-
mar and his collaborators in [11, 12, 23, 28, 29, 30, 31], Boţ et al. [4, 5, 6, 9, 10], Dinh et al.
[16, 17, 19, 20, 21, 22], and Li et al. [40, 41]. Our main aims in the present paper is to use these
constraint qualifications (or their variations) to provide complete characterizations for the Farkas rule
and the stable Farkas rule, and for the (strong/strong stable ) Lagrangian duality. In general we
do not impose any topological assumption on C or on f, ft, that is C is not necessarily closed and
f, ft(t ∈ T ) are not necessarily lsc. In particular, even in the special case when (1.4) is satisfied, our
results provide improved versions of [17, Theorems 2 and 5] and that of [23, Theorem 4.1]. Moreover,
applications to the problem (1.3) are given: we not only extend and improve some recent known
results in [3, 5, 9, 18, 29, 31] but also provide new results as detailed in Section 6.

Although most of our considerations (e.g., Theorems 4.3-4.5, 5.1 and Theorems 6.5-6.8, etc.)
remain valid even if one drops the convexity assumptions of the involved sets/functions, we shall keep
these convexity assumptions throughout, for the sake of simplicity in presentation. Moreover, to avoid
the triviality in our study for (1.1), we always assume that

domf ∩A 6= ∅. (1.9)

The paper is organized as follows. The next section contains the necessary notations and prelim-
inary results. In Section 3, some new constraint qualifications are provided and several relationships
among them are given. The characterization of the extended Farkas lemma and that of the stable
extended Farkas lemma (with linear perturbations of the cost function f) are obtained in Section
4. In Section 5, we provide characterizations for minimization problems with constraints defined by
inequality systems to have the strong or strong stable Lagrangian dualities. Applications to the conic
programming problem are provided in Section 6.

2. Notations and preliminary results. The notations used in this paper are standard (cf.
[51]). In particular, we assume throughout the whole paper that X is a real locally convex space and
let X∗ denote the dual space of X. For x ∈ X and x∗ ∈ X∗, we write 〈x∗, x〉 for the value of x∗ at
x, that is, 〈x∗, x〉 := x∗(x). Let Z be a set in X. The interior (resp. closure, convex hull, convex
cone hull) of Z is denoted by intZ (resp. clZ, coZ, coneZ). The dual X∗ is endowed with the
weak∗-topology. Thus if W ⊆ X∗, then clW denotes the weak∗-closure of W . We shall adopt the
convention that coneZ = {0} when Z is an empty set.
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The positive polar cone Z⊕ and the negative polar cone Z	 are defined respectively by

Z⊕ := {x∗ ∈ X∗ : 〈x∗, z〉 ≥ 0 for all z ∈ Z}

and

Z	 := {x∗ ∈ X∗ : 〈x∗, z〉 ≤ 0 for all z ∈ Z}.

Following [5], we use R(T ) to denote the space of real tuples λ = (λt)t∈T with only finitely many
λt 6= 0, and let R(T )

+ denote the nonnegative cone in R(T ), that is

R(T )
+ := {(λt)t∈T ∈ R(T ) : λt ≥ 0 for each t ∈ T}.

The indicator function δZ and the support function σZ of the nonempty set Z are respectively defined
by

δZ(x) :=
{

0, x ∈ Z,
+∞, otherwise,

and

σZ(x∗) := sup
x∈Z
〈x∗, x〉 for each x∗ ∈ X∗.

Let f be a proper function defined on X. The effective domain, conjugate function and epigraph of f
are denoted by dom f , f∗ and epi f respectively; they are defined by

dom f := {x ∈ X : f(x) < +∞},

f∗(x∗) := sup{〈x∗, x〉 − f(x) : x ∈ X} for each x∗ ∈ X∗,

and

epi f := {(x, r) ∈ X × R : f(x) ≤ r}.

Then, the Young-Fenchel inequality below holds:

f(x) + f∗(x∗) ≥ 〈x∗, x〉 for each pair (x, x∗) ∈ X ×X∗.

It is well known and easy to verify that epi f∗ is weak∗-closed. In particular,

epi δ∗Z = epiσZ = Z	 × R+. (2.1)

The closure of f is denoted by clf , which is defined by

epi (clf) = cl(epi f).

Then (cf. [51, Theorems 2.3.1]),

f∗ = (cl f)∗. (2.2)

By [51, Theorem 2.3.4], if cl f is proper and convex, then the following equality holds:

f∗∗ = cl f. (2.3)
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Furthermore, if f, h are proper functions, then

epi f∗ + epih∗ ⊆ epi (f + h)∗ (2.4)

and

f ≤ h =⇒ f∗ ≥ h∗ ⇐⇒ epi f∗ ⊆ epih∗. (2.5)

Finally, we introduce the definition of infimal convolution functions. Given two proper functions
f, h : X → R ∪ {+∞}, the infimal convolution of f and h is defined by

f�h : X → R ∪ {±∞}, (f�h)(a) = inf
x∈X
{f(x) + h(a− x)},

which is said to be exact at some a ∈ X if there is an x ∈ X such that (f�h)(a) = f(x) + h(a− x).

The following lemma characterizes the epigraph of the conjugate of the sum of two functions.

Lemma 2.1. Let g, h : X → R ∪ {+∞} be proper convex functions such that dom g ∩ domh 6= ∅.

(i) If g and h are lsc, then

epi (g + h)∗ = cl (epi (g∗�h∗)) = cl (epi g∗ + epi h∗).

(ii) If g or h is continuous at some x0 ∈ dom g ∩ domh, then

(g + h)∗ = g∗�h∗, g∗�h∗ is exact at every p ∈ X∗ (2.6)

and

epi (g + h)∗ = epi g∗ + epi h∗. (2.7)

Proof. Part (i) is a simple consequence of the Rockafellar-Moreau theorem (cf. [45, 50]). For (ii),
one notes (by [51, Theorem 2.8.7]) that the given assumption implies that (2.6) holds and then (2.7)
follows from [10, Proposition 2.2].

3. New regularity conditions. As in [51], we use Λ(X) to denote the class of all proper convex
functions on X. For a convex set Z, we write

ΛZ(X) = {g ∈ Λ(X) : dom g ∩ Z 6= ∅}.

Note that functions in Λ(X) are not necessarily lsc. Unless explicitly stated otherwise, let f, T, C, {ft :
t ∈ T} and A be as in section 1, namely, T is an index set, C ⊆ X is a convex set, ft ∈ Λ(X) for each
t ∈ T , and A 6= ∅ is the solution set of the following system:

x ∈ C; ft(x) ≤ 0 for each t ∈ T. (3.1)

Then, the following equivalence holds:

[f(x) ≥ α, ∀x ∈ A]⇐⇒ (0,−α) ∈ epi (f + δA)∗. (3.2)
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Following [17], the characteristic cone K of (3.1) is, by definition,

K := cone {(epi δ∗C) ∪ (∪t∈T epi f∗t )}. (3.3)

Taking into account that epi δ∗C is a convex cone, K can be re-expressed as

K := epi δ∗C + cone {∪t∈T epi f∗t }. (3.4)

Adapting the convention that 0 ·∞ = 0, we have 0 ·h = 0 for all proper function h. Therefore, noting
(2.4),

epi f∗ +K ⊆ epi f∗ + epi δ∗C + ∪
λ∈R(T )

+
epi (

∑
t∈T λtft)

∗

⊆ epi f∗ + ∪
λ∈R(T )

+
epi (δC +

∑
t∈T λtft)

∗

⊆ ∪
λ∈R(T )

+
epi (f + δC +

∑
t∈T λtft)

∗

⊆ epi (f + δA)∗,

(3.5)

where the last inclusion holds because of (2.5) and the fact that f + δC +
∑
t∈T λtft ≤ f + δA for each

λ = (λt)t∈T ∈ R(T )
+ .

In the case when f = 0, (3.5) entails that

K ⊆ ∪
λ∈R(T )

+
epi (δC +

∑
t∈T

λtft)∗ ⊆ epi δ∗A. (3.6)

Especially, if the assumption (1.4) holds, it is known (cf. [17])

clK = epi δ∗A. (3.7)

Throughout the remainder, we assume that (1.9) holds, namely, f ∈ ΛA(X). Then f + δA is proper.
Therefore one can apply Lemma 2.1(i) and (3.5) to conclude easily that

epi (f + δA)∗ = cl (epi f∗ + clK) = cl (epi f∗ +K) ⊆ cl(∪
λ∈R(T )

+
epi (f + δC +

∑
t∈T

λtft)∗). (3.8)

Regarding some possible reversed inclusions in (3.5), we introduce the following definition.

Definition 3.1. The family {δC ; ft : t ∈ T} is said to have

(a) the conical EHP relative to f (denote by conical (EHP )f ) if

epi (f + δA)∗ = epi f∗ + epi δ∗C + cone (∪t∈T epi f∗t )(= epi f∗ +K); (3.9)

(b) the conical WEHP relative to f (denote by conical (WEHP )f ) if

epi (f + δA)∗ = ∪
λ∈R(T )

+
epi (f + δC +

∑
t∈T

λtft)∗. (3.10)

Remark 3.1. (a) By (3.5), we see that (3.9) and (3.10) in Definition 3.1 can be equivalently
replaced by

epi (f + δA)∗ ⊆ epi f∗ + epi δ∗C + cone (∪t∈T epi f∗t ), (3.11)
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and

epi (f + δA)∗ ⊆ ∪
λ∈R(T )

+
epi (f + δC +

∑
t∈T

λtft)∗. (3.12)

(b) In the case when f = 0, the conical (EHP )f reduces to the conical EHP (see [40]), that is,

epi δ∗A = epi δ∗C + cone (∪t∈T epi f∗t )(= K);

equivalently,

epi δ∗A ⊆ K.

(c) As the terminologies suggested,

the conical (EHP )f =⇒ the conical (WEHP )f

(see (3.5)).

Extending the definition given in [13, 17, 19, 20, 21, 22], we say that condition (CC) holds if

epi f∗ + clK is weak∗-closed (3.13)

(regardless (1.4)) holds or not).

To establish the relationship between conditions (EHP )f and (CC), we consider (in the spirit of
the condition introduced in [25, Theorem 13]) the following condition:

cl (f + δA) = cl f + δAcl , (3.14)

where Acl denotes the set defined by

Acl := {x ∈ clC : cl ft(x) ≤ 0 for each t ∈ T}. (3.15)

Note that cl (f + δA) ≥ cl f + δAcl holds trivially and (3.14) is equivalent to:

cl (f + δA) ≤ cl f + δAcl . (3.16)

Lemma 3.2. Assume that cl f, cl ft and cl (f + δA) are proper. The following equivalences hold:

(3.14)⇐⇒ epi(f + δA)∗ = cl(epi f∗ +K)⇐⇒ epi(f + δA)∗ ⊆ cl(epi f∗ +K). (3.17)

Proof. By (2.3) and (2.5), the following equivalences hold:

(3.14)⇐⇒ (f + δA)∗ = (cl f + δAcl)∗ ⇐⇒ epi (f + δA)∗ = epi(cl f + δAcl)∗. (3.18)

By (3.15) and (3.7) (applied to clC and {cl ft} in place of C and {ft}),

epi δ∗Acl = cl (cone(epi δ∗clC + ∪t∈T epi (cl ft)∗)) = cl (cone(epi δ∗C + ∪t∈T epi f∗t )) = clK. (3.19)
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Since cl f and δAcl are proper lsc functions, it follows from Lemma 2.1(i) that

epi(cl f + δAcl)∗ = cl(epi (cl f)∗ + epi δ∗Acl)
= cl(epi f∗ + epi δ∗Acl)
= cl(epi f∗ + clK)
= cl(epi f∗ +K).

(3.20)

This together with (3.18) proves the first equivalence in (3.17). The second equivalence in (3.17) is
immediate from (3.5) and the fact that epi (f + δA)∗ is weak∗-closed.

The following proposition is direct from Lemma 3.2.

Proposition 3.3. Assume that cl f, cl ft and cl (f + δA) are proper. The following equivalence
holds:

(EHP )f ⇐⇒ [(3.14) & epi f∗ +K is weak∗-closed].

Moreover, if K is weak∗-closed, then

(EHP )f ⇐⇒ [(3.14) & (CC)].

Since (3.14) is automatically satisfied and cl f, cl ft, cl (f + δA) are proper if (1.4) is assumed, we
arrive at:

Corollary 3.4. Assume (1.4). The following equivalence holds:

(EHP )f ⇐⇒ epi f∗ +K is weak∗-closed. (3.21)

Moreover, if K is weak∗-closed, then

(EHP )f ⇐⇒ (CC). (3.22)

The following proposition shows that, in the case when (1.4) holds, the notion of the conical
(WEHP )f is equivalent to the closedness of the union set on the right-hand side of (3.10).

Proposition 3.5. Assume (1.4). Then the family {δC ; ft : t ∈ T} has the conical (WEHP )f if
and only if ∪

λ∈R(T )
+

epi(f + δC +
∑
t∈T λtft)

∗ is weak∗-closed.

Proof. By the given assumption, Lemma 2.1 and (3.7), we have

epi (f + δA)∗ = cl (epi f∗ + epi δ∗A) = cl (epi f∗ + cl K) = cl (epi f∗ +K), (3.23)

and, by (3.5), it holds that

epi f∗ +K ⊆ ∪
λ∈R(T )

+
epi (f + δC +

∑
t∈T

λtft)∗ ⊆ epi (f + δA)∗.

Thus

epi (f + δA)∗ = cl(∪
λ∈R(T )

+
epi(f + δC +

∑
t∈T

λtft)∗)

and the result is clear.
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4. Extended Farkas Lemmas. Throughout this and the next sections, the notations f , C,
{ft : t ∈ T}, A and K are as explained at the begining of section 3. Let α ∈ R. We study the
solvability issue for the system

x ∈ C, ft(x) ≤ 0 (t ∈ T ), f(x) < α. (4.1)

Of course the insolvability of (4.1) is equivalent to saying that f(x) ≥ α is a consequence of the system

x ∈ C, ft(x) ≤ 0 (t ∈ T ), (4.2)

that is, the insolvability of (4.1) is equivalent to

f(x) ≥ α for each x ∈ A. (4.3)

Replacing f by all of its linear perturbed functions, we shall also consider the following condition

f(x)− 〈p, x〉 ≥ α for each p ∈ X∗ and x ∈ A. (4.4)

The following lemma provides a sufficient condition ensuring (4.3) to hold.

Lemma 4.1. If (0,−α) ∈ epi f∗ +K, then

(0,−α) ∈ epi (f + δA)∗ and f(x) ≥ α for each x ∈ A. (4.5)

Proof. These two assertions follow from (3.5) and (3.2) respectively.

Proposition 4.2. The following statements are equivalent:

(i) For each α ∈ R,

[f(x) ≥ α, ∀x ∈ A]⇐⇒ (0,−α) ∈ epi f∗ +K. (4.6)

(ii)

epi (f + δA)∗ ∩ ({0} × R) = (epi f∗ +K) ∩ ({0} × R). (4.7)

Proof. By (3.5), (i) is equivalent to

(0,−α) ∈ epi (f + δA)∗ ⇐⇒ (0,−α) ∈ epi f∗ +K for each α ∈ R. (4.8)

Since (4.8)⇐⇒(ii) as easy to see, we then have (i)⇐⇒(ii).

The following result provides a characterization of the conical (EHP )f .

Theorem 4.3. The following statements are equivalent:

(i) The family {δC ; ft : t ∈ T} has the conical (EHP )f .

(ii) For each p ∈ X∗,

epi (f − p+ δA)∗ ∩ ({0} × R) = (epi (f − p)∗ +K) ∩ ({0} × R). (4.9)
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(iii) For each p ∈ X∗ and each α ∈ R,

[f(x) ≥ 〈p, x〉+ α, ∀x ∈ A]⇐⇒ (p,−α) ∈ epi f∗ +K.

Proof. Because

epi p∗ = (p, 0) + {0} × [0,+∞) and epi g∗ + {0} × [0,+∞) = epi g∗

for any proper function g, we have that epi (f−p)∗ = epi f∗+(−p, 0) and hence that, for each p ∈ X∗,

(p,−α) ∈ epi f∗ +K ⇐⇒ (0,−α) ∈ epi (f − p)∗ +K.

Thus the equivalence of (ii) and (iii) follows from Proposition 4.2 (applied to f − p).

To prove (i)⇐⇒(ii), consider an arbitrary p ∈ X∗. By Lemma 2.1(ii), one has that

epi (f − p+ δA)∗ = epi (f + δA)∗ + epi (−p)∗ = epi (f + δA)∗ + (−p, 0). (4.10)

Hence

epi (f − p+ δA)∗ ∩ ({0} × R) = epi (f + δA)∗ ∩ ({p} × R) + (−p, 0). (4.11)

Similarly,

(epi (f − p)∗ +K) ∩ ({0} × R) = (epi f∗ +K) ∩ ({p} × R) + (−p, 0). (4.12)

Therefore, (ii) holds if and only if

epi (f + δA)∗ ∩ ({p} × R) = (epi f∗ +K) ∩ ({p} × R) for each p ∈ X∗

which is obviously equivalent to

epi (f + δA)∗ = epi f∗ +K. (4.13)

This proves the equivalence of (i) and (ii).

Next we give a new version of Farkas Lemma. Let us say that the family {f, δC ; ft : t ∈ T}
satisfies the Farkas rule if, for each α ∈ R, it holds that

[f(x) ≥ α, ∀x ∈ A]⇐⇒ [∃(λt)t∈T ∈ R(T )
+ s.t. f(x) +

∑
t∈T

λtft(x) ≥ α, ∀x ∈ C], (4.14)

and the stable Farkas rule if the family {f+p, δC ; ft : t ∈ T} satisfies the Farkas rule for each p ∈ X∗,
(the implications (⇐=) in (4.14) always holds as can be verified easily; likewise, the implications (⇐=)
in (4.15) also always holds).

Theorem 4.4. The following statements are equivalent:

(i) The family {f, δC ; ft : t ∈ T} satisfies the Farkas rule.

(ii) For each α ∈ R,

(0,−α) ∈ epi (f + δA)∗ ⇐⇒ [∃(λt)t∈T ∈ R(T )
+ s.t. (0,−α) ∈ epi (f + δC +

∑
t∈T

λtft)∗]. (4.15)
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(iii)

epi (f + δA)∗ ∩ ({0} × R) = ∪
λ∈R(T )

+
epi (f + δC +

∑
t∈T

λtft)∗ ∩ ({0} × R). (4.16)

Proof. It is evident that (ii)⇐⇒(iii). By (3.2), the condition stated in the left-hand side of (4.14)
and that of (4.15) are equivalent. The corresponding assertion regarding the right-hand side is also
valid. Therefore (4.14) and (4.15) are equivalent, and so (i)⇐⇒(ii).

Using Theorem 4.4 and a similar argument as for Theorem 4.3, we can prove the following stable
Farkas lemma in terms of the conical (WEHP )f .

Theorem 4.5. The following statements are equivalent:

(i) The family {f, δC ; ft : t ∈ T} satisfies the stable Farkas rule.

(ii) For each p ∈ X∗ and each α ∈ R,

(p,−α) ∈ epi (f + δA)∗ ⇐⇒ [∃(λt)t∈T ∈ R(T )
+ s.t. (p,−α) ∈ epi (f + δC +

∑
t∈T

λtft)∗]. (4.17)

(iii) For each p ∈ X∗,

epi (f − p+ δA)∗ ∩ ({0} × R) = ∪
λ∈R(T )

+
epi (f − p+ δC +

∑
t∈T

λtft)∗ ∩ ({0} × R). (4.18)

(iv) The family {δC ; ft : t ∈ T} satisfies the conical (WEHP )f .

The equivalence between (i), (ii) and (iii) in Corollary 4.6 below was established in [17, Theorem
2] for the case when p = 0 and the assumptions (1.4) and (4.19) below were assumed:

(CC) and K is weak∗-closed. (4.19)

(These assumptions imply by Corollary 3.4 that (EHP )f holds.)

Corollary 4.6. The family {δC ; ft : t ∈ T} has the conical (EHP )f if and only if for each
p ∈ X∗ and each α ∈ R, the following statements are equivalent:

(i) f(x) ≥ 〈p, x〉+ α for all x ∈ A.

(ii) (p,−α) ∈ epi f∗ +K.

(iii) There exists (λt)t∈T ∈ R(T )
+ such that f(x) +

∑
t∈T λtft(x) ≥ 〈p, x〉+ α for all x ∈ C.

Proof. (⇒). Suppose that the family {δC ; ft : t ∈ T} has the conical (EHP )f . By Remark 3.1(c),
it has the conical (WEHP )f . Then the result follows immediately from Theorem 4.3 and Theorem
4.5.

(⇐). Suppose that for each p ∈ X∗ and each α ∈ R, (i)⇐⇒ (ii). Then the result is clear by the
implication (iii)=⇒(i) in Theorem 4.3.

The following example shows that the conical (EHP )f is strictly weaker than the condition (4.19)
even in the case when the assumption (1.4) holds.
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Example 4.1. Let X = C = R2 and let T := (0,+∞). Consider closed cones D, At, (t ∈ T )
in X defined by D = {(x1, x2) : x1 ≤ 0, x2 ≥ 0} and At = {(x1, x2) : x2 ≥ tx1}. Then D = ∩t∈TAt.
Noting that

epiδ∗Z = Z	 × R+, (4.20)

where Z is a convex cone Z in X, one has in particular that epi δ∗D = D	×R+ and epi δ∗At
= A	t ×R+.

Hence the characteristic cone K of the family {δC , δAt
: t ∈ T} of lsc functions is given by

K = cone(∪t∈T (A	t × R+)) = ({(x, y) : x > 0, y < 0} ∪ {(0, 0)})× R+

(so (4.19) is not satisfied). It is also clear that K ⊆ epi δ∗D and so epi δ∗D + K = epi δ∗D. Since
δD = δD + δA (as D = A), we then see that {δC , δAt

: t ∈ T} has the conical (EHP )f , where
f := δD.

Inspired by [3, Example 3.13], we give an example for which the conical (EHP )f holds but ft are
not lsc.

Example 4.2. Consider the classical sequence space l2 (consisting of all square summable
sequences of real numbers, under the usual inner product); let l2+ denote the positive cone in l2

(consisting of all sequences with nonnegative coordinates). Take T := (0,+∞), b0 := ( 1
n )n∈N and

bt := ( 1
1+t ,

1
2+t , · · · ) ∈ l

2 for each t ∈ T . Let gt denote the linear functional defined by

gt(x) = 〈bt, x〉 for all x ∈ l2

(thus epi g∗t = {bt} × R+). Let ft := gt + δCt , where

Ct :=
{
{(λn)n∈N ∈ l2 : −t < λn ≤ 0, ∀n ∈ N}, t ∈ (0, 1),
{(λn)n∈N ∈ l2 : 0 ≤ λn < 1

t , ∀n ∈ N}, t ∈ [1,+∞).

Note that Ct is not closed and ft is not lsc. Let At := {x = (λn)n∈N ∈ l2 : ft(x) ≤ 0}. Then

At =
{
Ct, t ∈ (0, 1);
{0}, t ∈ [1,+∞)

and ∩t∈T At = {0}.

Thus, with X = C = l2 and the above data together with f defined by

f(x) =
{
‖x‖, if x ∈ b0 − l2+,
+∞, otherwise,

we see that the feasible set A as defined in (1.2) is exactly {0}. Then, clearly, f + δA = δA and so

epi (f + δA)∗ = A	 × R+ = l2 × R+. (4.21)

Also, since each coordinate of b0 is strictly positive, one has (b0 − l2+)	 = {0} and so, by (2.1),

epi δ∗b0−l2+ = (b0 − l2+)	 × R+ = {0} × R+.

Furthermore, one has by [51, Corollary 2.4.16], that

epi (‖ · ‖)∗ = B∗ × R+
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( where B∗ denotes the unit ball in l2) and it follows from Lemma 2.1 that

epi f∗ = epi (‖ · ‖+ δb0−l2+)∗ = epi (‖ · ‖)∗ + epi δ∗b0−l2+ = B∗ × R+. (4.22)

Note further that C	t =
{
l2+, t ∈ (0, 1),
−l2+, t ∈ [1,+∞)

and it follows from (2.1) that

epi δ∗Ct
= C	t × R+ =

{
l2+ × R+, t ∈ (0, 1),
−l2+ × R+, t ∈ [1,+∞).

Thus, by Lemma 2.1, one has

epi f∗t = epi (gt + δCt
)∗ = epi g∗t + epi δ∗Ct

=
{

(bt + l2+)× R+, t ∈ (0, 1),
(bt − l2+)× R+, t ∈ [1,+∞).

Hence, the characteristic cone of the family {δC , ft : t ∈ T} is given by

K = cone(∪t∈T epi f∗t ) = l2 × R+

(because K contains the set (b 1
2

+ l2+ + b1 − l2−) × R+, which equals to l2 × R+). This together with
(4.21) and (4.22) implies that

epi (f + δA)∗ = l2 × R+ = epi f∗ + l2 × R+ = epi f∗ +K.

This shows that the family {δC , ft : t ∈ T} has the conical (EHP )f .

5. Strong Lagrangian dualities. Let us use (Pf ) to denote the problem (1.1). Define the
Lagrangian function Lf on X × R(T )

+ by

Lf (x, λ) := f(x) +
∑
t∈T

λtft(x) for each (x, λ) ∈ X × R(T )
+ . (5.1)

Then the dual problem of (Pf ) is, by definition,

(Df )
Maximize infx∈C Lf (x, λ),
s. t. λ ∈ R(T )

+ .
(5.2)

We denote by v(Pf ) and v(Df ) the optimal objective values of (Pf ) and (Df ), respectively. Clearly,
v(Pf ) ≥ v(Df ), that is, the weak Lagrangian duality holds between (Pf ) and (Df ). We say that the
strong Lagrangian duality between (Pf ) and (Df ) holds if there is no duality gap (that is v(Pf ) =
v(Df )) and the dual problem (Df ) has an optimal solution, and that the strong stable Lagrangian
duality between (Pf ) and (Df ) holds if, for each p ∈ X∗, the strong Lagrangian duality between (Pf+p)
and (Df+p) holds. An important problem in convex analysis is: when does the strong Lagrangian
duality hold? The following result shows that the condition (4.16) provides an answer.

Theorem 5.1. Each of (i)-(iii) of Theorem 4.4 is a necessary and sufficient condition for the
strong Lagrangian duality between (Pf ) and (Df ) to holds.

Proof. (=⇒). Suppose that (i) of Theorem 4.4 holds. Let α := v(Pf ). We assume that α 6= −∞.
Then α ∈ R (as dom f ∩ A 6= ∅) and f(x) ≥ α for each x ∈ A. Thus by (4.14), there exists
(λt)t∈T ∈ R(T )

+ such that f(x) +
∑
t∈T λtft(x) ≥ α for each x ∈ C. This together with the weak
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duality shows that (λt)t∈T is an optimal solution of (Df ) and v(Pf ) = v(Df ). The same is trivially
true if α = −∞ (then take λt = 0 for all t ∈ T ).

(⇐=). Conversely, suppose that v(Pf ) = v(Df ) and that the problem (Df ) has an optimal
solution (λt)t∈T . Let α ∈ R be such that f(x) ≥ α for each x ∈ A. Then v(Pf ) = infx∈A f(x) ≥ α

and

inf
x∈C
{f(x) +

∑
t∈T

λtft(x)} = v(Df ) = v(Pf ) ≥ α.

This means that (i) of Theorem 4.4 holds because the converse implication of (4.14) holds automati-
cally as noted earlier.

By Theorem 5.1 (applied to f − p for each p ∈ X∗) and Theorem 4.5, we arrive at:

Theorem 5.2. The family {δC ; ft : t ∈ T} has the conical (WEHP )f if and only if the strong
stable Lagrangian duality between (Pf ) and (Df ) holds.

The following corollary, which was proved in [17, Theorem 5] under the stronger assumptions (1.4)
and (4.19), is a direct consequence of Theorem 5.2.

Corollary 5.3. If the family {δC ; ft : t ∈ T} has the conical (WEHP )f , then the strong
Lagrangian duality between (Pf ) and (Df ) holds.

The following theorem gives a characterization for the conical (WEHP )f with f = 0.

Theorem 5.4. The following statements are equivalent:

(i) The family {δC ; ft : t ∈ T} has the conical (WEHP )0, that is,

epi δ∗A = ∪
λ∈R(T )

+
epi (δC +

∑
t∈T

λtft)∗. (5.3)

(ii) If h ∈ ΛA(X) is such that the family {δA} has the conical (EHP )h, that is,

epi (h+ δA)∗ = epi h∗ + epi δ∗A, (5.4)

then the strong Lagrangian duality between (Ph) and (Dh) holds.

(iii) If h ∈ ΛA(X) is continuous at some point in A, then the strong Lagrangian duality between
(Ph) and (Dh) holds.

(iv) If p ∈ X∗, then the strong Lagrangian duality between (Pp) and (Dp) holds.

Proof. (i)⇒(ii). Suppose that (i) holds and let h ∈ ΛA(X) be such that (5.4) is satisfied. Then,
it follows from (5.3) and (2.4) that

epi (h+ δA)∗ = epih∗ + ∪
λ∈R(T )

+
epi (δC +

∑
t∈T

λtft)∗

= ∪
λ∈R(T )

+
(epih∗ + epi (δC +

∑
t∈T

λtft)∗)

⊆ ∪
λ∈R(T )

+
epi (h+ δC +

∑
t∈T

λtft)∗.
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This shows that the family {δC ; ft : t ∈ T} has the conical (WEHP )h (cf. Remark 3.1(a)). Applying
Corollary 5.3, we complete the proof of the implication (i)⇒(ii).

(ii)⇒(iii). Note that (5.4) is satisfied if h ∈ ΛA(X) is continuous at some point in A (see Lemma
2.1(ii)). Thus, it is immediate that (ii)⇒(iii).

(iii)⇒(iv). It is trivial.

(iv)⇒(i). It is a straightforward consequence of Theorem 5.2 by letting f = 0.

Corollary 5.5. Suppose that the following condition holds:

∪
λ∈R(T )

+
epi (δC +

∑
t∈T

λtft)∗ = K. (5.5)

Then each of (i)-(iv) of Theorem 5.4 is equivalent to the following statement:

(v) The family {δC ; ft : t ∈ T} has the conical EHP , that is, epi δ∗A = K.

Proof. Suppose that (5.5) holds. By Theorem 5.4, it suffices to verify that

the conical EHP ⇐⇒ the conical (WEHP )0. (5.6)

By Remark 3.1(c), we need only to prove the implication“⇐=”. Now if the family {δC ; ft : t ∈ T}
has the conical (WEHP )0, then (5.3) holds, and so (5.5) simply means epi δ∗A = K; hence the family
{δC ; ft : t ∈ T} has the conical EHP . Thus the implication“⇐=” of (5.6) is shown.

The following corollary was given in [23, Theorem 4.1] under the additional assumption (1.4).

Corollary 5.6. Suppose that, for each t ∈ T , ft is continuous at some point of A. Then (5.5)
and the conclusion of Corollary 5.5 hold.

Proof. We need only to show (5.5). By (3.4) and (3.6), it is sufficient to show that

∪
λ∈R(T )

+
epi (δC +

∑
t∈T

λtft)∗ ⊆ epi δ∗C + cone {∪t∈T epi f∗t }. (5.7)

To do this, let λ = (λt)t∈T ∈ R(T )
+ with ∅ 6= J := {t ∈ T : λt 6= 0}, say J = {t1, · · · , tm}. Then we

have (noting that 0 · h = 0 for all functions h as mentioned earlier)

epi (δC +
∑
t∈T

λtft)∗ = epi (δC +
m∑
i=1

λtifti)
∗ = epi δ∗C +

m∑
i=1

λtiepi f∗ti ,

where the last equality holds because one can apply Lemma 2.1(ii) iteratively as each λtifti is contin-
uous at some point of A thanks to the given assumption. Thus (5.7) follows and the proof is complete.

The following example presents the case when the condition (5.5) holds but there exists some ft
which has no continuity. Hence Corollary 5.5 is a proper extension of Corollary 5.6 (and [23, Theorem
4.1]).

Example 5.1. Let X = R2 and let C, D be closed convex cones in X defined respectively by

C := {(x1, x2) : x1 ≤ 0, x2 ≥ 0} and D := {(x1, x2) : x1 ≥ 0, x2 ≥ 0}.
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Then

C ∩D = {(x1, x2) : x1 = 0, x2 ≥ 0} and (C ∩D)	 = C	 +D	.

By this and (4.20), we have that δ∗C∩D = δ∗C + δ∗D. Since δC∩D = δC + δD, we have then

epi (δC + δD)∗ = epi δ∗C + epi δ∗D.

Thus (5.5) is satisfied by the family {δC , f1}, where f1 = δD. Note that for the above family, one has
A = C ∩D. Clearly, f1 is not continuous at each point of A.

6. Applications to Conic Programming. Throughout this section, let X, Y be locally convex
spaces, C ⊆ X be a nonempty convex set. Let S ⊆ Y be a closed convex cone. Define an order on
Y by saying that y ≤S x if y − x ∈ −S. We attach a “greatest element” +∞ /∈ Y with respect
to ≤S and denote Y • := Y ∪ {+∞}. The following operations are defined on Y •: for any y ∈ Y ,
y + (+∞) = (+∞) + y = +∞ and t(+∞) = +∞ for any t ≥ 0. Let f : X → R ∪ {+∞} be a proper
convex function and g : X → Y • be S-convex in the sense that for every u, v ∈ X and every t ∈ [0, 1],

g(tu+ (1− t)v) ≤S tg(u) + (1− t)g(v)

(see [4, 5, 30]). Consider the following conic programming problem (Pf (S)):

Minimize f(x),
s. t. x ∈ C, g(x) ∈ −S. (6.1)

Problem (6.1) has been studied in [5, 6], and also studied in [9, 28, 29, 30, 31, 33, 32] for the special
case when X,Y are Banach spaces (or normed spaces) and g : X → Y is S-convex and continuous.
As in [4, 5, 16, 41], we define for each λ ∈ S⊕,

(λg)(x) :=

{
〈λ, g(x)〉 if x ∈ dom g,

+∞ otherwise.
(6.2)

It is easy to see that g is S-convex if and only if (λg)(·) : X → R ∪ {+∞} is a convex function for
each λ ∈ S⊕. Moreover, the problem (6.1) can be viewed as an example of (1.1) by setting

T = S⊕ and gλ = λg for each λ ∈ T = S⊕. (6.3)

As before, we use A and K to denote respectively the solution set and the characteristic cone of
(Pf (S)):

A := {x ∈ C : (λg)(x) ≤ 0, ∀λ ∈ S⊕} = {x ∈ C : g(x) ∈ −S} (6.4)

and

K := epi δ∗C + cone (∪λ∈S⊕epi (λg)∗) = epi δ∗C + ∪λ∈S⊕epi (λg)∗, (6.5)

where the last equality holds because S⊕ is a convex cone and so

cone (∪λ∈S⊕epi (λg)∗) = ∪λ∈S⊕epi (λg)∗. (6.6)

Moreover, by (6.6), the corresponding dual problem (Df (S)) can be expressed as

Minimize infx∈C{f(x) + (λg)(x)},
s. t. λ ∈ S⊕. (6.7)
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In this section, we always assume that

A 6= ∅, f ∈ ΛA(X) and g is S-convex. (6.8)

The following notion of S-lower semicontinuity was introduced in [44] and extended in [1, 15] for
functions g : X → Y •. It was also considered in [4, 5, 41].

Definition 6.1. Let g : X → Y • be a S-convex function. The function g is said to be

(a) S-lower semicontinuous if for each x0 ∈ X, each neighborhood V of zero in Y and any b ∈ Y
with b ≤S g(x0), there exists a neighborhood U of zero in X such that

g(x0 + U) ⊆ b+ V + S ∪ {+∞}. (6.9)

(b) S-epi-closed if epiS(g) is closed, where

epiS(g) := {(x, y) ∈ X × Y : y ∈ g(x) + S}.

It is known (cf. [43]) that S-lower semicontinuity implies that λg is lsc for each λ ∈ S⊕, which
implies in turn that g is S-epi-closed. Furthermore, if g is S-epi-closed and C is closed, then A is
closed and hence δA is lsc

The following lemma is taken from [5, Lemma 1].

Lemma 6.2. Suppose that C is closed and g is S-epi-closed. Then

epi δ∗A = cl (epi δ∗C + ∪λ∈S⊕epi (λg)∗) = clK.

Generalizing the corresponding notions in [5, 6] to suit our present noncontinuous situation we
make the following definitions (thanks to (6.5)). It is easy to see that the notions C1(f,A) and C(f,A)
in the following definition coincide with corresponding ones in [5, 6] (where they assumed that (1.5)
holds).

Definition 6.3. We say that {δC ; g} satisfies

(a) the condition C1(f,A) if the family {δC ;λg : λ ∈ S⊕} has the conical (EHP )f , that is (by
(6.5)),

epi (f + δA)∗ = epi f∗ + epi δ∗C + ∪λ∈S⊕epi (λg)∗(= epi f∗ +K); (6.10)

(b) the condition C(f,A) if the family {δC ;λg : λ ∈ S⊕} has the conical (WEHP )f , that is,

epi (f + δA)∗ = ∪λ∈S⊕epi (f + δC + (λg))∗; (6.11)

(c) the Farkas rule (resp. the stable Farkas rule) with respect to f if the family {f, δC ;λ g : λ ∈ S⊕}
satisfies the Farkas rule (resp. the stable Farkas rule).

Remark 6.1. By Remark 3.1(a), we see that (6.10) and (6.11) in Definition 6.3 are respectively
equivalent to

epi (f + δA)∗ ⊆ epi f∗ + epi δ∗C + ∪λ∈S⊕epi (λg)∗, (6.12)
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and

epi (f + δA)∗ ⊆ ∪λ∈S⊕epi (f + δC + (λg))∗. (6.13)

Let conth denote the set of all points at which h is continuous, that is,

conth = {x ∈ X : h is continuous at x}.

The following proposition (except the last assertion) is due to Boţ et al. (see [5, 6] where the first
equality of (6.14) together with (i) and (ii) were established while the second equality in (6.14) is an
easy consequence of the first).

Proposition 6.4. Assume (1.5). Then

epi (f + δA)∗ = cl (epi f∗ +K) = cl (∪λ∈S⊕epi (f + δC + λg)∗). (6.14)

Consequently,

(i) the family {δC ; g} satisfies C1(f,A) if and only if epi f∗ +K is weak∗-closed;

(ii) the family {δC ; g} satisfies C(f,A) if and only if ∪λ∈S⊕epi (f + δC + λg)∗ is weak∗-closed.

Moreover, if contf ∩A ∩ intC 6= ∅, then the following equivalence holds for the family {δC ; g}:

C1(f,A)⇐⇒ C(f,A). (6.15)

Proof. By [5, 6], we only need to prove the last assertion. Suppose that

contf ∩A ∩ intC 6= ∅. (6.16)

It suffices to show that the set on the right-hand side in (6.10) and that in (6.11) are the same. But
this is immediate from Lemma 2.1(ii) and (6.16):

epi (f + δC + (λg))∗ = epi f∗ + epi (δC + (λg))∗ = epi f∗ + epi δ∗C + epi (λg)∗ for each λ ∈ S⊕.

The proof is completed.

By Theorems 4.3, 4.4, 4.5, 5.1, 5.2, 5.4 and Corollary 5.5 (applied to {δC ;λg : λ ∈ S⊕}, and
thanks to (6.5) and the fact that S⊕ is a convex cone), we have the following Theorems 6.5-6.8 and
Corollary 6.9. The equivalence (ii)⇐⇒ (iii) in Theorems 6.7 and 6.8 was given in [5, Theorems 1 and 2]
while (i)⇐⇒(v) in Theorem 6.8 was given in [5, Corollary 1] under stronger assumptions (assumption
(1.5)).

Theorem 6.5. The following statements are equivalent:

(i) For each p ∈ X∗ and each α ∈ R,

[f(x) ≥ 〈p, x〉+ α, ∀x ∈ A]⇐⇒ [(p,−α) ∈ epi f∗ + epi δ∗C + ∪λ∈S⊕epi (λg)∗]. (6.17)

(ii) The family {δC ; g} satisfies the condition C1(f,A).

Theorem 6.6. The following statements are equivalent:
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(i) The family {δC ; g} satisfies the Farkas rule with respect to f .

(ii) The strong Lagrangian duality between (Pf (S)) and (Df (S)) holds.

(iii)

epi (f + δA)∗ ∩ ({0} × R) = (∪λ∈S⊕epi (f + δC + (λg))∗) ∩ ({0} × R). (6.18)

Theorem 6.7. The following statements are equivalent:

(i) The family satisfies the stable Farkas rule with respect to f .

(ii) The strong stable Lagrangian duality between (Pf (S)) and (Df (S)) holds.

(iii) The family {δC ; g} satisfies the condition C(f,A).

Theorem 6.8. The following statements are equivalent:

(i) The family {δC ; g} satisfies the condition C(0, A).

(ii) If h ∈ ΛA(X) and epi (h+ δA)∗ = epi h∗+ epi δ∗A, then the strong Lagrangian duality between
(Ph(S)) and (Dh(S)) holds.

(iii) If h ∈ ΛA(X) is continuous at some point in A, then the strong Lagrangian duality between
(Ph(S)) and (Dh(S)) holds.

(iv) If h ∈ ΛA(X) is continuous, then the strong Lagrangian duality between (Ph(S)) and (Dh(S))
holds.

(v) If p ∈ X∗, then the strong Lagrangian duality between (Pp(S)) and (Dp(S)) holds.

Corollary 6.9. Suppose that the following condition holds:

∪λ∈S⊕(δC + (λg))∗ = epi δ∗C + ∪λ∈S⊕epi (λg)∗.

Then each of (i)-(v) of Theorem 6.8 is equivalent to the following statement:

(vi) The family {δC ; g} satisfies the condition C1(0, A).

Under the stronger assumptions (X, Y are Banach spaces, C = X and f , g are continuous), the
implications (i)⇐⇒(iii) and (ii)⇐⇒(iii) in the following corollary were given respectively in Theorem
3.1 and Theorem 4.1 of [31], while the implications (iv)⇒(i)&(ii) improve [18, Theorem 2.2] by allowing
general p ∈ X∗ rather than only p = 0.

Corollary 6.10. Suppose that C is closed, g is S-epi-closed and that contf ∩A 6= ∅. Consider
the following statements:

(i) Same as (i) in Theorem 6.7.

(ii) Same as (i) in Theorem 6.5.

(iii) epi f∗ + epi δ∗C + ∪λ∈S⊕epi (λg)∗(= epi f∗ +K) is weak∗-closed.

(iv) epi δ∗C + ∪λ∈S⊕epi (λg)∗(= K) is weak∗-closed.

Then, (iv)=⇒[(i), (ii)&(iii)]. Moreover, (i)⇐⇒(ii)⇐⇒ (iii) provided that contf ∩A∩ intC 6= ∅.
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Proof. (iv)=⇒[(i), (ii)&(iii)]. By Lemma 6.2 and (iv), one has epi δ∗A = clK = K. Hence (iv) and
Lemma 2.1(ii) (thanks to the assumption that contf ∩A 6= ∅) imply that

epi (f + δA)∗ = epi f∗ + epi δ∗A = epi f∗ +K. (6.19)

This means that the family {δC ; g} satisfies C1(f,A) and so C(f,A) (by definitions and Remark
3.1(c)). Hence (i) and (ii) hold by Theorems 6.7 and 6.5. Furthermore, (6.19) implies that epi f∗+K

is weak∗-closed (because epi (f + δA)∗ is so); hence (iii) holds.

Finally, we assume that contf ∩ A ∩ intC 6= ∅. Then (6.15) of Proposition 6.4 holds and so the
following equivalences hold for the family {δC , g}:

C(f,A)⇐⇒ C1(f,A)⇐⇒ epi f∗ +K is weak∗-closed,

and therefore (i)⇐⇒ (ii)⇐⇒ (iii) by Theorems 6.5 and 6.7.

The equivalence (iii)⇐⇒(iv) in the following corollary was proved in [29, Theorem 3.1] under the
stronger assumption that g is continuous.

Corollary 6.11. Suppose that C is closed, g is S-epi-closed and that contg ∩ A 6= ∅. Then the
following statements are equivalent:

(i) The family {δC ; g} satisfies the condition C(0, A).

(ii) The family {δC ; g} satisfies the condition C1(0, A).

(iii) epi δ∗C + ∪λ∈S⊕epi (λg)∗(= K) is weak∗-closed.

(iv) The strong Lagrangian duality between (Ph(S)) and (Dh(S)) holds whenever h ∈ ΛA(X) is
continuous.

Proof. Since cont g∩A 6= ∅, it follows that cont (λg)∩A 6= ∅ for each λ ∈ S⊕. Then by Definition
6.3 and Corollary 5.6 (applied to {C, λg : λ ∈ S⊕} in place of {C, ft : t ∈ T}), we have (i)⇐⇒(ii).
Further, by Theorem 6.8, we have (i)⇐⇒(iv). Finally, by Proposition 6.4(i) and thanks to the given
assumptions, (ii)⇐⇒(iii).

Remark 6.2. Let Z be a convex subset of X. Recall (cf. [3]) that the quasi-relative interior and
the quasi interior of Z are defined respectively by

qri Z := {x ∈ Z : cl cone(Z − x) is linear} and qi Z := {x ∈ Z : cl cone(Z − x) = X}.

Boţ et al. [3] established the strong Lagrange duality between problem (Pf (S)) and (Df (S)) under the
following interiority condition:

0 ∈ qi[(g(C) + S)− (g(C) + S)], 0 ∈ qri(g(C) + S) and (0, 0) /∈ qri co(εv(Pf (S)) ∪ {(0, 0)}), (6.20)

where

εv(Pf (S)) = {(f(x) + α− v(Pf (S)), g(x) + y) : x ∈ C,α ≥ 0, y ∈ S} ⊆ R× Y.

Clearly, combining Theorem 6.7 and [3, Theorem 4.2], we see that the interiority condition (6.20)
implies (6.18). The following example shows that the converse is not true.
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Example 6.1. Consider the real space X = C = R. Let S = R+ and let f, g : R→ R be defined
by f = δ[0,1) and g = δ(−1,0] respectively. Then A = {x ∈ C : g(x) ∈ −S} = (−1, 0] and f+δA = f+g.
Noting λg = g for all λ > 0, it follows that

epi (f + δA)∗ = epi (f + g)∗ ⊆ ∪λ∈S⊕epi (f + λg)∗;

hence C(f,A) holds (thanks to Remark 6.1) and so does the condition (6.18). However, the above
interiority condition (6.20) does not hold as 0 /∈ qri(g(X) + S) (since cl cone g(X) + S = R+ is not a
linear subspace of R).
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