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Abstract. We present some error bound results of generalized D-gap functions for non-
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1 Introduction

Throughout this paper, let P denote a nonempty closed convex set in an Euclidean space R"
and let F' be a continuous map from R" to R™. We consider VI(F, P), the variational inequality
problem associated with the data F' and P, that is, to find a vector x € P such that

F(x)l'(y—2)>0 forally € P. (1.1)

When P is the nonnegative orthant in R", VI(F, P) reduces to the nonlinear complementarity
problem NCP(F), i.e., finding a vector z € R, F(x) € R% such that F(z)'z = 0. Varia-
tional inequality (VI) problems have been widely studied in various fields such as mathematical
programming, game theory and economics etc.; see [8, 9, 10] and references therein for the back-
ground information and motivation of the (VI) problems covering both smooth and nonsmooth
functions. In fact nonsmooth variational problems are quite abundant, see [1, 11, 12, 23] for
recent developments. Below, let us only mention explicitly one of the simplest examples.

Example 1.1 Let Q be a bounded open set in R? with Lipschitz boundary 0. Given a con-
tinuous function ¢ : R — R and consider the following free boundary problem: find a twice
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continuously differentiable function u : R> — R such that

Au+¢u)=0 in QF,
u=0 in o,
u=|Vul=0 on T,

u=1 on 0N
where Au = 592236“1 5922;‘2, QFf = {2z € Q:uz) >0}, Q = {2z € Q: ukz) = 0} and
=09 = 90" NQ. In the special case when ¢(u) = \uP for some 0 < p < 1, this model
has been discussed in [1] (see also [4]). Since the corresponding domain Q7 ,Qy and 0Q depend
on the solution w (and hence are unknown objects), it is hard to obtain an analytic expression

for the solution in general. Thus, one often seeks for a numerical approximated solution. Using
finite element approximation or finite difference approximation, we obtain a nonlinear comple-
mentarity problem NCP(F) with F : R® — R™ defined by F(x) = Mx + p(z) + g, where n is
a positive integer related to precision of the discretization, M is some symmetric n X n matriz,
g € R™ and p : R™ — R"™ is defined by

p(z1,. .., 2n) = (p(max{z1,0}),..., p(max{zy,0})). (1.2)

Note that F is nonsmooth in general. Therefore, we see that the corresponding nonlinear com-
plementarity problem is an example of nonsmooth variational inequality problem.

In recent years, much effort has been made to reformulate the (VI) problems as equiva-
lent optimization problems through the consideration of merit functions. Among these merit
functions, D-gap functions and generalized D-gap functions for (VI) problems are particularly
interesting, because they cast (VI) problems as equivalent unconstrained optimization problems
(cf. [24, 33]). Peng and Fukushima [25] gave a global error bound result for D-gap functions
under the assumption that F' is smooth, (globally) Lipschitz on R™ and strongly monotone.
Their result was extended by Yamashita, Taji and Fukushima [33] to cover generalized D-gap
functions. Recently, Huang and Ng [13] gave an example showing that the D-gap functions
might not provide global error bounds if the globally Lipschitz assumption of F' is dropped.

In this present paper, we establish some error bound results for generalized D-gap functions
applicable to the case when F' is not necessarily smooth and not necessarily (strongly) monotone.
In particular, we show in section 4 that although a global error bound result might fail if the
Lipschitz assumption of F' is not assumed, a local error bound result (with a fractional exponent)
still holds. As an application, we establish a convergence result in section 5 for a derivative-free
descent method of Armijo type leading to the solution of the corresponding VI(F, P).

2 Preliminaries

For g in a finite dimensional Euclidean space X and § > 0, let B(xg,d) (resp. B(zo,d)) denote
the open (resp. closed) ball with center zy and radius §. For subset C' of X, we denote the
interior, closure, convex hull and topological boundary of it by int C', C, co C' and OC respectively.



Definition 2.1 Let m,n € N. A vector-valued function G : R™ — R™ is said to be Lipschitz
(with modulus L) around zo € R™ if there exist two positive constants 6 and L such that

|G(z1) — G(x2)|| < L||z1 — x2|| for all 1,29 € B(xg,?). (2.1)

If G is Lipschitz around each point of R™, then G is said to be locally Lipschitz (on R™).
Moreover, G is said to be Lipschitz on a given set C' C R"” with modulus L if (2.1) holds with
B(zo, 6) replaced by C. Given any subset B of R with zero (Lebesgue) measure and z¢ € R,
define PG (xg) by

OBG(xp) = {£€ € R™" : ¢ = lim VG(x;), ; — x0,x; € Dg\B}, (2.2)

where D¢ denotes the set of all differentiable points of G. Then, as in [6] (see also [30, Theorem
4]), the (Clarke) generalized Jacobian 0°G(zg) is given by

°G(x0) = co 0P G(xp). (2.3)
If m=1and g =G then
9°g(x0) = {€ € R™ : €T < ¢°(x0;v) for all v € R"},

where ¢ denotes the transpose of &, and ¢°(wo;v) denotes the Clarke directional derivative of
g at xo in the direction v (see [5, 6]):

tv) —
9°(zo;v) = limsup 9(y +tv) g(y)
y—wo, t|0 t

Let U C R™ be an open set and let G be Lipschitz on the set U with modulus L. Then for any

x € U we have
V| < L for any V € 8°G(z). (2.4)

Definition 2.2 (cf. [8]) Let C be a subset of R™. A mapping G : R™ — R" is said to be

(i) coercive on C' if

T(p _
lim M = 400 for anyy € C (2.5)
2€0, [zl ~o0 |||

(thus if C is bounded then G is always coercive on C'.);
(ii) monotone on C if [G(x) — G(y)]* (x —y) > 0 for all vectors x and y in C;
(iii) strongly monotone on C (with modulus p > 0) if for all vectors x and y in C,

[G(z) = GW)" (z —y) > pllz —y*. (2.6)

Remark 2.1 (i) If G is locally Lipschitz on R™ and strongly monotone on R™ with modulus
>0, then (see [14]) for any x € R, V € 0°G(z) we have

dT'Vd > p|\d|? for all d € R™. (2.7)



(ii) If G is strongly monotone on a closed convex subset C' of R™, then it is coercive on C.
Indeed, suppose that (2.6) holds for all x,y € C. Then for any y € C,
[G(z) - G (z —y)

lim = +o00. (2.8)
2€C, ||zl —o0 |z =yl

Note that for any fixed y € C, {M : x € C} is bounded. It follows from (2.8) that

=]
G T _ G T _

i (z)" (x—y) _ lim (z)" (x—y) _ 4o,
2€C, ||z]| —o0 ||| 20, ||z —o0 |l — Y|

(iii) Let P C R™ be a closed convez set and let F' : R™ — R™ be continuous on P. Then, by [8,
Proposition 2.2.3], the VI(F, P) has a solution whenever F is coercive on P. Moreover, if F is
strongly monotone on P, the VI(F, P) has a unique solution (cf. [8, Theorem 2.3.3]).

Following [2, 3, 7, 8, 17], a set C' C R is said to be
(i) semianalytic, if for any 2z € R™, there exists a neighbourhood U of x such that

l s
CnU=J [ HzeU: fijx) =0, gi(x) <0}
i=1 j=1
for some integers [, s and some real analytic functions f;;, g;; on R™ (1 <i <1, 1<j <s);
(ii) subanalytic if for any = € C, there exist a neighbourhood U of 2 and a bounded semianalytic
set Z C R™P such that CNU = {x € R" : (z,y) € Z for some y € RP}.
Moreover, a function f : R™ — R is said to be subanalytic if its graph gphf := {(z, f(x)) : z €
R™} is subanalytic and a vector-valued function F' : R™ — R™ is said to be subanalytic if each
of its component is subanalytic. We summarize below some basic properties of subanalytic sets
and subanalytic functions ((S3) is easily seen from the definition):
(S1) (cf. [8, (p1) and (p2) P.597]) Finite union (resp. intersection) of subanalytic sets is sub-
analytic. The Cartesian product (resp. complement, closure) of subanalytic sets is subanalytic.
(S2) (cf. [3, Theorem 2.3]) Let C' be a bounded subanalytic set in R"™P (for some positive
integers n, p) and let m : R"™? — R™ be the projection defined by 7(z,y) = x for all z € R" and
y € RP. Then 7(C) is a subanalytic set of R".
(S3) If C' NV is subanalytic for each compact subanalytic set V' of R™, then C' is subanalytic.
(S4) (cf. [8, (p3) P.597]) d(-,C) is a subanalytic function if C' is a subanalytic set where
d(z,C) = inf.cc ||z — ¢|| for any x € R™.
(S5) (cf. [8, (p5) and (p8) P.598] If f, g are subanalytic functions on R” and A € R then f +g¢
(resp. Af, max{f,g}) is subanalytic. If F, G : R™ — R™ are subanalytic vector-valued functions,
then FT@ is a subanalytic function on R”.
(S6) (ctf. [8, (p4) P.597]) If f is subanalytic and A € R, then {z : f(z) = A}, {z: f(z) < A} and
{z: f(z) < A} are subanalytic.
(S7) (Lojasiewicz’s inequality, cf. [17, Theorem 2.1.1]) If f, g are continuous subanalytic func-
tions on compact subanalytic set C C R™ such that f~1(0) C g~'(0) then there exist a constant
a > 0 and a positive integer N such that

alg(@)|N < |f(x)] for all z € C.



Remark 2.2 If f is a continuous function on R" such that Uy := {(z,7) € R" xR : f(z) > r}
is subanalytic then f is subanalytic. Indeed, note that (by the continuity of f), Ly := {(x,r) €
R" xR : f(z) < r} = RI\U;. It follows from (S1) that Ly is also subanalytic. This implies
that gphf is subanalytic and hence f is subanalytic.

3 Generalized D-gap functions

Given VI(F,P), the D-gap function 6, is defined as the difference of two regularized gap
functions:
Oup(x) = O4(x) — Op(x) for all z € R,

where 0 < a < b, and 6, is a regularized gap function defined by

b.(x) = sup{F(z)T (z —y) — g“l‘ —y|*} for all z € R, ¢ > 0. (3.1)
yeP

In order to have wider scope of applications as well as more efficient algorithms, Yamashita et.al.

[33] replaced the function 3|z —y||? in (3.1) by a more general function ¢ and thereby introduced

generalized D-gap functions be and generalized regularized gap functions 8¢ respectively defined

by (for 0 < a < b and ¢ > 0)

07, (z) = 07 (x) — 07 (x) for all z € R" and (3.2)
0¢(z) = sup{F(z)" (x —y) — ¢ p(z,y)} for all z € R™. (3.3)
yeP

Here ¢ is a real-valued function on R™ x R" satisfying the following properties (P6 and P7 are
redundant; see [13, 33]):

P1: ¢ is continuously differentiable on R™ x R™.

P2: p(z,y) >0 for all x,y € R™ and the equality holds if and only if x = y.

P3: {¢(z,-): x € R"} is uniformly strongly convex in the sense that there exists a positive real
number § such that for all z € R",

o(x,y1) — p(z,y2) > Vyp(z,92)T (1 — y2) + Blly1 — y2|I*  for all y1,y2 € R, (3.4)

where V¢ denotes the partial derivative of ¢ with respect to the second variable.
P4: {V,p(z, ) : z € R"} is uniformly Lipschitz on R" (with modulus x > 23 > 0) that is, for
all z € R"

IVyep(,y1) = Vyo(z, y2)|l < kllyr — g2 for all 1,42 € R™. (3.5)

P5: For any z,y € R", Vyo(z,y) = =Vyo(z,y).
P6: V,po(z,y) =0 & Vyp(r,y) =0 & z=uy.
P7: For all z,y € R™ we have

Bl —yl? < wlz,y) < (k= B)|lx —y* (3.6)



Remark 3.1 For example, the function

olay) = 3lle — y? (37)

satisfies properties P1-P7. More generally, for any twice continuously differentiable, strongly
convex function v : R™ — [0,00) such that v(0) = 0, the function p(z,y) := v(x —y) also has
properties P1-P7.

Below, we list some basic properties of functions 6%, and ¢ defined respectively by (3.2)
and (3.3). From now and onward, ¢ denotes a function on R™ x R" satisfying P1-P7 (with the
associated constants 3,k > 0). We always assume that a,b,c > 0 and a < b. The following
proposition collects some useful facts for the generalized D-gap functions in which part (i) — (iii)
are taken from [31], part (iv) — (vii) from [33] and part (viii) from [19].

Proposition 3.1 The following statements are valid for VI(F, P).
(i) For every x € R™, there exists a unique vector y¢(x) € P at which the supremum in (3.3) is
attained, i.e.,
07 (z) = F(a)" (x — y£ () — ez, yf (). (3.8)
(i) v&(-) and 02(-) are continuous on R"™ and 0F(z) > 0 for all x € P.
(iii) [xe P, 0f(x)=0] & [zr=vy(xr)] & =z isa solution of VI(F,P).
(iv) 6%, is continuous and nonnegative on R™.
(v) [0%,(x) =0] & z is a solution of VI(F, P) & [z = y& (z) = yi (x)].
(vi) For all x € R™, we have

(b —a)p(z,y; () < 07,(x) < (b—a)o(z,yf(x) and (3.9)

Bb = a)llz =y (2)|* < 05,(x) < (5 = B)(b— a)l|lz — y£ (2)]” (3.10)

(vii) If F is continuously differentiable on R™, then 0¢ and Hfb are also continuously differentiable
on R™.

(viil) If F' is locally Lipschitz on R™, then y&, 0 and 0%, are also locally Lipschitz on R™.

Remark 3.2 (c¢f. [31]) If ¢ is given by (3.7), then for any v € R™, y&(x) is the projection of
r—c 'F(z) on P, that is

y?(x) = Prp(x — ¢ F(x)) for all z € R™, (3.11)
Theorem 3.1 Let F be a locally Lipschitz function on R™. Then we have
005 (x) = O°F(x)" (yf (x) — y¢(x))
—aVp(z,y?(x)) + bVap(z, yf () for all z € R™. (3.12)

Proof. Since F is locally Lipschitz, one can apply Proposition 3.1(viii) and the Rademacher
theorem (cf. [26]) to see that F', 6% and 67 are differentiable almost everywhere on R". Hence
there exists a set A of measure zero such that these functions are differentiable at each point of
R™\A. Applying (2.2) and (2.3) with {6%,,1} in place of {G, m}, we obtain that for each z € R",

9°0%,(z) = co {840%,(x)} = co {Zlirglo Vo7 (z;) : x — x, x; € RM\ A} (3.13)
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For any p > 0, let us define ¢, : R" x R" — R by

Yu(r,y) = F(x)' (x —y) — p o(w,y) for all z,y € R™. (3.14)
Then by (3.3) and (3.8),
05 (z) = sup Yu(z,y) = Yu(z,y; (v)) for all z € R™. (3.15)
yeP

Since for all y > 0, € R"\A and v € R,

Vetbu(e, yi(x)) = Vu(,yf(2)) |«
= VEO)T(—yf(@) + F() = uVap (51 (2)) o
= VF(2) (z - yf(x)) + F(2) = pVop(, yf (@), (3.16)

and ¢, (z + tv, yji (z + tv)) = supyhu(z + tv,y) > Yu(z + tv,yf () (thanks to (3.15)), one has
yeP

VoL (x)v = (607) (z;v)
B+ 1)~ 07()

t10 t
_ hlfon @Z),u($ + tv, yﬁ(l‘ + iv)) - wu(gj’ yﬁ(m))
t
>y 0D V()
t
= Vathu(x, yi(z))v. (3.17)

Since v is arbitrary, it follows from (3.16) that, for any x> 0 and x € R™\ A4,

Vb5 (@) = Vohu(e, yf (2)) = VF ()" (z — yf(2)) + F(z) — uVap(z,y5(z)).
Consequently, by considering u = a,b we have
V0%, (2) = VO£(x) - VOf(2)
= VF(2)" (y (x) -y (@)
—aVp(x,yg (x)) + bVao(z,yf (), for all z € R™\A. (3.18)

Next, let us consider a general x € R™, and take p > 0 such that F is Lipschitz on B(z, p); thus
{VF(z): 2z € B(z,p)\A} is bounded. Since y; and y; are continuous (by (ii)), it follows from
(2.3) that

co{lim VF(z)" (yf (zi) — yZ(2:)) : 21 — x,3; € R™\ A}

1— 00

= (Co{z.lggo VF(zi) : wi — x,2; € R”\A}>T(y?f(w) S AQ))
= OF (@) (yf (x) — y&(2)).
Combining this with (3.13), (3.18) and (P1), we have for all z € R”
0°075,(x) = O°F (2)" (y§ () — y£(2)) — aVaip(a, yg (2)) + bV (z, yf ().

Thus (3.12) is shown and the proof is complete. O



4 Error bound results for generalized D-gap functions

In this section, we establish some error bound results for generalized D-gap functions. Denote
the distance from z to a set C' by d(z,C). For a function f : R” — RU {+o0}, we sometimes
use [f < €] to denote the (sub-)level set {x € R™: f(z) < €} at level e. Following [8] and [9], we
say that f has a local error bound on C' if there exist two positive constants 7, € such that for
allz e [f<eNC
d(z, SN C) < 7 max{f(x),0}, (4.1)

where Sy := [f < 0]. Furthermore, we say that f has a global error bound on C' if there exists
a constant 7 > 0 such that (4.1) holds for all x € C.

The following result was established by Peng and Fukushima [25] in the special case when
¢ is given by (3.7) and F is strongly monotone on R"(see Remark 2.1 (ii)).

Lemma 4.1 Let F : R® — R" be coercive on R™. Then for any constants a,b satisfying
0 < a <b, the level set [07, < €] is bounded for any e > 0.

Proof.  Suppose on the contrary that there exist a constant ey > 0 and a sequence {x;}7°
1/2
such that klim |zk|| = oo and 0%, (1) < € for all k € N. Letting w := (%) where (3 is
—0Q0
defined as in (P3), it follows from (3.10) that

llzr — vl (x1)|| < w for all k € N. (4.2)
Consequently, by (P6) and (3.5), we have
IVyp(@r, v (@)l = IVye(@n, yi (2x) = V(@ 2i) | < sllae — yf (2p) || < sw.

Since yf (z)) minimizes the function —F(zy)7 (z), — ) + bp(2k, ) on P (see Proposition 3.1(i) ),
it follows from the first order optimality condition and the Cauchy-Schwartz inequality that, for
any y € P,

o
IN

T
(P + 09ptan @ ) (v )
< F(ar)" (y — yf (1)) + brwlly — yf (zp)]]. (4.3)
Fixing y € P and denoting y + xx — y; (xx) by Y, this implies that

—F(zp)" (zx — 1)

0<
2k — il

+ bkw for all k € N. (4.4)

On the other hand, since {yi }ren is bounded, there exists a bounded box B such that {y treny C
B. Hence, for each k,

F(xp)" (zr — yr) > inf F(ap)T (z, — 2)

[EZA z€B [EZA

(4.5)

By a well-known theorem in linear programming, the infimum on the right hand side of the
preceding inequality is attained at an extremal point (depending on k) of B. Since B is a box



(hence has only finitely many extremal points), it follows from (4.5) and the definition of coercive

that -
F _
lim (ze) (21 = ye) = +00. (4.6)
k—oo |k

Since ||zg|| — oo and {yk }ren is bounded, this implies that

F(ay)" (z —
lim (zx)" (2% — yi) — e
k—oo  ||zg — y|

This contradicts (4.4) and completes the proof. O

Theorem 4.1 Let ¢ : R" x R" - R, F : R" — R"™ and P C R" be subanalytic. Then the
following statements hold for any constants a,b satisfying 0 < a < b:

(i) 0%, is a subanalytic function on R™.

(ii) Suppose in addition that F is coercive on R™. Then there exists v € (0,1] such that (67,)7
has a local error bound on R™.

Proof. To see (i), by (S5) it suffices to show 6¢ is subanalytic for any ¢ > 0. To do this, fix
a constant ¢ > 0, a compact subanalytic set V of R x R and let M := sup(, ey [|ly¢ (x)]| < .

Since y¢ is continuous (by Proposition 3.1(ii)), M is finite. Define A, = Agl) N Ag) where
A ={(z,r,y) eR" xRx R": F(2)" (x —y) — co(w,y) —r > 0},

AP =V x (PNB(0, M)).

By the given assumptions together with (S1), (S5) and (S6), it is clear that AWM AP and A,
are subanalytic. Define 7 : R” x R x R” — R" x R by

m(z,ry) = (z,7).

We claim that
m(Ae) = {(z,r) e R" xR : 0%(x) >r}nV. (4.7)

Granting this, (S2) implies that {(z,r) € R" xR : ¢ (z) > r} NV is subanalytic for any compact
subanalytic set V' C R"™. Consequently, (S3) implies that

{(z,r) e R"" xR :07(x) > r} is subanalytic. (4.8)

and thus 67 is subanalytic by Proposition 3.1(ii) and Remark 2.2. To see (4.7), let (x,7) € w(A).
Then (z,7) € V and there exists yo € P N B(0, M) such that

F(z)"(z —yo) — co(e, o) 2 7.

Hence 07 (x) > r and w(A.) C {(z,r) € R" x R: 6Z(x) > r} N V. Conversely, let (z,r) € V such
that 07 (x) > r. Then, by Proposition 3.1(i) and the definition of M, we have (z,r,y¢(z)) €
V x (PN B(0,M)) and



Therefore, (z,r,yf(z)) € A., (z,7) € 7(A.) and (4.7) is shown. To prove (ii), let a,b be
constants satisfying 0 < a < b and let S denote the solution set of VI(F, P). ;From part (i),
and Proposition 3.1(iv)-(v), we see that %, is a continuous subanalytic function satisfying

S = (d(-.8)) 7' (0) = (6%,)1(0). (4.9)

In particular, S is a subanalytic subset of R™ (by (S6)) and hence d(-,S) is a continuous sub-
analytic function on R™ (by (S4)). Fixing any ¢ > 0, by Lemma 4.1, we have K := [0%, < ¢
is bounded hence compact. Denote the restriction of 67, (resp. d(-,S)) on K by 6%, |k (resp.
d(-,S)|k). Applying Lojasiewicz’s inequality (S7) with {67, |k, d(-, S)|x} in place of {f, g} and
using (4.9), we obtain a constant o > 0 and a positive integer N such that a(d(z, S))N < 6%, (z)
for all z € K. Thus d(z,S) < 7(0%,(2))” for all z € K, where 7 = a~~ and v =% € (0,1].
This establishes part (ii) and completes the proof. O

Below, we present an example to show that the condition “F' is coercive” in Theorem 4.1(ii)
cannot be dropped.

Example 4.1 Consider P =R, ¢(z,y) = |z —y|?, b=2,a=1 and F : R — R is defined by
F(x) = ze®. Itis clear that P is a subanalytic set, and F, ¢ are analytic (and hence subanalytic)
functions. Moreover, by Remark 3.2 and (3.8), we have

_IF@IP b

@ () — a 2
5 and 07, (x) = 57 | E(x)]* (4.10)

ye(z) = — ' F(z), 0¢(2)

In particular, we have 07, (z) = 1| F(z)|* = (16438)2 and (0%,)71(0) = {0}. Letting S := (0%,)~1(0)

and z, = —k (k € N), it follows that for any v € (0,1],

lim M— lm ————= =+
k—oo (Ogp(xk))Y koo (i(ke_ky)’y N ’

Since 07, (x) — 0, this implies that (0%,)7 fails to have a local error bound on R for any v € (0, 1].
By Theorem 4.1(i1), F is not coercive (indeed

Flz) @ = liminf |z|e” = 0).
e —oo ] jal—o00

As explained in [17], the exponent v in Lojasiewicz’s inequality (S7) (hence in Theorem
4.1) is, in general difficult to determine. Our next result gives a local error bound result with
the exponent v explicitly determined. Recall that the lower Hadamard directional derivative
D~ f(z;v) of f at € R™ in the direction v is defined by

fla+tu) — f(z)

D~ ;v) = liminf 4.11
J(w;v) = lim inf . (4.11)

It is clear that for all locally Lipschitz functions f and for all x,v € R™,
D™ f(z;v) < (x5 v). (4.12)

In order to achieve our key result (Theorem 4.2), we first present several lemmas. Part (i) of
the following lemma is due to [22].
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Lemma 4.2 Let f : R® — R U {400} be a proper lower semicontinuous function. Let v €
(0,1], e >0 and § > 0. Let Sy :={z : f(x) <0} #0. Then the following statements hold:
(i) Suppose that for each x € dom(f)\S¢, there exists a sequence {x,} in R™ such that , — x
and

0<|lz—azn| <0(f7(x) = f(zn)) for all large n.

Then f7 has a global error bound with modulus 6 on R™.
(ii) Suppose that f is continuous and for each x € [f < €]\Sy there exists hy € R™ with ||hs| =1
such that

D™ f(x;hy) < —6f177 (). (4.13)

Then f7 has a global error bound with modulus 1/(~d) on [f < €].

Proof. Part (i) is proved in [22] as noted. To prove (ii), define f by

r _ f(l‘), if z € [fge],
fla) = { +00, else. (4.14)

Then f is a proper lower semicontinuous function with domf =[f < €]. By (i), it suffices to
show that for any A > 1 and = € [f < €]\ Sy there exists a sequence {x, } in R" such that z,, — «

and
N - _
0< |lo—mz < —6(f7(a:) — f7(zy)) for all large n. (4.15)
Y
To do this, let us fix A > 1 and € [f < ¢]\S;. By assumption, there exist h, € R" with
||hz|]| = 1 and two sequences t,, | 0, u, — hy such that
lim flan) = fz) =D f(z;hy) < —6f177(x) <0, (4.16)
n—oo

n

where z,, = x + t,u,. By the continuity of f, and since f(x) > 0 and x,, — x, we may assume
without loss of generality that f(z,) > 0 for all n € N. Writing

Fl(xn) = f1(@) =777 @) (f(wn) = f(2)) + an,
where oy, = o(f(x,) — f(x)) and assuming that D~ f(x; h,) > —oo, we have

(" o) =

. (6773 .
lim — = lim
n—oo t, n—00

This together with (4.16) implies that

tim I =S v 1D s hy) < <6 (4.17)

n—oo tn

(one can show similarly that (4.17) is valid also for the case when D~ f(z;h,) = —o0). Noting
that u, — h; and ||h.|| = 1, it follows that

o £1(@0) = (@)

n—oo ||z, —

< —vd < ——.
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Thus, for all large n,

Fi(@) = F(aa) > 2|

(in particular f7(z,) < f7(z) < € and so x,, € domf). Therefore (4.15) is established and this
completes the proof. O

|3§‘n—33‘||,

Lemma 4.3 Let b > a > 0. Then for all x € R™, we have

(Vyo(@, ug (@) = Vo, 5 (@) (45 (@) — v (2)) > 26]lyg (@) — v (@), (4.18)

Proof. Considering y¢ (z), y. (z) in place of y1,y2 in (3.4), we have

(2,92 (2)) — (2,5 (@) = Vyo(r, 58 (@) (2 (2) — yf (@) + Bllye () — yf ()]
Similarly,
oz, yf () — oz, 48 () = Vye(z, y2 (2)" (v (x) — vf (@) + Bllyg (x) — yf ()%,

Summing these two inequalities gives (4.18). O

Let T(a, P) and N (a, P) respectively denote the tangent cone and the normal cone of P at
a € P, that is T(a, P) = U, t(P — a) and N(a, P) = (T(a, P)) ={z:27d <0, forall d €
T(a,P)}. It is known (and easy to verify) that N(a, P) = {x 2T (p—a) <0 for all p € P}. Let
(F(x))° denote the negative polar of the singleton { F\(x)},i.e. (F(2))° = {d € R" : F(z)Td < 0}.
For a vector x € R", following [9], we define Ty(x, P) and Tab(ac, F, P) by

To(a, P) = (T@f(z),m) N (—T@f(af:),m) and Tz, F, P) = Tu(z, P) (J(F(x))°.

Remark 4.1 Clearly, Top(z, P) and Tyy(x, F, P) are closed convex cones. Moreover, it is easy
to verify that

yi (x) — yy (x) € Tap(x, P) (4.19)

(because yg (), yi (z) belong to the convex set P).

Lemma 4.4 Letb>a >0 and z € R™. Then y (z) — y[ (z) € Top(x, F, P) and

(a¥apto @) = 09t y?f(x»)T(yzf(w) @) 20 (4.20)

Proof.  Since ¢ (x) minimizes the function —F(x)"(x — ) + a¢(x,-) on P, the first order
optimality condition implies that

(F(:L‘) + aVygD(:U,yf(x))>T<y - ygf(x)> >0 forall y € P.

Letting y = y; (x), we obtain
T
~(P@) +avetoaz @) (s - @) 0 (121)

12



Interchanging the roles of a,b we similarly obtain

(P + W06 y?f(x)))T (ve@) ) ) 2o (1.22)

By (P5), adding the above two inequalities gives (4.20). It remains to show that yg (z) —y/ (z) €
To(z, F, P). Let y& (z) — y (z) be denoted by z. By (4.19), it suffices to show that z € F(z)°.
Noting that

(F(2) +aVye(@,yf @)z = (1= DF@)" 2+ L (F@)" + 59,058 ()=

+a(Vyp(z,yf (2) — Vypla,yf (@) 2,

where the last two terms are nonnegative (thanks to (4.22) and (4.18)), it follows from (4.21)
that 0 > (1 — ¢)F(x)"z. Since b > a > 0, this implies that F(2)"z < 0 and so z € F(z)° as
required to show. O

For any constants a, b, ¢ satisfying 0 < a < b and ¢ > 0. Define a multifunction Q. : R" —
2R as follows:

yi (x) = yi (x), if clle -y (2)] < llyd (=) =y @),
Qape(w) := § {va (@) — 2, yd(2) —y) (@)} i clle —pd (@) = lyd () — gy (@), (4.23)
yi (x) -, if elle -yl (@) > llyd (z) — gy ()]

We are now ready to establish our main result of this section. The first assertion of (i) in the
following theorem follows immediately from Proposition 3.1(viii) and Lemma 4.1.

Theorem 4.2 Let F' : R™ — R"™ be locally Lipschitz and coercive on R™. Suppose that there
exist positive constants a,b with a < b such that pa, > 0, where pqp is defined by

fiap = inf{d"Vd:V € 9°F(z),d € Ty(x, F, P), ||d|| = 1,6%,(z) # 0} (4.24)

(with the convention that inf () = +oc0). Then the following assertions hold.

i) Let € be any positive number. Then 0%, is Lipschitz on [0, < 2¢] (with some Lipschitz
ab ab

constant L). Let ¢, § be positive real numbers satisfying

(b—a)p (b—a)p C hab
2L + br) Vie=B)b—a) (k= B)(b~a)

where 3, k are defined as in (3.4) and (3.5) and let Qupe be defined as in (4.23). For each
z € (67,)71(0, €], we have 0 ¢ Qupe(x) and

¢ < min{1, Yand 0 < min{2 } (4.25)

Wy

(07,)° (w5 hy) < —64/07,(z) for each h, = with wy € Qape(T). (4.26)

[ |

(ii) Let e, L and § be as in (i). Then d(z,[0%, < 0]) < 2,/60%, for all z € [0%, < €].

(iil) 1/60%, has a local error bound on R™.
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Proof. The implication (ii) = (iii) is by the definitions. Let ¢ > 0. By (4.12), (4.26)
entails that D™60%, (z;hy) < —6,/0% (z) for all z € (0%,)7(0,€]. Hence, by virtue of Lemma

4.2(ii) (applied to v = 1/2 and 6%, in place of f), (i) implies that \/Hifb has an error bound
with modulus 2/6 on [0¥, < ¢|. Thus the assertion (ii) follows from (i). For (i), we only need
to verify the second assertion since the first one holds as we already noted. Let us fix = with
0 < 07, (x) <€, wy € Qape(x). Then, by Proposition 3.1(iii), 0 ¢ Qgpe(z) and hence w, is
nonzero. Let hy = wy/||wg||. Note that the inequality in (4.26) is equivalent to

(05)° (@5 w,) < ~6]ws]l\ /67, (2). (4.27)
Thus by [5, Proposition 2.1.2 (b)], it is sufficient to show that
Whw, < —6||lwy|[y/0F,(x), for all W € 9°0%, (). (4.28)
To do this, let us fix W € 907, (z) and make use of (3.12) to express W in the form
W= V"2~ aVup(z,yf (2) + bVap(z, yf (z)) (4.29)

where V € 9°F(z) and z = y& (z) —y] (z). Note that z # y& (z) since %, (x) # 0 (see Proposition
3.1(iii) and (v)). Moreover if Ty (x, F, P) = {0} then yg (z) — y{ (z) = 0 (see Lemma 4.4), and
hence c|z — vy ()| > 0 = ||lys (z) — y7 (x)|. Therefore, one of the following cases must hold.
(1°) ellz — yg ()| < llya (z) — i (=) and Tap(, F, P) # {0};

(2°) cllz —ya (@) > [lyd (z) — yi (@)]I;

(3°) cllz — yd ()|l = llya (z) — y§ (x)| and Tap(, F, P) # {0}

Suppose (1°) holds. Then, since w; € Qgpe(x), (4.23) entails that w, = 2z and it follows from

(3.10) that
e/ 05, (z) < v/ (k= B)(b—a)lz]. (4.30)
Thus, by the definition of § given in (4.25), to show (4.28) it is sufficient to show that
Wz < —pgl 2|2, for all W € 0°0%, (). (4.31)
On the other hand, from (4.29) and (4.20) we obtain
Wlz< -2Tve. (4.32)

Since z € Ty (z, F, P)\{0} (by Lemma 4.4 and z = w, # 0), it follows from (4.24) that —W 7z >
pabl|2]|%; thus (4.31) is valid. Therefore (4.28) is verified for case (1°). Suppose next that (2°)
holds. Define u = y&(z) — z. Then u = w, # 0 and

121] < elfull (4.33)
Thus, to show (4.28), it is sufficient to prove that

Wy < —6||ul|\/6%,(x) for all W € 8°6%, (z). (4.34)
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(From (4.29), we note that

T
Whu = —2TVu+ ( —aVap(z,yf(z)) + bVap(z, yf(w))) u. (4.35)
We claim that the following two statements hold:
—2TVu < cL|ul?, (4.36)
T
( —aVep(z,yl(z)) + bVep(z, yf(:];))) u < ( —(b—a)p+ bHC) |2 (4.37)

Granting this, it follows from (4.35) and the definition of ¢ that
Wha < (= 0= ag+ (L0 ) Jul? < ~(0 - a)slul’/2
Consequently (4.34) is seen to hold since, by (3.10) and the definition of § one has

T (b—a)Bu? (b—a)B /
L B W ey e LA

—6lully/ 6 (). (4.38)

IN

To see (4.36), we recall that F is Lipschitz with modulus L on [07, < 2¢] hence, by (2.4), we get
that ||[V|| < L, for all z € [0}, < 2¢] and V € 9°F(x) . This together with the Cauchy-Schwartz
inequality and (4.33) gives that

—2TVu < L||2|| |Ju| < cL|u?. (4.39)
Therefore, (4.36) holds. To prove (4.37), from (P2) and (3.4), we have
—p(z, 98 (x) = p(z,2) — oz, 95 () = ~Vyp(z, y8 (@) u + Bllul>
This together with (P2) and (P5) in the definition of ¢ yields that
Vop(,y2) u = =Vyp(r,y2) u < =Bllul® - p(z,yf (x)) < —pllull*. (4.40)

By (P5), (3.5), the Cauchy-Schwartz inequality and (4.33), we have

T T
<Vx90($,y?f($))—sto(f'f,yf(w))> w = (—vyso@,y;f(x))+vyso<x,yf<z>)) u

rllllllull < meful®,

IN

and it follows from (4.40) that
T T
( — ango(a:, yf(a:)) + bvxtp(a:, yzp(m))) u = (b—a) (ngo(a:, yéf(m))) u

T
+b <sz0($, vy (x)) — Vao(z, ?/f(l’))) u

A

< —(b—a)f+ zmc> 2.
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Thus (4.37) holds and this verifies (4.28) for case (2°). Finally, suppose (3°) holds. Then since
Wy € Qape(x), (4.23) entails that wy, = z or wy = u. If wy = z, then ||wy|| = ||z|| = ¢||u|| by (3°).
By (3.10), it follows that

e\ /05, () < /(5 = B)b = a)llul = Vir = B)b - ). (4.41)
We proceed as in (1°) and obtain that
W2 < —papl|2]|?, for all W € 9°%, (z).
This together with (4.41) and the definition of § implies that

e N

and hence (4.28) holds in the case when (3°) holds and w, = z. If w, = u, proceed as in (2°),
we see that (4.36) and (4.37) hold but replacing the strict inequalities by the corresponding
non-strict inequalities. Thus one deduces that (similar to the derivation of (4.38))

Whu < —6|ul|\/0%,(z).
Therefore (4.28) holds when (3°) holds and w; = u. This completes the proof. O

Corollary 4.1 Let b > a > 0 and let F : R™ — R"™ be locally Lipschitz and strongly monotone

on R™. Then the function Gfb has a local error bound on R™.

Proof. The assumptions imply that F' is coercive (by Remark 2.1(ii)) and that zi,5 > 0 holds
(by (2.7)), where 45 is defined as in (4.24). Therefore, the conclusion follows from the preceding
Theorem. 0O

Remark 4.2 The assumption pq > 0 in Theorem 4.2 does not imply the solution is unique.
For example consider P = R, ¢(x,y) = %va —yl?,a=1,b=2and F : R — R is defined by
F(z) = max{xz,0}. Note that 67, (z) = bQ_TZHF(m)HQ = max{w,0}2/4 (by (4.10)). The solution
set S =[07 = 0] = R_. On the other hand, since {z : 0%, (x) # 0} = (0,+00), it follows from

(4.24) that

pay = inf{dTVd:V € 0°F(z),d € Tp(z, F, P),|d| = 1,07 (z) # 0}
> inf{d"Vd:V € 0°F(z),|d| = 1,2 € (0, +00)} = 1.

Remark 4.3 Our error bound results depend on the constant pq,. Therefore, in general, we
need some priori information to determine the constant pa,. However, it can be determined
explicitly in the following two important cases:

(i) If F is strongly monotone with modulus 1 > 0. Then we can take g = .

(i) If P = R% and ¢(z,y) = 3llz — y||>. Then, the cone Tyy(x, F, P) (and hence the constant
Uab) can be determined explicitly (see [9, page 941-943]).

Recall that, for a locally Lipschitz function f, we say x is a generalized unconstrained stationary
point of f if 0 € 9°f(x). We now summarize the connection between the stationary points of
the D-gap function and the solution of the corresponding VI(F, P) in the following theorem.
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Theorem 4.3 Let F : R" — R"™ be locally Lipschitz continuous on R™. Let a and b are scalars
satisfying b > a > 0. Consider the following statements:

(i) z is a solution of VI(F,P).

(ii) z is a generalized unconstrained stationary point of Hfb and the following relation holds:

d € Ty(x, F, P)

F(z)ld=o. 4.42
VTd € Tz, F, P)°Y V € 0°F () } = Flo) (442)

(iii) « is a generalized unconstrained stationary point of Hfb and pap > 0 where gy s defined

as in (4.24) .
Then the following implication holds: (iii) = (ii) < (i).

Proof.  The proof of the equivalence of (i) and (ii) is similar to [9, Theorem 10.3.4]. To see
(iii) = (ii), let statement (iii) holds. We proceed by contradiction and suppose that the state-
ment (ii) doesn’t hold. Thus there exists d € Ty (z, F, P), V € 0°F(z) and VTd € Ty (z, F, P)°
satisfying d” F(z) # 0. In particular, one has d # 0 and

d'vd <o. (4.43)

Moreover, since (i) < (ii), we may assume without loss of generality that z is not a solution of
VI(F,P). Tt follows from the definition of yia; that d”Vd > pg|/d||?. This together with (4.43)
and g > 0 implies that d = 0. This makes contradiction and finishes the proof. O

Below, we present three examples. The first example shows that the condition “ug, > 0”7 in
Theorem 4.2 cannot be dropped and the second/third one shows that our Theorem 4.1 and 4.2
can be applied to some cases when F' is nonsmooth/nonmonotone.

Example 4.2 Consider P =R, o(z,y) = %Hx —yl?,a=1,b=2and F : R — R is defined by
F(x) = 23. Then as in Evample 4.1, P, F and ¢ are subanalytic, and (4.10) holds. Moreover, F
is clearly coercive, and Theorem 4.1(ii) implies that there exists some ~v € (0,1] such that (67,)7
has a local error bound on R. (Indeed, by (4.10), 67, (x) = I;TZHF(x)HQ = 25/4 and so (Hfb)l/6

has a local error bound on R.) Let x, = 1/k (k € N). Then 6%, (zx) — 0 and
Ao 105, = 0) _1/k

- 1/(2k3

0%, (z1) /(2k?)

— +00.

Thus W/Ga@b has no local error bound on R (by Theorem 4.2, it follows that pg = 0).

Example 4.3 Let o(z,y) = illz —y||?>, P =R%, a € (0,1), b = 1. Consider the nonsmooth
nonlinear complementary problem discussed in Example 1.1 with ¢(u) = max{u,u?*"™*1} (m €
N). In this case, one has F(x) = Mz + p(x) + q where M = (M, j)1<i j<n € R™"™ with M;; = 2
and M; i1 = Mi11, =—1, ¢ € R" and p is defined by

p(z1,...,x,) = (max{xy, m%mH, 0},...,max{z,, 2", 0}).

n

It can be verified that F is locally Lipschitz and coercive. Moreover, since M is positive definite,
foralld,z € R", V € 0°F(x),
d'vd > d"Md > o|d|]?,

where « is some positive number. Thus, from Theorem 4.2, ,/Hfb has a local error bound on R™.
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Example 4.4 Consider ¢(z,y) = 4|z —y||>, P =R%, a € (0,1), b=1 and F : R? — R? is
defined by F(x1,x2) = (Fi(x1,22), Fa(x1,22)) where

3
Fi(z1,22) = x1 + max{x1,0} - max{x2,0} and Fr(xi,z2) =22+ 2 max{z1, 0}, (4.44)
that 1is,

1+ 2172, if 11 > 0,29 2>0 342y, if 21 >0,

Fi(x1,29) = { and Fy(x1,22) = {

x1, else, o, clse.
(4.45)
Thus F is subanalytic (see (S5)). Moreover, we have
1
( —ExQ il ), if 1 >0 and x2 > 0.
2
1
(3 (1))5 if:L"1>0(mdx2<O,
VE(z) = | (4.46)
(1 O) if 11 <0 and 9 >0
017 ! 220
1 0
(0 1), if 1 <0 and xo < 0.

\

Since F' is monotone on an open convex set D if and only if V is positive semidefinite for
all V. € 9PF(z) and x € D (see [14, Proposition 2.3(a)]), and VF(1,%) is negative definite.
Thus, F is not monotone on R%. Note that the corresponding VI(F, P) reduces to the following
nonlinear complementary problem: find x = (x1,x2) € Ri such that

Fi(x) >0 and z;F;(z) =0 for all i = 1,2.

Clearly the solution set S of this problem is the singleton {(0,0)}. Moreover, by the following
elementary inequalities,

x? + 33‘1.7)2 + 220+ 23 > 22+ 23 for all (z1,12) € R? such that z1 > 0 and x5 > 0;

x3 + Swimo + 23 > L(23 4 23) for all z1,x2 € R,

it is easy to verify that
1
F(x)Te > ZHacHz for all z € R?. (4.47)

Since {F(”xH : x € R?} is bounded for any y € R?, this implies that F is coercive. Thus
one can apply Theorem 4.1(i) to conclude that (6%,)7 has a local error bound for some v > 0.
In fact, for the present case, Theorem 4.2 produces a better result by giving the explicit value
v = 1/2. To see this, it suffices to show pap > 0, where pqp is defined as in (4.24). Since
yE(z) = (max{0,r1 —c 1 F(2)}, max{0, 2 —c ' Fy(x)}) for any x := (w1, 22) € R? (see Remark
3.2), it follows from (4.44) that y{(x) = (0,0) since b = 1. Consequently, T(y(z), P) = R2
and so

Top(x, F, P) CRA. (4.48)
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Define a mapping M : R?2 — 28" a5 follows

1 10 10
CO{( 2332 “ﬁl )’( 3 ),( 01 )}, x1 >0 and xo > 0.
— 2 2
I PR IRERg che Y
177 0 170

It follows from (4.46), (2.2) and (2.3) that for any x € R?
0°F(x) C M(x).

Thus d*Vd > 1 for all V € 0°F(z) C M(z) and for all d € R% with ||d|| = 1. This together
with (4.24) and (4.48) implies that pe, > 1. In particular, pay > 0 and hence /07, has a local

error bound on R2.

5 A Derivative Free Descent Method

In this section, we consider an Armijo type descent method. Denote the solution set of VI(F, P)
and the initial point respectively by S and xg. Throughout this section, we assume that F is
locally Lipschitz, coercive and 0 < a < b such that pg, > 0, where i, is defined as in (4.24).
Considering € = 67, (o), it follows from Theorem 4.2 that there exist d,c¢ > 0 satisfying (4.25)

such that, for each z € (6%,)71(0, €] one has d(z,S) < 2,/6% (z) and

(65)° (23 ha) < =04/07,(2), (5.1)

where h, = ”Iw”—;u and w, is defined by:

w. — J Va@) —yp(z), i ez — (@)l <l (=) — vy (@)
e { ya(z) — x, else. (5.2)

Note from the definition of w, and c that
Jwe | = ellyg () — . (5.3)

Moreover, by the continuity of #%,(-) and (5.1), we note that for all p € (0,1) and z € (8%,)71(0, €]

R R O 0o+ 7" wa) — 05 ()
im sup poe = lmsup
it gl = gy [ 85,z + ) + /85, @)

(Gfb)O(l‘; wa”) < _é. (5‘4)

2,/0%(x) 2

IN
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Our algorithm is as follows:
Algorithm
Step 0: Let p € (0,1). Let 29 be a given vector in R™. Set k = 0.
Step 1: If 67, (x) = 0 then stop (and zj € S). If not then go to Step 2.
Step 2: Compute w,, by (5.2) and go to Step 3.

Step 3: Let my be the smallest integer m such that

VO it om,) = S5 x) < =27 | (5.5)

and set xp41 =z + p"* wy, . Go to step 4.

Step 4: Return to Step 1 with k replaced by k + 1.
Note. By (5.4), the line search in Step 3 is well defined (unless zj, is already a solution of
VI(F, P)).

Theorem 5.1 The sequence {xy} generated by the above algorithm is bounded and the limit of
each of its convergent subsequences is a solution of VI(F, P).

Proof. If 67, (x)) = 0 then z;, € S by Proposition 3.1(v). Suppose therefore that 67 (z;) > 0
(hence w,, # 0 by (3.10) and (5.3)) for each k. Let € = 6% (). By (5.5), the sequence {67, (z)}
is decreasing and hence converges; thus {z;}72; C (6%,)71(0, €] and

Jim g7 g, || = 0. (5.6)

By Lemma 4.1, {z} is bounded hence has a convergent subsequence, say {xy, };°,. Let lim Ty, =
z*. We claim that z* € S. Indeed, if {my,}?°; is bounded, then (5.6) implies that szo,:: -0
and hence that y& (xx,) — xx, — 0 as i — oo (see (5.3)). By the continuity of yg it follows that
ye (z*) —2* = 0 and so * € S by Proposition 3.1(iii). Therefore, we may assume that {my,} is
unbounded. By considering a subsequence if necessary we may assume further that my, — oo

and
We,

L — RY (5.7)

[,
for some unit vector h*. We suppose z* ¢ S. Then
a* # y2(z*) and =* € (65,)7(0, €. (5.8)

Moreover, by the Lebourg Mean Value Theorem (cf. [5, Theorem 2.3.7]), for each ¢ € N, there
exist y; in the line segment [xg,, Tk, + pmkflkai} and Wy, € 9°0%, (y;) such that

efb(xki + pmki_lwmki) - ewb( ) = p IWk wrk
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Dividing both sides by p™ 1||ka |, it follows from Wy, € 9°0% (y;) and [5, Proposition 2.1.2
(b)] that for each i € N

0% (z, + p™ i Lw,, ) — 0% (1) w Wy,
ab i — Tk, ab o WT Tk, < (afb) (yi; ﬂ)
This implies that
09, (xg, + p"*i twy, ) — 6% (xy, Wy,
lim sup a7 — ) = Oup () < lim sup(67,)° (yi; ——i-). (5.9)

Noting that y; — z* (by zx, — 2™ and y; € [z,, 2k, —I—pm’“i_lkai]), one has from [5, Proposition
2.1.1 (b)] and (5.7) that
Wy,

lim sup(6;,)° (yi; 7——) < (07,)° ("5 17),

1—00 H Th; H

and it follows from (5.9) that

. be(xki + " T Wy, ) — efb(wki)
lim sup t
1—00 P

< (05,)° (" h7). (5.10)

M. —

Since \/Hfb(xki + pME lka + \/Hab (zg,) — 2\/Gfb(x*), (5.10) implies that

e T ) — O (g
; mki—l = N .
o Pt v 2/0(x%)

Since —gpm’%_lﬂwzkiH < \/Hfb(:vki —i—pm’%_lwmk \/Gab (xk,) (by the line search (Step 3)), it
follows that

0%, (z*). (5.11)
Write N = I1 U I5, where
= {i s cllow, — yg (@)l < v (2x,) — vy (2p,)lI} and I :=N\I1. (5.12)
Case 1: Suppose |[;| = +o00. Since for each ¢ € I, one has
cllwr, — yg (@)l < v (2r,) — ¥ (@e) || and wa,, = yg (zx,) — yi (25,)- (5.13)

It follows (by passing to the limits) that

clla” = y& (@) < llyg(z") — vy (@), (5.14)
and ©
w * _ *
h* = hm Tk, _ yilo(x*) y(zp(x*) ) (515)
i€l i—oo ||lwg, || |lyd (z*) — vy (z*)]]
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By (5.14) and (4.23), y& (2*) — y; (2*) € Qqpe(x*). Since 67, (z*) > 0, it follows from (4.26) and
(5.15) that (67,)°(z*; h*) < —6,/6%,(z), contradicting (5.11).
Case 2: Suppose || = +00. Since for each i € Iy, one has

ckaz - yf(xkl)n > Hyé’f(wkz) - yz;p('rkz)H and wl’ki = ?Jf(mki) — T, (516)
It follows (by passing to the limits) that

clla” =y () = Iy (27) — g (") (5.17)
and Pk *
w —
= fm o We@) (5.18)
ietimoo [Jwg, || [y€ (@) — o]

By (5.17) and (4.23), v (2*) —2* € Qape(2*). Since 67, (z*) > 0, it follows from (4.26) and (5.18)
that (67,)°(z*; h*) < —64/6%,(x), again contradicting (5.11). O

Note: Suppose that F' is smooth, strongly monotone and VF' is locally Lipschitz. Then the
solution of VI(F, P) is unique. From the preceding theorem, we see that the {z}ren generated
by our algorithm converges to the unique solution of VI(F, P) (say z*). Indeed, in this case,
the following stronger conclusion holds:

(i) {67, (xx)} converges Q-linearly, i.e. either the algorithm terminates in finite steps or there
exists r € (0, 1) such that

990
lim 7‘”’( )

<r; 5.19
k—o00 Hab(xk 1) - ( )

(ii) {xr} converges R-linearly, i.e. either the algorithm terminates in finite steps or there exists

"€ (0,1) such that
klim Uz — 2% < 7' (5.20)

Indeed, to see (5.19), we first note that 67, (xy) # 0 for all k£ € N. Since 0%, is smooth and
V0%, is locally Lipschitz in this case (see Proposition 3.1(iii)-(iv) and Theorem 3.1), then from
the mean-value theorem we have for all « € [0, 1]

07 (zp + awy, ) — 07, (x) = /0 V0%, (2k + tway, ) wa, dt

_ /0 (V0P (0 + tw, ) — V67, (1)) wa, dt
+aVo?, (v5) wa, - (5.21)

Note that supy, ||wy, || < +oo (since {z)} is bounded and yZ(-) is continuous for all ¢ > 0) and
hence {zj,+twg, : t € [0,1]} € M where M := [0%, (z) < 67, (z0)]+supy, |wz, || B(0, 1) is bounded.
There exists L > 0 such that ||V07, (z), + twy,) — V07, (xx)| < tL||wy,| for all k. Thus, from
(5.21) and (5.1), we have

efb(xk + awg,,) — efb(xk) < Lwak H2 + avgab(xk) Way,
= ELszk I + o(05,)° (wns war,)

OészkH( Lljwa, || = 04/605,(xx))-
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This implies that

\/Hfb(xk + awy, ) \/9ab (k) B 07 (z + awy, ) — 0% (zy)
| way | i, | (/05 (on + ) + /0%, (1) )
SR L o T
B \/Hfb(mk + awg, ) + \/Hfb(ka)
2 I |lw,
< 2blend (5.22)
be(xk)

On the other hand, from [20, Proposition 2.2], there exists 7 > 0 such that ||y (zx) — v (zx) ||
Tllar — i (zx)ll. This implies that [z — y& (ze) < ok — v (@)l + v (z) — v& (zi)|
(14 7)||zk — yi (k). Thus, from the definition of w, and (3.10), we have ||wg, || < (14 7)|Jax —

yl (zp)] < (1 +7),4 /ﬁ 07, (xx). It follows from (5.22) that

IN A

VOilon + awa) = 05,60 ar(1+7)
ol | =2/ —a)

This implies that there exists m € N such that my; < m for all k£ € N (see the line search (5.5)).
It follows from (5.5), (5.3) and (3.10) that

0% (1) = \/eab () = \J02, (x51)) + /65, (x5-1)

< 4Pmk Yway_y | 41/ 05, (x1-1)
(50
S =P ||$k 1 =Yg (@r—1)|| + /05 (z5—-1)

— 07 (21 0% (xp_1
; <H_m<b_a>P VO @) + /0% ()
= 7O (@r-1), (5.23)

where v :=1— % (0,1) (thanks to 6%, (xx) # 0 for all k& € N). Thus (5.19) is seen

4
to hold. To see (5.20), from our error bound result and (5.23), one has

N 2
= o7 < 5/B5(m) <

Thus, (5.20) follows.

Remark 5.1 (a). Our algorithm is indeed a derivative-free type method, i.e., we do not need
to calculate the (generalized) Jacobian of F. This is useful especially when the calculation of the
(generalized) Jacobian of F is expensive. Although, there already exist projection-type methods
(which are also derivative-free methods) providing iterative sequences that converge to a solution

assuming only F is monotone and continuous (e.g., [28, 29]). Our present approach is based
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on the consideration of error bounds of the merit function Gfb. Hence we not only have the
convergence result (Theorem 5.1) but also know how far from the kth point of the iteration to
the solution set.

(b). Ezample 4.4 shows that our algorithm can be applied to some cases when F' is nonmonotone.
(c). Suppose that F' is smooth, strongly monotone and VF is locally Lipschitz. It follows from the
preceding note that the sequence {xy} generated by our algorithm converges R-linearly. Under the
same assumption, another linear convergent algorithm based on the implicit Lagrangian (which
is a special case of our generalized D-gap function when (z,y) = ||z — y||>, a = b~! € (0,1)
and P is the nonnegative orthant) has been proposed in [18] for solving nonlinear complementary
problems (which is a particular case of variational inequality problems). However, we note that
the search direction used in [18] is different from the one we used in our algorithm.

(d). Our algorithm involves the parameters c and § which depend on the constants L and gy (see
(4.25)). Thus, in general, some priori information is needed to determine these two constants.
However, in some special situations (e.g. F' is piecewise linear and P is the nonnegative orthant),
the constant L and piap, (and hence the parameter ¢ and §) can be determined explicitly. Moreover,
when these two constants are too costly to obtain, similar to [18, page 10-11] and [33, page
453], we can start our algorithm with some reasonably small ¢ and 6, and adapt iteratively with
decreasing values of them if the algorithm does not appear to make predicted progress.

Acknowledgements: We would like to express our sincere thanks to the anonymous referees for
many helpful comments and for pointing out the references [16, 18]. Moreover, we are indebted
to Dr. L.L. Tan for many stimulating discussion and to Prof. A.S. Lewis who suggested us to

look at the subanalytic case.
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