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1 Introduction

Throughout this paper, let P denote a nonempty closed convex set in an Euclidean space Rn

and let F be a continuous map from Rn to Rn. We consider V I(F, P ), the variational inequality
problem associated with the data F and P , that is, to find a vector x ∈ P such that

F (x)T (y − x) ≥ 0 for all y ∈ P. (1.1)

When P is the nonnegative orthant in Rn, V I(F, P ) reduces to the nonlinear complementarity
problem NCP (F ), i.e., finding a vector x ∈ Rn

+, F (x) ∈ Rn
+ such that F (x)Tx = 0. Varia-

tional inequality (VI) problems have been widely studied in various fields such as mathematical
programming, game theory and economics etc.; see [8, 9, 10] and references therein for the back-
ground information and motivation of the (VI) problems covering both smooth and nonsmooth
functions. In fact nonsmooth variational problems are quite abundant, see [1, 11, 12, 23] for
recent developments. Below, let us only mention explicitly one of the simplest examples.

Example 1.1 Let Ω be a bounded open set in R2 with Lipschitz boundary ∂Ω. Given a con-
tinuous function φ : R → R and consider the following free boundary problem: find a twice
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continuously differentiable function u : R2 → R such that

∆u+ φ(u) = 0 in Ω+,

u = 0 in Ω0,

u = |∇u| = 0 on Γ,

u = 1 on ∂Ω

where ∆u = ∂2u
∂2x1

+ ∂2u
∂2x2

, Ω+ = {z ∈ Ω : u(z) > 0}, Ω0 = {z ∈ Ω : u(z) = 0} and
Γ = ∂Ω0 = ∂Ω+ ∩ Ω. In the special case when φ(u) = λup for some 0 < p ≤ 1, this model
has been discussed in [1] (see also [4]). Since the corresponding domain Ω+,Ω0 and ∂Ω depend
on the solution u (and hence are unknown objects), it is hard to obtain an analytic expression
for the solution in general. Thus, one often seeks for a numerical approximated solution. Using
finite element approximation or finite difference approximation, we obtain a nonlinear comple-
mentarity problem NCP (F ) with F : Rn → Rn defined by F (x) = Mx + p(x) + q, where n is
a positive integer related to precision of the discretization, M is some symmetric n× n matrix,
q ∈ Rn and p : Rn → Rn is defined by

p(x1, . . . , xn) = (φ(max{x1, 0}), . . . , φ(max{xn, 0})). (1.2)

Note that F is nonsmooth in general. Therefore, we see that the corresponding nonlinear com-
plementarity problem is an example of nonsmooth variational inequality problem.

In recent years, much effort has been made to reformulate the (VI) problems as equiva-
lent optimization problems through the consideration of merit functions. Among these merit
functions, D-gap functions and generalized D-gap functions for (VI) problems are particularly
interesting, because they cast (VI) problems as equivalent unconstrained optimization problems
(cf. [24, 33]). Peng and Fukushima [25] gave a global error bound result for D-gap functions
under the assumption that F is smooth, (globally) Lipschitz on Rn and strongly monotone.
Their result was extended by Yamashita, Taji and Fukushima [33] to cover generalized D-gap
functions. Recently, Huang and Ng [13] gave an example showing that the D-gap functions
might not provide global error bounds if the globally Lipschitz assumption of F is dropped.

In this present paper, we establish some error bound results for generalized D-gap functions
applicable to the case when F is not necessarily smooth and not necessarily (strongly) monotone.
In particular, we show in section 4 that although a global error bound result might fail if the
Lipschitz assumption of F is not assumed, a local error bound result (with a fractional exponent)
still holds. As an application, we establish a convergence result in section 5 for a derivative-free
descent method of Armijo type leading to the solution of the corresponding V I(F, P ).

2 Preliminaries

For x0 in a finite dimensional Euclidean space X and δ > 0, let B(x0, δ) (resp. B(x0, δ)) denote
the open (resp. closed) ball with center x0 and radius δ. For subset C of X, we denote the
interior, closure, convex hull and topological boundary of it by intC, C, coC and ∂C respectively.
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Definition 2.1 Let m,n ∈ N. A vector-valued function G : Rn → Rm is said to be Lipschitz
(with modulus L) around x0 ∈ Rn if there exist two positive constants δ and L such that

‖G(x1)−G(x2)‖ ≤ L‖x1 − x2‖ for all x1, x2 ∈ B(x0, δ). (2.1)

If G is Lipschitz around each point of Rn, then G is said to be locally Lipschitz (on Rn).
Moreover, G is said to be Lipschitz on a given set C ⊆ Rn with modulus L if (2.1) holds with
B(x0, δ) replaced by C. Given any subset B of Rn with zero (Lebesgue) measure and x0 ∈ Rn,
define ∂BG(x0) by

∂BG(x0) = {ξ ∈ Rm×n : ξ = lim
i→∞
∇G(xi), xi → x0, xi ∈ DG\B}, (2.2)

where DG denotes the set of all differentiable points of G. Then, as in [6] (see also [30, Theorem
4]), the (Clarke) generalized Jacobian ∂cG(x0) is given by

∂cG(x0) = co ∂BG(x0). (2.3)

If m = 1 and g = G then

∂cg(x0) = {ξ ∈ Rn : ξT v ≤ g◦(x0; v) for all v ∈ Rn},

where ξT denotes the transpose of ξ, and g◦(x0; v) denotes the Clarke directional derivative of
g at x0 in the direction v (see [5, 6]):

g◦(x0; v) = lim sup
y→x0, t↓0

g(y + tv)− g(y)
t

.

Let U ⊆ Rn be an open set and let G be Lipschitz on the set U with modulus L. Then for any
x ∈ U we have

‖V ‖ ≤ L for any V ∈ ∂cG(x). (2.4)

Definition 2.2 (cf. [8]) Let C be a subset of Rn. A mapping G : Rn → Rn is said to be
(i) coercive on C if

lim
x∈C, ‖x‖→∞

G(x)T (x− y)
‖x‖

= +∞ for any y ∈ C (2.5)

(thus if C is bounded then G is always coercive on C.);
(ii) monotone on C if [G(x)−G(y)]T (x− y) ≥ 0 for all vectors x and y in C;
(iii) strongly monotone on C (with modulus µ > 0) if for all vectors x and y in C,

[G(x)−G(y)]T (x− y) ≥ µ‖x− y‖2. (2.6)

Remark 2.1 (i) If G is locally Lipschitz on Rn and strongly monotone on Rn with modulus
µ > 0, then (see [14]) for any x ∈ Rn, V ∈ ∂cG(x) we have

dTV d ≥ µ‖d‖2 for all d ∈ Rn. (2.7)
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(ii) If G is strongly monotone on a closed convex subset C of Rn, then it is coercive on C.
Indeed, suppose that (2.6) holds for all x, y ∈ C. Then for any y ∈ C,

lim
x∈C, ‖x‖→∞

[G(x)−G(y)]T (x− y)
‖x− y‖

= +∞. (2.8)

Note that for any fixed y ∈ C, {G(y)T (x−y)
‖x−y‖ : x ∈ C} is bounded. It follows from (2.8) that

lim
x∈C, ‖x‖→∞

G(x)T (x− y)
‖x‖

= lim
x∈C, ‖x‖→∞

G(x)T (x− y)
‖x− y‖

= +∞.

(iii) Let P ⊆ Rn be a closed convex set and let F : Rn → Rn be continuous on P . Then, by [8,
Proposition 2.2.3], the V I(F, P ) has a solution whenever F is coercive on P . Moreover, if F is
strongly monotone on P , the V I(F, P ) has a unique solution (cf. [8, Theorem 2.3.3]).

Following [2, 3, 7, 8, 17], a set C ⊆ Rn is said to be
(i) semianalytic, if for any x ∈ Rn, there exists a neighbourhood U of x such that

C ∩ U =
l⋃

i=1

s⋂
j=1

{x ∈ U : fij(x) = 0, gij(x) < 0}

for some integers l, s and some real analytic functions fij , gij on Rn (1 ≤ i ≤ l, 1 ≤ j ≤ s);
(ii) subanalytic if for any x ∈ C, there exist a neighbourhood U of x and a bounded semianalytic
set Z ⊆ Rn+p such that C ∩ U = {x ∈ Rn : (x, y) ∈ Z for some y ∈ Rp}.
Moreover, a function f : Rn → R is said to be subanalytic if its graph gphf := {(x, f(x)) : x ∈
Rn} is subanalytic and a vector-valued function F : Rn → Rn is said to be subanalytic if each
of its component is subanalytic. We summarize below some basic properties of subanalytic sets
and subanalytic functions ((S3) is easily seen from the definition):
(S1) (cf. [8, (p1) and (p2) P.597]) Finite union (resp. intersection) of subanalytic sets is sub-
analytic. The Cartesian product (resp. complement, closure) of subanalytic sets is subanalytic.
(S2) (cf. [3, Theorem 2.3]) Let C be a bounded subanalytic set in Rn+p (for some positive
integers n, p) and let π : Rn+p → Rn be the projection defined by π(x, y) = x for all x ∈ Rn and
y ∈ Rp. Then π(C) is a subanalytic set of Rn.
(S3) If C ∩ V is subanalytic for each compact subanalytic set V of Rn, then C is subanalytic.
(S4) (cf. [8, (p3) P.597]) d(·, C) is a subanalytic function if C is a subanalytic set where
d(x,C) := infc∈C ‖x− c‖ for any x ∈ Rn.
(S5) (cf. [8, (p5) and (p8) P.598] If f, g are subanalytic functions on Rn and λ ∈ R then f + g

(resp. λf , max{f, g}) is subanalytic. If F, G : Rn → Rn are subanalytic vector-valued functions,
then F TG is a subanalytic function on Rn.
(S6) (cf. [8, (p4) P.597]) If f is subanalytic and λ ∈ R, then {x : f(x) = λ}, {x : f(x) < λ} and
{x : f(x) ≤ λ} are subanalytic.
(S7) ( Lojasiewicz’s inequality, cf. [17, Theorem 2.1.1]) If f, g are continuous subanalytic func-
tions on compact subanalytic set C ⊆ Rn such that f−1(0) ⊆ g−1(0) then there exist a constant
α > 0 and a positive integer N such that

α|g(x)|N ≤ |f(x)| for all x ∈ C.
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Remark 2.2 If f is a continuous function on Rn such that Uf := {(x, r) ∈ Rn ×R : f(x) ≥ r}
is subanalytic then f is subanalytic. Indeed, note that (by the continuity of f), Lf := {(x, r) ∈
Rn × R : f(x) ≤ r} = Rn+1\Uf . It follows from (S1) that Lf is also subanalytic. This implies
that gphf is subanalytic and hence f is subanalytic.

3 Generalized D-gap functions

Given V I(F, P ), the D-gap function θab is defined as the difference of two regularized gap
functions:

θab(x) ≡ θa(x)− θb(x) for all x ∈ Rn,

where 0 < a < b, and θc is a regularized gap function defined by

θc(x) = sup
y∈P
{F (x)T (x− y)− c

2
‖x− y‖2} for all x ∈ Rn, c > 0. (3.1)

In order to have wider scope of applications as well as more efficient algorithms, Yamashita et.al.
[33] replaced the function 1

2‖x−y‖
2 in (3.1) by a more general function ϕ and thereby introduced

generalized D-gap functions θϕab and generalized regularized gap functions θϕc respectively defined
by (for 0 < a < b and c > 0)

θϕab(x) ≡ θϕa (x)− θϕb (x) for all x ∈ Rn and (3.2)

θϕc (x) = sup
y∈P
{F (x)T (x− y)− c ϕ(x, y)} for all x ∈ Rn. (3.3)

Here ϕ is a real-valued function on Rn × Rn satisfying the following properties (P6 and P7 are
redundant; see [13, 33]):
P1: ϕ is continuously differentiable on Rn × Rn.
P2: ϕ(x, y) ≥ 0 for all x, y ∈ Rn and the equality holds if and only if x = y.
P3: {ϕ(x, ·) : x ∈ Rn} is uniformly strongly convex in the sense that there exists a positive real
number β such that for all x ∈ Rn,

ϕ(x, y1)− ϕ(x, y2) ≥ ∇yϕ(x, y2)T (y1 − y2) + β‖y1 − y2‖2 for all y1, y2 ∈ Rn, (3.4)

where ∇yϕ denotes the partial derivative of ϕ with respect to the second variable.
P4: {∇yϕ(x, ·) : x ∈ Rn} is uniformly Lipschitz on Rn (with modulus κ ≥ 2β > 0) that is, for
all x ∈ Rn

‖∇yϕ(x, y1)−∇yϕ(x, y2)‖ ≤ κ‖y1 − y2‖ for all y1, y2 ∈ Rn. (3.5)

P5: For any x, y ∈ Rn, ∇xϕ(x, y) = −∇yϕ(x, y).
P6: ∇xϕ(x, y) = 0 ⇔ ∇yϕ(x, y) = 0 ⇔ x = y.
P7: For all x, y ∈ Rn we have

β‖x− y‖2 ≤ ϕ(x, y) ≤ (κ− β)‖x− y‖2. (3.6)
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Remark 3.1 For example, the function

ϕ(x, y) =
1
2
‖x− y‖2 (3.7)

satisfies properties P1-P7. More generally, for any twice continuously differentiable, strongly
convex function ν : Rn → [0,∞) such that ν(0) = 0, the function ϕ(x, y) := ν(x − y) also has
properties P1-P7.

Below, we list some basic properties of functions θϕab and θϕc defined respectively by (3.2)
and (3.3). From now and onward, ϕ denotes a function on Rn × Rn satisfying P1-P7 (with the
associated constants β, κ > 0). We always assume that a, b, c > 0 and a < b. The following
proposition collects some useful facts for the generalized D-gap functions in which part (i)− (iii)
are taken from [31], part (iv)− (vii) from [33] and part (viii) from [19].

Proposition 3.1 The following statements are valid for V I(F, P ).
(i) For every x ∈ Rn, there exists a unique vector yϕc (x) ∈ P at which the supremum in (3.3) is
attained, i.e.,

θϕc (x) = F (x)T (x− yϕc (x))− cϕ(x, yϕc (x)). (3.8)

(ii) yϕc (·) and θϕc (·) are continuous on Rn and θϕc (x) ≥ 0 for all x ∈ P .
(iii) [x ∈ P, θϕc (x) = 0] ⇔ [x = yϕc (x)] ⇔ x is a solution of VI(F,P).
(iv) θϕab is continuous and nonnegative on Rn.
(v) [θϕab(x) = 0] ⇔ x is a solution of V I(F, P ) ⇔ [x = yϕa (x) = yϕb (x)].
(vi) For all x ∈ Rn, we have

(b− a)ϕ(x, yϕb (x)) ≤ θϕab(x) ≤ (b− a)ϕ(x, yϕa (x)) and (3.9)

β(b− a)‖x− yϕb (x)‖2 ≤ θϕab(x) ≤ (κ− β)(b− a)‖x− yϕa (x)‖2 (3.10)

(vii) If F is continuously differentiable on Rn, then θϕc and θϕab are also continuously differentiable
on Rn.
(viii) If F is locally Lipschitz on Rn, then yϕc , θϕc and θϕab are also locally Lipschitz on Rn.

Remark 3.2 (cf. [31]) If ϕ is given by (3.7), then for any x ∈ Rn, yϕc (x) is the projection of
x− c−1F (x) on P , that is

yϕc (x) = PrP (x− c−1F (x)) for all x ∈ Rn. (3.11)

Theorem 3.1 Let F be a locally Lipschitz function on Rn. Then we have

∂cθϕab(x) = ∂cF (x)T (yϕb (x)− yϕa (x))

−a∇xϕ(x, yϕa (x)) + b∇xϕ(x, yϕb (x)) for all x ∈ Rn. (3.12)

Proof. Since F is locally Lipschitz, one can apply Proposition 3.1(viii) and the Rademacher
theorem (cf. [26]) to see that F , θϕa and θϕb are differentiable almost everywhere on Rn. Hence
there exists a set A of measure zero such that these functions are differentiable at each point of
Rn\A. Applying (2.2) and (2.3) with {θϕab, 1} in place of {G,m}, we obtain that for each x ∈ Rn,

∂cθϕab(x) = co {∂Aθϕab(x)} = co { lim
i→∞
∇θϕab(xi) : xi → x, xi ∈ Rn\A}. (3.13)
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For any µ > 0, let us define ψµ : Rn × Rn → R by

ψµ(x, y) := F (x)T (x− y)− µ ϕ(x, y) for all x, y ∈ Rn. (3.14)

Then by (3.3) and (3.8),

θϕµ(x) = sup
y∈P

ψµ(x, y) = ψµ(x, yϕµ (x)) for all x ∈ Rn. (3.15)

Since for all µ > 0, x ∈ Rn\A and v ∈ Rn,

∇xψµ(x, yϕµ (x)) = ∇ψµ(·, yϕµ (x)) |x
= ∇F (·)T (· − yϕµ (x)) + F (·)− µ∇xϕ(·, yϕµ (x)) |x
= ∇F (x)T (x− yϕµ (x)) + F (x)− µ∇xϕ(x, yϕµ (x)), (3.16)

and ψµ(x+ tv, yϕµ (x+ tv)) = sup
y∈P

ψµ(x+ tv, y) ≥ ψµ(x+ tv, yϕµ (x)) (thanks to (3.15)), one has

∇θϕµ(x)v = (θϕµ)′(x; v)

= lim
t↓0

θϕµ(x+ tv)− θϕµ(x)
t

= lim
t↓0

ψµ(x+ tv, yϕµ (x+ tv))− ψµ(x, yϕµ (x))
t

≥ lim
t↓0

ψµ(x+ tv, yϕµ (x))− ψµ(x, yϕµ (x))
t

= ∇xψµ(x, yϕµ (x))v. (3.17)

Since v is arbitrary, it follows from (3.16) that, for any µ > 0 and x ∈ Rn\A,

∇θϕµ(x) = ∇xψµ(x, yϕµ (x)) = ∇F (x)T (x− yϕµ (x)) + F (x)− µ∇xϕ(x, yϕµ (x)).

Consequently, by considering µ = a, b we have

∇θϕab(x) = ∇θϕa (x)−∇θϕb (x)

= ∇F (x)T (yϕb (x)− yϕa (x))

−a∇xϕ(x, yϕa (x)) + b∇xϕ(x, yϕa (x)), for all x ∈ Rn\A. (3.18)

Next, let us consider a general x ∈ Rn, and take ρ > 0 such that F is Lipschitz on B(x, ρ); thus
{∇F (z) : z ∈ B(x, ρ)\A} is bounded. Since yϕa and yϕb are continuous (by (ii)), it follows from
(2.3) that

co{ lim
i→∞
∇F (xi)T (yϕb (xi)− yϕa (xi)) : xi → x, xi ∈ Rn\A}

=
(

co{ lim
i→∞
∇F (xi) : xi → x, xi ∈ Rn\A}

)T (
yϕb (x)− yϕa (x)

)
= ∂cF (x)T

(
yϕb (x)− yϕa (x)

)
.

Combining this with (3.13), (3.18) and (P1), we have for all x ∈ Rn

∂cθϕab(x) = ∂cF (x)T (yϕb (x)− yϕa (x))− a∇xϕ(x, yϕa (x)) + b∇xϕ(x, yϕb (x)).

Thus (3.12) is shown and the proof is complete. 2
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4 Error bound results for generalized D-gap functions

In this section, we establish some error bound results for generalized D-gap functions. Denote
the distance from x to a set C by d(x,C). For a function f : Rn → R ∪ {+∞}, we sometimes
use [f ≤ ε] to denote the (sub-)level set {x ∈ Rn : f(x) ≤ ε} at level ε. Following [8] and [9], we
say that f has a local error bound on C if there exist two positive constants τ, ε such that for
all x ∈ [f ≤ ε] ∩ C

d(x, Sf ∩ C) ≤ τ max{f(x), 0}, (4.1)

where Sf := [f ≤ 0]. Furthermore, we say that f has a global error bound on C if there exists
a constant τ > 0 such that (4.1) holds for all x ∈ C.

The following result was established by Peng and Fukushima [25] in the special case when
ϕ is given by (3.7) and F is strongly monotone on Rn(see Remark 2.1 (ii)).

Lemma 4.1 Let F : Rn → Rn be coercive on Rn. Then for any constants a, b satisfying
0 < a < b, the level set [θϕab ≤ ε] is bounded for any ε > 0.

Proof. Suppose on the contrary that there exist a constant ε0 > 0 and a sequence {xk}∞k=1

such that lim
k→∞
‖xk‖ = ∞ and θϕab(xk) ≤ ε0 for all k ∈ N. Letting w :=

(
ε0

β(b−a)

)1/2
where β is

defined as in (P3), it follows from (3.10) that

‖xk − yϕb (xk)‖ ≤ w for all k ∈ N. (4.2)

Consequently, by (P6) and (3.5), we have

‖∇yϕ(xk, y
ϕ
b (xk))‖ = ‖∇yϕ(xk, y

ϕ
b (xk))−∇yϕ(xk, xk)‖ ≤ κ‖xk − yϕb (xk)‖ ≤ κw.

Since yϕb (xk) minimizes the function −F (xk)T (xk − ·) + bϕ(xk, ·) on P
(
see Proposition 3.1(i)

)
,

it follows from the first order optimality condition and the Cauchy-Schwartz inequality that, for
any y ∈ P ,

0 ≤
(
F (xk) + b∇yϕ(xk, y

ϕ
b (xk))

)T(
y − yϕb (xk)

)
≤ F (xk)T (y − yϕb (xk)) + bκw‖y − yϕb (xk)‖. (4.3)

Fixing y ∈ P and denoting y + xk − yϕb (xk) by yk, this implies that

0 ≤ −F (xk)T (xk − yk)
‖xk − yk‖

+ bkw for all k ∈ N. (4.4)

On the other hand, since {yk}k∈N is bounded, there exists a bounded box B such that {yk}k∈N ⊆
B. Hence, for each k,

F (xk)T (xk − yk)
‖xk‖

≥ inf
z∈B

F (xk)T (xk − z)
‖xk‖

. (4.5)

By a well-known theorem in linear programming, the infimum on the right hand side of the
preceding inequality is attained at an extremal point (depending on k) of B. Since B is a box
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(hence has only finitely many extremal points), it follows from (4.5) and the definition of coercive
that

lim
k→∞

F (xk)T (xk − yk)
‖xk‖

= +∞. (4.6)

Since ‖xk‖ → ∞ and {yk}k∈N is bounded, this implies that

lim
k→∞

F (xk)T (xk − yk)
‖xk − yk‖

= +∞.

This contradicts (4.4) and completes the proof. 2

Theorem 4.1 Let ϕ : Rn × Rn → R, F : Rn → Rn and P ⊆ Rn be subanalytic. Then the
following statements hold for any constants a, b satisfying 0 < a < b:
(i) θϕab is a subanalytic function on Rn.
(ii) Suppose in addition that F is coercive on Rn. Then there exists γ ∈ (0, 1] such that (θϕab)

γ

has a local error bound on Rn.

Proof. To see (i), by (S5) it suffices to show θϕc is subanalytic for any c > 0. To do this, fix
a constant c > 0, a compact subanalytic set V of Rn×R and let M := sup(x,r)∈V ‖y

ϕ
c (x)‖ <∞.

Since yϕc is continuous (by Proposition 3.1(ii)), M is finite. Define Ac = A
(1)
c ∩A(2)

c where

A(1)
c = {(x, r, y) ∈ Rn × R× Rn : F (x)T (x− y)− c ϕ(x, y)− r ≥ 0},

A(2)
c = V ×

(
P ∩B(0,M)

)
.

By the given assumptions together with (S1), (S5) and (S6), it is clear that A(1)
c , A(2)

c and Ac
are subanalytic. Define π : Rn × R× Rn → Rn × R by

π(x, r, y) = (x, r).

We claim that
π(Ac) = {(x, r) ∈ Rn × R : θϕc (x) ≥ r} ∩ V. (4.7)

Granting this, (S2) implies that {(x, r) ∈ Rn×R : θϕc (x) ≥ r}∩V is subanalytic for any compact
subanalytic set V ⊆ Rn. Consequently, (S3) implies that

{(x, r) ∈ Rn × R : θϕc (x) ≥ r} is subanalytic. (4.8)

and thus θϕc is subanalytic by Proposition 3.1(ii) and Remark 2.2. To see (4.7), let (x, r) ∈ π(Ac).
Then (x, r) ∈ V and there exists y0 ∈ P ∩B(0,M) such that

F (x)T (x− y0)− c ϕ(x, y0) ≥ r.

Hence θϕc (x) ≥ r and π(Ac) ⊆ {(x, r) ∈ Rn ×R : θϕc (x) ≥ r} ∩ V. Conversely, let (x, r) ∈ V such
that θϕc (x) ≥ r. Then, by Proposition 3.1(i) and the definition of M , we have (x, r, yϕc (x)) ∈
V × (P ∩B(0,M)) and

F (x)T (x− yϕc (x))− c ϕ(x, yϕc (x))− r = θϕc (x)− r ≥ 0.
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Therefore, (x, r, yϕc (x)) ∈ Ac, (x, r) ∈ π(Ac) and (4.7) is shown. To prove (ii), let a, b be
constants satisfying 0 < a < b and let S denote the solution set of V I(F, P ). ¿From part (i),
and Proposition 3.1(iv)-(v), we see that θϕab is a continuous subanalytic function satisfying

S =
(
d(·, S)

)−1(0) = (θϕab)
−1(0). (4.9)

In particular, S is a subanalytic subset of Rn (by (S6)) and hence d(·, S) is a continuous sub-
analytic function on Rn (by (S4)). Fixing any ε > 0, by Lemma 4.1, we have K := [θϕab ≤ ε]
is bounded hence compact. Denote the restriction of θϕab (resp. d(·, S)) on K by θϕab|K (resp.
d(·, S)|K). Applying  Lojasiewicz’s inequality (S7) with {θϕab|K , d(·, S)|K} in place of {f, g} and
using (4.9), we obtain a constant α > 0 and a positive integer N such that α(d(x, S))N ≤ θϕab(x)
for all x ∈ K. Thus d(x, S) ≤ τ

(
θϕab(x)

)γ for all x ∈ K, where τ = α−
1
N and γ = 1

N ∈ (0, 1].
This establishes part (ii) and completes the proof. 2

Below, we present an example to show that the condition “F is coercive” in Theorem 4.1(ii)
cannot be dropped.

Example 4.1 Consider P = R, ϕ(x, y) = 1
2‖x− y‖

2, b = 2, a = 1 and F : R→ R is defined by
F (x) = xex. It is clear that P is a subanalytic set, and F,ϕ are analytic (and hence subanalytic)
functions. Moreover, by Remark 3.2 and (3.8), we have

yϕc (x) = x− c−1F (x), θϕc (x) =
‖F (x)‖2

2c
and θϕab(x) =

b− a
2ab
‖F (x)‖2. (4.10)

In particular, we have θϕab(x) = 1
4‖F (x)‖2 = (xex)2

4 and (θϕab)
−1(0) = {0}. Letting S := (θϕab)

−1(0)
and xk = −k (k ∈ N), it follows that for any γ ∈ (0, 1],

lim
k→∞

d(xk, S)
(θab(xk))γ

= lim
k→∞

k(
1
4(ke−k)2

)γ = +∞.

Since θϕab(xk)→ 0, this implies that (θϕab)
γ fails to have a local error bound on R for any γ ∈ (0, 1].

By Theorem 4.1(ii), F is not coercive (indeed

lim inf
‖x‖→∞

F (x)Tx
‖x‖

= lim inf
|x|→∞

|x|ex = 0).

As explained in [17], the exponent γ in  Lojasiewicz’s inequality (S7) (hence in Theorem
4.1) is, in general difficult to determine. Our next result gives a local error bound result with
the exponent γ explicitly determined. Recall that the lower Hadamard directional derivative
D−f(x; v) of f at x ∈ Rn in the direction v is defined by

D−f(x; v) = lim inf
t↓0,u→v

f(x+ tu)− f(x)
t

. (4.11)

It is clear that for all locally Lipschitz functions f and for all x, v ∈ Rn,

D−f(x; v) ≤ f◦(x; v). (4.12)

In order to achieve our key result (Theorem 4.2), we first present several lemmas. Part (i) of
the following lemma is due to [22].
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Lemma 4.2 Let f : Rn → R ∪ {+∞} be a proper lower semicontinuous function. Let γ ∈
(0, 1], ε > 0 and δ > 0. Let Sf := {x : f(x) ≤ 0} 6= ∅. Then the following statements hold:
(i) Suppose that for each x ∈ dom(f)\Sf , there exists a sequence {xn} in Rn such that xn → x

and
0 < ‖x− xn‖ ≤ δ (fγ(x)− fγ(xn)) for all large n.

Then fγ has a global error bound with modulus δ on Rn.
(ii) Suppose that f is continuous and for each x ∈ [f ≤ ε]\Sf there exists hx ∈ Rn with ‖hx‖ = 1
such that

D−f(x;hx) ≤ −δf1−γ(x). (4.13)

Then fγ has a global error bound with modulus 1/(γδ) on [f ≤ ε].

Proof. Part (i) is proved in [22] as noted. To prove (ii), define f̃ by

f̃(x) =

{
f(x), if x ∈ [f ≤ ε],
+∞, else.

(4.14)

Then f̃ is a proper lower semicontinuous function with domf̃ =[f ≤ ε]. By (i), it suffices to
show that for any λ > 1 and x ∈ [f ≤ ε]\Sf there exists a sequence {xn} in Rn such that xn → x

and
0 < ‖x− xn‖ ≤

λ

γ δ
(f̃γ(x)− f̃γ(xn)) for all large n. (4.15)

To do this, let us fix λ > 1 and x ∈ [f ≤ ε]\Sf . By assumption, there exist hx ∈ Rn with
‖hx‖ = 1 and two sequences tn ↓ 0, un → hx such that

lim
n→∞

f(xn)− f(x)
tn

= D−f(x;hx) ≤ −δf1−γ(x) < 0, (4.16)

where xn = x+ tnun. By the continuity of f , and since f(x) > 0 and xn → x, we may assume
without loss of generality that f(xn) > 0 for all n ∈ N. Writing

fγ(xn)− fγ(x) = γfγ−1(x)(f(xn)− f(x)) + αn,

where αn = o(f(xn)− f(x)) and assuming that D−f(x;hx) > −∞, we have

lim
n→∞

αn
tn

= lim
n→∞

(
f(xn)− f(x)

tn
· αn
f(xn)− f(x)

)
= 0.

This together with (4.16) implies that

lim
n→∞

fγ(xn)− fγ(x)
tn

= γf(x)γ−1D−f(x;hx) ≤ −γδ (4.17)

(one can show similarly that (4.17) is valid also for the case when D−f(x;hx) = −∞). Noting
that un → hx and ‖hx‖ = 1, it follows that

lim
n→∞

fγ(xn)− fγ(x)
‖xn − x‖

≤ −γδ < −γδ
λ
.
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Thus, for all large n,

fγ(x)− fγ(xn) >
γδ

λ
‖xn − x‖,

(in particular fγ(xn) < fγ(x) ≤ εγ and so xn ∈ domf̃). Therefore (4.15) is established and this
completes the proof. 2

Lemma 4.3 Let b > a > 0. Then for all x ∈ Rn, we have(
∇yϕ(x, yϕa (x))−∇yϕ(x, yϕb (x))

)T (
yϕa (x)− yϕb (x)

)
≥ 2β‖yϕa (x)− yϕb (x)‖2. (4.18)

Proof. Considering yϕa (x), yϕb (x) in place of y1, y2 in (3.4), we have

ϕ
(
x, yϕa (x)

)
− ϕ

(
x, yϕb (x)

)
≥ ∇yϕ

(
x, yϕb (x)

)T (
yϕa (x)− yϕb (x)

)
+ β‖yϕa (x)− yϕb (x)‖2.

Similarly,

ϕ(x, yϕb (x))− ϕ(x, yϕa (x)) ≥ ∇yϕ(x, yϕa (x))T
(
yϕb (x)− yϕa (x)

)
+ β‖yϕa (x)− yϕb (x)‖2,

Summing these two inequalities gives (4.18). 2

Let T (a, P ) and N(a, P ) respectively denote the tangent cone and the normal cone of P at
a ∈ P , that is T (a, P ) =

⋃
t>0 t(P − a) and N(a, P ) =

(
T (a, P )

)◦ = {x : xTd ≤ 0, for all d ∈
T (a, P )}. It is known (and easy to verify) that N(a, P ) = {x : xT (p− a) ≤ 0 for all p ∈ P}. Let
(F (x))◦ denote the negative polar of the singleton {F (x)}, i.e. (F (x))◦ = {d ∈ Rn : F (x)Td ≤ 0}.
For a vector x ∈ Rn, following [9], we define Tab(x, P ) and Tab(x, F, P ) by

Tab(x, P ) =
(
T (yϕb (x), P )

)⋂(
− T (yϕa (x), P )

)
and Tab(x, F, P ) = Tab(x, P )

⋂
(F (x))◦.

Remark 4.1 Clearly, Tab(x, P ) and Tab(x, F, P ) are closed convex cones. Moreover, it is easy
to verify that

yϕa (x)− yϕb (x) ∈ Tab(x, P ) (4.19)

(because yϕa (x), yϕb (x) belong to the convex set P ).

Lemma 4.4 Let b > a > 0 and x ∈ Rn. Then yϕa (x)− yϕb (x) ∈ Tab(x, F, P ) and(
a∇xϕ(x, yϕa (x))− b∇xϕ(x, yϕb (x))

)T(
yϕa (x)− yϕb (x)

)
≥ 0. (4.20)

Proof. Since yϕa (x) minimizes the function −F (x)T (x − ·) + aϕ(x, ·) on P , the first order
optimality condition implies that(

F (x) + a∇yϕ(x, yϕa (x))
)T(

y − yϕa (x)
)
≥ 0 for all y ∈ P.

Letting y = yϕb (x), we obtain

−
(
F (x) + a∇yϕ(x, yϕa (x))

)T(
yϕa (x)− yϕb (x)

)
≥ 0. (4.21)
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Interchanging the roles of a, b we similarly obtain(
F (x) + b∇yϕ(x, yϕb (x))

)T(
yϕa (x)− yϕb (x)

)
≥ 0. (4.22)

By (P5), adding the above two inequalities gives (4.20). It remains to show that yϕa (x)−yϕb (x) ∈
Tab(x, F, P ). Let yϕa (x)− yϕb (x) be denoted by z. By (4.19), it suffices to show that z ∈ F (x)◦.
Noting that(

F (x) + a∇yϕ(x, yϕa (x))
)T
z = (1− a

b
)F (x)T z +

a

b

(
F (x)T + b∇yϕ(x, yϕb (x))

)T
z

+a
(
∇yϕ(x, yϕa (x))−∇yϕ(x, yϕb (x))

)T
z,

where the last two terms are nonnegative (thanks to (4.22) and (4.18)), it follows from (4.21)
that 0 ≥ (1 − a

b )F (x)T z. Since b > a > 0, this implies that F (x)T z ≤ 0 and so z ∈ F (x)◦ as
required to show. 2

For any constants a, b, c satisfying 0 < a < b and c > 0. Define a multifunction Ωabc : Rn →
2Rn

as follows:

Ωabc(x) :=


yϕa (x)− yϕb (x), if c‖x− yϕa (x)‖ < ‖yϕa (x)− yϕb (x)‖,

{yϕa (x)− x, yϕa (x)− yϕb (x)} if c‖x− yϕa (x)‖ = ‖yϕa (x)− yϕb (x)‖,
yϕa (x)− x, if c‖x− yϕa (x)‖ > ‖yϕa (x)− yϕb (x)‖.

(4.23)

We are now ready to establish our main result of this section. The first assertion of (i) in the
following theorem follows immediately from Proposition 3.1(viii) and Lemma 4.1.

Theorem 4.2 Let F : Rn → Rn be locally Lipschitz and coercive on Rn. Suppose that there
exist positive constants a, b with a < b such that µab > 0, where µab is defined by

µab := inf{dTV d : V ∈ ∂cF (x), d ∈ Tab(x, F, P ), ‖d‖ = 1, θϕab(x) 6= 0} (4.24)

(with the convention that inf ∅ = +∞). Then the following assertions hold.
(i) Let ε be any positive number. Then θϕab is Lipschitz on [θϕab ≤ 2ε] (with some Lipschitz
constant L). Let c, δ be positive real numbers satisfying

c ≤ min{1, (b− a)β
2(L+ bκ)

} and δ ≤ min{ (b− a)β
2
√

(κ− β)(b− a)
,

c µab√
(κ− β)(b− a)

} (4.25)

where β, κ are defined as in (3.4) and (3.5) and let Ωabc be defined as in (4.23). For each
x ∈ (θϕab)

−1(0, ε], we have 0 /∈ Ωabc(x) and

(θϕab)
◦(x; hx) ≤ −δ

√
θϕab(x) for each hx =

wx
‖wx‖

with wx ∈ Ωabc(x). (4.26)

(ii) Let ε, L and δ be as in (i). Then d(x, [θϕab ≤ 0]) ≤ 2
δ

√
θϕab for all x ∈ [θϕab ≤ ε].

(iii)
√
θϕab has a local error bound on Rn.
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Proof. The implication (ii) ⇒ (iii) is by the definitions. Let ε > 0. By (4.12), (4.26)

entails that D−θϕab(x;hx) ≤ −δ
√
θϕab(x) for all x ∈ (θϕab)

−1(0, ε]. Hence, by virtue of Lemma

4.2(ii) (applied to γ = 1/2 and θϕab in place of f), (i) implies that
√
θϕab has an error bound

with modulus 2/δ on [θϕab ≤ ε]. Thus the assertion (ii) follows from (i). For (i), we only need
to verify the second assertion since the first one holds as we already noted. Let us fix x with
0 < θϕab(x) ≤ ε, wx ∈ Ωabc(x). Then, by Proposition 3.1(iii), 0 /∈ Ωabc(x) and hence wx is
nonzero. Let hx = wx/‖wx‖. Note that the inequality in (4.26) is equivalent to

(θϕab)
◦(x; wx) ≤ −δ‖wx‖

√
θϕab(x). (4.27)

Thus by [5, Proposition 2.1.2 (b)], it is sufficient to show that

W Twx ≤ −δ‖wx‖
√
θϕab(x), for all W ∈ ∂cθϕab(x). (4.28)

To do this, let us fix W ∈ ∂cθϕab(x) and make use of (3.12) to express W in the form

W = −V T z − a∇xϕ(x, yϕa (x)) + b∇xϕ(x, yϕb (x)) (4.29)

where V ∈ ∂cF (x) and z = yϕa (x)−yϕb (x). Note that x 6= yϕa (x) since θϕab(x) 6= 0 (see Proposition
3.1(iii) and (v)). Moreover if Tab(x, F, P ) = {0} then yϕa (x) − yϕb (x) = 0 (see Lemma 4.4), and
hence c‖x− yϕa (x)‖ > 0 = ‖yϕa (x)− yϕb (x)‖. Therefore, one of the following cases must hold.
(1◦) c‖x− yϕa (x)‖ < ‖yϕa (x)− yϕb (x)‖ and Tab(x, F, P ) 6= {0};
(2◦) c‖x− yϕa (x)‖ > ‖yϕa (x)− yϕb (x)‖;
(3◦) c‖x− yϕa (x)‖ = ‖yϕa (x)− yϕb (x)‖ and Tab(x, F, P ) 6= {0}.
Suppose (1◦) holds. Then, since wx ∈ Ωabc(x), (4.23) entails that wx = z and it follows from
(3.10) that

c
√
θϕab(x) <

√
(κ− β)(b− a)‖z‖. (4.30)

Thus, by the definition of δ given in (4.25), to show (4.28) it is sufficient to show that

W T z ≤ −µab‖z‖2, for all W ∈ ∂cθϕab(x). (4.31)

On the other hand, from (4.29) and (4.20) we obtain

W T z ≤ −zTV z. (4.32)

Since z ∈ Tab(x, F, P )\{0} (by Lemma 4.4 and z = wx 6= 0), it follows from (4.24) that −W T z ≥
µab‖z‖2; thus (4.31) is valid. Therefore (4.28) is verified for case (1◦). Suppose next that (2◦)
holds. Define u = yϕa (x)− x. Then u = wx 6= 0 and

‖z‖ < c‖u‖. (4.33)

Thus, to show (4.28), it is sufficient to prove that

W Tu ≤ −δ‖u‖
√
θϕab(x) for all W ∈ ∂cθϕab(x). (4.34)
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¿From (4.29), we note that

W Tu = −zTV u+
(
− a∇xϕ

(
x, yϕa (x)

)
+ b∇xϕ

(
x, yϕb (x)

))T
u. (4.35)

We claim that the following two statements hold:

−zTV u < cL‖u‖2, (4.36)(
− a∇xϕ(x, yϕa (x)) + b∇xϕ(x, yϕb (x))

)T
u <

(
− (b− a)β + bκc

)
‖u‖2. (4.37)

Granting this, it follows from (4.35) and the definition of c that

W Tu <

(
− (b− a)β + (L+ bκ)c

)
‖u‖2 ≤ −(b− a)β‖u‖2/2.

Consequently (4.34) is seen to hold since, by (3.10) and the definition of δ one has

W Tu < −(b− a)β‖u‖2

2
≤ − (b− a)β

2
√

(κ− β)(b− a)
‖u‖
√
θϕab(x)

≤ −δ‖u‖
√
θϕab(x). (4.38)

To see (4.36), we recall that F is Lipschitz with modulus L on [θϕab ≤ 2ε] hence, by (2.4), we get
that ‖V ‖ ≤ L, for all x ∈ [θϕab < 2ε] and V ∈ ∂cF (x) . This together with the Cauchy-Schwartz
inequality and (4.33) gives that

−zTV u ≤ L‖z‖ ‖u‖ < cL‖u‖2. (4.39)

Therefore, (4.36) holds. To prove (4.37), from (P2) and (3.4), we have

−ϕ(x, yϕa (x)) = ϕ(x, x)− ϕ(x, yϕa (x)) ≥ −∇yϕ(x, yϕa (x))Tu+ β‖u‖2.

This together with (P2) and (P5) in the definition of ϕ yields that

∇xϕ(x, y2)Tu = −∇yϕ(x, y2)Tu ≤ −β‖u‖2 − ϕ(x, yϕa (x)) ≤ −β‖u‖2. (4.40)

By (P5), (3.5), the Cauchy-Schwartz inequality and (4.33), we have(
∇xϕ

(
x, yϕb (x)

)
−∇xϕ

(
x, yϕa (x)

))T
u =

(
−∇yϕ

(
x, yϕb (x)

)
+∇yϕ

(
x, yϕa (x)

))T
u

≤ κ‖z‖‖u‖ < κc‖u‖2,

and it follows from (4.40) that(
− a∇xϕ

(
x, yϕa (x)

)
+ b∇xϕ

(
x, yϕb (x)

))T
u = (b− a)

(
∇xϕ

(
x, yϕa (x)

))T
u

+b
(
∇xϕ

(
x, yϕb (x))−∇xϕ

(
x, yϕa (x)

))T
u

<

(
− (b− a)β + bκc

)
‖u‖2.
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Thus (4.37) holds and this verifies (4.28) for case (2◦). Finally, suppose (3◦) holds. Then since
wx ∈ Ωabc(x), (4.23) entails that wx = z or wx = u. If wx = z, then ‖wx‖ = ‖z‖ = c‖u‖ by (3◦).
By (3.10), it follows that

c
√
θϕab(x) ≤ c

√
(κ− β)(b− a)‖u‖ =

√
(κ− β)(b− a)‖z‖. (4.41)

We proceed as in (1◦) and obtain that

W T z ≤ −µab‖z‖2, for all W ∈ ∂cθϕab(x).

This together with (4.41) and the definition of δ implies that

W T z ≤ −
δ
√

(κ− β)(b− a)
c

‖z‖2 ≤ −δ
√
θϕab(x)‖z‖,

and hence (4.28) holds in the case when (3◦) holds and wx = z. If wx = u, proceed as in (2◦),
we see that (4.36) and (4.37) hold but replacing the strict inequalities by the corresponding
non-strict inequalities. Thus one deduces that (similar to the derivation of (4.38))

W Tu ≤ −δ‖u‖
√
θϕab(x).

Therefore (4.28) holds when (3◦) holds and wx = u. This completes the proof. 2

Corollary 4.1 Let b > a > 0 and let F : Rn → Rn be locally Lipschitz and strongly monotone
on Rn. Then the function

√
θϕab has a local error bound on Rn.

Proof. The assumptions imply that F is coercive (by Remark 2.1(ii)) and that µab > 0 holds
(by (2.7)), where µab is defined as in (4.24). Therefore, the conclusion follows from the preceding
Theorem. 2

Remark 4.2 The assumption µab > 0 in Theorem 4.2 does not imply the solution is unique.
For example consider P = R, ϕ(x, y) = 1

2‖x − y‖
2, a = 1, b = 2 and F : R → R is defined by

F (x) = max{x, 0}. Note that θϕab(x) = b−a
2ab ‖F (x)‖2 = max{x, 0}2/4 (by (4.10)). The solution

set S = [θϕab = 0] = R−. On the other hand, since {x : θϕab(x) 6= 0} = (0,+∞), it follows from
(4.24) that

µab = inf{dTV d : V ∈ ∂cF (x), d ∈ Tab(x, F, P ), ‖d‖ = 1, θϕab(x) 6= 0}
≥ inf{dTV d : V ∈ ∂cF (x), ‖d‖ = 1, x ∈ (0,+∞)} = 1.

Remark 4.3 Our error bound results depend on the constant µab. Therefore, in general, we
need some priori information to determine the constant µab. However, it can be determined
explicitly in the following two important cases:
(i) If F is strongly monotone with modulus µ > 0. Then we can take µab = µ.
(ii) If P = Rn

+ and ϕ(x, y) = 1
2‖x − y‖

2. Then, the cone Tab(x, F, P ) (and hence the constant
µab) can be determined explicitly (see [9, page 941-943]).

Recall that, for a locally Lipschitz function f , we say x is a generalized unconstrained stationary
point of f if 0 ∈ ∂cf(x). We now summarize the connection between the stationary points of
the D-gap function and the solution of the corresponding V I(F, P ) in the following theorem.
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Theorem 4.3 Let F : Rn → Rn be locally Lipschitz continuous on Rn. Let a and b are scalars
satisfying b > a > 0. Consider the following statements:
(i) x is a solution of V I(F, P ).
(ii) x is a generalized unconstrained stationary point of θϕab and the following relation holds:

d ∈ Tab(x, F, P )
V Td ∈ Tab(x, F, P )◦ ∀ V ∈ ∂cF (x)

}
⇒ F (x)Td = 0. (4.42)

(iii) x is a generalized unconstrained stationary point of θϕab and µab > 0 where µab is defined
as in (4.24) .
Then the following implication holds: (iii)⇒ (ii)⇔ (i).

Proof. The proof of the equivalence of (i) and (ii) is similar to [9, Theorem 10.3.4]. To see
(iii) ⇒ (ii), let statement (iii) holds. We proceed by contradiction and suppose that the state-
ment (ii) doesn’t hold. Thus there exists d ∈ Tab(x, F, P ), V ∈ ∂cF (x) and V Td ∈ Tab(x, F, P )◦

satisfying dTF (x) 6= 0. In particular, one has d 6= 0 and

dTV d ≤ 0. (4.43)

Moreover, since (i)⇔ (ii), we may assume without loss of generality that x is not a solution of
V I(F, P ). It follows from the definition of µab that dTV d ≥ µab‖d‖2. This together with (4.43)
and µab > 0 implies that d = 0. This makes contradiction and finishes the proof. 2

Below, we present three examples. The first example shows that the condition “µab > 0” in
Theorem 4.2 cannot be dropped and the second/third one shows that our Theorem 4.1 and 4.2
can be applied to some cases when F is nonsmooth/nonmonotone.

Example 4.2 Consider P = R, ϕ(x, y) = 1
2‖x− y‖

2, a = 1, b = 2 and F : R→ R is defined by
F (x) = x3. Then as in Example 4.1, P, F and ϕ are subanalytic, and (4.10) holds. Moreover, F
is clearly coercive, and Theorem 4.1(ii) implies that there exists some γ ∈ (0, 1] such that (θϕab)

γ

has a local error bound on R. (Indeed, by (4.10), θϕab(x) = b−a
2ab ‖F (x)‖2 = x6/4 and so (θϕab)

1/6

has a local error bound on R.) Let xk = 1/k (k ∈ N). Then θϕab(xk)→ 0 and

d(xk, [θ
ϕ
ab = 0])√

θϕab(xk)
=

1/k
1/(2k3)

→ +∞.

Thus
√
θϕab has no local error bound on R (by Theorem 4.2, it follows that µab = 0).

Example 4.3 Let ϕ(x, y) = 1
2‖x − y‖

2, P = Rn
+, a ∈ (0, 1), b = 1. Consider the nonsmooth

nonlinear complementary problem discussed in Example 1.1 with φ(u) = max{u, u2m+1} (m ∈
N). In this case, one has F (x) = Mx+ p(x) + q where M = (Mi,j)1≤i,j≤n ∈ Rn×n with Mi,i = 2
and Mi,i+1 = Mi+1,i = −1, q ∈ Rn and p is defined by

p(x1, . . . , xn) = (max{x1, x
2m+1
1 , 0}, . . . ,max{xn, x2m+1

n , 0}).

It can be verified that F is locally Lipschitz and coercive. Moreover, since M is positive definite,
for all d, x ∈ Rn, V ∈ ∂cF (x),

dTV d ≥ dTMd ≥ α‖d‖2,

where α is some positive number. Thus, from Theorem 4.2,
√
θϕab has a local error bound on Rn.
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Example 4.4 Consider ϕ(x, y) = 1
2‖x − y‖

2, P = R2
+, a ∈ (0, 1), b = 1 and F : R2 → R2 is

defined by F (x1, x2) = (F1(x1, x2), F2(x1, x2)) where

F1(x1, x2) = x1 + max{x1, 0} ·max{x2, 0} and F2(x1, x2) = x2 +
3
2

max{x1, 0}, (4.44)

that is,

F1(x1, x2) =

{
x1 + x1x2, if x1 ≥ 0, x2 ≥ 0
x1, else,

and F2(x1, x2) =

{
3x1
2 + x2, if x1 ≥ 0,
x2, else.

(4.45)
Thus F is subanalytic (see (S5)). Moreover, we have

∇F (x) =



( 1 + x2 x1
3
2 1

)
, if x1 > 0 and x2 > 0.

( 1 0
3
2 1

)
, if x1 > 0 and x2 < 0,

( 1 0
0 1

)
, if x1 < 0 and x2 > 0,

( 1 0
0 1

)
, if x1 < 0 and x2 < 0.

(4.46)

Since F is monotone on an open convex set D if and only if V is positive semidefinite for
all V ∈ ∂BF (x) and x ∈ D (see [14, Proposition 2.3(a)]), and ∇F (1, 1

4) is negative definite.
Thus, F is not monotone on R2. Note that the corresponding V I(F, P ) reduces to the following
nonlinear complementary problem: find x = (x1, x2) ∈ R2

+ such that

Fi(x) ≥ 0 and xiFi(x) = 0 for all i = 1, 2.

Clearly the solution set S of this problem is the singleton {(0, 0)}. Moreover, by the following
elementary inequalities,

x2
1 + 3

2x1x2 + x2
1x2 + x2

2 ≥ x2
1 + x2

2 for all (x1, x2) ∈ R2 such that x1 ≥ 0 and x2 ≥ 0;

x2
1 + 3

2x1x2 + x2
2 ≥ 1

4(x2
1 + x2

2) for all x1, x2 ∈ R,

it is easy to verify that

F (x)Tx ≥ 1
4
‖x‖2 for all x ∈ R2. (4.47)

Since {F (x)T y
‖x‖ : x ∈ R2} is bounded for any y ∈ R2, this implies that F is coercive. Thus

one can apply Theorem 4.1(ii) to conclude that (θϕab)
γ has a local error bound for some γ > 0.

In fact, for the present case, Theorem 4.2 produces a better result by giving the explicit value
γ = 1/2. To see this, it suffices to show µab > 0, where µab is defined as in (4.24). Since
yϕc (x) = (max{0, x1−c−1F1(x)}, max{0, x2−c−1F2(x)}) for any x := (x1, x2) ∈ R2 (see Remark
3.2), it follows from (4.44) that yϕb (x) = (0, 0) since b = 1. Consequently, T (yϕb (x), P ) = R2

+

and so
Tab(x, F, P ) ⊆ R2

+. (4.48)
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Define a mapping M : R2 → 2Rn×n
as follows

M(x) =


co{
( 1 + x2 x1

3
2 1

)
,
( 1 0

3
2 1

)
,
( 1 0

0 1
)
}, x1 ≥ 0 and x2 ≥ 0.

co{
( 1 0

3
2 1

)
,
( 1 0

0 1
)
}, else.

(4.49)

It follows from (4.46), (2.2) and (2.3) that for any x ∈ R2

∂cF (x) ⊆M(x).

Thus dTV d ≥ 1 for all V ∈ ∂cF (x) ⊆ M(x) and for all d ∈ R2
+ with ‖d‖ = 1. This together

with (4.24) and (4.48) implies that µab ≥ 1. In particular, µab > 0 and hence
√
θϕab has a local

error bound on R2.

5 A Derivative Free Descent Method

In this section, we consider an Armijo type descent method. Denote the solution set of V I(F, P )
and the initial point respectively by S and x0. Throughout this section, we assume that F is
locally Lipschitz, coercive and 0 < a < b such that µab > 0, where µab is defined as in (4.24).
Considering ε = θϕab(x0), it follows from Theorem 4.2 that there exist δ, c > 0 satisfying (4.25)

such that, for each x ∈ (θϕab)
−1(0, ε] one has d(x, S) ≤ 2

δ

√
θϕab(x) and

(θϕab)
◦(x; hx) ≤ −δ

√
θϕab(x), (5.1)

where hx = wx
‖wx‖ and wx is defined by:

wx =

{
yϕa (x)− yϕb (x), if c‖x− yϕa (x)‖ ≤ ‖yϕa (x)− yϕb (x)‖,
yϕa (x)− x, else.

(5.2)

Note from the definition of wx and c that

‖wx‖ ≥ c‖yϕa (x)− x‖. (5.3)

Moreover, by the continuity of θϕab(·) and (5.1), we note that for all ρ ∈ (0, 1) and x ∈ (θϕab)
−1(0, ε]

lim sup
m→∞

√
θϕab(x+ ρmwx)−

√
θϕab(x)

ρm‖wx‖
= lim sup

m→∞

θϕab(x+ ρmwx)− θϕab(x)

ρm‖wx‖[
√
θϕab(x+ ρmwx) +

√
θϕab(x)]

≤
(θϕab)

◦(x; wx
‖wx‖)

2
√
θϕab(x)

≤ −δ
2
. (5.4)
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Our algorithm is as follows:

Algorithm

Step 0: Let ρ ∈ (0, 1). Let x0 be a given vector in Rn. Set k = 0.

Step 1: If θϕab(xk) = 0 then stop (and xk ∈ S). If not then go to Step 2.

Step 2: Compute wxk
by (5.2) and go to Step 3.

Step 3: Let mk be the smallest integer m such that√
θϕab(xk + ρmwxk

)−
√
θϕab(xk) ≤ −

δ

4
ρm‖wxk

‖ (5.5)

and set xk+1 = xk + ρmkwxk
. Go to step 4.

Step 4: Return to Step 1 with k replaced by k + 1.
Note. By (5.4), the line search in Step 3 is well defined (unless xk is already a solution of
V I(F, P )).

Theorem 5.1 The sequence {xk} generated by the above algorithm is bounded and the limit of
each of its convergent subsequences is a solution of V I(F, P ).

Proof. If θϕab(xk) = 0 then xk ∈ S by Proposition 3.1(v). Suppose therefore that θϕab(xk) > 0
(hence wxk

6= 0 by (3.10) and (5.3)) for each k. Let ε = θϕab(x0). By (5.5), the sequence {θϕab(xk)}
is decreasing and hence converges; thus {xk}∞k=1 ⊆ (θϕab)

−1(0, ε] and

lim
k→∞

ρmk‖wxk
‖ = 0. (5.6)

By Lemma 4.1, {xk} is bounded hence has a convergent subsequence, say {xki
}∞i=1. Let lim

i→∞
xki

=

x∗. We claim that x∗ ∈ S. Indeed, if {mki
}∞i=1 is bounded, then (5.6) implies that wxki

→ 0
and hence that yϕa (xki

)− xki
→ 0 as i→∞ (see (5.3)). By the continuity of yϕa it follows that

yϕa (x∗)− x∗ = 0 and so x∗ ∈ S by Proposition 3.1(iii). Therefore, we may assume that {mki
} is

unbounded. By considering a subsequence if necessary we may assume further that mki
→ ∞

and
wxki

‖wxki
‖
→ h∗ (5.7)

for some unit vector h∗. We suppose x∗ /∈ S. Then

x∗ 6= yϕa (x∗) and x∗ ∈ (θϕab)
−1(0, ε]. (5.8)

Moreover, by the Lebourg Mean Value Theorem (cf. [5, Theorem 2.3.7]), for each i ∈ N, there
exist yi in the line segment [xki

, xki
+ ρmki

−1wxki
] and Wki

∈ ∂cθϕab(yi) such that

θϕab(xki
+ ρmki

−1wxki
)− θϕab(xki

) = ρmki
−1W T

ki
wxki

.
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Dividing both sides by ρmki
−1‖wxki

‖, it follows from Wki
∈ ∂cθϕab(yi) and [5, Proposition 2.1.2

(b)] that for each i ∈ N

θϕab(xki
+ ρmki

−1wxki
)− θϕab(xki

)

ρmki
−1‖wxki

‖
= W T

ki

wxki

‖wxki
‖
≤ (θϕab)

◦(yi;
wxki

‖wxki
‖

).

This implies that

lim sup
i→∞

θϕab(xki
+ ρmki

−1wxki
)− θϕab(xki

)

ρmki
−1‖wxki

‖
≤ lim sup

i→∞
(θϕab)

◦(yi;
wxki

‖wxki
‖

). (5.9)

Noting that yi → x∗ (by xki
→ x∗ and yi ∈ [xki

, xki
+ρmki

−1wxki
]), one has from [5, Proposition

2.1.1 (b)] and (5.7) that

lim sup
i→∞

(θϕab)
◦(yi;

wxki

‖wxki
‖

) ≤ (θϕab)
◦(x∗;h∗),

and it follows from (5.9) that

lim sup
i→∞

θϕab(xki
+ ρmki

−1wxki
)− θϕab(xki

)

ρmki
−1‖wxki

‖
≤ (θϕab)

◦(x∗;h∗). (5.10)

Since
√
θϕab(xki

+ ρmki
−1wxki

) +
√
θϕab(xki

)→ 2
√
θϕab(x

∗), (5.10) implies that

lim sup
i→∞

√
θϕab(xki

+ ρmki
−1wxki

)−
√
θϕab(xki

)

ρmki
−1‖wxki

‖
≤

(θϕab)
◦(x∗;h∗)

2
√
θϕab(x

∗)
.

Since − δ
4ρ
mki
−1‖wxki

‖ <
√
θϕab(xki

+ ρmki
−1wxki

) −
√
θϕab(xki

) (by the line search (Step 3)), it
follows that

(θϕab)
◦(x∗;h∗) ≥ −δ

2

√
θϕab(x

∗) . (5.11)

Write N = I1 ∪ I2, where

I1 := {i : c‖xki
− yϕa (xki

)‖ ≤ ‖yϕa (xki
)− yϕb (xki

)‖} and I2 := N\I1. (5.12)

Case 1: Suppose |I1| = +∞. Since for each i ∈ I1, one has

c‖xki
− yϕa (xki

)‖ ≤ ‖yϕa (xki
)− yϕb (xki

)‖ and wxki
= yϕa (xki

)− yϕb (xki
). (5.13)

It follows (by passing to the limits) that

c‖x∗ − yϕa (x∗)‖ ≤ ‖yϕa (x∗)− yϕb (x∗)‖, (5.14)

and

h∗ = lim
i∈I1, i→∞

wxki

‖wxki
‖

=
yϕa (x∗)− yϕb (x∗)
‖yϕa (x∗)− yϕb (x∗)‖

. (5.15)
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By (5.14) and (4.23), yϕa (x∗)− yϕb (x∗) ∈ Ωabc(x∗). Since θϕab(x
∗) > 0, it follows from (4.26) and

(5.15) that (θϕab)
◦(x∗;h∗) ≤ −δ

√
θϕab(x), contradicting (5.11).

Case 2: Suppose |I2| = +∞. Since for each i ∈ I2, one has

c‖xki
− yϕa (xki

)‖ > ‖yϕa (xki
)− yϕb (xki

)‖ and wxki
= yϕa (xki

)− xki
. (5.16)

It follows (by passing to the limits) that

c‖x∗ − yϕa (x∗)‖ ≥ ‖yϕa (x∗)− yϕb (x∗)‖ (5.17)

and

h∗ = lim
i∈I2,i→∞

wxki

‖wxki
‖

=
yϕa (x∗)− x∗

‖yϕa (x∗)− x∗‖
. (5.18)

By (5.17) and (4.23), yϕa (x∗)−x∗ ∈ Ωabc(x∗). Since θϕab(x
∗) > 0, it follows from (4.26) and (5.18)

that (θϕab)
◦(x∗;h∗) ≤ −δ

√
θϕab(x), again contradicting (5.11). 2

Note: Suppose that F is smooth, strongly monotone and ∇F is locally Lipschitz. Then the
solution of V I(F, P ) is unique. From the preceding theorem, we see that the {xk}k∈N generated
by our algorithm converges to the unique solution of V I(F, P ) (say x∗). Indeed, in this case,
the following stronger conclusion holds:
(i) {θϕab(xk)} converges Q-linearly, i.e. either the algorithm terminates in finite steps or there
exists r ∈ (0, 1) such that

lim
k→∞

θϕab(xk)
θϕab(xk−1)

≤ r; (5.19)

(ii) {xk} converges R-linearly, i.e. either the algorithm terminates in finite steps or there exists
r′ ∈ (0, 1) such that

lim
k→∞

k
√
‖xk − x∗‖ ≤ r′. (5.20)

Indeed, to see (5.19), we first note that θϕab(xk) 6= 0 for all k ∈ N. Since θϕab is smooth and
∇θϕab is locally Lipschitz in this case (see Proposition 3.1(iii)-(iv) and Theorem 3.1), then from
the mean-value theorem we have for all α ∈ [0, 1]

θϕab(xk + αwxk
)− θϕab(xk) =

∫ α

0
∇θϕab(xk + twxk

)Twxk
dt

=
∫ α

0

(
∇θϕab(xk + twxk

)−∇θϕab(xk)
)T
wxk

dt

+α∇θϕab(xk)
Twxk

. (5.21)

Note that supk ‖wxk
‖ < +∞ (since {xk} is bounded and yϕc (·) is continuous for all c > 0) and

hence {xk+twxk
: t ∈ [0, 1]} ⊆M where M := [θϕab(x) ≤ θϕab(x0)]+supk ‖wxk

‖B(0, 1) is bounded.
There exists L > 0 such that ‖∇θϕab(xk + twxk

) − ∇θϕab(xk)‖ ≤ tL‖wxk
‖ for all k. Thus, from

(5.21) and (5.1), we have

θϕab(xk + αwxk
)− θϕab(xk) ≤

α2

2
L‖wxk

‖2 + α∇θϕab(xk)
Twxk

=
α2

2
L‖wxk

‖2 + α(θϕab)
◦(xk;wxk

)

≤ α‖wxk
‖
(α

2
L‖wxk

‖ − δ
√
θϕab(xk)

)
.
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This implies that√
θϕab(xk + αwxk

)−
√
θϕab(xk)

α‖wxk
‖

=
θϕab(xk + αwxk

)− θϕab(xk)

α‖wxk
‖
(√

θϕab(xk + αwxk
) +

√
θϕab(xk)

)
≤

α
2L‖wxk

‖ − δ
√
θϕab(xk)√

θϕab(xk + αwxk
) +

√
θϕab(xk)

≤
α
2L‖wxk

‖√
θϕab(xk)

− δ. (5.22)

On the other hand, from [20, Proposition 2.2], there exists τ > 0 such that ‖yϕa (xk)− yϕb (xk)‖ ≤
τ‖xk − yϕb (xk)‖. This implies that ‖xk − yϕa (xk)‖ ≤ ‖xk − yϕb (xk)‖ + ‖yϕb (xk) − yϕa (xk)‖ ≤
(1 + τ)‖xk− yϕb (xk)‖. Thus, from the definition of wx and (3.10), we have ‖wxk

‖ ≤ (1 + τ)‖xk−
yϕb (xk)‖ ≤ (1 + τ)

√
1

β(b−a)

√
θϕab(xk). It follows from (5.22) that

√
θϕab(xk + αwxk

)−
√
θϕab(xk)

α‖wxk
‖

≤ αL(1 + τ)
2
√
β(b− a)

− δ.

This implies that there exists m ∈ N such that mk ≤ m for all k ∈ N (see the line search (5.5)).
It follows from (5.5), (5.3) and (3.10) that√

θϕab(xk) =
(√

θϕab(xk)−
√
θϕab(xk−1)

)
+
√
θϕab(xk−1)

≤ −δ
4
ρmk−1‖wxk−1

‖+
√
θϕab(xk−1)

≤ −δc
4
ρm‖xk−1 − yϕa (xk−1)‖+

√
θϕab(xk−1)

≤ − δc

4
√

(κ− β)(b− a)
ρm
√
θϕab(xk−1) +

√
θϕab(xk−1)

= γ
√
θϕab(xk−1), (5.23)

where γ := 1 − δcρm

4
√

(κ−β)(b−a)
∈ (0, 1) (thanks to θϕab(xk) 6= 0 for all k ∈ N). Thus (5.19) is seen

to hold. To see (5.20), from our error bound result and (5.23), one has

‖xk − x∗‖ ≤
2
δ

√
θϕab(xk) ≤

2
δ
γk−1

√
θϕab(x1).

Thus, (5.20) follows.

Remark 5.1 (a). Our algorithm is indeed a derivative-free type method, i.e., we do not need
to calculate the (generalized) Jacobian of F . This is useful especially when the calculation of the
(generalized) Jacobian of F is expensive. Although, there already exist projection-type methods
(which are also derivative-free methods) providing iterative sequences that converge to a solution
assuming only F is monotone and continuous (e.g., [28, 29]). Our present approach is based
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on the consideration of error bounds of the merit function θϕab. Hence we not only have the
convergence result (Theorem 5.1) but also know how far from the kth point of the iteration to
the solution set.
(b). Example 4.4 shows that our algorithm can be applied to some cases when F is nonmonotone.
(c). Suppose that F is smooth, strongly monotone and ∇F is locally Lipschitz. It follows from the
preceding note that the sequence {xk} generated by our algorithm converges R-linearly. Under the
same assumption, another linear convergent algorithm based on the implicit Lagrangian (which
is a special case of our generalized D-gap function when ϕ(x, y) = 1

2‖x − y‖
2, a = b−1 ∈ (0, 1)

and P is the nonnegative orthant) has been proposed in [18] for solving nonlinear complementary
problems (which is a particular case of variational inequality problems). However, we note that
the search direction used in [18] is different from the one we used in our algorithm.
(d). Our algorithm involves the parameters c and δ which depend on the constants L and µab (see
(4.25)). Thus, in general, some priori information is needed to determine these two constants.
However, in some special situations (e.g. F is piecewise linear and P is the nonnegative orthant),
the constant L and µab (and hence the parameter c and δ) can be determined explicitly. Moreover,
when these two constants are too costly to obtain, similar to [18, page 10-11] and [33, page
453], we can start our algorithm with some reasonably small c and δ, and adapt iteratively with
decreasing values of them if the algorithm does not appear to make predicted progress.

Acknowledgements: We would like to express our sincere thanks to the anonymous referees for
many helpful comments and for pointing out the references [16, 18]. Moreover, we are indebted
to Dr. L.L. Tan for many stimulating discussion and to Prof. A.S. Lewis who suggested us to
look at the subanalytic case.
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