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Abstract. Refinable functions and distributions with integer dilations have been studied
extensively since the pioneer work of Daubechies on wavelets. However, very little is
known about refinable functions and distributions with non-integer dilations, particularly
concerning its regularity.

In this paper we study the decay of the Fourier transform of refinable functions and
distributions. We prove that uniform decay can be achieved for any dilation. This leads
to the existence of refinable functions that can be made arbitrarily smooth for any given
dilation factor. We exploit the connection between algebraic properties of dilation factors
and the regularity of refinable functions and distributions. Our work can be viewed as
a continuation of the work of Erdös [6], Kahane [11] and Solomyak [19] on Bernoulli
convolutions. We also construct explicitly a class of refinable functions whose dilation
factors are certain algebraic numbers, and whose Fourier transforms have uniform decay.
This extends a classical result of Garsia [9].

1. Introduction

In this paper we study the refinement equation

(1.1) f(x) =
m∑

j=0

cjf(λx− dj),
m∑

j=0

cj = |λ|

where λ ∈ R with |λ| > 1 and all cj , dj are real. It is well known that up to a scalar multiple

the above refinement equation has a unique distribution solution f , which is furthermore

compactly supported. We shall refer to the distribution solution f(x) of (1.1) with f̂(0) = 1

the solution to (1.1). For the refinement equation (1.1), the value λ is called the dilation fac-

tor of the refinement equation, and {dj} the translation set or simply the translations. The

coefficients {cj} are called the weights (even though they can be negative). For simplicity

we shall call a solution f(x) to (1.1) a λ-refinable distribution (function) with translations

{dj}.
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The questions we study concern the regularity of λ-refinable functions or distributions.

Particularly we are interested in refinable functions whose dilation factors are non-integers.

For example, is it possible to find a 3/2-refinable function that is smooth? More generally,

is it possible to find a smooth λ-refinable function for any λ with |λ| > 1?

Refinable functions play a fundamental role in the construction of compactly supported

wavelets and in the study of subdivisions schemes in approximation theory, see Daubechies

[4] and Cavaretta, Dahman and Micchelli [1]. In both cases the dilation factors are restricted

to integers, as are the translations. It is well known that for any integer dilation λ there

exist λ-refinable functions with integer translations that can be made arbitrarily smooth.

The simplest example is the B-spline Bm(x), which is obtained by convolving χ[0,1) with

itself m times. Bm is λ-refinable for any integer λ, |λ| > 1. The B-splines have important

applications in subdivision schemes and computer aided geometric designs. With integer

dilations and translations one may impose strong constraints on the weights while still

attaining smoothness. The most important example is the construction of a class of smooth

refinable functions whose integer translates are mutually orthogonal that began with the

seminal work of Daubechies [3] leading to compactly supported orthonormal wavelets.

But the regularity question becomes more complicated, and perhaps more interesting

from the pure analysis point of view, when the dilation factors λ are non-integers, particu-

larly when the translations are still restricted to integers. There is a strong connection with

number theory that still needs to be fully exploited. The regularity of refinable functions

and distributions seem to be strongly affected by algebraic properties of the dilation factors.

One way to characterize regularity is to consider the decay of f̂ . Let f(x) be a distribution.

We say f̂ has uniform decay at infinity if f̂(ξ) = O(|ξ|−γ) for some γ > 0. Suppose that f̂

has uniform γ-decay at infinity. Let f∗n(x) := f ∗ f ∗ · · · ∗ f(x) in which f convolves with

itself n times. Then f̂∗n = f̂n, which has uniform nγ-decay at infinity. By taking n large

one can make f∗n an arbitrarily smooth function. Furthermore, if f is λ-refinable then so is

f∗n. In fact if f is λ-refinable with integer translations then so is f∗n. Thus we shall focus

on the following question: Given any λ ∈ R with |λ| > 1, is there a λ-refinable distribution

f(x) such that f̂ has uniform decay at infinity? What if the translations are required to be

integers?
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A large amount of literature have been devoted to this questions in the case of Bernoulli

convolutions, which are the solutions to

(1.2) f(x) =
|λ|
2

f(λx) +
|λ|
2

f(λx− 1).

Many of these studies apply to the more general setting of integer translations as well.

Erdös [5] proved that under the integer translations setting any λ-refinable distribution

f has f̂(ξ) 6→ 0 as |ξ|→∞ as long as λ is a Pisot number, i.e. an algebraic integer whose

algebraic conjugates are all inside the unit circle. This immediately implies that f cannot be

in L1. It remains an open question whether Pisot numbers are the only dilations for which

one cannot construct L1 refinable functions with integer translations. Also under the integer

translation setting Kahane [11] proved that f̂ does not have uniform decay at infinity for

any λ-refinable distribution if λ is a Salem number, i.e. an algebraic integer whose algebraic

conjugates are all inside or on the unit circle, assuming that some conjugates lie actually on

the unit circle. (Both Erdös and Kahane established their results for Bernoulli convolutions,

but with some technical twisting we may extend their results to the more general setting,

see Appendix.) In the positive direction, Garsia [9] proved that the Bernoulli convolution

f(x) of (1.2) is in L∞, if the dilation λ is an algebraic integer whose algebraic conjugates are

all outside the unit circle and the constant term for its minimal polynomial is ±2. Garsia’s

result remains today as the only explicitly known class of Bernoulli convolutions that are

in L1. Feng and Wang [7] explicitly constructed a large class of algebraic integer dilations

λ for which the corresponding Bernoulli convolutions are not in L2. In the generic setting

Solomyak [19] proved that for almost all dilations λ ∈ (1, 2) the corresponding Bernoulli

convolution is in L1, and more recently, Peres and Schlag [16] proved that the Fourier

transform of the Bernoulli convolution has uniform decay at infinity for almost all dilations

λ ∈ (1, 2). It is not clear whether the latter result holds for almost all λ ∈ (1,∞). Our

results in this paper can be viewed as an extension of the aforementioned studies.

When the dilations and translations are both integers and the weights are nonnegative,

the uniform decay property can be characterized completely:

Theorem 1.1. Let f(x) be the distribution solution to the refinement equation

f(x) =
m∑

j=0

cjf(λx− dj),
m∑

j=0

cj = |λ|

where λ ∈ Z and cj > 0, dj ∈ Z for all j. Then the following are equivalent:
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(A) f̂ has uniform decay at ∞.

(B) f ∈ L∞(R).

(C) f ∈ L1(R).

(D) lim|ξ|→∞ f̂(ξ) = 0.

(E) f̂(n) = 0 for all n ∈ Z \ {0}.
(F) For any n ∈ Z \ {0} there exists a k = k(n) > 0 such that P (λ−kn) = 0, where

P (ξ) := 1
|λ|
∑m

j=0 cje(−djξ) with e(t) := e2πit.

The trigonometric polynomial P (ξ) is called the symbol of the refinement equation. Note

that Theorem 1.1 can be partially extended to the case of rational dilations.

Theorem 1.2. Let f(x) be the distribution solution to the refinement equation

f(x) =
m∑

j=0

cjf(λx− dj),
m∑

j=0

cj = |λ|

where λ ∈ Q, |λ| > 1 and cj > 0, dj ∈ Z for all j. Suppose that for any n ∈ Z \ {0} there

exists a k = k(n) > 0 such that P (λ−kn) = 0, where P (ξ) is the symbol of the refinement

equation. Then the following hold:

(A) f̂ has uniform decay at ∞.

(B) f ∈ L∞(R).

(C) f̂(n) = 0 for all n ∈ Z \ {0}.

We remark that both Theorem 1.1 and Thereom 1.2 hold under the weaker assumption

that |P (ξ)| < 1 for all ξ ∈ R \ Z. This is rather easy to see from the proof. Also, Theorem

1.2 holds for any dilation λ, but unless λk ∈ Q for some k > 0 there exists no refinement

equations satisfying the hypotheses of the theorem.

One of the well known questions concerning refinable functions is whether one can con-

struct arbitrarily smooth refinable functions for rational dilations such as λ = 3/2. Here we

answer this question.

Corollary 1.3. Let λ = p/q where p > |q| are integers and (p, q) = 1. Then the refinable

distribution satisfying

f(x) =
1
|q|

p−1∑
j=0

f(
p

q
x− j)
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is in L∞(R), and f̂ has uniform decay at ∞. As a consequence, for any k ≥ 0 there exists a

compactly supported λ-refinable function f with integer translations and nonnegative weights

such that f is in Ck.

In Section 2 we shall explicitly construct a differentiable 3/2-refinable function.

Theorem 1.4. Let λ ∈ R with |λ| > 1 and cj > 0 for all j. Let f = ft be the distribution

solution of the refinement equation

(1.3) f(x) =
m∑

j=0

cjf(λx− dj),
m∑

j=0

cj = |λ|,

where d0, d1 are fixed and distinct, and dm = t with t being a paramenter. Then there exists

a E := Eλ ⊂ R independent of {cj}m
j=0 with dimH(E) = 0, such that f̂t has uniform decay

at infinity for each t ∈ R \ E.

Here dimH denotes the Hausdorff dimension (see e.g., [8] for a definition). Obviously the

set E has Lebesgue measure 0. By taking convolution of ft(x) with itself repeatedly we

easily obtain:

Corollary 1.5. Let λ ∈ R with |λ| > 1. Then for any k ≥ 0 there exists a compactly

supported λ-refinable function with nonnegative weights that is in Ck.

Note that in the language of self-similar measures the above corollary states that for any

λ with |λ| > 1 there exists a self-similar measure with contraction λ−1 whose density can

be arbitrarily smooth. Our next theorem is an extension of Garsia [9].

Theorem 1.6. Let p(x) =
∑n

j=0 ajx
j ∈ Z[x] be irreducible (but not necessarily monic) such

that all roots of p(x) are outside the unit circle. Let λ be a real root of p(x) and f(x) be the

distribution solution to

(1.4) f(x) =
|λ|
|a0|

|a0|−1∑
j=0

f(λx− j).

Then f̂ has uniform decay at infinity. Furthermore, f ∈ L∞.

Garsia [9] proved that f is L∞ in the case an = 1 and a0 = ±2. No uniform decay

property was established in [9], however.
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2. Proof of Theorem 1.1 and Theorem 1.2

We consider in this section refinable distributions with integer translations and integer

or rational dilations. First we introduce a notation. For any x ∈ R we let ‖x‖Z denote

the distance of x to the integers Z. Thus ‖x‖Z ≤ 1/2. We may without loss of generality

consider the refinement equation

(2.1) f(x) =
m∑

j=0

cjf(λx− dj),
m∑

j=0

cj = |λ|

where λ ∈ Z or λ ∈ Q, cj > 0 for all j and 0 = d0 < d1 < · · · < dm are in Z. Furthermore,

we assume that gcd(d1, d2, . . . , dm) = 1.

Lemma 2.1. Let λ = p/q ∈ Q with p > |q| and (p, q) = 1. Let Q(t) be a trigonometric

polynomial with Q(0) = 1 and |Q(t)| < 1 for any t 6∈ Z. Furthermore, Q(t) has the property

that for any n ∈ Z\{0} there exists a k > 0 such that Q(λ−kn) = 0. Fix an ε > 0. Suppose

that |t| > ε and ‖t‖Z < ε. Then there exists an ` ∈ N such that |g(t)| ≤ Cε|λ|−`|g(λ−`t)|,
where g(t) :=

∏∞
j=1 Q(λ−jt) and C = max |Q′(t)|. In particular, g has uniform decay at

infinity.

Proof. Write t = n + δ where n ∈ Z and |δ| = ‖t‖Z. Note that |t| > ε, so n 6= 0. Therefore

there exists an ` > 0 such that Q(λ−`n) = 0. This means that

|Q(λ−`t)| = |Q(λ−`t)−Q(λ−`n)| ≤ C|λ−`δ| < Cε|λ|−`.

Therefore

|g(t)| =
∞∏

j=1

|Q(λ−jt)| ≤ Q(λ−`t)
∞∏

j=`

|Q(λ−jt)| ≤ Cε|λ|−`|g(λ−`t)|.

The decay property of g can now be established. Let M = sup{|Q(t)| : ‖t‖Z ≥ ε} < 1.

For any t ∈ R with |t| > |λ|, we can uniquely write t = λNs for some s with |s| ∈ [1, |λ|]
and N ∈ N. Now g is an analytic function, and so it is bounded on [−|λ|, |λ|], say by

the constant K > 0. Suppose that ‖λ−1t‖Z ≥ ε. Then |Q(λ−1t)| ≤ M . Hence |g(t)| =

|g(λNs)| ≤ M |g(λN−1s)|. On the other hand, suppose that ‖λ−1t‖Z < ε. Then

(2.2) |g(t)| ≤ |g(λ−1t)| ≤ Cε|λ|−`|g(λN−`−1s)|.

Take ρ ∈ (M, 1) such that ρk+1 ≥ Cε|λ|−k for all k ∈ N. This ρ clearly exists if we take

ε to be small enough. Then (2.2) becomes |g(t)| ≤ ρ`+1|g(λN−`−1s)|. Combining with the
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case ‖λ−1t‖Z ≥ ε we now have |g(t)| = |g(λNs)| ≤ ρNK. The uniform decay property is

now established by taking γ = log ρ−1/ log |λ|, and |g(λNs)| ≤ K |λ|−γN .

Proof of Theorem 1.1. It is clear that (B) ⇒ (C) ⇒ (D).

(D) ⇒ (E). We have f̂(ξ) = f̂(0)
∏∞

j=1 P (λ−jξ). In particular f̂(λkξ) = f̂(ξ)
∏k−1

j=0 P (λjξ).

This implies that f̂(λkn) = f̂(n). By letting k→∞ we have f̂(n) = 0 for all n ∈ Z \ {0}.

(E) ⇒ (F). Again we invoke the property f̂(ξ) = f̂(λ−kξ)
∏k

j=1 P (λ−jξ). Since f̂(0) 6= 0

and f̂(ξ) is analytic, it follows from f̂(n) = 0 that
∏k

j=1 P (λ−jn) = 0 when k is large

enough. (F) now follows.

(F) ⇒ (B). By our convention it is assumed that f̂(0) = 1. It is known that f is in

fact a probability measure, see e.g. Falconer [8]. Now f is compactly supported. Define

F (x) =
∑

n∈Z f(x − n). Then F is a Radon measure, and hence a distribution. We

have F = f ∗ δZ where δZ :=
∑

n∈Z δ(x − n). The Poisson Summation Formula yields

F̂ = f̂ · δ̂Z = f̂ · δZ. Therefore F̂ = δ, and hence F = 1. This implies that f ∈ L∞.

(A) ⇒ (D). This is clear.

(F) ⇒ (A). P (ξ) satisfies the hypotheses of Lemma 2.1. By the lemma f̂(ξ) =
∏∞

j=1 P (λ−jξ)

has uniform decay at infinity.

Proof of Theorem 1.2. The proof is identical to the proof of Theorem 1.1, and we only give

a brief explanation. Clearly, the hypotheses of the theorem implies (C), that is, f̂(n) = 0

for all n ∈ Z \ {0}. The argument used to prove (F) ⇒ (B) in Theorem 1.1 now applies to

prove that f ∈ L∞. The uniform decay of f̂ is established by Lemma 2.1.

Proof of Corollary 1.3. Let P (ξ) = 1
p

∑p−1
j=0 e(−jξ) be the symbol of the refinement

equation. P (ξ) clearly satisfies the hypotheses of Theorem 1.2. Hence f̂ has uniform decay

at infinity, and f ∈ L∞. Convolving f with itself sufficiently many times yields a λ-refinable

function that can be made arbitrarily smooth.

Example 2.1. We consider the compactly supported refinable function f(x) given by

f(x) =
1
2
f(

3
2
x) +

1
2
f(

3
2
x + 1) +

1
2
f(

3
2
x− 1).

f is in L∞ by Corollary 1.3, and f̂ has uniform decay. We prove that f̂(ξ) = O(|ξ|−1) as

|ξ|→∞. This immediately implies that f∗n is (n− 2)-times differentiable.
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To prove this, observe that the symbol of the refinement equation is P (ξ) = 1+2 cos(2πξ)
3 .

Let λ = 3/2 and ξ = λNs where |s| ∈ [1, λ). We prove that |f̂(ξ)| ≤ Kλ−N for K =

max|s|≤λ |f̂(s)|. A simple check with Maple shows that by taking ε = 1.05
2π we have M =

max‖t‖Z≥ε |P (t)| < λ−1 = 2/3. Furthermore, another check with Maple shows that |P (n
3 +

t)| ≤ C|t| for some C with Cε < λ−1 = 2/3, as long as n 6= 3k and |t| < ε. As a result, by

the estimations used to prove Lemma 2.1, we obtain |f(λNs)| ≤ Kλ−N = K(2
3)N .

3. Proof of Theorem 1.4

Without loss of generality we may assume that (1.3) is normalized so that d0 = 0 and

d1 = 1. Let Pt(ξ) = 1
|λ|
∑m

j=0 cje(−djξ). We have

Pt(ξ) =
1
|λ|

(
c0 + c1e(−ξ) + cme(−tξ) +

m−1∑
j=2

cje(−djξ)
)
,

and f̂t(ξ) =
∏∞

j=1 Pt(λ−jξ). To prove Theorem 1.4 we establish a series of lemmas.

Lemma 3.1. Let λ > 1. For a fixed t assume that f̂t has no uniform decay at infinity.

Then for any ε, δ > 0 and N ∈ N, there exist a ∈ [1, λ) and n > N such that both

{0 ≤ j ≤ n− 1 : ‖aλj‖Z ≥ δ} and {0 ≤ j ≤ n− 1 : ‖atλj‖Z ≥ δ} have cardinality less than

εn.

Proof. Assume the lemma is false. Then there exist ε, δ and N such that {0 ≤ j ≤
n − 1 : ‖aλj‖Z ≥ δ} or {0 ≤ j ≤ n − 1 : ‖atλj‖Z ≥ δ} have cardinality at least εn for all

a ∈ [1, λ] and n > N . Let

M = Mδ = max{|Pt(ξ)| : ‖ξ‖Z ≥ δ or ‖tξ‖Z ≥ δ}.

It is clear 0 < M < 1. Let

An := {0 ≤ j ≤ n− 1 : ‖aλj‖Z ≥ δ or ‖atλj‖Z ≥ δ}.

Set h = ε log(1/M)
log λ .
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Now any ξ > 0 can be uniquely written as ξ = λns for some s ∈ [1, λ) and n ∈ Z. For

n > N we have

|f̂t(ξ)| =
n−1∏
j=0

|Pt(λjs)| · |f̂t(s)|

≤ C
∏

j∈An

|Pt(λjs)|

≤ C M εn

= C λ−hn,

where C = maxs∈[1,λ] |f̂t(s)|. This shows decay in f̂t(ξ) for ξ > 0. However, f̂t(−ξ) = f̂t(ξ),

which also yields decay in f̂t(ξ) for ξ < 0. Hence f̂t(ξ) has uniform decay at ∞. This is a

contradiction.

Let λ > 1. For any δ > 0 and n ∈ N define Aδ,n(a) := {0 ≤ j < n : ‖λja‖Z ≥ δ}.
Introduce the sets

Eλ(n, ε, δ) = {a ∈ R : |Aδ,n(a)| < εn} and

Fλ(n, ε, δ) = {x/y : x, y ∈ Eλ(n, ε, δ), 1 ≤ y < λ} .

Lemma 3.2. For any ε, δ > 0 and ` ∈ N, if f̂t does not have uniform decay at infinity then

t ∈
⋂∞

k=1

⋃∞
n=k Fλ`(n, ε, δ).

Proof. Assume that f̂t has no uniform decay at infinity. Set ε′ = ε/(2`). Then by Lemma

3.1, for any N ∈ N there exist a ∈ [1, λ] and n > N such that |Aδ,n(a)| < ε′n and

|Aδ,n(at)| < ε′n. Define m = [n/`], where [x] denotes the integral part of x. Observe that{
0 ≤ j < m : ‖aλ`j‖Z ≥ δ

}
⊂
{
0 ≤ j < n : ‖aλj‖Z ≥ δ

}
= Aδ,n(a).

It follows that the cardinality of
{
0 ≤ j < m : ‖aλ`j‖Z ≥ δ

}
is not exceeding ε′n ≤ εm.

Thus a ∈ Eλ`(m, ε, δ). An identical argument shows at ∈ Eλ`(m, ε, δ). Since a ∈ [1, λ],

we have t ∈ Fλ`(m, ε, δ). Noting that m can take infintely many integers, we obtain t ∈⋂∞
k=1

⋃∞
m=k Fλ`(m, ε, δ).

Proposition 3.3. Let λ > 16. There exist ε0, δ0 > 0 (depending on λ) such that the set⋂∞
k=1

⋃∞
n=k Fλ(n, ε0, δ0) ∩ [1,∞) has the Hausdorff dimension not exceeding log 16/ log λ.

This proposition is the key ingredient in, and forms the bulk of, the proof of Theorem

1.4. We shall prove Proposition 3.3 later.
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Proof of Theorem 1.4. First we consider the case λ > 1. Pick ` ∈ N so that λ` >

16. By Proposition 3.3, for any integer j ≥ `, there exist εj , δj > 0 such that the set⋂∞
k=1

⋃∞
n=k Fλj (n, εj , δj)∩ [1,∞) has the Hausdorff dimension not exceeding log 16/(j log λ).

Denote

E1 =
⋂
j≥`

( ∞⋂
k=1

∞⋃
n=k

Fλj (n, εj , δj) ∩ [1,∞)

)
.

Then dimH E1 = 0 and it is independent of {cj}. For any t > 1 and t 6∈ E1, f̂t has uniform

decay at ∞ by Lemma 3.2.

We still need to prove that f̂t has uniform decay at ∞ for all t < 1 except for a set of

zero Hausdorff dimension. For 0 < t < 1 consider g(x) := gt(x) = f(tx). Then g satisfies

the refinement equation

g(x) =
n∑

j=0

cjg(λx− djt
−1),

which contains the translations {0, 1, t−1}. Let t1 = t−1. Then ĝt has unform decay at ∞
for all t1 > 1 except for a set of zero Hausdorff dimension. Hence there exists a E2 ⊂ (0, 1)

with dimH(E2) = 0 such that f̂t has uniform decay for all t ∈ (0, 1) \ E2. Finally, for t < 0

we let h(x) := ht(x) = f(−tx + t
λ−1). Then h = ht satisfies

h(x) =
n∑

j=0

cjh(λx + djt
−1 − 1),

which has {0, 1, 1− t−1} among the translations. Set t2 = 1− t−1, and the same argument

now yields the existence of E3 ⊂ (−∞, 0) with zero Hausdorff dimension such that f̂t

has uniform decay for all t ∈ (−∞, 0) \ E3. The theorem is now proved by letting E =

E1 ∪ E2 ∪ E3. E is independent of {cj}.

Next, for dilation λ with λ < −1, we may iterate the refinement equation (1.3) 2 times

to obtain a new refinement equation with the same solution, which now has λ2 > 1 as its

dilation factor. Note that {0, 1, t} remain part of the translation set for the new refinement

equation. Hence f̂t has uniform decay for almost all t except for a set of zero Hausdorff

dimension.

The remaining part of this section is devoted to the proof of Proposition 3.3. For x ∈ R,

let {x} denote the fractional part of x.
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Lemma 3.4. Let λ > 2 and x, y ∈ R. Suppose that λ−n−1 ≤ x− y < λ−1 for some n ∈ N.

Then there exists an integer k with 0 ≤ k ≤ n− 1 such that |{λkx} − {λky}| ≥ λ−2.

Proof. Write x − y = aλ−k for a ∈ [λ−2, λ−1) and k ∈ Z. From the condition λ−(n+1) ≤
x− y < λ−1, we obtain 0 ≤ k ≤ n− 1. Since λkx− λky = a with 0 < a < λ−1 ≤ 1

2 , we have

{λkx} − {λky} = a + l for some l ∈ Z. Thus |{λkx} − {λky}| ≥ a ≥ λ−2.

Now for any integer M > λ2 and k = (k0, k1, . . . , kn−1) ∈ Zn
M , where ZM := {0, 1, . . . ,M−

1}, denote

ΓT,M (k) =
{

a ∈ [1, T ] : {aλj} ∈ [ kj

M ,
kj+1
M ) for 0 ≤ j ≤ n− 1

}
.

It is clear that the collection {ΓT,M (k) : k ∈ Zn
M} is a Borel partition of the interval [1, T ].

Lemma 3.5. Let λ > 2. For each n ∈ N and k ∈ Zn
M , the set ΓT,M (k) can be covered by

at most 4λT + 2 intervals of length λ−n−1.

Proof. By the definition of ΓT,M (k), for any x, y ∈ ΓT,M (k) we have

|{λjx} − {λjy}| ≤ 1
M

< λ−2, ∀ 0 ≤ j ≤ n− 1.

Thus by Lemma 3.4 either |x− y| ≥ λ−1 or |x− y| < λ−(n+1).

Now define a set A := {x ∈ [1, T ] : dist (x,ΓT,M (k)) ≤ λ−n−1/2}. Then A can be written

as
⋃

i Ii, where Ii’s are disjoint intervals. Since |x − y| ≥ λ−1 or |x − y| < λ−(n+1) for any

x, y ∈ ΓT,M (k), each interval Ii has length not exceeding 2λ−(n+1), and the gap between any

two intervals Ii, Ii′ has length greater than 1
2λ−1. Thus the number of different intervals

Ii’s is less than 2λT + 1. Since each Ii can be covered by at most two intervals of length

λ−(n+1), we obtain the desired result.

Lemma 3.6. Let λ > 16. There exist ε0, δ0 > 0 such that for any sufficiently large n ∈ N
and any T > 1, the set Eλ(n, ε0, δ0)∩[1, T ] can be covered by at most 4n(4λT+2) subintervals

of [1, T ] of length λ−(n+1).

Proof. Pick an integer M > λ2. For any n ∈ N the collection of sets ΓT,M (k) where k runs

through Zn
M is a Borel partition of the interval [1, T ]. Take δ0 = 1

M . Notice that ‖x‖Z < δ0

if and only if {x} ∈ [0, 1
M ) or {x} ∈ [M−1

M , 1). Assume that 0 < ε < 1/4. It follows from

the definition that for Eλ(n, ε, 1/M) ∩ ΓT,M (k) 6= ∅ we must have

(3.3)
∣∣∣{0 ≤ j ≤ n− 1 : kj 6∈ {0,M − 1}}

∣∣∣ ≤ εn
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Denote by [x] the integral part of x. Let Bn,ε denote the collection of all k ∈ Zn
M satisfying

(3.3). Then an easy combinatorial argument yields

|Bn,ε| =
[εn]∑
k=0

(
n

k

)
(M − 2)k2n−k ≤ [εn]

(
n

[εn]

)
M [εn]2n+1.

By the Stirling formula, (
n

[εn]

)
= en(−ε log ε−(1−ε) log(1−ε)+o(1)).

It follows that

|Bn,ε| ≤ [εn]M εn2n+1en(−ε log ε−(1−ε) log(1−ε)+o(1)).

Let ε = ε0 be small enough so that

M ε0e−ε0 log ε0−(1−ε0) log(1−ε0) < 2.

Then |Bn,ε0 | ≤ 4n for sufficiently large n. Since

Eλ(n, ε0, 1/M) ∩ [1, T ] ⊂
⋃

k∈Bn,ε0

ΓT,M (k),

by Lemma 3.5 Eλ(n, ε0, 1/M) ∩ [1, T ] can be covered by at most 4n(4λT + 2) subintervals

of [1, T ] of length λ−n−1. This proves the lemma.

Lemma 3.7. Let λ > 16. Let ε0, δ0 > 0 be as in Lemma 3.6. Then for any T > λ the set

Fλ(n, ε0, δ0)∩ [1, λ−1T ] can be covered by at most 42n(4λT +2)2 subintervals of [1, λ−1T ] of

length 2Tλ−n−1.

Proof. Observe that

Fλ(n, ε0, δ0) ∩ [1, λ−1T ] ⊂ (Eλ(n, ε0, δ0) ∩ [1, T ])/(Eλ(n, ε0, δ0) ∩ [1, λ]).

By Lemma 3.6, for any large enough n the set Eλ(n, ε0, δ0)∩[1, T ] can be covered by at most

4n(4λT +2) subintervals of [1, T ] of length λ−(n+1). Denote these intervals by Ii, 1 ≤ i ≤ p,

where p is an integer not exceeding 4n(4λT + 2). Set Bi,j = {x/y : x ∈ Ii, y ∈ Ij} for

1 ≤ i, j ≤ p. Then Bi,j is an interval. It is not hard to check that each Bi,j has length less

than 2Tλ−n−1. Now Fλ(n, ε0, δ0) ∩ [1, λ−1T ] ⊂
⋃

1≤i,j≤p Bi,j . This completes the proof of

the lemma.

Proof of Proposition 3.3. By Lemma 3.7, there exist ε0, δ0 > 0 such that for any fixed

T > λ and sufficiently large n ∈ N, the set Fλ(n, ε0, δ0) ∩ [1, λ−1T ] can be covered by at

most 42n(4λT +2)2 subintervals of [1, λ−1T ] of length 2Tλ−n−1. It implies immediately that
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the Hausdorff dimension of
⋂∞

k=1

⋃∞
n=k Fλ(n, ε0, δ0)∩ [1, λ−1T ] does not exceed log 16/ log λ.

The proposition follows since T can be taken arbitrarily large.

4. Proof of Theorem 1.6

In this section we prove Theorem 1.6 by proving several results concerning the dilation

factor λ, where λ is an algebraic number that is the root of the irreducible polynomial

p(x) =
∑n

j=0 aix
i, which has the property that all other roots of p(x) are outside the unit

circle. For convenience we denote K = |a0|.

We divide the proof into two parts. In the first part we prove that f ∈ L∞. In the second

part we prove f̂ has uniform decay at ∞.

To prove the first part we consider the self-similar measure µ associated with the re-

finement equation, which is the unique Borel probability measure satisfying the following

self-similar relation:

(4.1) µ =
1
K

K−1∑
j=0

µ ◦ S−1
j ,

where Sj(x) = λ−1(x+j). It is well known that if µ is absolutely continuous then its density

is precisely f . Thus to prove f ∈ L∞ we only need to prove that µ has a uniformly bounded

density.

Lemma 4.1. Let A := ZK−ZK = {j ∈ Z : |j| < K}. Then
∑m

j=0 εjλ
j = 0 for ε0, . . . , εm ∈

A if and only if εj = 0 for all j.

Proof. Let g(x) =
∑m

j=0 εjx
j . Since g(λ) = 0 and p(x) =

∑n
j=0 aix

i is the minimal

polynomial for λ, it follows that p(x)|g(x). Thus a0|ε0. This yields ε0 = 0. Factoring out x

in g(x) and repeating the argument yield εj = 0 for all j.

Lemma 4.2. Let P (x) be a polynomial of degree m with integer coefficients. For any d ∈ N
and variables x1, x2, . . . , xd, set

yk =
∑

1≤j1<...<jk≤d

xj1 · · ·xjk
, k = 1, 2, . . . , d.

Then there is an integral polynomial U(y1, y2, . . . , yd) of degree not exceeding m such that
d∏

j=1

P (xj) = U(y1, y2, . . . , yd).
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Proof. Note that
∏d

j=1 P (xj) is a symmetric polynomial with integer coefficients. It is well

known (see e.g. Jacobson [10], Theorem 2.20) that it can be expressed as U(y1, y2, . . . , yd)

for some integer polynomial U . It remains to prove that deg(U) ≤ m. To do so we show

that
∏d

j=1 P (xj) = U1(y1, y2, . . . , yd) for some complex polynomial U1 with deg(U1) ≤ m.

Then the uniqueness of the polynomial implies that U = U1 (see again [10], Theorem 2.20).

Now let P (x) = a(x− α1) · · · (x− αm). Then
d∏

j=1

P (xj) = ad
d∏

j=1

m∏
k=1

(xj − αk) = ad
m∏

k=1

d∏
j=1

(xj − αk).

It is clear that
∏d

j=1(xj−αk) is a polynomial of y1, y2, . . . , yd of degree 1. Hence
∏d

j=1 P (xj) =

U1(y1, y2, . . . , yd) for some complex polynomial of degree ≤ m. This proves the lemma.

Lemma 4.3. There exists a constant C > 0 such that for any m ∈ N,

(4.2) inf
{∣∣∣ m∑

j=0

εjλ
j
∣∣∣ 6= 0 : εj ∈ A

}
≥ C|λ|mK−m.

Proof. Let λ1 = λ and λ2, . . . , λn be the algebraic conjugates of λ. For any ε0, . . . , εm ∈ A
set P (x) =

∑m
j=0 εjx

j . By Lemma 4.2,
∏d

j=1 P (xj) can be written as U(y1, y2, . . . , yn) for

some integral polynomial U of degree not exceeding m, where yk are given in Lemma 4.2.

Now set xj = λj . Then elementary algebra tells us that yk ∈ 1
an

Z for all k, so we have

P (λ1)P (λ2) . . . P (λn) ∈ 1
(an)m Z.

Now assume that P (λ1) 6= 0. Then P (λk) 6= 0 for all 2 ≤ k ≤ n. Thus

(4.3) |P (λ1)P (λ2) . . . P (λn)| ≥ 1
|an|m

.

Notice that for any j we have

|P (λj)| ≤ (K − 1)(1 + |λj |+ . . . + |λj |m) ≤ D|λj |m

for a constant D > 0. It follows from (4.3) and the fact |
∏n

j=1 λj | = |a0/an| that

|P (λ1)| ≥ 1
|an|mDn−1

∏n
j=2 |λj |m

=
λm

1

|an|mDn−1
∏n

j=1 |λj |m

=
λm

1

Dn−1|a0|m

= C|λ|mK−m.
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Proposition 4.4. The self-similar measure µ is absolutely continuous with a bounded den-

sity function.

Proof. Let ∆ be the support of µ. It suffices to prove that there exists a constant M > 0

such that µ(I) ≤ M |I| for any subinterval I of ∆, where |I| denotes the length of I. To do

so we write B = {0, 1, . . . ,K − 1} and let Bm denote the set of all words of length m over

B. For simplicity, we write Sj = Sj0 ◦ Sj1 . . . ◦ Sjm−1 for j = j0j1 . . . jm−1 ∈ Bm.

Now iterating (4.1) m times yields

µ(I) =
1

Km

∑
j∈Bm

µ ◦ S−1
J (I).

for any interval I = [a, b] ⊂ ∆. Since µ is supported on ∆, it follows that

(4.4) µ(I) ≤ K−m |{j ∈ Bm : Sj(∆) ∩ I 6= ∅}| .

Note that Sj(∆) has diameter |λ|−m|∆| where |∆ denotes the diameter of ∆. Thus Sj(∆)∩
I 6= ∅ implies Sj(0) ∈ [a − |λ|−m|∆|, b + |λ|−m|∆|], where Sj(0) =

∑m−1
k=0 jkλ

−k. Hence by

Lemma 4.3, |Sj(0) − Sj′(0)| ≥ CK−m for differents indices j, j′ ∈ Bm. Thus for any large

integer m we must have

|{j ∈ Bm : Sj(∆) ∩ I 6= ∅}| ≤ C−1Km(|I|+ 2|λ|−m|∆|) + 1 ≤ 2C−1Km|I|.

Combining it with (4.4) yields µ(I) ≤ 2C−1|I|. This completes the proof of the proposition.

We now turn to the proof of the second part of Theorem 1.6, namely f̂ has uniform decay

at infinity.

Lemma 4.5. Let H(ξ) = 1
K

∑K−1
j=0 e(−jξ). Suppose ξ ∈ R satisfies ‖ξ‖Z > 1/(2K) and

‖Kξ‖Z ≤ 1/4. Then |H(ξ)| ≤ 4‖Kξ‖Z.

Proof. Clearly we can write Kξ = q + ‖Kξ‖Z for some q ∈ Z, and since ‖ξ‖Z > 1/(2K)

we have ξ = p + j
K + 1

K ‖Kξ‖Z for some p ∈ Z and j ∈ {1, . . . ,K − 1}. Notice that

|H(ξ)| = | sin(Kπξ)|
K| sin(πξ)| . Thus

|H(ξ)| = | sin(π‖Kξ‖Z)|
K| sin(π‖ξ‖Z)|

.
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The lemma is proved from the inequalities | sin(π‖Kξ‖Z)| ≤ π‖Kξ‖Z and K| sin(π‖ξ‖Z)| ≥
Kπ 1

4K = π
4 .

Lemma 4.6. There exist ` ∈ N and integers b0, b1, . . . , b` with |b0| >
∑`

j=1 |bj |, such that

λ is a root of the polynomial
∑`

j=0 bjx
j.

Proof. The lemma is obviously true when the degree of p(x), the minimal polynomial of

λ, is equal to one. So we assume that the degree of λ is larger than 1.

Denote λ1 = λ and let λ2, . . . , λn be the algebraic conjugates of λ. Then for any m ∈ N,

λm
j (j = 1, . . . , n) are roots of an integral polynomial Pm(x) =

∑n
j=0 aj,mxj . Since |λj | > 1

for all j, for sufficiently large k we have |λj |k > 2n for all j. For such a k we have∣∣∣ n∏
j=1

λk
j

∣∣∣ > n−1∑
u=1

∣∣∣ ∑
1≤j1<...<ju≤n

λk
j1 · · ·λ

k
ju

∣∣∣.
The above inequality implies |a0,k| >

∑n
j=1 |aj,k|. Since λ is a root of the polynomial

Pk(xk) =
∑n

j=0 aj,kx
kj , we obtain the desired result.

The following proposition is the key to complete the proof of our theorem.

Proposition 4.7. There exist 0 < ε < 1/(4K), 0 < ρ < 1 and N ∈ N such that for any

ξ ∈ R with |ξ| > |λ|N , if ‖λ−jξ‖Z < ε for j = 1, . . . , N , then there exists an integer m > N

such that

(4.5) ‖λ−mξ‖Z >
1

2K
and ‖Kλ−mξ‖Z ≤

ρm

4
.

Proof. Recall that λ is a root of the irreducible integral polynomial
∑n

j=0 ajx
j . By Lemma

4.6, it is also a root of an integral polynomial
∑`

j=0 bjx
j with |b0| ≥

∑`
j=1 |bj |. Without

loss of generality we assume that a0 > 0 and b0 > 0. Clearly,

−1 =
1
a0

n∑
j=1

ajλ
j and − 1 =

1
b0

∑̀
j=1

bjλ
j .

Now for any x ∈ R let [[x]] denote the integer that is closest to x (especially let [[n+1/2]] = n

for n ∈ Z), and let ]]x[[= x − [[x]]. Clearly we have |]]x[[| = ‖x‖Z. Thus for any x ∈ R and

k ∈ N, we have

(4.6) −λ−kx =
1
a0

n∑
j=1

ajλ
−k+jx =

1
a0

n∑
j=1

aj [[λ−k+jx]] +
1
a0

n∑
j=1

aj ]]λ−k+jx[[
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and

(4.7) −λ−kx =
1
b0

∑̀
j=1

bjλ
−k+jx =

1
b0

∑̀
j=1

bj [[λ−k+jx]] +
1
b0

∑̀
j=1

bj ]]λ−k+jx[[.

For convenience, we write

Ak(x) =
1
a0

n∑
j=1

aj [[λ−k+jx]], Bk(x) =
1
a0

n∑
j=1

aj ]]λ−k+jx[[

and

Ck(x) =
1
b0

∑̀
j=1

bj [[λ−k+jx]], Dk(x) =
1
b0

∑̀
j=1

bj ]]λ−k+jx[[.

It is clear that Ak(x) ∈ 1
a0

Z, Ck(x) ∈ 1
b0

Z and (4.6), (4.7) can be rewritten as

(4.8) −λ−kx = Ak(x) + Bk(x) = Ck(x) + Dk(x).

Denote η1 = 1
a0

∑n
j=1 |ai| and η2 = 1

b0

∑`
j=1 |bj |. Then 0 < η2 < 1. We shall choose an

ε > 0 that is sufficiently small.

Now fix ξ ∈ R so that |ξ| ≥ |λ|` and ‖λ−jξ‖Z < ε for all 1 ≤ j ≤ `. In the following

we prove that there exist a ρ ∈ (0, 1) (independent of ξ) and an integer m > ` such that

‖λ−mξ‖Z > 1
2a0

and ‖a0λ
−mξ‖Z < ρm/4.

We first claim that there exists an integer m > ` such that Cm(x) 6∈ Z. Assume on the

contrary that the claim is not true. Then Ck(ξ) ∈ Z for any integer k > `. By (4.8), for all

k ≥ ` + 1 we have

‖λ−kξ‖Z ≤ |Dk(ξ)| ≤
1
b0

∑̀
j=1

|bj | ‖λ−k+jξ‖Z

≤ η2 max
{
‖λ−k+jξ‖Z : 1 ≤ j ≤ `

}
.(4.9)

Since ‖λ−jξ‖Z < ε for 1 ≤ j ≤ `, by (4.9) and an inductive argument we have ‖λ−kξ‖Z < ε

for all k ≥ `+1. However since |ξ| > |λ|`, there exists some integer k0 > ` such that |λ−k0ξ| ∈
[|λ|−2, |λ|−1). Therefore with ε small we have ‖λ−k0ξ‖Z ≥ min{‖λ−2‖Z, ‖λ−1‖Z} > ε, which

leads to a contradiction. This finishes the claim.

Now assume without loss of generality that m is the smallest integer so that m > ` and

Cm(ξ) 6∈ Z. We consider the following two cases separately.

Case 1. m = ` + 1.
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In this case we have

|D`+1(ξ)| ≤ η2 max
{
‖λ−(`+1−j)‖Z : 1 ≤ j ≤ `

}
≤ η2ε,

and with ε small enough,

‖λ−`−1ξ‖Z ≥ ‖C`+1(ξ)‖Z − ‖D`+1(ξ)‖Z ≥
1
b0
− η2ε ≥

1
2b0

.

Case 2. m ≥ ` + 2.

Write m = 2+p`+q, where p ∈ N and 0 ≤ q ≤ `−1. Since Ck(ξ) ∈ Z for `+1 ≤ k ≤ m−1,

as with (4.9) we have

(4.10) ‖λ−kξ‖Z ≤ η2 max
{
‖λ−k+jξ‖Z : 1 ≤ j ≤ `

}
for all ` + 1 ≤ k ≤ m− 1.

Using (4.10) and induction we have

‖λ−t`−jξ‖Z ≤ ηt
2ε

for any integers t, j such that 1 ≤ t ≤ p, 1 ≤ j ≤ ` and t` + j ≤ m− 1. Particularly

‖λ−m+jξ‖Z ≤ ηp−1
2 ε, j = 1, 2, . . . , `.

Thus

|Dm(ξ)| ≤ η2 max
{
‖λ−(m−j)ξ‖Z : 1 ≤ j ≤ `

}
≤ ηp

2ε ≤ η
m
2`
2 ε

and with ε small enough,

‖λ−mξ‖Z ≥ ‖Cm(ξ)‖Z − ‖Dm(ξ)‖Z ≥
1
b0
− ε ≥ 1

2b0
.

Take ρ = η
1
2`
2 . We have proved that in each case there always exists an integer m ≥ ` + 1

such that ‖λ−mξ‖Z ≥ 1
2b0

, ‖b0λ
−mξ‖Z ≤ b0ρ

mε and ‖λ−m+jξ‖Z < ε for all 1 ≤ j ≤ `.

Observe that

|Bm(ξ)| ≤ η1 max
{
‖λ−(m−j)ξ‖Z : 1 ≤ j ≤ `

}
≤ η1ε.

From the fact Am(ξ) + Bm(ξ) = Cm(ξ) + Dm(ξ) we have

|Am(ξ)− Cm(ξ)| = |Bm(ξ)−Dm(ξ)| ≤ (η1 + 1)ε <
1

a0b0
.

It implies that Am(ξ) − Cm(ξ) = 0 since Am(ξ) ∈ 1
a0

Z and Cm(ξ) ∈ 1
b0

Z. Hence Bm(ξ) =

Dm(ξ). By making ε small it follows that

‖a0λ
−mξ‖Z ≤ |a0Bm(ξ)| = |a0Dm(ξ)| ≤ a0ρ

mε ≤ ρm

4
.



REFINABLE FUNCTIONS WITH NON-INTEGER DILATIONS 19

Since Cm(ξ) 6∈ Z, so does Am(ξ). Hence ‖Am(ξ)‖Z ≥ 1
a0

,

‖λ−mξ‖Z ≥ ‖Am(ξ)‖Z − ‖Bm(ξ)‖Z ≥
1
a0
− η1ε >

1
2a0

.

This finishes the proof of the proposition.

Proof of Theorem 1.6. Let f be the unique compactly supported distribution of (1.4)

with f̂(0) = 1. Let ε, ρ and N be given in Proposition 4.7. To prove that f̂ has a uniform

decay at infinity, we only need to show that there exists a δ > 0 such that for any ξ ∈ R
with |ξ| > |λ|N , there exists an ` ∈ N such that

|f̂(ξ)| ≤ λ−`δ|f̂(λ−`ξ)|.

Now f̂(ξ) = f̂(ξ/λ)H(ξ/λ), where H(ξ) is defined as in Lemma 4.5. For any k ∈ N, iterating

the above equality k times yields f̂(ξ) = f̂(λ−kξ)H(λ−1ξ) . . .H(λ−kξ). Using the inequality

|H(x)| ≤ 1 we have

(4.11) |f̂(ξ)| ≤ |f̂(λ−kξ)| |H(λ−kξ)|, ∀ ξ ∈ R, k ∈ N.

Now set C := max{|H(ξ)| : ‖ξ‖Z ≥ ε}. It is clear 0 < C < 1. According to Proposition

4.7, for any ξ ∈ R with |ξ| > |λ|N , either ‖λ−jξ‖Z ≥ ε for some 1 ≤ j ≤ N , or there

exists m > N such that ‖λ−mξ‖Z > 1
2K and ‖Kλ−mξ‖Z < ρm/4. By Lemma 4.5, either

|H(λ−jξ)| ≤ C for some 1 ≤ j ≤ N , or |H(λ−mξ)| ≤ 4‖Kλ−mξ‖Z ≤ ρm for some m > N .

Define

δ = min
{

log(1/C)
N log λ

,
log(1/ρ)

log λ

}
.

Then for any ξ ∈ R with |ξ| > λN , there exist ` ∈ N such that H(λ−`ξ) ≤ λ−`δ. The

theorem now follows from (4.11).

Appendix: Open Questions and Results of Erdös and Kahane

In this section we prove that compactly supported refinable distributions with integer

translations do not have uniform decay at infinity if the dilations are Pisot or Salem num-

bers. This result was established in the case of Bernoulli convolutions by Erdös ([6], Pisot

numbers) and Kahane ([11], Salem numbers). The general case stated here is proved using

Kahane’s technique, although some nontrivial technical details had to be overcome.
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Proposition 5.1. Let f(x) be the refinable distribution given by

(5.1) f(x) =
n∑

j=0

cjf(λx− dj),
n∑

j=0

cj = |λ|

where λ is a Pisot number or Salem number with |λ| > 1 and λ 6∈ Z, cj 6= 0 and dj ∈ Z for

all j. Then f̂ does not have uniform decay at infinity.

To prove this proposition, we need the following result, which was first proved by Pisot

(the reader may see [15] for a proof).

Theorem 5.2 (Pisot [14]). Let λ be an arbitrary algebraic integer. Then there exists a

Pisot number in Z[λ] having the same degree as λ.

Corollary 5.3. Let λ be a Pisot or Salem number. Then there exists a sequence {um} in

Z[λ] such that ‖λkum‖Z < 1
m for all m, k ∈ N. Furthermore, if λ is a Pisot number then

we may take um = mλαm for some αm ∈ N. If λ is a Salem number then we may take

um = ωαm for some αm ∈ N, where ω ∈ Z[λ] is a Pisot number independent of m.

Proof. Assume that λ is of degree d. Let λ1, . . . , λd−1 be the algebraic conjugates of

λ. Observe that if f(x) ∈ Z[x] then f(λ) +
∑d−1

j=1 f(λj) ∈ Z. In particular ‖f(λ)‖Z ≤∑d−1
j=1 |f(λj)|.

If λ is a Pisot number. Then |λj | < 1. Choose αm > 0 so that
∑d−1

j=1 m|λj |αm < 1
m . Then

‖λkum‖Z = ‖mλk+αm‖Z ≤
d−1∑
j=1

m|λj |αm+k ≤ 1
m

.

If λ is a Salem number. Let ω = f(λ) be a Pisot number of the same degree as λ, where

f(x) ∈ Z[x]. Then the algebraic conjugates of ω are ωj := f(λj). Let αm > 0 such that∑d−1
j=1 |f(λj)|αm < 1

m . It follows from the property that |λj | ≤ 1 that

‖λkum‖Z = ‖λkωαm‖Z ≤
d−1∑
j=1

|λj |k|f(λj)|αm ≤ 1
m

.

Proof of Proposition 5.1. Assume that Proposition 5.1 is not true. Then f̂ has a γ-

uniform decay for some γ > 0. Let P (ξ) be the symbol of the refinement equation (5.1).

Since P (n) = 1 for any integer n, we may choose m0 sufficiently large so that |P (λkum)| >
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|λ|−γ/2 for all m > m0 and k ≥ 0, where um is as in Corollary 5.3. We claim that f̂(um) = 0

for all m > m0. Assume it is false, i.e. f̂(um) 6= 0 for some m > m0. Then for any N ∈ N,

|f̂(λNum)| = |f̂(um)|
N−1∏
j=0

|P (λjum)| ≥ |λ|−γN/2f̂(um).

However the above inequality contradicts the fact that f̂ has a γ-uniform decay. This proves

the claim.

Now f̂(um) = 0 implies that there exists a jm ∈ N such that P (umλ−jm) = 0. We now

consider the case that λ is a Pisot number. In this case um = mλαm . Set km = jm − αm.

Then P (mλ−km) = 0 for all m > m0. Let K be an integer such that λ−1 ∈ 1
K Z[λ]. Then

λ−km ∈ K−kmZ[λ]. Write

λ−km = K−km(pm,0 + pm,1λ + · · ·+ pm,d−1λ
d−1),

where d is the degree of λ and pm,i ∈ Z for all i. This expression is unique since {λi : 0 ≤
i < d} are linearly independent over Q. Hence

mλ−km = K−km(mpm,0 + mpm,1λ + · · ·+ mpm,d−1λ
d−1).

Since λ−km 6∈ Q, at least one of pm,i 6= 0 for some 1 ≤ i ≤ d−1. Now P (ξ) is a trigonometric

polynomial, so {mλ−km (mod 1) : m > m0} is a finite set. Thus again by the linear

independence of {λi : 0 ≤ i < d} over Q we know that the set{
(K−kmmpm,1, . . . ,K

−kmmpm,d−1) : m > m0

}
is a finite set. But this is not true, because we may take m sufficiently large and coprime with

K so that the nonzero numerators in (K−kmmpm,1, . . . ,K
−kmmpm,d−1) become arbitrarily

large. This yields a contradiction.

Next we consider the case that λ is a Salem number. In this case, um = ωαm where

ω = f(λ) ∈ Z[λ] is a Pisot number. Hence for each m > m0 we have P (λ−jmωαm) = 0 for

some jm > 0. Again, {λ−jmωαm (mod 1) : m > m0} is a finite set. Choose m,n such that

αm 6= αn are sufficiently large and

λ−jmωαm − λ−jnωαn = ` ∈ Z.

Without loss of generality assume that jm ≥ jn. Then ωαm − λjm−jnωαn = `λjm . However,

this is a contradiction because for sufficiently large αm, αn the left hand side is a Pisot

number but the right hand side isn’t. This completes the proof of the proposition.
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There are a number of interesting open questions. We list some of them here.

(1) Is it true that uniform decay in f̂ (assuming integer translations) can always be

achieved for dilations that are not Pisot or Salem numbers? A related questions is

whether Pisot numbers are the only ones that give singular Bernoulli convolutions.

This question is known to be hard.

(2) Can one find another family of dilations for which refinable functions with uniform

decay property in f̂ can be constructed explicitly?

(3) Fix the translations and weights (nonnegative) of a refinement equation, is it true

that by varying the dilation λ the resulting refinable distribution has uniform decay

in f̂ for almost all λ > 1?
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