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Abstract. A refinable spline is a compactly supported refinable function that is piece-
wise polynomial. Refinable splines, such as the well known B-splines, play a key role in
computer aided geometric designs. So far all studies on refinable splines have focused on
positive integer dilations and integer translations, and under this setting a rather complete
classification was obtained in [12]. However, refinable splines do not have to have integer
dilations and integer translations. The classification of refinable splines with non-integer
dilations and arbitrary translations are studied in this paper. We classify completely all
refinable splines with integer translations with arbitrary dilations. Our study involves
techniques from number theory and complex analysis.

1. Introduction

This paper studies the classification of refinable splines. Refinable functions and splines

are among the most important functions, used extensively in applications such as numerical

solutions to differential and integral equations, digital signal processing, image compression,

and many others. Refinable splines such as the B-splines are the cornerstones in computer

aided geometric designs. We aim to characterize compactly supported refinable splines

under the general settings.

A compactly supported real function f(x) on R with supp (f) = [a, b] is called a spline

if there exist a = x0 < x1 < · · · < xL = b and polynomials Pj(x) such that f(x) = Pj(x)

on [xj−1, xj) for 1 ≤ j ≤ L. In other words, a spline is a compactly supported piecewise

polynomial function. Notice that we do not assume that a spline is continuous. The points

{xj} are called the knots of the spline, and max {deg(Pj)} is called the degree of the spline.

There are a large variety of splines. Among the most useful ones are those that are

also refinable. A compactly supported function f(x) is refinable if it satisfies a refinement
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equation

(1.1) f(x) =
n∑

j=0

cjf(λx− dj),
n∑

j=0

cj = |λ|,

where all cj , dj ∈ R, λ is real and |λ| > 1. We call λ the dilation factor or simply the

dilation for the refinable function f(x), and {dj} the translations of f(x). Throughout this

paper we shall simply say f is λ-refinable with translations {dj}. It should be noted that a

refinable function has neither a unqiue dilation factor, nor a unique set of translations. A

simple but important fact one observes is that if f(x) satisfies (1.1) then g(x) = f(x− b
λ−1)

satisfies the refinement equation

g(x) =
n∑

j=0

cjg(λx− dj + b),

which has the same dilation but a new translation set {dj − b}. As a result it is often

convenient to make a translation so that 0 is the smallest element in the translations. We

shall call a refinement equation in which the translation set {dj}n
j=1 satisfies d0 = 0 and

dj > 0 for j > 0 a normalized refinement equation.

Refinable functions form the foundation for the theory of compactly supported wavelets

and the theory of subdivision schemes. There is a vast literature on both subjects. We refer

the readers to Daubechies [4] and Cavaretta, Dahmen and Micchelli [2] as well as other

sources for more details. Other areas refinable functions play important roles are fractal

geometry and self-affine tilings, cf. Falconer [9] and Lagarias and Wang [11].

The simplest refinable spline is the Haar function B0(x) = χ[0,1)(x), which satisfies the

refinement equation f(x) = f(2x) + f(2x − 1). In fact B0 is m-refinable for any integer

m > 1, as

B0(x) =
m−1∑

j=0

B0(mx− j).

It is easily checked that the convolution of λ-refinable functions (resp. spline) remains a

λ-refinable function (resp. spline). Thus Bk := B0 ∗B0 ∗ · · · ∗B0 where B0 convolves with

itself k times is also an m-refinable spline. The spline Bk is known as the B-spline of degree

k, which has knots at 0, 1, · · · , k + 1 and is k − 1 times differentiable. In the case m = 2,

Bk satisfies

Bk(x) =
1
2k

k+1∑

j=0

(
k + 1

j

)
Bk(2x− j).
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Compactly supported refinable splines, with the additional assumption that the dilation

factor is a positive integer and the translations are all integers, have been classified by

Lawton, Lee and Shen [12]. They proved the following theorem:

Theorem 1.1 ([12]). Let f(x) be a compactly supported spline of degree d. Then f(x) sat-

isfies a normalized refinement equation with integer dilation m > 1 and integer translations

if and only if f(x) =
∑K

n=0 pnBd(x − n) for some K ≥ 0 and {pn} with p0 6= 0 such that

the polynomial Q(x) = (
∑K

n=0 pnzn)(z − 1)d+1 satisfies Q(z)|Q(zm).

Since any refinement equation can be normalized by a suitable translation, Theorem

1.1 in fact has also classified all refinable splines with positive integer dilations and inte-

ger translations (in fact, lattice translations, as any lattice can be transformed into Z by

translation and scaling).

Although the above result is quite complete in its particular setting, it is interesting to

note a fact — a simple fact yet it was to our knowledge hardly if ever mentioned in the

wavelet and spline literature: Refinable splines do not have to have integer dilations or

integer translations. One simple example is the refinement equation

(1.2) f(x) =
1√
2
f(
√

2x) +
1√
2
f(
√

2x− 1),

which has the solution f(x) = χ[0,1) ∗ χ[0,
√

2). By overlooking refinable functions with

non-integer dilations one will miss out on certain beautiful interplay between analysis and

number theory. One will also miss out on the connection of refinable functions to some of

the most elegant studies on algebraic numbers and self-similar measures that began with

Erdös [5, 6], followed by others such as Garcia [7], Kahane [8], Solomyak [15], Peres and

Schlag [13], and many others.

The classification of refinable splines with integer dilations and integer translations re-

duces eventually to a problem on polynomials, which can then be solved. However, the

classification of refinable splines with non-integer dilations possesses no such luxury. This

is where the main difficulty lies in the classification. In this paper we develop techniques to

circumvent the problem. A main theorem of ours is:
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Theorem 1.2. Suppose that f(x) is a compactly supported spline satisfying the refinable

equation

(1.3) f(x) =
n∑

j=0

cjf(λx− dj),
∑

j

cj = |λ|

such that λ ∈ R and {dj} ⊂ Z. Then

(A) There exists an integer k > 0 such that λk ∈ Z.

(B) Let K be the smallest positive integer such that λK ∈ Z. Then the compactly sup-

ported distribution solution φ(x) to the refinement equation

(1.4) φ(x) =
n∑

j=0

cj |λ|K−1φ(λKx− dj)

is a spline.

(C) There exists a constant α such that the spline f(x) has

(1.5) f(x) = αφ(x) ∗ φ(λ−1x) ∗ · · · ∗ φ(λ−(K−1)x).

where φ is the spline given in (1.4).

Conversely, if the refinement equation (1.3) satisfies (A) and (B) then the compactly sup-

ported distribution solution f is a spline given by (1.5).

The above theorem classifies refinable splines for arbitrary dilations, but still requires

that the translations be integers. For refinement equations with integer translations strong

relations between analytic properties of the refinable functions and algebraic properties of

dilation factors have been established in various contexts by the aforementioned authors.

Erdös [5] proved that the refinement equation (1.4) cannot have a solution in L1 if the

dilation factor λ is a Pisot number, i.e. an algebraic integer whose algebraic conjugates are

all inside the unit circle. In the special case of Bernoulli Convolution

f(x) =
1

2|λ|f(λx) + frac12|λ|f(λx− 1),

Garsia [7] proved that the refinable solution f(x) is in L∞ if all algebraic conjugates of λ

are outside the unit circle. Feng and Wang [10] constructed a class of non-Pisot algebraic

integers λ for which the Bernoulli convolution does not have an L2 solution. Theorem 1.2,

as well as Theorem 1.3 stated next, are results in this direction.
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The case with non-integer translations appears to be far more difficult. So far we do

not even have an example of a λ-refinable spline that is λ-indecomposable and that has

non-integer translations, whether λ is an integer or not. Here we call a λ-refinable spline

f(x) λ-indecomposable if it cannot be written as the convolution of two λ-refinable splines.

We do prove the following theorem, in which for any function f(ξ) defined on C we denote

Zf := {ξ ∈ C : f(ξ) = 0}.
Theorem 1.3. Suppose that f(x) is a compactly supported spline of degree d satisfying the

refinable equation

f(x) =
n∑

j=0

cjf(λx− dj),
∑

j

cj = |λ|.

Then we have:

(A) f(x) is symmetric, and it is d− 1 times continuously differentiable.

(B) There exists a G(ξ) =
∑N

j=0 aje
−2πibjξ where bj ∈ R such that f̂(ξ) = ξ−d−1G(ξ).

Furthermore, ZG ⊂ R and it contains at least one nonzero element.

(C) λ is an algebraic integer.

(D) Suppose that ZH contains an arithmetic progression of length N +1, where H(ξ) :=

|λ|−1
∑n

j=0 cje
−2πdjξ. Then λk ∈ Z for some positive integer k.

We conclude this section by stating the following conjecture which, if true, classifies all

refinable splines as a result of Theorem 1.2.

Conjecture 1.4. Suppose f(x) is a λ-refinable spline that is λ-indecomposable. Then the

translation set for f must be contained in a lattice, i.e. a set of the form aZ + b for some

a 6= 0.

The proof of the two main theorems will be divided up and proved separately in the next

three sections of this paper.

We would like to thank Qiyu Sun for helpful discussions.

2. Refinable Splines and Quasi-Trigonometric Polynomials

Let f(x) be a compactly supported refinable function satisfying

(2.1) f(x) =
n∑

j=0

cjf(λx− dj),
∑

j

cj = |λ|.
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It is well known that f̂(ξ) = H(λ−1ξ)f̂(λ−1ξ) where H(ξ) := |λ−1|∑n
j=0 cje

−2πidjξ, and is

called the mask of the refinement equation. A mask is a quasi-trigonometric polynomial,

which are functions of the form G(ξ) =
∑N

j=0 aje
−2πibjξ where aj ∈ C, aj 6= 0 for all

0 ≤ j ≤ n and bj ∈ R are distinct. We call max{bj} − min{bj} the degree of G and

denote it by deg(G). Clearly for any quasi-trigonometric polynomials we have deg(G1G2) =

deg(G1) + deg(G2). When all bj ∈ Z, we call G a trigonometric polynomial.

We shall establish a stronger link between refinable splines and quasi-trigonometric poly-

nomials. First we prove the following result, which is well known in the case of integer

dilation and translations:

Proposition 2.1. Let f(x) be a compactly supported refinable spline of degree d ≥ 1. Then

f(x) is d− 1 times continuously differentiable.

Proof. By a suitable translation we may without loss of generality assume that f(x) satisfies

(2.1) and it is normalized with 0 = d0 < d1 < · · · < dn. Assume that λ > 1 (if λ < 0 we

can simply iterate the refinement equation (2.1) once to make the dilation factor positive).

It is well known that the supp (f) ⊆ [0, dn
λ−1 ], and f(x) is not identically 0 on [0, ε] for any

ε > 0.

Now let 0 = x0 < x1 < · · · < xL be the knots for f(x), and f(x) = pj(x) for some

polynomial pj(x) on [xj−1, xj), 1 ≤ j ≤ n. For sufficiently small ε > 0 we have f(x) = p1(x)

on [0, ε]. However, by (2.1) we also have f(x) = c0f(λx− d0) = c0f(λx) on [0, ε]. It follows

that p1(x) = c0p1(λx), and hence p1(x) = αxq where α ∈ R and q = − log c0/ log λ. So

0 ≤ q ≤ d is an integer and c0 = λ−q.

We prove that q = d by proving that deg(pj) ≤ q for all j. To see this we first note that

(2.2) f(λ−1x) =
n∑

j=0

cjf(x− dj).

Assume that some deg(pm) > q, and without loss of generality assume that m is the smallest

j with deg(pj) > q. We derive a contradiction. On the interval I = [xm−1, xm−1 + ε] where

ε > 0 is sufficiently small we note that f(x − dj) for j > 0 is piecewise polynomial with

degree ≤ q. The same holds for f(λ−1x) as a result of the dilation factor. However,

f(x) = f(λ−1x)−∑n
j=1 cjf(x− dj) is a polynomial of degree > q, a contradiction. Hence

q = d.
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We next prove that f(x) is d − 1 times continuously differentiable using essentially the

same argument. Note that f(x) = p1(x) = αxd on [0, x1), which implies f(x) is d− 1 times

continuously differentiable on (−∞, x1). Assume that f(x) is not d− 1 times continuously

differentiable. Then the singularities must occur at some knots. Again, let xm be the first

knot at which f (d−1)(x) either does not exist, or is discontinuous. Then f(x − dj) with

j > 0 and f(λ−1x) are d − 1 times continuously differentiable on (−∞, xm + ε) for some

ε > 0. Again, a contradiction follows from f(x) = f(λ−1x)−∑n
j=1 cjf(x− dj).

Corollary 2.2. Let f(x) be a compactly supported refinable spline of degree d ≥ 1. Then

there exists a quasi-trigonometric polynomial G(ξ) such that G(j)(0) = 0 for all 0 ≤ j ≤ d

and f̂(ξ) = ξ−d−1G(ξ).

Proof. It follows from Proposition 2.1 that f (d−1)(x) is a compactly supported contin-

uous spline of degree 1, which is Lipschitz. Hence f (d)(x) is piecewise constant. Let

f (d−1)(x) =
∑m

j=0 αjχIj (x) where Ij = [sj , tj). Therefore f̂ (d)(ξ) = ξ−1G1(ξ) for some quasi-

trigonometric polynomial G1. Now f̂ (d)(ξ) = (2πiξ)df̂(ξ). Therefore f̂(ξ) = ξ−d−1G(ξ).

The fact that G(j)(0) = 0 for all 0 ≤ j ≤ d follows immediately from the fact that f̂(ξ) is

smooth at ξ = 0.

Returning to quasi-trigonometric polynomials, for G(ξ) =
∑n

j=0 aje
−2πibjξ it is easy to

see that we have a decomposition

(2.3) G(ξ) = e−2πis1ξG1(ξ) + e−2πis2ξG2(ξ) + · · ·+ e−2πisrξGr(ξ),

where each Gj is a trigonometric polynomial and 0 ≤ sj < 1 are distinct. Furthermore

up to a permutation of terms this decomposition is unique. By assuming that 0 ≤ s1 <

s2 < · · · < sr we shall call (2.2) the standard decomposition of G(ξ). If G is a trigonometric

polynomial then r = 1, s1 = 0 and G1 = G. We use AG(ξ) =
∑L

j=0 cje
−2πkjξ to denote the

greatest common divisor of the trigonometric polynomials {Gj} normalzied so that k0 = 0,

c0 = 1 and kj ≥ 0 are distinct. AG(ξ) is called the algebraic part of G(ξ). It will play an

important role in this paper via the following proposition.

Proposition 2.3. Let G(ξ) be a quasi-trigonometric polynomial and P (ξ) be a trigonomet-

ric polynomial. Assume that for each zero ξ0 ∈ C of P (ξ) of multiplicity k, ξ0 +m are zeros

of G of multiplicity not less than k for all sufficient large integers m. Then P (ξ) divides

AG(ξ). In particular, let G(ξ) =
∑r

j=0 e−2πisjξGj(ξ) be the standard decomposition of G(ξ).

Then each Gj(ξ) = P (ξ)G̃j(ξ) for some trigonometric polynomial G̃j(ξ).
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Proof. Let p(z), q(z) and qj(z) be Laurent polynomials such that P (ξ) = p(e−2πiξ), AG(ξ) =

q(e−2πiξ) and Gj(ξ) = qj(e−2πiξ). It suffices to prove that each root z0 6= 0 of p(z) of mul-

tiplicity k ≥ 1 must be a root of q(z) of multiplicity not less than k.

Pick ξ0 ∈ C so that e−2πiξ0 = z0. So ξ0 is a zero of P (ξ) = p(e−2πiξ) with multiplicity

k. Thus there exists m0 ∈ N such that ξ0 + m are zeros of G(ξ) with multiplicity k for all

integers m ≥ m0.

Now observe that for m ≥ m0 we have

(2.4) G(ξ0 + m) =
r∑

j=0

e−2πisj(ξ0+m)Gj(ξ0 + m) =
r∑

j=0

e−2πi(m−m0)sjAj = 0,

where Aj = e−2πisj(ξ0+m0)Gj(ξ0 + m) = e−2πisj(ξ0+m0)Gj(ξ0) are all independent of m. Let

M denote the (r + 1)× (r + 1) Vandermonde matrix

M =
(
e−2πi`sj

)
0≤`,j≤r

.

Then M is non-singular because the columns are distinct. However, by taking m = m0,m0+

1, . . . , m0 + r in (2.4) it becomes Mv = 0 where v := [A0, A1, . . . , Ar]T . Hence all Aj = 0,

and thus all Gj(ξ0) = qj(z0) = 0. It follows that z0 is a root of q(z). By successively

dividing out the factor (z− z0) the same Vandermonde matrix argument yields that z0 is a

root of multiplicity of at least k for all qj(z) and q(z). This proves the proposition.

3. Algebraic Properties of Dilation Factors

In this section we establish the algebraic properties stated in the main theorems for the

dilation factors of refinable splines. We shall assume throughout the section the following:

f(x) is a refinable spline of degree d satisfies the refinement equation (2.1) and H(ξ) =

|λ|−1
∑n

j=0 cje
−2πidjξ is the mask. By Corollary 2.2 f̂(ξ) = ξ−d−1G(ξ). It follows from

f̂(ξ) = H(λ−1ξ)f̂(λ−1ξ) that

(3.1) G(λξ) = λd+1H(ξ)G(ξ) = P (ξ)G(ξ)

where P (ξ) := λd+1H(ξ). We write G(ξ) =
∑N

j=0 aje
−2πibjξ with aj 6= 0 and b0 < b1 <

. . . < bN For simplicity we let B := {bj} be the set of coefficients of the exponents in G,

and D := {dj}.
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Lemma 3.1. Let Z(B) = {∑b∈B mbb : mb ∈ Z} be the additive subgroup of R generated by

B. For any k ∈ N and j ∈ {0, 1, . . . , N}, there exists a j′ ∈ {0, 1, . . . , N} with j′ 6= j such

that λk(bj − b′j) ∈ Z(B).

Proof. Fix k ∈ N. Iterating (3.1) k times yields

G(λkξ) = G(ξ)Q(ξ),

where Q(ξ) = P (ξ)P (λξ) · · ·P (λk−1ξ). Write Q(ξ) =
∑L

j=0 uje
−2πivjξ, where each vj ∈ R,

vj 6= 0 and v0 < v1 < · · · < vL. Define an equivalence relation ∼ on {0, 1, . . . , L} by setting

j ∼ j′ if vj − vj′ ∈ Z(B). For any ` ∈ {0, 1, . . . , L} denote by [[`]] the equivalent class

containing `. Let U be the set of all equivalent classes. Then for different equivalent classes

[[`1]] and [[`2]] the quasi-trigonometric polynomials
∑N

m=0 ame−2πibmξ
∑

j∈[[`ε]]
uje

−2πivjξ (ε =

1, 2) have no terms with the same exponent. Since

N∑

j=0

aje
−2πiλkbjξ =

∑

[[`]]∈U

N∑

m=0

ame−2πibmξ
∑

j∈[[`]]

uje
−2πivjξ,

we deduce that for each [[`]] ∈ U ,
∑N

m=0 ame−2πibmξ
∑

j∈[[`]] uje
−2πivjξ is a quasi-trigonometric

polynomial of form
∑

j∈Λ aje
−2πiλkbjξ, where Λ, depending on [[`]], is a subset of {0, 1, . . . , N}

with cardinality larger than 1. For j, j′ ∈ Λ with j 6= j′, there exist s1, s2 ∈ {0, 1, . . . , N}
and t1, t2 ∈ [[`]] such that λkbj = bs1 + t1 and λkbj′ = bs2 + t2. Thus λkbj − λkbj′ =

bs1 − bs2 + (t1 − t2) ∈ Z(B).

Corollary 3.2. There exists a finite set A ⊂ R such that λk ∈ Z(A) for every k ∈ N, where

Z(A) is the additive subgroup of R generated by A.

Proof. By the above lemma, we may take A =
⋃

j>j′
1

bj−b′j
B.

Proof of Theorem 1.3 (C) and (D): We first prove part (C), namely the dilation factor

λ for a compactly supported refinable spline must be an algebraic integer. By Corollary

3.2 all λk ∈ Z(A) for some finite set A in R. Consider the subgroup F of Z(A) generated

by {λk : k ≥ 0}. Since Z(A) is a finitely generated Abelian group, F must be finitely

generated. In particular F = Z(1, λ, . . . , λM−1) for some M > 0. Hence λM =
∑M−1

j=0 mjλ
j

as λM ∈ F . Thus λ is an algebraic integer, proving (C).

To prove part (D), let {α(m + ξ0) : 0 ≤ m ≤ N} be zeros of H(ξ), where ξ0, α ∈ R
by part (B) of the theorem (we prove part (B) later, independently of part (D)). Since
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we can rescale the translations of the refinement equation without affecting the hypotheses

of the theorem, we may without loss of generality assume that α = λ−1. It follows from

G(λξ) = λd+1G(ξ)H(ξ) that Wk := {λkm + λkξ0 : 0 ≤ m ≤ N} are all zeros of G(ξ) for

k ≥ 0.

Let G(ξ) =
∑r

j=0 e−2πisjξGj(ξ) be the standard decomposition of G(ξ). By considering

the zeros W0 = {m + ξ0 : 0 ≤ m ≤ N} the identical Vandermonde matrix arguments used

to prove Proposition 2.3 now yields Gj(ξ0) = 0 for all j. Hence each Gj(ξ) contains at least

two terms. It follows that for each bj there exists a j′ 6= j such that bj − bj′ ∈ Z.

Now consider the zeros Wk of G(ξ). Set F (ξ) = G(λkξ). Then F (ξ) is a quasi-

trigonometric polynomial with coefficients for the exponents {λkbj}, and W0 = {m+ξ0 : 0 ≤
m ≤ N} is a set of zeros for F (ξ). The above result now states that for any j there exists

a j′ 6= j such that λkbj − λkbj′ ∈ Z. Since there are only finitely many pairs (j, j′) but

there are infinitely many k ≥ 0, we may find j0 6= j′0 such that λk1(bj0 − bj′0) ∈ Z and

λk2(bj0 − bj′0) ∈ Z, k1 < k2. Thus λk2−k1 ∈ Q. However, λ is an algebraic integer, and so is

λk2−k1 . This yields λk2−k1 ∈ Z, proving part (D) of the theorem.

4. Structure of Refinable Splines

We first complete the proof of Theorem 1.3. To do so we recall some fundamental results

on entire functions, particularly the Weierstrass Factorization Theorem and Hadamard’s

Theorem. Let f(z) be an entire function on C with nonzero roots {zn}, where a root of

multiplicity k is listed k times. Suppose that
∑

n |zn|−p−1 < ∞, with p ≥ 0 being the

smallest such integer. Then p is called the rank of f(z). The Weierstrass Factorization

Theorem states that

f(z) = zmeg(z)
∏
n

Ep(z/zn),

where m is a nonnegative integer, g is an entire function and E0(z) := 1 − z, Ep(z) :=

(1−z) exp(z+ z2

2 + · · ·+ zp

p ) for p > 0. Hadamard’s Theorem states that if |f(z)| < exp(|z|a)
for some a ≥ 0 and all z with |z| sufficiently large then p ≤ a and g(z) is a polynomial of

degree ≤ a, cf. [3].

Proof of Theorem 1.3. We have already proved much of the theorem. The only remaining

parts are f(x) is symmetric and ZG \ {0} 6= ∅, ZG ⊂ R.
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We first prove ZG ⊂ R. Consider G(ξ) =
∑N

j=0 aje
−2πibjξ with b0 < b1 < . . . < bN . Write

ξ = s + it we have

G(s + it) =
N∑

j=0

aje
−2πibjs · e2πbjt.

Now G(s+ it) 6= 0 as t→+∞ because the term e2πbN t dominates all other terms. Similarly

G(s + it) 6= 0 as t→−∞. It follows that T := sup {|Im|(ξ) : ξ ∈ ZG} < ∞. Assume that

T > 0. The relation G(ξ) = λd+1H(λ−1ξ)G(λ−1ξ) implies ZG = λZH ∪ λZG. In particular

T ≥ sup {|Im|(ξ) : ξ ∈ λZG} = |λ|T.

This is a contradiction, and hence ZG ⊂ R. Of course, this also implies ZH ⊂ R.

We next prove that f(x) is symmetric and ZG \ {0}, ZH \ {0} are both nonempty.

Observe that |H(ξ)| ≤ CeD|ξ| where D = max{|dj |} and C > 0 is a constant. Hence

|H(ξ)| < exp(|ξ|a) for any a > 1 and all ξ with |ξ| sufficiently large. It follows from

Hadamard’s Theorem that

H(ξ) = eg(ξ)
∏
n

Ep(ξ/zn)

where p ≤ 1, g(ξ) is a polynomial of degree at most 1, and ZH = {zn}. (We don’t get

the ξm term because H(0) = 1.) Assume that ZH \ {0} = ∅. Then H(ξ) = eg(ξ) = eαξ+β.

So n = 0 and α = d0. This is impossible. Hence ZH \ {0}, and therefore ZG \ {0}, are

nonempty.

To go further we note that if ξ ∈ ZH then so does −ξ by taking the conjugate of H(ξ). So

the zeros of H can be listed as x1,−x1, x2,−x2, . . . . Since Ep(ξ/xn)Ep(−ξ/xn) = (1−ξ2/x2
n)

for both p = 0 and p = 1, and
∏

n(1−ξ2/x2
n) converges absolutely and uniformly on compact

sets because
∑

n |xn|−2 < ∞, as a result of
∑

n |xn|−p−1 < ∞, a standard argument now

yields
∏

n E1(ξ/zn) =
∏

n(1− ξ2/x2
n). Therefore

H(ξ) = eαξ+β
∏
n

(1− ξ2/x2
n).

Now, H(0) = 1 = eβ and H ′(0) = αeβ = −2πi(
∑n

j=0 djcj). It follows that β = 0 and

α = −2πiω for some ω ∈ R. In particular H̃(ξ) := e2πiωξH(ξ) satisfies H̃(ξ) = H̃(−ξ). This

means the mask for the refinement equation is symmetric, and therefore f(x) is symmetric,

see Belogay and Wang [1].

As a corollary of the symmetry of a refinable spline we have
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Proposition 4.1. Let f(x) be a compactly supported λ-refinable spline. Then f(x) is also

(−λ)-refinable.

Proof. Suppose that f(x) satisfies

f(x) =
n∑

j=0

cjf(λx− dj),
∑

j

cj = |λ|.

Then there exists an ω ∈ R such that H̃(ξ) = e2πiωξH(ξ) has H̃(ξ) = H̃(−ξ), as proved in

a moment ago. Thus the refinable function given by the translated refinement equation

g(x) =
n∑

j=0

cjg(λx− dj + ω)

is symmetric about the origin, i.e. g(−x) = g(x). Now for µ = −λ we have g(λx−dj +ω) =

g(µx + dj − ω). Hence

g(x) =
n∑

j=0

cjg(µx + dj − ω).

But g(x) = f(x− ω
λ−1). Thus f(x) is also µ-refinable.

We point out that if the translation set {dj} is on a lattice then for the λ-refinement

equation then so is the translation set for the new (−λ)-refinement equation.

In the rest of this section we prove Theorem 1.2. The proof is presented in such a way

that we shall introduce several lemmas in the middle of the proof. These lemmas will help

making the proof more readable.

Proof of Theorem 1.2: We first prove the simple parts, and leave the most difficult part

(B) for the last. Part (A) of the theorem is really just a corollary of Theorem 1.3 (D).

Note that the mask H(ξ) for the refinement equation (1.3) is a trigonometric polynomial.

Therefore for any zero ξ0 of H all ξ0 + m with m ∈ Z are zeros of H. Hence λk ∈ Z for

some k > 0.

Assume (B), which we prove later, part (C) is easily established. To see it, let M = λK

where K is the smallest intger with λK ∈ Z. Note that H(ξ) is in fact also the mask for

the M -refinement equation (1.4), so

φ̂(ξ) =
∞∏

j=1

H(M−jξ) φ̂(0), φ̂(0) 6= 0.
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It follows that

(4.1) f̂(ξ) =
∞∏

j=1

H(λ−jξ) f̂(0) = c
K−1∏

j=0

φ̂(λjξ)

for some c 6= 0. This yields f(x) = αφ(x)∗φ(λ−1x)∗ · · · ∗φ(λ−(K−1)x) for some constant α.

We now prove part (B). Without loss of generality we assume that the translation set

{dj} of the refinement equation is normalized so that d0 = 0 and dj > 0 for j > 0. We

have already shown in Theorem 1.3 that f̂(ξ) = ξ−d−1G(ξ) for some quasi-trigonometric

polynomial G(ξ) =
∑N

j=0 aje
−2πibjξ where b0 < b1 < · · · < bN . Furthermore, G(λξ) =

λd+1H(ξ)G(ξ). We shall denote B := {bj} in the remainder of the proof.

Lemma 4.2. (1) If λ > 1 then b0 = 0 and bN = dn
λ−1 . Otherwise if λ < −1 then

b0 = λdn
λ2−1

and bN = dn
λ2−1

.

(2) For any b ∈ B there exist two integers `1, `2 such that `1 ≥ 0, `2 ≤ −dn and

b− `ε ∈ λB (ε = 1, 2).

Proof. It is easy to obtain part (1) by comparing the largest and smallest coefficients for

the exponents of G(λξ) and λd+1G(ξ)H(ξ).

To prove part (2), we define an equivalence relation ∼ on {0, 1, . . . , N} by setting j ∼ j′

if bj − bj′ ∈ Z. For any ` ∈ {0, 1, . . . , L} denote by [`] the equivalent class containing `.

Let E be the set of all equivalent classes. Then for different equivalent classes [`1] and [`2]

the quasi-trigonometric polynomials
∑N

j=0 aje
−2πibjξH(ξ) (ε = 1, 2) have no terms with the

same exponent. Since
N∑

j=0

aje
−2πiλbjξ = λd+1

∑

[`]∈E

∑

j∈[`]

aje
−2πibjξH(ξ),

we deduce that for each [`] ∈ E , λd+1
∑

j∈[`] aje
−2πibjξH(ξ) is a quasi-trigonometric polyno-

mial of form
∑

j∈Λ aje
−2πiλbjξ, where Λ, depending on [`], is a subset of {0, 1, . . . , N} with

cardinality larger than 1. Let u1, u2 be the smallest and largest elememts in [`]. Consider-

ing the smallest and largest coefficients for the exponents of
∑

j∈[`] aje
−2πibjξH(ξ), we have

u1 ∈ λB and u2 + dn ∈ λB, and this implies part (2).

Lemma 4.3. B − B := {bj − bj′} ⊂ W :=
{∑K−1

j=0 njλ
j : nj ∈ Z

}
.

Proof. We first assume λ > 1. In this case b0 = 0. Let p be a large integer such that

bN < λpb1. For any b ∈ B, by part (2) of Lemma 4.2 there exist nonnegative integers
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u1, u2, . . . , up and b′ ∈ B such that b = u1 + λu2 + . . . + λp−1up + λpb′. Thus b ≥ λpb′, from

which we deduce that b′ = 0. Therefore b = u1 + λu2 + . . . + λp−1up ∈ W (using the fact

λK ∈ Z).

Now we assume λ < −1. In this case b0 = λ
λ2−1

. Let p be a large integer such that

(|λ|+ |λ|3 + . . . + |λ|2p−1)dn + λ2pb1 > bN .

For any b ∈ B, by part (2) of Lemma 4.2 there exist integers u1, u2, . . . , u2p and b′ ∈ B such

that b = u1 +λu2 + . . .+λ2p−1u2p +λ2pb′, where uj ≥ 0 for odd j and uj ≤ −dn for even j.

Thus b ≥ (|λ|+ |λ|3 + . . .+ |λ|2p−1)dn +λ2pb′, from which we deduce that b′ = b0. Therefore

b− b0 = u1 + λu2 + . . . + λ2p−1u2p ∈ W . This completes the proof of the lemma.

Corollary 4.4. Let L be a nonzero integer and let F (ξ) = G(Lξ). Then AF (ξ) = AG(Lξ).

Proof. Let G(ξ) =
∑r

j=0 e−2πisjξGj(ξ) be the standard decomposition of G. By Lemma

4.3, sj − sj′ ∈ W for any j, j′. Since 1, λ, . . . , λK−1 are linearly independent over Q, sj − sj′

with j 6= j′ is either in Z or irrational. Hence sj − sj′ with j 6= j′ must be irrational, and

thus Lsj − Lsj′ with j 6= j′ is not in Z. Now the standard decomposition of F (ξ) has

F (ξ) =
r∑

j=0

e−2πitjξFj(ξ) =
r∑

j=0

e−2πiLsjξGj(Lξ)

where tj = {Lsj} is the fractional part of Lsj and Fj(ξ) = e−2πibLsjcξGj(Lξ). Since the

extra factor e−2πibLsjcξ does not affect the greatest common divisor of {Fj}, the lemma now

follows.

Lemma 4.5. Let g(x) be a compactly supported distribution such that ĝ(ξ) = ξ−l−1F (ξ) for

some quasi-trigonometric polynomial F (ξ) and nonnegative integer l. Then g is a spline of

degree l.

Proof. Let F (ξ) =
∑N

j=0 aje
−2πibjξ. We have

ĝ(l+1)(ξ) = (−2πiξ)l+1ĝ(ξ) = (−2πi)l+1F (ξ).

Thus g(l+1)(x) = (−2πi)l+1
∑N

j=0 ajδ(x − bj) where δ is the Dirac function. This implies

that g is piecewise polynomial. Since we already assumed that g is compactly supported, g

is a spline.

We now return to the proof of part (B). By Lemma 4.5 it suffices to prove that φ̂(ξ) =

ξ−l−1F (ξ) for some l ≥ 0 and quasi-trigonometric polynomial F (ξ). We in fact prove that
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F (ξ) is a trigonometric polynomial. By (4.1) we have

f̂(ξ) = c
K−1∏

j=0

φ̂(λjξ).

Hence

(4.2) ξ−d−1G(ξ) = c

K−1∏

j=0

φ̂(λjξ).

For simplicity and without loss of generality we assume that f̂(0) = φ̂(0) = 1. This forces

c = 1.

Lemma 4.6. Counting multiplicity the set of nonzero zeros of AG is precisely the set of

zeros of φ̂.

Proof. We first prove that any zero ξ0 of φ̂ of multiplicity k is a zero of AG of multiplicity

at least k. Note that φ̂(0) = 1 so ξ0 6= 0. Since φ̂(ξ) =
∏∞

j=1 H(M−jξ), there exists a

q > 0 such that ξ0 is a zero of multiplicity k for F (ξ) :=
∏q

j=1 H(M−jξ). Now F (ξ) is

M q-periodic, so ξ0 + M qm is a zero of F of multiplicity k for any integer m. It follows that

ξ0 + M qm is a zero of G of multiplicity at least k for any integer m, and thus M−qξ0 + m

is a zero of Gq(ξ) := G(M qξ) of multiplicity at least k for any integer m. By Proposition

2.3 M−qξ0 is a zero of AGq of multiplicity at least k. However AGq(ξ) = AG(M qξ) by

Corollary 4.4. It follows that ξ0 is a zero of AG of multiplicity at least k.

Next we show that AG does not have any nonzero zeros that are not already accounted

for by φ̂(ξ). The key observation is that all zeros of φ̂(ξ) must be rational, for if not we

consider Z
φ̂

=
⋃

j≥1 M jZH . If ξ0 ∈ ZH \Q for some ξ0 then {M jξ0}j>0 are all in Z
φ̂
, and

hence are all zeros of AG. AG is a trigonometric polynomial so that its zero set has the

form A+ Z for some finite set A. But the difference of any two elements in the infinite set

{M jξ0}j>0 is non-integer. This is a contradiction. Thus Z
φ̂(ξ)

⊂ Q. A consequence is that

the zeros of φ̂(λjξ) are all irrational for any 1 ≤ j ≤ K − 1.

To complete the proof, if AG has an extra zero ξ∗ 6= 0 then it is a zero of φ̂(λjξ) for some

1 ≤ j < K, and it is irrational. This means ξ∗ + 1 is a zero of φ̂(λj′ξ) for some 1 ≤ j′ < K

since it is also a zero of AG and is irrational. Hence ξ∗ = λja and ξ∗ + 1 = λj′b for some

rationals a, b. But this is not possible because λj′b− λja = 1. Therefore the nonzero zeros

of AG and φ̂, counting multiplicity, are identical. .
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We are ready to finish proving part (B) of the theorem. The Weierstrass Factorization

Theorem implies that AG(ξ) = ξmeg(ξ)
∏

j Ep(ξ/zj) and φ̂(ξ) = eh(ξ)
∏

j Ep(ξ/zj) for some

p ≥ 0, where g, h are entire functions and {zj} are the zeros of and φ̂ (counting multiplicity),

m ≥ 0. Clearly |AG(ξ)| ≤ C1e
D1|ξ| for some C1, D1 > 0. It is well known that |φ̂(ξ)| ≤

C2e
D2|ξ| for some C2, D2 > 0, see Daubechies [4]. As it did in the beginning of the section

to prove the symmetry of a refinable spline, Hadamard’s Theorem yields g(ξ) = α1ξ + β1

and h(ξ) = α2ξ + β2 for some constants αj , βj . Thus

(4.3) φ̂(ξ) = ξ−meαξ+βAG(ξ) = cξ−meαξAG(ξ).

Combining (4.3) with (4.2) we have

ξ−d−1G(ξ) = c1ξ
−mKeγξ

K−1∏

j=0

AG(λjξ)

for some constant c1 and γ = α(1+λ+· · ·+λK−1). Thus d+1 = mK and eγξ
∏K−1

j=0 AG(λjξ)

is a quasi-trigonometric polynomial. Hence γ is pure imaginary, and so is α. Let α = 2πiω.

Now, φ̂(ξ) = cξ−me2πiωξAG(ξ). So φ is a spline by Lemma 4.5.
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bres (Univ. Bordeaux, Bordeaux, 1969), Bull. Soc. Math. France, Mémoire. 25 (1971), 119–122.
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