ON THE LIMIT RADEMACHER FUNCTIONS AND BERNOULLI CONVOLUTIONS

De-Jun Feng *
Department of Applied Mathematics and Center for Advance Study, Tsinghua University, Beijing 100084, China, E-mail: dfeng@math.tsinghua.edu.cn.

(Dedicated to the Memory of Professor Liao Shantao)

1. Introduction

For $0<\rho<1$, the limit Rademacher function f_{ρ} is defined as:

$$
f_{\rho}(x)=(1-\rho) \sum_{n=0}^{\infty} \rho^{n} R\left(2^{n} x\right), \quad x \in[0,1]
$$

where R denotes the Rademacher function: $R(x)$ is defined on the line \mathbb{R} with period 1 , takes values 0 and 1 on the intervals $[0,1 / 2)$ and $[1 / 2,1)$ respectively. The distribution of f_{ρ} induces a probability measure μ_{ρ} on $[0,1]$, which is called an infinitely convolved Bernoulli measure or simply a Bernoulli convolution. That is,

$$
\mu_{\rho}(E)=\mathcal{L}\left\{x \in[0,1]: f_{\rho}(x) \in E\right\}, \forall E \subset[0,1] \text { measurable }
$$

where \mathcal{L} denotes 1 -dimensional Lebesgue measure. These measures have been studied for more than 60 years, revealing many connections with harmonic analysis, algebraic number theory, dynamical systems, and Hausdorff dimension estimation (for a good survey, see e.g., [15] or [1]). For $0<\rho<1 / 2$, the support of μ_{ρ} is a Cantor set of zero Lebesgue measure and μ_{ρ} is totally singular with respect to the Lebesgue measure. For $\rho=1 / 2, \mu_{\rho}$ is just the 1 -dimensional Lebesgue measure restriction on $[0,1]$. For $1 / 2<\rho<1, \mu_{\rho}$ is only partially understood still now. Solomyak [16] proved μ_{ρ} is absolute continuous for almost all $\rho \in(1 / 2,1)$. For integer $k \geq 2$, let λ_{k} is the positive root of the polynomial $1-x-x^{2}-\cdots-x^{k}$. Erdős [3] proved that the Bernoulli convolution $\mu_{\lambda_{k}}$ is totally singular to the Lebesgue measure for each $k \geq 2$.

In this note we give the explicit formulas for the Hausdorff dimension of the graphs of $f_{\lambda_{k}}$, the Hausdorff dimension of almost all level sets (respect to Lebesgue measure) of $f_{\lambda_{k}}$, the Hausdorff dimension, information dimension and the L^{q}-spectrum $(q \in \mathbb{R})$ of $\mu_{\lambda_{k}}, k \geq 2$. We point out that for each $k \geq 2$, $\mu_{\lambda_{k}}$ is a locally infinitely-generated self-similar measure and the multifractal formalism of which holds. For the detailed proofs, see [5], [6]. The reader may refer to the books [4], [11], [13] for the relative definitions of dimensions.

[^0]
2. Main results

Set

$$
M_{0}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad M_{1}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) .
$$

For any $J=j_{1} \cdots j_{n} \in\{0,1\}^{n}$, denote $M_{J}=M_{j_{1}} \circ \cdots \circ M_{j_{n}}$. For any 2×2 non-negative matrix B, denote by $\|B\|=(1,1) B(1,1)^{\prime}$.

We can formulate our main results as follows:
Theorem 2.1 For each integer $k \geq 2$, let $\alpha_{k}=-\frac{\log \lambda_{k}}{\log 2}$. Then the Hausdorff dimension of the graph of the limit Rademacher function $f_{\lambda_{k}}$ satisfies that

$$
\operatorname{dim}_{H} \operatorname{Graph}\left(f_{\lambda_{k}}\right)=\frac{\log x_{k}}{\log \lambda_{k}},
$$

where $0<x_{k} \leq \lambda_{k-1}$ (defining $\lambda_{1}=1$) and x_{k} satisfies that

$$
\frac{1-2 x^{k-1}+x^{k}}{1-2 x+x^{k}} \cdot \sum_{n=0}^{\infty}\left(\sum_{|J|=n}\left\|M_{J}\right\|^{\alpha_{k}}\right) x^{k n+k+1}=1
$$

Let $\alpha \in \mathbb{R}$, the α-level set of a function f is defined as $\{x: f(x)=\alpha\}$.
Theorem 2.2 For $k \geq 2$, the Hausdorff dimension and box-counting dimension of t-level set of the limit Rademacher function $f_{\lambda_{k}}$ are equal to

$$
\frac{\left(\lambda_{k}\right)^{k}\left(1-2\left(\lambda_{k}\right)^{k}\right)^{2}}{\left(2-(k+1)\left(\lambda_{k}\right)^{k}\right) \log 2} \sum_{n=0}^{\infty}\left(\left(\lambda_{k}\right)^{k n} \sum_{|J|=n} \log \left\|M_{J}\right\|\right)
$$

for almost all $t \in[0,1]$ (respect to the Lebesgue measure).
Theorem 2.3 (i) For any $q \in \mathbb{R}$, the L^{q}-spectrum $\tau_{\lambda_{2}}(q)$ of $\mu_{\lambda_{2}}$ is equal to

$$
\frac{q \log 2}{\log \lambda_{2}^{-1}}+\frac{\log \mathbf{x}(2, q)}{\log \lambda_{2}^{-1}}
$$

where

$$
\mathbf{x}(2, q)=\sup \left\{x \geq 0: \sum_{n=0}^{\infty}\left(\sum_{|J|=n}\left\|M_{J}\right\|^{q}\right) x^{2 n+3} \leq 1\right\}
$$

There exists a unique $q_{0}<-2$ such that $\sum_{n=0}^{\infty}\left(\sum_{|J|=n}\left\|M_{J}\right\|^{q_{0}}\right)=1$. When $q>q_{0}, \mathbf{x}(2, q)$ is the positive root of $\sum_{n=0}^{\infty}\left(\sum_{|J|=n}\left\|M_{J}\right\|^{q}\right) x^{2 n+3}=1$, and it is
an infinitely differentiable function of q on $\left(q_{0},+\infty\right)$. When $q \leq q_{0}, \mathbf{x}(2, q)=1$. Moreover $\mathbf{x}(2, q)$ is not differentiable at $q=q_{0}$.
(ii) For any integer $k \geq 3$ and any real number q, the L^{q}-spectrum $\tau_{\lambda_{k}}(q)$ of the Bernoulli convolution $\mu_{\lambda_{k}}$ is equal to

$$
\frac{q \log 2}{\log \lambda_{k}^{-1}}+\frac{\log \mathrm{x}(k, q)}{\log \lambda_{k}^{-1}}
$$

where $0<\mathbf{x}(k, q)<\lambda_{k-1}, \mathbf{x}(k, q)$ satisfies that

$$
\frac{1-2 x^{k-1}+x^{k}}{1-2 x+x^{k}} \cdot \sum_{n=0}^{\infty}\left(\sum_{|J|=n}\left\|M_{J}\right\|^{q}\right) x^{k n+k+1}=1
$$

Moreover $\mathbf{x}(k, q)$ is an infinitely differentiable function on the whole line.
Theorem 2.4 For each integer $k \geq 2$, the Hausdorff dimension and the information dimension of the Bernoulli convolution $\mu_{\lambda_{k}}$ coincide, the common value is equal to

$$
-\frac{\log 2}{\log \lambda_{k}}+\left(\frac{2^{k}-3}{2^{k}-1}\right)^{2} \cdot \frac{\sum_{n=0}^{\infty} 2^{-k n-k-1} \sum_{|J|=n}\left\|M_{J}\right\| \log \left\|M_{J}\right\|}{\log \lambda_{k}} .
$$

Theorem 2.5 For each $k \geq 2$, the Bernoulli convolution $\mu_{\lambda_{k}}$ is a locally infinitely self-similar measure without overlap in the following sense: $\mu_{\lambda_{k}}$ is supported on the union of a sequence of disjoint intervals $\left\{I_{i}\right\}_{i}$; and for each i there exists a countable family of similitudes $\left\{g_{i, j}\right\}_{j}$ with contraction ratio $\left\{r_{j}\right\}_{j}$, and a probability weight $\left\{p_{j}\right\}_{j}$ with $\sum_{j} p_{j}=1$, such that $g_{i, j}\left(I_{i}\right) \subset I_{i}$ for each j, $g_{i, j}\left(I_{i}\right) \cap g_{i, j^{\prime}}\left(I_{i}\right)=\emptyset$ if $j \neq j^{\prime}$, and

$$
\mu_{\lambda_{k}}^{(i)}=\sum_{j} p_{j} \mu_{\lambda_{k}}^{(i)} \circ g_{i, j}^{-1}
$$

where $\mu_{\lambda_{k}}^{(i)}$ denote the restriction of $\mu_{\lambda_{k}}$ on the interval I_{i}, i.e., $\mu_{\lambda_{k}}^{(i)}(A)=$ $\mu_{\lambda_{k}}\left(I_{i} \cap A\right)$ for each Borel set $A \subset \mathbb{R}$.

Theorem 2.6 (i) Let q_{0} defined as in Theorem 2.3(i). Then for each $q \in$ $\mathbb{R} \backslash q_{0}$, the multifractal formalism of $\mu_{\lambda_{2}}$ holds for $\alpha=\alpha(q):=\tau^{\prime}(q)$, where $\tau(q)$ is the L^{q}-spectrum of $\mu_{\lambda_{2}}$.
(ii) For each integer $k \geq 3$ and $q \in \mathbb{R}$, the multifractal formalism of $\mu_{\lambda_{k}}$ holds for $\alpha=\alpha(q):=\tau^{\prime}(q)$, where $\tau(q)$ is the L^{q}-spectrum of $\mu_{\lambda_{k}}$.

Remark. (i) Lau and Ngai [8] obtained the formula of the L^{q}-spectrum of $\mu_{\lambda_{2}}$ for $q>0$, they proved that it is a differentiable function of q on $(0,+\infty)$.

Using this result, they showed [7] that the multifractal formula of $\mu_{\lambda_{2}}$ holds for $\alpha=\tau^{\prime}(q), q>0$. Porzio [14] extended the differentiability range of $L^{q_{-}}$ spectrum to $\left(-\frac{1}{2},+\infty\right)$, and showed that the multifractal formula of $\mu_{\lambda_{2}}$ holds for $\alpha=\tau^{\prime}(q), q \in\left(-\frac{1}{2},+\infty\right)$.
(ii) Several people have obtained the explicit formula and numeral estimations of $\operatorname{dim}_{H} \mu_{\lambda_{2}}$. See [1], [2], [8], [9], [12], [17].

References

1. J.C. Alexander and J.A. Yorke, Ergod. Theory \& Dynam. Systems 4(1984), 1-23.
2. J.C. Alexander and D. Zagier, J. London Math. Soc. (2) 44 (1991), 121-134.
3. P. Erdős, Amer. J. Math. 61 (1939), 974-976.
4. K.J. Falconer, Fractal Geometry, Mathematical Foundations and Applications (Wiley, 1990).
5. D.-J. Feng, The limit Rademacher functions and Bernoulli convolutions associated Pisot numbers, Preprint.
6. D.-J. Feng, The similarity and multifractal analysis of Bernoulli convolutions, Preprint.
7. K.-S. Lau and S.-M. Ngai, Multifractal measure and a weak separation condition, Adv. Math., to appear.
8. -, Studia Math., 131, no. 3 (1998), 225-251.
9. F. Ledrappier and A. Porzio, J. Stat. Phys. 76 (1994), 1307-1327.
10. -, J. Statist. Phys., 82 (1996), 367-420.
11. P. Mattila, Geometry of Sets and Measures in Euclidean Spaces(Cambridge Univ. Press, 1995).
12. S.-M. Ngai, Proc. Amer. Math. Soc. 125 (1997), 2943-2951.
13. Y.B. Pesin, Dimension Theory in Dynamical Systems: Contemporary Views and Applications (The University of Chicago Press, 1997).
14. A. Porzio, J. Stat. Phys., 91 (1998), 17-29.
15. Y. Peres, W. Schlag and B. Solomyak, Sixty years of Bernoulli convolutions. Preprint
16. B. Solomyak, Ann. Math., 142 (1995), 611-625.
17. N. Sidorov and A. Vershik, Ergodic properties of Erdős measure, the entropy of the goldenshift and related problems. Preprint, 1997.

[^0]: * Supported by China Postdoc Foundation.

