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Abstract

We introduce an algebraic method to study the local properties of infinite Bernoulli

convolution measures associated with the reciprocals of Pisot numbers. The distributions

of these measures on so called “colored net intervals” are shown to be the products of

matrixes, moreover for a class of Pisot numbers, these matrix products can be decomposed

into the products of real numbers. The explicit values of some fractal dimensions for the

limit Rademacher functions and Bernoulli convolutions associated with the positive root

of xk + xk−1 + · · ·+ x− 1 (k = 2, 3, · · ·) are obtained. Part of these results answer some

open questions and conjectures.
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1 Introduction

For 0 < ρ < 1, the limit Rademacher function fρ is defined as:

fρ(x) = (1− ρ)

∞∑
n=0

ρnR(2nx), x ∈ [0, 1] (1)

where R denotes the Rademacher function: R(x) is defined on the line R with period 1, takes

values 0 and 1 on the intervals [0, 1/2) and [1/2, 1) respectively.

The distribution of fρ induces a probability measure µρ on [0, 1], which is called an

infinitely convolved Bernoulli measure or simply a Bernoulli convolution. That is,

µρ(E) = L{x ∈ [0, 1] : fρ(x) ∈ E}, ∀E ⊂ [0, 1] measurable

where L denotes 1-dimensional Lebesgue measure. The Bernoulli convolution µρ measures

the density of points of the form (1 − ρ)
∑∞

n=0 ρ
nrn (rn = 0, or 1). More precisely, for any

interval (a, b) ⊂ [0, 1] and any positive integer m, let µρ,m(a, b) denote the proportion of

points of the form (1− ρ)
∑m−1

n=0 ρ
nrn (rn = 0, or 1) that lie in (a, b), that is

µρ,m(a, b) = 2−m#

{
(r0, r1, · · · , rm−1) ∈ {0, 1}m : (1− ρ)

m−1∑
n=0

ρnrn ∈ (a, b)

}
,

then

µρ(a, b) = lim
m→∞

µρ,m(a, b).
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Equivalently µρ can be expressed as an infinite convolution. Let β(x) denote the measure

with two atoms, each of weight 1/2, at the point 0, x. Then the measure µρ can be expressed

as the infinite convolution

µρ = β(1− ρ) ∗ β((1− ρ)ρ) ∗ · · · ∗ β((1− ρ)ρn) ∗ · · · .

µρ is also a self-similar measure satisfying the following equation:

µρ =
1

2
µρ ◦ ϕ−1

0,ρ +
1

2
µρ ◦ ϕ−1

1,ρ, (2)

where ϕ0,ρ and ϕ1,ρ are two similar contraction mappings defined by ϕ0,ρ(x) = ρx and

ϕ1,ρ(x) = ρx+ (1− ρ).

These Bernoulli convolutions have been studied for more than 60 years( for a good survey,

see [PSS]). For 0 < ρ < 1/2, the support of µρ is a Cantor set of zero Lebesgue measure

and µρ is totally singular with respect to the Lebesgue measure. For ρ = 1/2, µρ is just

the 1-dimensional Lebesgue measure restriction on [0, 1]. For 1/2 < ρ < 1, µρ is only

partially understood still now. It follows from a theorem of Jesson and Wintner [JW] that

µρ is either absolute continuous or totally singular with respect to the Lebesgue measure(

recently, Mauldin and Simon [MS] proved the converse result, that is, the Lebesgue measure

is either absolute continuous or totally singular with respect to µρ). Erdős proved that µρ is

absolutely continuous for almost all ρ closed enough to one [Er1]. He conjectured that the

result should be true for almost all 1/2 < ρ < 1. Solomyak [Sol] has recently proved this

conjecture to be true. In spite of this, the only explicit values of ρ for which µρ is known to

be absolutely continuous are ρ = 2−1/n( n = 1, 2, · · ·) discovered by Wintner [Win], and a

family of algebraic numbers discovered by Garsia [G1]. On the other hand, Erdös showed that

when ρ is the reciprocal of a Pisot number, then not only µρ is totally singular but actually

its Fourier transformation µ̂ρ(x) does not even tend to zero at infinite [Er2]. We should

recall that an algebraic integer is called a Pisot number if all its conjugates are less than 1

in modulus. Up to now, the reciprocals of Pisot numbers are the only ρ > 1/2 for which

µρ is known to be totally singular. The only quadratic ρ of this type is ρ = (−1 +
√
5)/2,

the root of x2 + x− 1. The only such ρ satisfying a cubic equation are the real roots of the

following four polynomials: x3 + x2 + x− 1, x3 + x2 − 1, x3 + x− 1, x3 − x2 + 2x− 1, with

ρ ≈ 0.5436898, 0.7548777, 0.6823278, 0.5698403, respectively. Other examples of such ρ are

the roots of the polynomials xn + xn−1 + · · ·+ x− 1, where n ≥ 2. The reader may refer to

[Sa] and [BDGPS] for further information about Pisot numbers.

Bernoulli convolutions have been studied since 1930’s, originally because they are inter-

esting examples of phenomena in harmonic analysis. The work of Alexander and Yorke[AY]

relates to dynamics this old measure problem. They consider the transformation Tρ :

R× [0, 1] 	 :

Tρ(x, y) =

{
(ρx, 2y), y ≤ 1/2

(ρx+ 1− ρ, 2y − 1), y > 1/2
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For 1/2 < ρ < 1, Tρ is the “fat” Baker’s transformation, the map is not invertible and the

attractor is the unit square [0, 1] × [0, 1], it possesses a Sinai-Bowen-Ruelle measure whose

transverse component is just the Bernoulli convolution µρ.

The nature of the measure µρ will affect the Hausdorff dimension of the graph of fρ. As

a class of Weierstrass-like functions, the limit Rademacher functions have been studied by

many people. For 0 < ρ ≤ 1/2, both the Hausdorff dimension and box-counting dimension

of the graph of fρ are equal to 1(see [PM] for a proof). For 1/2 < ρ < 1, it is easy to

show that the box-counting dimension of the graph of fρ is equal to 2 − log ρ−1

log 2 (see [PU]).

Przytycki and Urbański [PU] showed that the Hausdorff dimension of the graph of fρ is

equal to 2− log ρ−1

log 2 when µρ is absolutely continuous (this was also proved with an additional

hypothesis in [HL1],[SS]), and it is strictly less than 2− log ρ−1

log 2 when ρ−1 is a Pisot number.

The Hausdorff dimension of t-level set of fρ is 1 − log ρ−1

log 2 for almost all t if µρ is absolutely

continuous [HL2]. The reader may refer to [Fal, Mat] for the definitions and properties of

Hausdorff dimension and box-counting dimension.

This paper concerns the study of local properties of µρ, and the explicit computations

of some fractal dimensions associated with fρ and µρ when ρ is the reciprocal of a Pisot

number. As we have mentioned, in such case, µρ is totally singular. To describe the degree

of singularity of µρ, we can study its local dimensions, information dimension, Hausdorff

dimension, or Lq-spectrum (q ∈ R). Suppose that ν is a Borel measure on the line. Recall

that the upper local dimension of ν at x is defined by

d(ν, x) = lim sup
r→0+

log ν([x− r, x+ r])

log r
,

and the lower local dimension d(ν, x) is defined similarly by using the lower limits. When

d(ν, x) = d(ν, x), the common value is called the local dimension of ν at x and is denoted by

d(ν, x). Now let us recall the definition of information dimension of ν. If κ is a finite partition

of the line, let the diameter of κ , denoted diam κ, be the maximum of the diameters of the

elements of κ. Set {
g(x) = x log x−1 0 < x ≤ 1,

g(0) = 0.

Define

h(ν, κ) =
∑
A∈κ

g(ν(A)).

For ϵ > 0, let

h(ν, ϵ) = inf{h(ν, κ) : diam κ ≤ ϵ}.

Then we define upper and lower information dimensions:

diminfo(ν) = lim
ϵ→0

sup
h(ν, ϵ)

log ϵ−1

diminfo(ν) = lim
ϵ→0

inf
h(ν, ϵ)

log ϵ−1
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and if they are equal diminfo(ν) denotes the common value. Recall the Hausdorff dimension

of ν is defined by

dimH(ν) := inf{dimH(E) : ν(E) = 1},

where dimH(E) denotes the Hausdorff dimension of E. And the Lq-spectrum (q ∈ R) of ν is

defined by

τν(q) = lim inf
δ→0+

log sup
∑

i ν(Bδ(xi))
q

log δ
,

where {Bδ(xi)}i is a disjoint family of δ-balls with center xi ∈ supp(µ). We refer the reader

to [Pe] for more information about the above definitions.

Now, we recall some known results about the dimensions and Lq-spectrum for Bernoulli

convolutions. In [Hu], T.-Y. Hu has obtained the explicit maximal and minimal values of the

local dimensions of µρ whenever ρ =
√
5−1
2 (he also has given a generalized formula whenever

ρ is the positive root of 1 − x − x2 − · · · − xk(k ≥ 3), however, as we will point out (see

Theorem 51) that his generalized formula is incorrect). Recently, Lau and Ngai have given a

closed formula of the Lq-spectrum of µρ for ρ =
√
5−1
2 and q > 0 [LN2] (they asked a question

that how to deal with the case q < 0), they also have given an algorithm to calculate the

Lq-spectrum of µρ when ρ is the reciprocal of a Pisot number and q is a positive integer [LN3].

For ρ =
√
5−1
2 , the Hausdorff dimension and information dimension of µρ have been studied

by a number of authors ([AY], [AZ], [LP1], [Ng], [SV]), these two values are shown to be

equal, and some different explicit theoretical formulas and numerical results for which have

been obtained. Przytycki and Urbański [PU] proved that dimH µρ < 1 if ρ is the reciprocal

of a Pisot number.

In this paper, we give an efficient algebraic method to analyze the local properties of µρ

when ρ is the reciprocal of a Pisot number. As a result, we show that the measure µρ on the

neighborhoods (“net intervals”) of any given point x ∈ [0, 1] can be estimated explicitly by

some products of matrixes (see Theorem 53), more importantly, these products of matrixes

can be decomposed into the products of real numbers for a class of parameters ρ’s (i.e. the

reciprocals of Pisot numbers of the first class, see section 6), such is the case when ρ = λk is

the positive root of 1−x−x2−· · ·−xk(k ≥ 2) (see Lemma 15, Lemma 40), or ρ is the positive

root of x3 − x2 + 2x − 1. By using some combinatorial and ergodic techniques, we obtain

the explicit formulas for the Hausdorff dimension of the graphs of fλk
(k ≥ 2), the Hausdorff

dimension of almost all level sets (respect to Lebesgue measure) of fλk
(k ≥ 2), the Hausdorff

dimension, information dimension and the Lq-spectrum ( q ∈ R) of µλk
(k ≥ 2). We also

give the formal formulas (in the form of matrix products) for the Hausdorff dimension of

the graph of fρ and Lq-spectrum ( q ∈ R) of µρ when ρ is the reciprocal of a general Pisot

numbers(see Theorem 56 and Theorem 57). Our method is also valid to analyze biased

Bernoulli convolutions associated with Pisot numbers and some other self-similar measure

with some separate condition(see Section 7).
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Set

M0 =

(
1 1

0 1

)
, M1 =

(
1 0

1 1

)
, M∅ =

(
1 0

0 1

)
. (3)

For any J = j1 · · · jn ∈ {0, 1}n, denote MJ = Mj1 ◦ · · · ◦Mjn . For any 2 × 2 non-negative

matrix B, denote by ||B|| = (1, 1)B(1, 1)′.

We can formulate our main results as follows:

Theorem A. For each integer k ≥ 2, let αk = − log λk
log 2

. Then the Hausdorff dimension of

the graph of the limit Rademacher function fλk
satisfies that

dimH Graph(fλk
) =

log xk
log λk

,

where 0 < xk ≤ λk−1 (defining λ1 = 1 ) and xk satisfies that

1− 2xk−1 + xk

1− 2x+ xk
·

∞∑
n=0

(
∑
|J |=n

||MJ ||αk)xkn+k+1 = 1.

Let α ∈ R, the α-level set of a function f is defined as {x : f(x) = α}.

Theorem B. For k ≥ 2, the Hausdorff dimension and box-counting dimension of t-level set

of the limit Rademacher function fλk
are equal to

dλk
:=

(λk)
k(1− 2(λk)

k)2

(2− (k + 1)(λk)k) log 2

∞∑
n=0

((λk)
kn
∑
|J |=n

log ||MJ ||)

for almost all t ∈ [0, 1] (respect to the Lebesgue measure).

Theorem C.(i) For any q ∈ R, the Lq-spectrum τλ2(q) of µλ2 is equal to

q log 2

log λ−1
2

+
logx(2, q)

log λ−1
2

,

where

x(2, q) = sup{x ≥ 0 :

∞∑
n=0

(
∑
|J |=n

||MJ ||q)x2n+3 ≤ 1}.

There exists a unique q0 < −2 such that
∞∑
n=0

(
∑

|J |=n ||MJ ||q0) = 1. When q > q0, x(2, q) is the

positive root of
∞∑
n=0

(
∑

|J |=n ||MJ ||q)x2n+3 = 1, and it is an infinitely differentiable function of

q on (q0,+∞). When q ≤ q0, x(2, q) = 1. Moreover x(2, q) is not differentiable at q = q0.

(ii) For any integer k ≥ 3 and any real number q, the Lq-spectrum τλk
(q) of the Bernoulli

convolution µλk
is equal to

q log 2

log λ−1
k

+
logx(k, q)

log λ−1
k

,
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where 0 < x(k, q) < λk−1, and x(k, q) satisfies that

1− 2xk−1 + xk

1− 2x+ xk
·

∞∑
n=0

(
∑
|J |=n

||MJ ||q)xkn+k+1 = 1.

Moreover x(k, q) is an infinitely differentiable function on the whole line.

Theorem D. For any integer k ≥ 2, the Hausdorff dimension and the information dimension

of the Bernoulli convolution µλk
satisfy that

dimH µλk
= diminfo µλk

= − log 2

log λk
+

(
2k − 3

2k − 1

)2

·

∞∑
n=0

2−kn−k−1
∑

|J |=n

||MJ || log ||MJ ||

log λk
.

Theorem E. For any integer k ≥ 2, define

R(µλk
) := {y : ∃x ∈ [0, 1], d(µλk

, x) = y}.

where d(µλk
, x) = limr→0 log(µλk

(x− r, x+ r))/ log r (if the limit exists). Then

R(µλ) = [
log 2

log λ−1
− 1

2
,

log 2

log λ−1
].

And

R(µλk
) = [

k

k + 1
· log 2

log λ−1
k

,
log 2

log λ−1
k

].

for k ≥ 3.

In the following table we give some numerical estimations of dimH Graph(fλk
), dλk

and

dimH µλk
for 2 ≤ k ≤ 10.

Remark (i) Theorem B has also some explanation in the language of beta-expansion as

follows: let ρ (1/2 < ρ < 1) be the reciprocal of a Pisot number, for x ∈ [0, 1/(1− ρ)] we can

define the “local ρ-expansion multiplicity” of x as

∆ρ(x) = lim
m→∞

(logNρ,m(x))/m

if the above limit exists, where Nρ,m(x) is equal to the cardinality of the set {(ϵ0, · · · , ϵm−1) ∈
{0, 1}m : ∃(ϵm, ϵm+1, · · ·) ∈ {0, 1}∞, x =

∑+∞
i=0 ϵiρ

i}. Then Theorem B deduces that for

ρ = λk (k ≥ 2),

∆ρ(x) =
(λk)

k(1− 2(λk)
k)2

(2− (k + 1)(λk)k)

∞∑
n=0

((λk)
kn
∑
|J |=n

log ||MJ ||)

for almost all x ∈ [0, 1/(1− ρ)].
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Table 1: numerical estimations

k dimH Graph(fλk
) dλk

dimH µλk

2 1.304± 0.001 0.302±0.001 0.9957±10−4

3 1.11875217± 10−8 0.1025001503±10−10 0.98040931953±10−11

4 1.052565407±10−9 0.041560454940769±10−14 0.9869264743338±10−12

5 1.024596045±10−9 0.01842625239655±10−14 0.9925853002741±10−12

6 1.011844824±10−9 0.00859023108854±10−14 0.9960325915849±10−12

7 1.005796386±10−9 0.00412363866083±10−14 0.9979374455070±10−12

8 1.002862729±10−9 0.00201383805752±10−14 0.9989449154498±10−12

9 1.001421378±10−9 0.00099344117302±10−14 0.9994653680555±10−12

10 1.000707890±10−9 0.00049294459129±10−14 0.9997306068783±10−12

(ii) Theorem C gives an answer to Lau and Ngai’s questions ([LN1], [LN2]) that how to

determine the Lq-spectrum of µλ2 for q < 0, and how to determine Lq-spectrum of µ1/β for

Pisot parameters β other than (
√
5 + 1)/2 ;

(iii) Theorem D confirms an conjecture given by Alexander and Zagier [AZ], that “it

seems likely” to give an explicit formula for dimH(µλk
), k = 3, 4, · · ·.

(iv) In Theorem E, the formula R(µλ) was first given by Hu [Hu]; however, our result

about R(µλk
) (k ≥ 3) correct Hu’s corresponding result.

(v) In a subsequent paper [Fe], with some additive work we have given detailed mutifractal

analysis of µλk
(k ≥ 2) by using Theorem C.

Now we would like to explain why µρ (1/2 < ρ < 1) is difficult to understand, and how

our method works when ρ is the reciprocal of a Pisot number. For 0 < ρ ≤ 1/2, µρ is easy to

understand because for any x ∈ supp(µρ) and 0 < r ≤ 1,

µρ([x− r, x+ r]) ≈ 2−m,

wherem satisfies ρm+1 ≤ r < ρm. This result is easy to deduce from the fact that ϕ0,ρ([0, 1])∩
ϕ1,ρ([0, 1]) has at most one point and thus has null µρ measure. If 1/2 < ρ < 1, ϕ0,ρ([0, 1])∩
ϕ1,ρ([0, 1]) is an interval and has positive µρ measure. In such case, to estimate µρ(a, b) for

an interval (a, b), one must estimate the number of points (including multiplicity) of the form

(1−ρ)
∑m−1

n=0 ρ
nrn (rn = 0, 1) which lie in (a, b) for m ∈ N, however, this is difficult in general

since the distribution of the points (1−ρ)
∑m−1

n=0 ρ
nrn (rn = 0, 1) is very complicated because

of the overlap of ϕ0,ρ and ϕ1,ρ. Nevertheless, when ρ is the reciprocal of a Pisot number,

there is a rule followed from [G1] (which we call the local finiteness of ρ) on the distribution

of these points: given any two points x, y of the form (1 − ρ)
∑m−1

n=0 ρ
nrn (rn = 0, 1), if the

distance |x− y| ≤ ρm, then the number of all possible different values for ρ−m|x− y| is finite

8



(not depending on m), that is

#{ρ−m|x− y| : x, y of form (1− ρ)
m−1∑
n=0

ρnrn(rn = 0, 1), |x− y| ≤ ρm}

is uniformly bounded for m ∈ N. It is just relying on this rule that we can analyze the local

property of µρ. For each m ∈ N, we partition the interval [0, 1] into some subintervals, which

will be called m-th net intervals, by the points ρmrm + (1 − ρ)
∑m−1

n=0 ρ
nrn (rn = 0, 1 for

0 ≤ n ≤ m). We associate each m-th interval with two special sort of vectors– its I-color and

II-color. These two vectors contain respectively the information about the distribution and

the multiplicity of the points of form (1− ρ)
∑m−1

n=0 ρ
nrn (rn = 0, 1) which lie “nearly” to the

net interval. In fact, the local properties for µρ on a net intervals are completed determined

by its colors.. When ρ−1 is a Pisot number, by the local finiteness of ρ we can show that

the number of the possible different I-colors is finite, thus we can associate each m-th net

interval with a Markov code of length m according to the I-colors, and due to this code we

can determine the II-color of this net interval by the product of m matrixes (the number of

different matrixes is finite). Thus we can determine the explicit value of the measure µρ on

each net interval. Furthermore, we can represent each point of [0, 1] by an infinite Markov

code of finite states. Therefore we can use symbolic space to describe µρ. For x ∈ [0, 1], and

m ∈ N, denote

Nm,ρ(x) = #{i =i1i2 · · · im ∈ {0, 1}m : x ∈ ϕi,ρ([0, 1])},

where ϕi,ρ = ϕi1,ρ ◦ ϕi2,ρ ◦ · · · ◦ ϕim,ρ. Then the µρ measure on the interval (x − ρm, x + ρm)

can be shown to satisfy the following relation

µρ(x− ρm, x+ ρm) ≈ 2−mNm,ρ(x)

when ρ−1 is a Pisot number. In such case, Nm,ρ(x) is shown to be the norm of the product

of m matrixes (the number of different matrixes is finite), and for a class of ρ’s this product

of matrixes can be decomposed into the product of some integers. We should point out that

Ledrappier and Porzio have considered the local properties of µρ for ρ = (
√
5 − 1)/2 [LP1],

by using the technique of dynamics (“Markov partition”) and the combinatorial properties

of (
√
5 − 1)/2, they showed that Nm,ρ(x) is the product of some matrixes (the number of

different matrixes is countable infinite)̇.

The paper is organized as follows: In Section 2, we introduce the definitions of net intervals

and their I-colors and II-colors, and present some basic properties. In Section 3, we give

some elementary properties of the graph and level sets of fρ. In section 4, we consider

the case ρ = λ2 =
√
5−1
2 . We present in detail the generating relations of I-colors and II-

colors, the process of labelling net interval by Markov codes, and the measure distribution

on net intervals, and prove in detail our main theorems associated with this parameter. In

Section 5, we deal with the case ρ = λk(k ≥ 3), and prove the relative results. In Section

6, we summarize some general results associated with other Pisot numbers. In Section 7, we
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point out that with some additive work our method can be used to analyze biased Bernoulli

convolutions associated with Pisot numbers, or more generally, the self-similar measures

generated by a family of similitudes satisfying “weak separate condition”. In section 8, as an

appendix, we present the generating relations of I-colors for ρ which is the positive root of

x3 − x2 + 2x− 1 = 0.

2 Net intervals, I-colors and II-colors

In this section, we present the definitions and some basic properties of net intervals, I-colors

and II-colors. We show that the number of all possible I-colors associated with the reciprocal

of any given Pisot number is finite (see Lemma 2). Using this finiteness, we give the formal

formulas (in the form of overlap times of net intervals ) for the Hausdorff dimension of the

graph fρ and the Lq-spectrum (q ∈ R) of µρ when ρ is the reciprocal of a Pisot number (see

Corollary 5 and Lemma 9).

2.1 The definitions

Let 1/2 ≤ ρ ≤ 1. The mappings ϕ0,ρ, ϕ1,ρ : R → R are defined as

ϕ0,ρ(x) = ρx, ϕ1,ρ(x) = ρx+ 1− ρ.

For any m ∈ N and ω = (ij)
m
j=1 ∈ {0, 1}m, we write

ϕω,ρ = ϕi1,ρ ◦ · · · ◦ ϕim,ρ.

Denote by Pm,ρ the set of endpoints of ϕω,ρ([0, 1]) (ω ∈ {0, 1}m), that is

Pm,ρ = {ϕω,ρ(0) : ω ∈ {0, 1}m}
⋃

{ϕω,ρ(1) : ω ∈ {0, 1}m}.

One can see that ϕω,ρ(0) = (1− ρ)
∑m−1

n=0 ρ
nin+1 and ϕω,ρ(1) = ρm+(1− ρ)

∑m−1
n=0 ρ

nin+1 for

ω = (ij)
m
j=1. Thus Pm,ρ consists of all the points of the form

ρmrm + (1− ρ)

m−1∑
n=0

ρnrn (rn = 0, or 1 for 0 ≤ n ≤ m).

It is easy to see Pm,ρ ⊂ Pm+1,ρ from the fact that ϕω,ρ(0) = ϕω◦0,ρ(0), ϕω,ρ(1) = ϕω◦1,ρ(1).

The points in Pm,ρ partition [0, 1] into some non-overlap closed intervals, each of which is

called a m-th net interval associated with ρ. For example, the 1-th net intervals associated

with any ρ are

[0, 1− ρ], [1− ρ, ρ], [ρ, 1]

respectively; The 2-th net intervals associated with ρ = (
√
5− 1)/2 are

[0, ρ3], [ρ3, ρ2], [ρ2, ρ], [ρ, 2ρ2], [2ρ2, 1].
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The 3-th net intervals associated with ρ = (
√
5− 1)/2 are

[0, ρ4], [ρ4, ρ3], [ρ3, ρ2], [ρ2, 2ρ3], [2ρ3, ρ2 + ρ4], [ρ2 + ρ4, ρ], [ρ, 2ρ2],

and [2ρ2, ρ2 + 2ρ3], [ρ2 + 2ρ3, 1].

Since Pm,ρ ⊂ Pm+1,ρ, it follows that each m-th net interval is the union of some (m+1)-th

net intervals, and each (m + 1)-th net interval is contained in a unique m-th net interval.

Denote by Im,ρ the collection of all m-th net intervals. Now, we define a mapping Γm,ρ :

Im,ρ → 2R ×R by

[a, b] 7→
({

ϕω,ρ(0)− a

ρm
: ω ∈ {0, 1}m such that − ρm < ϕω,ρ(0)− a ≤ 0

}
,
b− a

ρm

)
.

We call Γm,ρ to be the m-th I-color mapping, and call Γm,ρ([a, b]) to be the m-th I-color

of [a, b]. We can see from the definition that Γm,ρ([a, b]) contains the following information

about the net interval [a, b]: (i) the various relative distances (with a ratio ρ−m) between the

point a and the points of the form (1− ρ)
∑m−1

n=0 ρ
nrn (rn = 0,or 1) which lie on the left side

of a and have distance less than ρm from a; (ii) the relative length of [a, b](with a ratio ρ−m).

For ω ∈ {0, 1}m, write

< ω >ρ:= {v ∈ {0, 1}m : ϕv,ρ(0) = ϕω,ρ(0)} .

we use # < ω >ρ to denote the cardinal of < ω >ρ.

Define a mapping Υm,ρ : Im,ρ → 2R×N ×R by

[a, b] 7→ ({(ϕω,ρ(0)− a

ρm
,# < ω >ρ) : ω ∈ {0, 1}m such that

−ρm < ϕω,ρ(0)− a ≤ 0}, b− a

ρm
)

We call Υm,ρ to be the m-th II-color mapping, and call Υm,ρ([a, b]) to be the m-th II-color

of [a, b]. Compared with the I-color of [a, b], the II-color Υm,ρ([a, b]) contains the following

extra information: (iii) the multiplicity of the points of the form (1− ρ)
∑m−1

n=0 ρ
nrn (rn = 0

or 1) which lie on the left side of a and have distance less than ρm from a.

Let us take an example. Suppose ρ = (
√
5− 1)/2, let us consider the I-color and II-color

for the 3-th net interval [a, b] = [ρ2, 2ρ3]. Since the points (with the multiplicity) of the form

(1− ρ)
∑2

n=0 ρ
nrn (rn = 0,or 1) can be written as:

0, ρ4, ρ3, ρ2, ρ2︸ ︷︷ ︸
2’s

, ρ2 + ρ4, ρ2 + ρ3, 2ρ2.

Among the above points, only ρ3(with multiplicity 1) and ρ2 (with multiplicity 2) lie on the

left side of a = ρ2 and have distance less than ρ3 from a. Thus the 3-th I-color of [ρ2, 2ρ3] is

({ρ
3 − ρ2

ρ3
,
ρ2 − ρ2

ρ3
}, 2ρ

3 − ρ2

ρ3
) = ({−ρ, 0}, 1− ρ),
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and the 3-th II-color of [ρ2, 2ρ3] is

({(−ρ, 1), (0, 2)}, 1− ρ).

For x ∈ [0, 1] and m ∈ N, define

Nm,ρ(x) = #{ω ∈ {0, 1}m : x ∈ ϕω,ρ([0, 1])}.

we call Nm,ρ(x) the m-th overlap times at x. Given a m-th net interval [a, b] associated with

ρ, assume its II-color to be

({t1, n1}, · · · , {tr, nr}, γ).

For convenience, we say that the integral vector (n1, · · · , nr) is the II-characteristic vector of

[a, b]. It is an elementary fact that

Nm,ρ(x) =

r∑
i=1

nr, (4)

when x ∈ (a, b). For this reason, we call
∑r

i=1 nr the m-th overlap times of [a, b] and denote

it by Nm,ρ([a, b]). The definitions of net interval and II-color imply the following property:

Nm,ρ([a, b]) = #{ω ∈ {0, 1}n : ϕω,ρ([0, 1]) ∩ (a, b) 6= ∅}

= #{ω ∈ {0, 1}n : ϕω,ρ([0, 1]) ⊃ [a, b]}

2.2 The properties of I-colors and II-colors

Lemma 1 Let J = [a, b] be a m-th net interval associated with ρ. Denote by J1, · · · , Jl all
the (m + 1)-th net intervals which are contained in [a, b]. Then the (m + 1)-th I-colors of

J1, · · · , Jl are completely determined by the m-th I-color of [a, b].

Proof. Assume the I-color of [a, b] to be ({t1, · · · , tr}, γ). By the definition of I-color, we

have

(a− ρm, b)
⋂

{ϕω,ρ(0) : ω ∈ {0, 1}m} = {a+ t1ρ
m, · · · , a+ trρ

m},

(a− ρm, b)
⋂
{ϕω,ρ(0) : ω ∈ {0, 1}m+1} = (a− ρm, b)

⋂
{a+ tiρ

m + ρmθ : 1 ≤ i ≤ r, θ = 0 or 1− ρ},

and
[a, b]

⋂
Pm+1,ρ = [a, b]

⋂
{a+ tiρ

m + ρmθ : 1 ≤ i ≤ r, θ = 0, 1− ρ, ρ or 1}
= {a+ tiρ

m + ρmθ : 1 ≤ i ≤ r, θ = 0, 1− ρ, ρ or 1, 0 ≤ ti + θ ≤ γ}.
(5)

Since there are l different (m+1)-th net intervals J1, · · · , Jl contained in [a, b], it follows that

there are just l + 1 different elements (including a and b) in the set [a, b]
⋂
Pm+1,ρ, therefore

by (5) the set

{ti + θ : 1 ≤ i ≤ r, θ = 0, 1− ρ, ρ or 1, 0 ≤ ti + θ ≤ γ} (6)
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consists of l + 1 different points: 0 = h1 < h2 < · · · < hl+1 = γ. Hence Ji = [a + hiρ
m, a +

hi+1ρ
m] (1 ≤ i ≤ l). By the definition, the I-color of Ji is

({ρ−1(tj + θ − hi) : −ρ < tj + θ − hi ≤ 0, 1 ≤ j ≤ r,

θ = 0 or 1− ρ}, ρ−1(hi+1 − hi)).
(7)

It follows from the formulas (6) and (7) that the I-colors of Ji (1 ≤ i ≤ l) are completely

determined by the I-color of [a, b].

Denote

Cρ :=
⋃
m≥1

{Γm,ρ([a, b]) : [a, b] ∈ Im,ρ}.

That is, Cρ consists of all the possible I-colors of net intervals associated with ρ. The following

lemma is our start point:

Lemma 2 If ρ is the reciprocal of a Pisot number, then Cρ is a finite set.

Proof. When ρ−1 is a Pisot number, Garsia’s result ( Lemma 1.51 of [G1]) implies that for

each positive integer d there exists a positive constants cd, such that if each ri (i = 1, · · · , n)
takes only the value ±d,±(d− 1), · · · ,±1 or 0, then either

n∑
i=1

ρ−nrn = 0

or

|
n∑

i=1

ρ−nrn| ≥ cd.

The above result implies that the number of different points of the form
∑m

i=1 ρ
−nrn (rn =

±1, 0) which lie in a given interval (a, b) is not greater than
b− a

c2
( to see this, note that the

distance between any different two of these points is of the form
∑m

i=1 ρ
−nrn (rn = ±2,±1, 0)

and thus not less than c2). Therefore, the sets⋃
m≥0

{
ϕω,ρ(0)− ϕv,ρ(0)

ρm
: |ϕω,ρ(0)− ϕv,ρ(0)| ≤ ρm, ω, v ∈ {0, 1}m

}
and ⋃

m≥0

{
ϕω,ρ(0)− ϕv,ρ(1)

ρm
: |ϕω,ρ(0)− ϕv,ρ(1)| ≤ ρm, ω, v ∈ {0, 1}m

}
contain only finite many elements. This fact and the definition of Cρ yield the desired result.

Corollary 3 For 1/2 < ρ < 1, if ρ is the reciprocal of a Pisot number, then there exists

positive constant c (depending on ρ) such that

cρm ≤ |J | ≤ ρm (8)

for any m-th net interval J , where |J | denotes the length of J .
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Proof. The right hand side of (8) follows from the fact that each m-th net interval is

contained in ϕω,ρ([0, 1]) for some ω ∈ {0, 1}m. On the other hand, the finiteness of Cρ implies

the left hand side.

Lemma 4 For 1/2 < ρ < 1, suppose J is am-th net interval with II-color {(t1, n1), · · · , (tr, nr), γ},
then

(i) µρ(J) = 2−m
r∑

i=1
niµρ([−ti,−ti + γ]).

(ii) If ρ−1 is a Pisot number, then there exists a constant D > 0 such that

D2−mNm,ρ(J) ≤ µρ(J) ≤ 2−mNm,ρ(J)

Proof. For 1/2 < ρ < 1, it is clear that µρ is a non-atomic measure and has positive measure

on any subinterval of [0, 1]. Now suppose that J = [a, b] is a m-th net interval with II-color

{(t1, n1), · · · , (tr, nr), γ}, then by the similarity of µρ (see Formula (2)) we have

µρ(J) = 2−m
∑

ω∈{0,1}m
µρ(ϕ

−1
ω,ρ(J)).

By the definition of net intervals, if ϕω,ρ(0)−a ≤ −ρm or ϕω,ρ(0) > a, then ϕω,ρ([0, 1])
⋂

int(J) =

∅ and thus µρ(ϕ
−1
ω,ρ(J)) = 0 since ϕ−1

ω,ρ(J)
⋂
(0, 1) = ∅. On the contrary, if −ρm < ϕω,ρ(0)−a ≤

0, then J ⊂ ϕω,ρ([0, 1]), therefore

ϕ−1
ω,ρ(J) = [ϕ−1

ω,ρ(a), ϕ
−1
ω,ρ(b)] = [−ϕω,ρ(0)− a

ρm
,−ϕω,ρ(0)− a

ρm
+
b− a

ρm
] ⊂ [0, 1].

By the above analysis we have

µρ(J) = 2−m
∑

ω∈{0,1}m,−ρm<ϕω,ρ(0)−a≤0

µρ([−
ϕω,ρ(0)− a

ρm
,−ϕω,ρ(0)− a

ρm
+
b− a

ρm
]).

and thus

µρ(J) = 2−m
r∑

i=1

niµρ([−ti,−ti + γ])

by the definition of the II-color. Therefore we complete the proof of the statement (i).

Now suppose ρ−1 is a Pisot number, since the collection Cρ of all possible I-colors is a

finite set, it follows that the number of all the possible different intervals [−ti,−ti + γ] is

finite. Denote by D the minimal value of µρ measure on [−ti,−ti + γ]. Then 0 < D ≤ 1,

therefore by the statement (i), we have

D2−mNm,ρ(J) ≤ µρ(J) ≤ 2−mNm,ρ(J).

which proves the statement (ii).

Corollary 5 For 1/2 < ρ < 1, if ρ is the reciprocal of a Pisot number, then the Lq-spectrum

τµρ(q) of µρ is equal to

lim inf
m→∞

log(
∑

J∈Im,ρ
(µρ(J)

q)

m log ρ
= − log 2

log ρ
+ lim inf

m→∞

log
∑

J∈Im,ρ
(Nm,ρ(J))

q

m log ρ
(9)
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Proof. By the definition of Lq-spectrum (see Section 1) and Lemma 4(ii), it suffices to prove

that the left hand side of (9) is equal to

lim inf
δ↓0

log sup
∑

i(µρ[xi − δ, xi + δ])q

m log ρ
, (10)

where the superum in (10) takes over all disjoint family of intervals [xi − δ, xi + δ]i with

xi ∈ [0, 1]. Let c be the constant in Corollary 3.

We first show (9)≥(10). Fix m ∈ N, take δ = 1
2cρ

m. For each J ∈ Im,ρ, select a interval

s(J) ⊂ J such that |s(J)| = 2δ and µρ(s(J)) ≥ 1
4cµρ(J). Then∑

J∈Im,ρ

(µρ(J))
q ≤

{
(14c)

−q
∑

J∈Im,ρ
(µρ(s(J)))

q, if q ≥ 0∑
J∈Im,ρ

(µρ(s(J)))
q, q < 0

which implies (9)≥(10).

Now we show the converse relation. For any small δ > 0, let m be the integer so that

ρm < δ ≤ ρm−1. Suppose that [xi − δ, xi + δ]i is a disjoint family of intervals with xi ∈ [0, 1].

Since for each i, [xi − δ, xi + δ] intersects at most 2
cρ + 1 many m-th net intervals, it follows

that when q ≥ 0,

µρ([xi − δ, xi + δ])q ≤ (µρ(
⋃

J∈Im,ρ,J∩[xi−δ,xi+δ]̸=∅

J))q

≤ (
2

cρ
+ 1)q ·

∑
J∈Im,ρ,J∩[xi−δ,xi+δ] ̸=∅

(µρ(J))
q.

Note that each net interval intersects at most two elements of [xi − δ, xi + δ]i, by the above

inequality we have∑
i

µρ([xi − δ, xi + δ])q ≤ 2(
2

cρ
+ 1)q ·

∑
J∈Im,ρ

(µρ(J))
q for q ≥ 0. (11)

Since for each i, [xi − δ, xi + δ] contains at least one m-th net intervals, it follows that∑
i

µρ([xi − δ, xi + δ])q ≤
∑

J∈Im,ρ

(µρ(J))
q for q < 0. (12)

Inequalities (11) and (12) imply (9)≤(10).

Lemma 6 For any 1/2 < ρ < 1 and m ∈ N, suppose that I and J are two adjoint m-th net

intervals associated with ρ, then

1

m+ 1
Nm,ρ(J) ≤ Nm,ρ(I) ≤ (m+ 1)Nm,ρ(J) (13)

Proof. We prove the statement by induction.

One may testify (13) directly for the case m = 1 since there are just three 1-th net

intervals with the overlap times 1, 2, 1 respectively. Now assume that (13) holds for m ≤ k.

In the following we will show that (13) holds for m = k + 1.
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Now suppose that I, J are two adjoint (k + 1)-th net intervals, where I lies on the left

side of J . There are two possible cases:

(i) I, J are contained in the same one k-th net interval U .

(ii) I, J are contained in two adjoint k-th net interval I ′, J ′ respectively.

( Let us recall the property of overlap times for net interval: if Q is a n-th net interval,

then

Nn,ρ(Q) = #{ω ∈ {0, 1}n : ϕω,ρ([0, 1]) ∩ int(Q) 6= ∅}

= #{ω ∈ {0, 1}n : ϕω,ρ([0, 1]) ⊃ Q} (14)

)

In the case (i), it is clear that

Nk,ρ(U) ≤ Nk+1,ρ(I) ≤ 2Nk,ρ(U), Nk,ρ(U) ≤ Nk+1,ρ(J) ≤ 2Nk,ρ(U),

and therefore
1

2
Nk+1,ρ(J) ≤ Nk+1,ρ(I) ≤ 2Nk+1,ρ(J).

In the case (ii), let us define

A1 = {ω ∈ {0, 1}k : ϕω,ρ([0, 1]) ⊃ I ′ and they share the same right end-point}
A2 = {ω ∈ {0, 1}k\A1 : ϕω,ρ([0, 1]) ⊃ I ′},
A3 = {ω ∈ {0, 1}k : ϕω,ρ([0, 1]) ⊃ J ′ and they share the same left end-point},
A4 = {ω ∈ {0, 1}k\A3 : ϕω,ρ([0, 1]) ⊃ J ′}.

From the definition of net interval and the property (14), we have

A2 = A4

Nk,ρ(I
′) = #A1 +#A2,

Nk,ρ(J
′) = #A3 +#A4,

#A1 +#A2 ≤ Nk+1,ρ(I) ≤ #A1 + 2#A2,

#A3 +#A4 ≤ Nk+1,ρ(J) ≤ #A3 + 2#A4.

According to the above relation, we can deduce

1

k + 2
Nk+1,ρ(J) ≤ Nk+1,ρ(I) ≤ (k + 2)Nk+1,ρ(J)

from the assumption 1
k+1Nk,ρ(J

′) ≤ Nk,ρ(I
′) ≤ (k + 1)Nk,ρ(J

′).

Combining Lemma 4 and Lemma 6, we have the following corollary:

Corollary 7 If ρ (≥ 1/2) is a reciprocal of a Pisot number, then there exists a positive

constant c (only depending on ρ) such that for any m ∈ N

mc−1µρ(J) ≤ µρ(I) ≤ mcµρ(J), (15)

where I and J are any two adjoint m-th net intervals associated with ρ.
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For m ∈ N, let am,1 < am,2 · · · < am,σm be the different elements of {ϕω,ρ(0) : ω ∈
{0, 1}m}, and denote by d

(m)
j (1 ≤ j ≤ σm) the cardinal of {ω ∈ {0, 1}m : ϕω,ρ(0) = am,j}.

Lemma 8 (i)
σm∑
j=1

(d
(m)
j )s ≤

∑
J∈Im,ρ

(Nm,ρ(J))
s for any s ≥ 0 and m ∈ N.

(ii) If ρ−1 is a Pisot number, then there exists D > 0 (depending on ρ), such that

σm∑
j=1

(d
(m)
j )s ≥ D

∑
J∈Im,ρ

(Nm,ρ(J))
s

for any 0 ≤ s ≤ 1 and m ∈ N.

Proof. (i) By the definition of net intervals, each am,j (1 ≤ j ≤ σm) is the left endpoint of

a m-th net interval which has the m-th overlap times not less than d
(m)
j , thus

σm∑
j=1

(d
(m)
j )s ≤∑

J∈Im,ρ

(Nm,ρ(J))
s for any s ≥ 0 and m ∈ N.

(ii) Now suppose that ρ−1 is a Pisot number. Since both the sets

⋃
m≥0

{
ϕω,ρ(0)− ϕv,ρ(0)

ρm
: |ϕω,ρ(0)− ϕv,ρ(0)| ≤ ρm, ω, v ∈ {0, 1}m

}

and ⋃
m≥0

{
ϕω,ρ(0)− ϕv,ρ(1)

ρm
: |ϕω,ρ(0)− ϕv,ρ(1)| ≤ ρm, ω, v ∈ {0, 1}m

}
are finite, it follows that there exists L ∈ N such that for any x ∈ {ϕω,ρ(0) : ω ∈ {0, 1}m},
there are at most L different many y ∈ Pm,ρ = {ϕω,ρ(0) : ω ∈ {0, 1}m}

⋃
{ϕω,ρ(1) : ω ∈

{0, 1}m} satisfying that

y − ρm ≤ x ≤ y.

Therefore, for any am,j , there are at most L different many m-th net intervals J = [a, b], such

that a− ρm ≤ am,j ≤ a.

On the contrary, for any m-th net interval J = [a, b], suppose that am,l, · · · , am,l+r are the

all points of am,j(1 ≤ j ≤ σm) such that a−ρm ≤ am,j ≤ a, then Nm,ρ(J) = d
(m)
l + · · ·+d(m)

l+r ,

thus

(Nm,ρ(J))
s = (d

(m)
l + · · ·+ d

(m)
l+r )

s ≤ (d
(m)
l )s + · · ·+ (d

(m)
l+r )

s

for 0 ≤ s ≤ 1. Let J run over Im,ρ, since for each am,j there are at most L’s m-th net

intervals J = [a, b] satisfying a− ρm ≤ am,j ≤ a, it follows that

∑
J∈Im,ρ

(Nm,ρ(J))
s ≤ L

σm∑
j=1

(d
(m)
j )s, 0 ≤ s ≤ 1.

The desired result follows by letting D = 1/L.
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Przytycki and Urbanski ([PU], p.184) have given a formal formula for the Hausdorff

dimension of the graph of the limit Rademacher function fρ where ρ−1 is a Pisot number,

that is

dimH(graph fρ) = lim
m→∞

log
∑σm

j=1(d
(m)
j )log ρ

−1/ log 2

m log ρ−1
. (16)

For our necessity, we re-express it in the following form (using Lemma 8 ):

Lemma 9 For 1/2 < ρ < 1, if ρ−1 is a Pisot number, then

dimH(graph fρ) = lim
m→∞

log
∑

J∈Im,ρ
(Nm,ρ(J))

log ρ−1/ log 2

m log ρ−1
.

3 Some elementary properties of the limit Rademacher func-

tions

In this section, we give some elementary properties of the graphs and level sets of the limit

Rademacher functions.

Denote by F the set { l
2n : n ∈ N, l = 0, 1, · · · , 2n − 1}. One may check the following

lemma directly.

Lemma 10 For any 1/2 < ρ < 1, (a) the function fρ(x) is continuous on (0, 1)\F , (b) for

any x = l/2n ∈ F ( l is an odd integer), fρ(x+) = fρ(x) and fρ(x−) = fρ(x)+ρ
n−1(2ρ−1),(c)

fρ(0+) = 0 and fρ(1−) = 1.

Denote graph(fρ) = {(x, fρ(x)) ∈ R2 : x ∈ [0, 1)}, then the above lemma implies the

following result at once:

Lemma 11 For any 1/2 < ρ < 1,

graph(fρ) = graph(fρ)
⋃

{( l
2n
, fρ(

l

2n
−)) : n ∈ N, 1 ≤ l ≤ 2n − 1}.

Define the mappings Φ0,ρ,Φ1,ρ : R2 → R2 by

Φ0,ρ(x, y) = (
1

2
x, ρy), Φ1,ρ(x, y) = (

1

2
x+

1

2
, ρy + (1− ρ)).

Then it is easy to check the following lemma:

Lemma 12 For any 1/2 < ρ < 1, graph(fρ), graph(fρ) are invariant under Φ0,ρ,Φ1,ρ. That

is

graph(fρ) =
1⋃

i=0

Φi,ρ(graph(fρ)), graph(fρ) =
1⋃

i=0

Φi,ρ(graph(fρ)),

moreover,

graph(fρ) =
⋂
k≥1

⋃
i∈{0,1}k

Φi,ρ([0, 1]× [0, 1]).
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For any t ∈ [0, 1], the t-level set Lt,ρ of fρ is defined as {x ∈ [0, 1) : fρ(x) = t}. From

this definition, we have Lt,ρ × {t} = ([0, 1]× {t})
⋂
graph(fρ). For convenience, we define

L̂t,ρ = ([0, 1]× {t})
⋂

graph(fρ).

Then by lemma 11, Lt,ρ×{t} = L̂t,ρ for any t ∈ [0, 1]\fρ(F−), where fρ(F−) denotes the set

{fρ(x−) : x ∈ F}.

Lemma 13 (i) For any t ∈ [0, 1], and 1/2 < ρ < 1,

dimBL̂t,ρ = lim sup
m→∞

logNm,ρ(t)

m log 2
, dimBL̂t,ρ = lim inf

m→∞

logNm,ρ(t)

m log 2

(ii) For any t ∈ [0, 1]\fρ(F−), and 1/2 < ρ < 1,

dimBLt,ρ = lim sup
m→∞

logNm,ρ(t)

m log 2
, dimBLt,ρ = lim inf

m→∞

logNm,ρ(t)

m log 2

where dimB, dimB denote the upper and lower box-counting dimensions respectively.

Proof. By Lemma 12,

graph(fρ) =
⋂
k≥1

⋃
i∈{0,1}k

Φi,ρ([0, 1]× [0, 1]).

Notice that for any ω ∈ {0, 1}n, Φω,ρ(x, y) = (ψω,ρ(x), ϕω,ρ(y)), where ψ0,ρ(x) =
x
2 , ψ1,ρ(x) =

x+1
2 . It follows that for anym ∈ N, the number of different ω ∈ {0, 1}m for which Φω,ρ([0, 1]×

[0, 1]) intersects L̂t,ρ for fixed t, is the cardinality of {ν ∈ {0, 1}m : t ∈ ϕν,ρ([0, 1])}, i.e.
Nm,ρ(t), therefore the number of 2−m-mesh cubes which intersect L̂t,ρ is Nm,ρ(t), hence the

statement (i) follows from the definition of the upper and lower box-counting dimensions.

The statement (ii) follows from that Lt,ρ × {t} = L̂t,ρ for any t ∈ [0, 1]\fρ(F−).

4 The case ρ = λ2

In this section, we always assume ρ = λ :=

√
5− 1

2
.

4.1 The generating relation of I-colors and the Markov codes for net

intervals

Let J be any m-th net interval, and J1, · · · , Jl be the adjoint (from left to right) (m+ 1)-th

net subintervals of J . Denote by U , Ui(1 ≤ i ≤ l) the I-colors of J , Ji(1 ≤ i ≤ l) respectively,

then we would like to express their relation by

U −→ U1 + · · ·+ Ul,

and say that U generates out Ui, 1 ≤ i ≤ l.
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Under this expression, by direct calculation in the way discussed in the proof of Lemma

1, we have

({0}, λ) −→ ({0}, λ) + ({−λ, 0}, 1− λ)

({−λ, 0}, 1− λ) −→ ({λ− 1, 0}, λ)
({λ− 1}, λ) −→ ({−λ, 0}, 1− λ) + ({λ− 1}, λ)
({λ− 1, 0}, λ) −→ ({−λ, 0}, 1− λ) + ({λ− 1}, 2λ− 1) + ({−λ, 0}, 1− λ)

({λ− 1}, 2λ− 1) −→ ({−λ, 0}, 1− λ)

(17)

As we have seen, there are only five elements in the set Cλ. In the following process, we

will label the net intervals according to the above generating relations.

Let Ξ = {a, b, c, d, e, f, f} be an alphabet set. For any m ∈ N, we will label every m-th

net interval uniquely by a letter string of length m (“Markov code”) in the following way. Let

J be a m-th net interval, for convenience, we denote it also by J (m). For each 1 ≤ i ≤ m− 1,

there is only one i-th net interval that contains J , which we denote by J (i). Recall that Γi,λ(·)
denotes the i-th I-color. Recall that Γi,λ denotes the i-th I-color mapping. Then J is labelled

as (xi)
m
i=1 ∈ Ξm, where

xi =



a if Γi,λ(J
(i)) = ({0}, λ)

b if Γi,λ(J
(i)) = ({−λ, 0}, 1− λ), and

either i = 1, or i > 1 with Γi−1,λ(J
(i−1)) = ({λ− 1}, 2λ− 1)

c if Γi,λ(J
(i)) = ({λ− 1}, λ)

d if Γi,λ(J
(i)) = ({λ− 1, 0}, λ)

e if Γi,λ(J
(i)) = ({λ− 1}, 2λ− 1)

f if Γi,λ(J
(i)) = ({−λ, 0}, 1− λ), i > 1,

Γi−1,λ(J
(i−1)) = ({λ− 1, 0}, λ),

and J (i) has the same left endpoint as J (i−1)

f if Γi,λ(J
(i)) = ({−λ, 0}, 1− λ),

Γi−1,λ(J
(i−1)) = ({λ− 1, 0}, λ),

and J (i) has the same right endpoint as J (i−1)

(18)

For example, let us consider the Markov code for the 3-th net intervals J = [1 − λ, 2λ3]

and J ′ = [λ2 + λ4, λ]. By direct check, [1− λ, λ] is the unique 1-th net interval (and also the

2-th net interval) which contains J (and also J ′), the 1-th I-color for [1− λ, λ] , 2-th I-color

for [1− λ, λ] and 3-th I-color for J (or J ′) are

({−λ, 0}, 1− λ), ({λ− 1, 0}, λ), ({−λ, 0}, 1− λ),

by our labelling principle, the Markov codes for J , J ′ are bdf , bdf respectively.

By the above labelling principle, any two different m-th net intervals correspond to differ-

ent relative Markov codes. A formal expression of the generating relation (17) can be given
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below: 

a −→ a+ b

b −→ d

c −→ b+ c

d −→ f + e+ f

e −→ b

f −→ d

f −→ d

(19)

We will say that i generates out j if there is an arrow from i to j. The above relation

determine a 0-1 matrix H = (Hi,j)i,j∈Ξ by Hi,j = 1 if i generates out j. That is

H =

a

b

c

d

e

f

f

a b c d e f f

1 1 0 0 0 0 0

0 0 0 1 0 0 0

0 1 1 0 0 0 0

0 0 0 0 1 1 1

0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0


(20)

For m ≥ 2, it follows from (18) and (19) that each m-th net interval can be coded as an

element in

Sm := {(xi)mi=1 ∈ Ξm : Hxi,xi+1 = 1, 1 ≤ i ≤ m− 1, x1 = a, b or c}, (21)

and each element of the above set corresponds to unique one m-th net interval. For any

ω ∈ Sm, we will use Vω to denote the m-th net interval corresponding to ω.

We would like to know more about the possible forms of the elements in Sm. For this

purpose, we write X0 = f and X1 = f , and define Bλ = B to be a collection of letter strings

as follows

B := {bde}
⋃

{bdXi1d · · ·Xikde : k ∈ N, i1, · · · , ik = 0 or 1}. (22)

Then by the generating relation (19), each element in Sm is the prefix of a letter string of

the form of the following three cases:

ω1 ◦ ω2 · · · ◦ ωn ◦ · · · ,
a · · · a︸ ︷︷ ︸
r a’s

◦ω1 ◦ ω2 · · · ◦ ωn ◦ · · · ,

c · · · c︸ ︷︷ ︸
r c’s

◦ω1 ◦ ω2 · · · ◦ ωn ◦ · · · ,
(23)

where r ∈ N and ωi ∈ B, i ∈ N.
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4.2 II-colors of net intervals

In this subsection, we give the generating relations of II-colors. And we show that the m-th

overlap times of a m-th net interval is equal to the product of some matrixes, furthermore it

can be decomposed into the product of integers.

Let J be any m-th net interval, suppose that J1, · · · , Jl are the (m + 1)-th net intervals

(from left to right) which contained in J . Let Θ, Θi(1 ≤ i ≤ l) be the II-colors of J ,

Ji(1 ≤ i ≤ l) respectively. We express this generating relation by

Θ =⇒ Θ1 + · · ·+Θl.

Under this notion, we have

({(0, r)}, λ) =⇒ ({(0, r)}, λ) + ({(−λ, r), (0, r)}, 1− λ)

({(−λ, p), (0, q)}, 1− λ) =⇒ ({(λ− 1, p), (0, q)}, λ)
({(λ− 1, r)}, λ) =⇒ ({(−λ, r), (0, r)}, 1− λ) + ({(λ− 1, r)}, λ)
({(λ− 1, p), (0, q)}, λ) =⇒ ({(−λ, p), (0, p+ q)}, 1− λ) + ({(λ− 1, p+ q)}, 2λ− 1)

+ ({(−λ, p+ q), (0, q)}, 1− λ)

({(λ− 1, r)}, 2λ− 1) =⇒ ({(−λ, r)}, {(0, r)}, 1− λ)

where p, q, r ∈ N.

Denote by

A(r) := ({(0, r)}, λ)
B(p,q) := ({(−λ, p), (0, q)}, 1− λ)

C(r) := ({(λ− 1, r)}, λ)
D(p,q) := ({(λ− 1, p), (0, q)}, λ)
E(r) := ({(λ− 1, r)}, 2λ− 1)

F (p,q) := ({(−λ, p), (0, q)}, 1− λ)

F
(p,q)

:= ({(−λ, p), (0, q)}, 1− λ)

then the generating relations of II-colors can be written as



A(r) =⇒ A(r) +B(r,r)

B(p,q) =⇒ D(p,q)

C(r) =⇒ B(r,r) + C(r)

D(p,q) =⇒ F (p,p+q) + E(p+q) + F
(p+q,q)

E(r) =⇒ B(r,r)

F (p,q) =⇒ D(p,q)

F
(p,q)

=⇒ D(p,q)

(24)

Now according to the above generating relations, we define a family of matrixes Ti,j for

each pair (i, j) ∈ Ξ× Ξ with i generating out j in the sense of (19):
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Ta,a = 1, Ta,b = (1, 1),

Tb,d =

(
1 0

0 1

)
,

Tc,b = (1, 1), Tc,c = 1

Td,f =

(
1 1

0 1

)
, Td,e =

(
1

1

)
, Td,f =

(
1 0

1 1

)
,

Te,b = (1, 1)

Tf,d =

(
1 0

0 1

)
,

Tf,d =

(
1 0

0 1

)
,

(25)

With the above definition, the generating relation (24) can be re-written as:

A(r) =⇒ A(r)Ta,a +B(r)Ta,b

B(p,q) =⇒ D(p,q)Tb,d

C(r) =⇒ B(r)Tc,b + C(r)Tc,c

D(p,q) =⇒ F (p,q)Td,f + E(p,q)Td,e + F
(p,q)Td,f

E(r) =⇒ B(r)Te,b

F (p,q) =⇒ D(p,q)Tf,d

F
(p,q)

=⇒ D(p,q)Tf,d

This is, if i −→ i1 + · · ·+ il, then we have

I(n1,···,nr) =⇒ I
(n1,···,nr)·Ti,i1
1 + · · · I(n1,···,nr)·Ti,il

l . (26)

For any matrix M , denote by ||M || the absolute value sum of all the entries of M . Then

according to the formula (26), we obtain the following lemma at once:

Lemma 14 Let J be a m-th net interval (m ≥ 2) corresponding to ω = (xi)
m
i=1 ∈ Sm,

suppose its II-color is ({(t1, n1), · · · , (tr, nr)}, γ), then

(n1, · · · , nr) =

{
1 · Tx1,x2 · Tx2,x3 · · ·Txm−1,xm if x1 = a or c

(1, 1) · Tx1,x2 · Tx2,x3 · · ·Txm−1,xm if x1 = b

and

Nm,λ(J) :=
r∑

i=1

ni = ||Tx1,x2 · Tx2,x3 · · ·Txm−1,xm || (27)

Let us consider a little more about the value of the right hand of Formula (27). For

convenience, we write

Tx1x2···xm := Tx1,x2 · · ·Txm−1,xm . (28)

Lemma 15 Suppose ω ∈ Sm can be written as the concatenation ω1◦ω2, where the end-letter

of ω1 is e. Then
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Nm,λ(Vω) = ||Tω|| = ||Tω1 || × ||Tω2 ||, (29)

where Vω is the m-th net interval corresponding to ω.

Proof. Suppose that the II-color of Vω is ({(t1, n1), · · · , (tr, nr)}, γ). Noting that the II-color

of Vω1 is of the form E(p) and the first letter of ω2 is b, by Lemma 14 we have

(n1, · · · , nr) = p · (1, 1)Tω2 , p = ||Tω1 ||,

which proves the lemma.

4.3 The exponential sums of matrix products

In this subsection, we consider about the limit lim
m→∞

(
∑

ω∈Sm

||Tω||q)
1
m for any real number q,

where Sm is defined as in (21) and Tω’s are defined by (25),(28). We show that this limit

value is either the positive root of a transversal equation or equal to 1, and as a function of

q it is differentiable except for one point q0 < −2.

Let the matrixes M0, M1 be defined as in (3). For j = j1 · · · jn ∈ {0, 1}n, denote Mj =

Mj1 ◦ · · · ◦Mjn . For any q ∈ R, define

u0,q = 2q, un,q =
∑

j∈{0,1}n
||Mj||q (n ≥ 1). (30)

Then we can formulate the main result of this subsection as follows:

Theorem 16 For any real number q, the limit lim
m→∞

(
∑

ω∈Sm

||Tω||q)
1
m exists and is equal to

x(q)−1, where x(q) is defined by

x(q) := sup{x ≥ 0 :
∑
n≥0

un,qx
2n+3 ≤ 1}. (31)

Moreover, let q = q0 be the real root of
∑

n≥0 un,q = 1. then q0 ∈ (−∞,−2). And when

q > q0, x(q) is the root of
∞∑
n=0

(
∑

|J |=n ||MJ ||q)x2n+3 = 1, and it is infinitely differentiable on

(q0,+∞); When q ≤ q0, x(q) = 1. Furthermore, x(q) is not differentiable at q = q0,

x′(q0−) = 0, x′(q0+) = −
∑

n≥0(
∑

|J |=n ||MJ ||q0 log ||MJ ||)∑
n≥0 un,q0 · (2n+ 3)

∈ (−∞, 0).

We will prove the above theorem by a series of lemmas. At first, we define

Sm
b = {(xi)mi=1 ∈ Sm : x1 = b},

and

vm,q =
∑

ω∈Sm
b

||Tω||q,

for any positive integer m and real number q.
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Lemma 17 v1,q = 2q = u0,q, v2,q = 2q = u0,q, v3,q = u0,q + u1,q,

and for k ≥ 2

v2k,q = (
∑k−2

i=0 ui,qv2k−(2i+3),q) + uk−1,q

v2k+1,q = (
∑k−2

i=0 ui,qv2k+1−(2i+3),q) + uk−1,q + uk,q

Proof. Since S1
b = {b}, S2

b = {bd}, S3
b = {bde, bdf, bdf}, we can calculate v1,q, v2,q and v3,q

directly. Denote X0 = f and X1 = f . For any k ≥ 2, by (23) each element ω ∈ S2k
b can be

written as one of the following two cases:

(i) ω = bdXi1d · · ·Xik−1
d, i1, · · · , ik−1 ∈ {0, 1}.

(ii) ω = bdXi1d · · ·Xilde ◦ ω2, 0 ≤ l ≤ k − 2, i1, · · · , il ∈ {0, 1} and ω2 ∈ S
2k−(3+2l)
b .

For the case (i), by the definition of Tω (see (25),(28)), ||Tω|| = ||Mi1 · · ·Mik−1
||. For the

case (ii), by the formula (29), ||Tω|| = ||Mi1 · · ·Mil || · ||Tω2 ||. Thus

v2k,q =
∑

ω∈S2k
b

||Tω||q

=
∑

i1,···,ik−1∈{0,1}
||Mi1···ik−1

||q +
∑

0≤l≤k−2

(
∑

i1,···,il∈{0,1}
||Mi1···il ||q ·

∑
ω∈S2k−(3+2l)

b

||Tω||q)

= uk−1,q + (
k−2∑
l=0

ul,q · v2k−(2l+3),q)

In the other hand, by (23) each element ω ∈ S2k+1
b can be written as one of the following

three cases:

(iii) ω = bdXi1d · · ·Xik−1
dXik , i1, · · · , ik ∈ {0, 1}.

(iv) ω = bdXi1d · · ·Xik−1
de, i1, · · · , ik−1 ∈ {0, 1}.

(v) ω = bdXi1d · · ·Xilde ◦ ω2, 0 ≤ l ≤ k − 2, i1, · · · , il ∈ {0, 1} and ω2 ∈ S
2k+1−(3+2l)
b .

For the case (iii), ||Tω|| = ||Mi1 · · ·Mik ||. For the case (iv), ||Tω|| = ||Mi1 · · ·Mik−1
||. And

for the case (v), by the formula (29), ||Tω|| = ||Mi1 · · ·Mil || · ||Tω2 ||. Thus by a discussion

similar to that for v2k,q,we have

v2k+1,q = (

k−2∑
l=0

ul,qv2k+1−(2l+3),q) + uk−1,q + uk,q.

Lemma 18 lim
m→∞

(
∑

ω∈Sm
b

||Tω||q)
1
m = x(q)−1, where x(q) is given by (31).

Proof. We will prove the statement in two steps.

(i) limm→∞(vm,q)
1
m ≤ x(q)−1

Since
∑
n≥0

un,qx(q)
3+2n ≤ 1 it follows that


x(q)−2k ≥

k∑
i=0

ui,qx(q)
(3+2i)−2k ≥

k−2∑
i=0

ui,qx(q)
(3+2i)−2k + uk−1,qx(q)

x(q)−2k−1 ≥
k∑

i=0
ui,qx(q)

(3+2i)−2k−1 ≥
k−2∑
i=0

ui,qx(q)
(3+2i)−2k−1 + uk−1,q + uk,qx(q)

2

(32)
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Select a positive number C > max{1,x(q)−2,x(q)−1} such that

vi,q < C · x(q)−i, i = 1, 2, 3

Now we will prove by induction that

vi,q < C · x(q)−i (33)

for all i ∈ N. Suppose that this inequality holds for any i < 2k, then by Lemma 17 and

Inequality (32), we have

v2k,q = (
∑k−2

i=0 ui,qv2k−(2i+3),q) + uk−1,q

≤ C(
∑k−2

i=0 ui,qx(q)
(2i+3)−2k) + uk−1,q

≤ C(
∑k−2

i=0 ui,qx(q)
(2i+3)−2k) + Cx(q)uk−1,q

≤ Cx(q)−2k,

v2k+1,q = (
∑k−2

i=0 ui,qv2k+1−(2i+3),q) + uk−1,q + uk,q

≤ C(
∑k−2

i=0 ui,qx(q)
(2i+3)−2k−1) + uk−1,q + uk,q

≤ C(
∑k−2

i=0 ui,qx(q)
(2i+3)−2k−1) + Cuk−1,q + Cx(q)2uk,q

≤ Cx(q)−2k−1.

Thus the inequality (33) holds also for i = 2k, 2k+1. By induction, Inequality (33) holds for

all i ∈ N, which proves the statement (i).

(ii) limm→∞(vm,q)
1
m ≥ x(q)−1

Given any 0 < y < x(q)−1, then there exists positive integer N such that

1 <
N−2∑
i=0

ui,qy
−3−2i.

Thus when k ≥ N , we have 
y2k ≤

k−2∑
i=0

ui,qy
2k−(3+2i),

y2k+1 ≤
k−2∑
i=0

ui,qy
2k+1−(3+2i),

(34)

Select a positive number D < min{1,x(q)−1,x(q)−2} such that

vi,q > Dyi, i = 1, · · · , 2N − 1.

Then by Lemma (17), Formula (34) and a discussion similar to that in the part (i), we have

vi,q > Dyi, ∀i ∈ N,

which yields lim
m→∞

(vm,q)
1
m ≥ y (0 < y < x(q)−1). Thus lim

m→∞
(vm,q)

1
m ≥ x(q)−1.

Lemma 19 lim
m→∞

(
∑

ω∈Sm

||Tω||q)
1
m = x(q)−1, where x(q) is given by (31).
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Proof. By (23) each element in Sm can be written as a · · · a︸ ︷︷ ︸
m1

◦ω, or c · · · c︸ ︷︷ ︸
m1

◦ω, where 0 ≤

m1 ≤ m and ω ∈ Sm−m1
b , thus we have

∑
ω∈Sm

||Tω||q =
∑

ω∈Sm
b

||Tω||q + 2

m−1∑
j=1

∑
ω∈Sj

b

||Tω||q + 2. (35)

Since un,q > ||Mn
0 ||q = (n + 2)q, it follows that the series

∑
n≥0 un,qx

2n+3 diverges for

x > 1. By the definition of x(q), we have x(q) ≤ 1 and thus x(q)−1 ≥ 1. By (35) and Lemma

18, we have

lim
m→∞

(
∑

ω∈Sm

||Tω||q)
1
m = x(q)−1.

The following lemmas consider about the differentiability of x(q).

Lemma 20 (i) If q ≥ 0, then for any m,n ∈ N,

um,qun,q ≥ um+n,q.

(ii) If q < 0, then for any m,n ∈ N,

um,qun,q ≤ um+n,q.

Proof. The above statement follows immediately from the observation that for any integer

m,n ≥ 1,

um,qun,q =
∑

i∈{0,1}m

(
(1, 1)Mi

[
1

1

])q ∑
j∈{0,1}n

(
(1, 1)Mj

[
1

1

])q

=
∑

i∈{0,1}m

∑
j∈{0,1}n

(
(1, 1)Mi

[
1

1

]
(1, 1)Mj

[
1

1

])q

,

=
∑

i∈{0,1}m

∑
j∈{0,1}n

(
(1, 1)Mi

[
1 1

1 1

]
Mj

[
1

1

])q

,

um+n,q =
∑

i∈{0,1}m

∑
j∈{0,1}n

(
(1, 1)MiMj

[
1

1

])q

,

=
∑

i∈{0,1}m

∑
j∈{0,1}n

(
(1, 1)Mi

[
1 0

0 1

]
Mj

[
1

1

])q

,

Lemma 21 Let θ0 be the positive root of x2 + 2x − 9
8 = 0, i.e., θ0 ≈ 0. 45774. And let

ζ be the Riemann-Zeta function, that is ζ(x) =
∑

n≥1 n
−x (x > 1). Then for any q ∈

(−ζ−1(1611),−ζ
−1(1 + θ0)) ≈ (−2.2599,−2.2543), we have

1 <
∑
n≥0

un,q < +∞.
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Proof. Denote U = (−ζ−1(1611),−ζ
−1(1+ θ0)). By direct check, we have ζ(3) ≈ 1. 2021 < 16

11

and ζ(2) ≈ 1.6449 > 1 + θ0, therefore (ζ(3), ζ(2)) ⊃ (1611 , 1 + θ0), it follows U ⊂ (−3,−2).

Furthermore by computation, U ≈ (−2.2599,−2.2543).

Since that any element in {0, 1}n can be written as 0n11n2 · · ·, or 1n10n2 · · · , it follows

that∑
n≥0 un,q =

∑
n≥0

∑
|J |=n ||MJ ||q

= 2q + 2
∑

n≥1 ||Mn
0 ||q + 2

∑
l≥1

∑
n1,···,n2l≥1 ||M

n1
0 Mn2

1 · · ·Mn2l−1

0 Mn2l
1 ||q

+2
∑

l≥1

∑
n1,···,n2l+1≥1 ||M

n1
0 Mn2

1 · · ·Mn2l−1

0 Mn2l
1 M

n2l+1

0 ||q.
(36)

Since

||(Mn1
0 Mn2

1 ) · · · (Mn2l−1

0 Mn2l
1 )|| = ||

(
1 + n1n2 n1

n2 1

)
· · ·

(
1 + n2l−1n2l n2l−1

n2l 1

)
||

≥ (1 + n1n2) · · · (1 + n2l−1n2l)

||Mn1
0 Mn2

1 · · ·Mn2l
1 M

n2l+1

0 || ≥ ||

(
(1 + n1n2) · · · (1 + n2l−1n2l) ∗

∗ ∗

)(
1 n2l+1

0 1

)
||

≥ (1 + n1n2) · · · (1 + n2l−1n2l)(1 + n2l+1)

(37)

and {
||Mn1

0 Mn2
1 · · ·Mn2l−1

0 Mn2l
1 || ≤ (1 + n1)(1 + n2) · · · (1 + n2l−1)(2 + n2l)

||Mn1
0 Mn2

1 · · ·Mn2l
0 M

n2l+1

1 || ≤ (1 + n1)(1 + n2) · · · (1 + n2l)(2 + n2l+1)

(which follows from that (1, 1)Mn
i ≤ (n+1, n+1) = (n+1)(1, 1) for any i ∈ {0, 1}, n ≥ 0.),

by(36), when q < 0 we have

∑
n≥0

un,q ≤ 2q + 2
∑
n≥1

(2 + n)q + 2 · (1 +
∑
n≥1

nq) · (
∑
l≥1

(
∑

n1,n2≥1

(1 + n1n2)
q)l) (38)

and ∑
n≥0

un,q ≥ 2q + 2
∑
n≥1

(2 + n)q · (1 +
∑
l≥1

(
∑
n≥1

(1 + n)q)l) (39)

From now on, we assume that q ∈ U . As we have proved, −3 < q < −2.

At first, we have∑
n1,n2≥1(1 + n1n2)

q = 2
∑

n≥1(1 + n)q − 2q +
∑

n1,n2≥2(1 + n1n2)
q

< 2
∑

n≥1(1 + n)q − 2q + (
∑

n≥2 n
q)2

= 2(ζ(−q)− 1)− 2q + (ζ(−q)− 1)2

< 2θ0 − 1
8 + θ20 = 1,

(40)

by Inequality (38) we have
∑

n≥0 un,q < +∞.

On the other hand,

2q + 2
∑

n≥1(2 + n)q · (1 +
∑

l≥1(
∑

n≥1(1 + n)q)l)

= 2q + 2 · ζ(−q)− 1− 2q

2− ζ(−q)
= 1 +

(3− 2q)ζ(−q)− 4

2− ζ(−q)

> 1 +
(3− 2−2)ζ(−q)− 4

2− ζ(−q)
> 1 +

(3− 2−2) · 16
11 − 4

2− ζ(−q)
= 1,
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by Inequality (39) we have
∑

n≥0 un,q > 1.

Corollary 22 (i)
∑

n≥0 un,q tends to 0 when q tends to −∞.

(ii) There exists unique q0 < −2.25 such that
∑

n≥0 un,q0 = 1.

Proof. By Lemma 21, there exists real number q1 < −2.25 such that 1 <
∑

n≥0 un,q1 < +∞.

Thus from the definition of un,q, the sum
∑

n≥0 un,q (as a function of q) is increasing and

continuous on (−∞, q1). On the other hand, note that

un,q
un,q′

≤ max
|J |=n

||MJ ||q−q′ ≤ 2q−q′

for any integer n > 0 and real numbers q < q′ ≤ q1, therefore∑
n≥0 un,q∑
n≥0 un,q′

< 2q−q′

holds for any q < q′ ≤ q1, which implies (i). The statement (ii) follows from the continuity

of
∑

n≥0 un,q on (−∞, q1).

Lemma 23 Let θ0 be the positive root of x2 + 2x − 9
8 = 0, then

∑
n≥1 n · un,q < +∞ if

q < −ζ−1(1 + θ0) ≈ −2.2544, where ζ is the Riemann-Zeta function.

Proof. By Inequality (37), for q < 0 we have∑
n≥0

n · un,q = 2
∑
n≥1

n||Mn
0 ||q + 2

∑
k≥1

∑
n1,···n2k≥1

(n1 + · · ·+ n2k)||Mn1
0 Mn2

1 · · ·Mn2k−1

0 Mn2k
1 ||q

+2
∑
k≥1

∑
n1,···n2k+1≥1

(n1 + · · ·+ n2k+1)||Mn1
0 Mn2

1 · · ·Mn2k−1

0 Mn2k
1 M

n2k+1

0 ||q

≤ 2
∑
n≥1

n(2 + n)q + 2
∑
k≥1

∑
n1,n2,···,n2k≥1

(n1 + · · ·+ n2k)(1 + n1n2)
q · · · (1 + n2k−1n2k)

q

+ 2
∑
k≥1

∑
n1,n2,···,n2k,n2k+1≥1

(n1 + · · ·+ n2k+1)(1 + n1n2)
q · · · (1 + n2k−1n2k)

qnq2k+1

= 2
∑
n≥1

n(2 + n)q + 2
∑
k≥1

∑
n1,n2,···,n2k≥1

2kn1(1 + n1n2)
q · · · (1 + n2k−1n2k)

q

+2
∑
k≥1

∑
n1,n2,···,n2k,n2k+1≥1

2kn1(1 + n1n2)
q · · · (1 + n2k−1n2k)

qnq2k+1

+2
∑
k≥1

∑
n1,n2,···,n2k,n2k+1≥1

n2k+1(1 + n1n2)
q · · · (1 + n2k−1n2k)

qnq2k+1

= 2
∑
n≥1

n(2 + n)q +
∑

n1,n2≥1

n1(1 + n1n2)
q ×

∑
k≥1

4k(
∑

m1,m2≥1

(1 +m1m2)
q)k−1

+
∑

n1,n2≥1

n1(1 + n1n2)
q ×

∑
n≥1

nq ×
∑
k≥1

4k(
∑

m1,m2≥1

(1 +m1m2)
q)k−1

+2
∑
n≥1

nq+1 ×
∑
k≥1

(
∑

m1,m2≥1

(1 +m1m2)
q)k (41)
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Now suppose q < −ζ−1(1 + θ0). By Inequality (40) , we have∑
n1,n2≥1

(1 + n1n2)
q < 1.

On the other hand, since q < −2, it follows that the series
∑

n≥1 n
q+1 and

∑
n1,n2≥1 n1(1 +

n1n2)
q converge. Therefore by Inequality (41),

∑
n≥1 n · un,q < +∞.

Lemma 24 Suppose that q ∈ R satisfies
∑

n≥0 un,q = +∞, then for any integer L there

exists 0 < y < 1 such that

L <
∑
n≥0

un,qy
n < +∞.

Proof. Case 1: q > 0.

In this case, un,q > 1 for n ≥ 0, therefore
∑

n≥0 un,q = +∞. By Lemma 20, {un,q}n is

submultiplicative, therefore

lim
n→+∞

u1/nn,q = inf
n≥1

u1/nn,q .

Denote by rq the value of above limit, then 1 ≤ rq < ∞ and un,q ≥ rnq for n ≥ 1. Hence

lim
x→r−1

q

∑
n≥0

un,qx
n = +∞, which implies the desired result since the series

∑
n≥0 un,qy

n con-

verges on (0, r−1
q ).

Case 2: q < 0, and
∑

n≥0 un,q = ∞.

For any integer l ≥ 0 and positive integers n1, n2, · · · , nl, define

a(n1, n2, · · · , nl) = (1, 0)Mn1
0 Mn2

1 · · ·Mnl

l(mod 2)

(
1

0

)
,

b(n1, n2, · · · , nl) = (1, 1)Mn1
0 Mn2

1 · · ·Mnl

l(mod 2)

(
1

1

)
.

It is clear that

a(n1, n2, · · · , nl) ≤ b(n1, n2, · · · , nl)

and

a(n1, n2, · · · , nl)a(m1,m2, · · · ,ms) ≤ a(n1, n2, · · · , nl,m1,m2, · · · ,ms), (42)

where m1,m2, · · · ,ms are positive integers. It is not hard to show that

a(n1, n2, · · · , nl) ≥
1

4
b(n1, n2, · · · , nl), if l is even. (43)

( To see this, denote (
x1 x2

x3 x4

)
= (Mn1

0 Mn2
1 ) · · · (Mnl−1

0 Mnl
1 )

for even integer l. Then by induction on l, one can verify that among the xi’s, x1 is the

greatest and x4 the smallest .)
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For any integer L ≥ 1, take an integer y(L) ≥ L · 4−q, and define p = 2y(L). Now for any

0 < x < 1,∑
n≥0

un,qx
n = 2q + 2 ·

2p−1∑
j=1

∑
n1,···,nj≥1

b(n1, n2, · · · , nj)q · xn1+···+nj

+2 ·
2p−1∑
j=0

+∞∑
k=1

∑
n1,···,n2kp+j≥1

b(n1, · · · , n2kp+j)
q · xn1+···+n2kp+j

≤ 2q + 2 ·
2p−1∑
j=1

∑
n1,···,nj≥1

b(n1, n2, · · · , nj)q · xn1+···+nj

+2 ·
2p−1∑
j=0

+∞∑
k=1

∑
n1,···,n2kp+j≥1

a(n1, · · · , n2kp+j)
q · xn1+···+n2kp+j

≤ 2q + 2 ·
2p−1∑
j=1

∑
n1,···,nj≥1

b(n1, n2, · · · , nj)q · xn1+···+nj

+2 ·
2p−1∑
j=0

+∞∑
k=1

∑
n1,···,n2kp+j≥1

a(n1, · · · , n2kp)qa(n2kp+1, · · · , n2kp+j)
qxn1+···+n2kp+j

≤ 2q + 2 ·
2p−1∑
j=1

∑
n1,···,nj≥1

b(n1, n2, · · · , nj)q · xn1+···+nj

+2 · (
2p−1∑
j=0

∑
n1,···,nj≥1

a(n1, · · · , nj)q xn1+···+nj )

(

+∞∑
k=1

(
∑

n1,···,n2p≥1

a(n1, · · · , n2p)q xn1+···+n2p)k). (44)

Since a(n1, n2, · · · , nl), b(n1, n2, · · · , nl) are polynomials about n1, n2, · · · , nl and 0 < x < 1,

it follows ∑
n1,···,nl≥1

a(n1, · · · , nl)q xn1+···+nl <∞

∑
n1,···,nl≥1

b(n1, · · · , nl)q xn1+···+nl <∞

for any positive integer l. Thus by (44),
∑

n≥0 un,qx
n <∞ if

∑
n1,···,n2p≥1 a(n1, · · · , n2p)q xn1+···+n2p <

1.

Since
∑

n≥0 un,q = ∞, it follows from (44) that
∑

n1,···,n2p≥1 a(n1, · · · , n2p)q ≥ 1 (or =

+∞). Therefore there exists 0 < z ≤ 1 such that
∑

n1,···,n2p≥1 a(n1, · · · , n2p)qzn1+···+n2p = 1.

Moreover, ∑
n≥0

un,qx
n <∞ for x ∈ (0, z). (45)

For l = 2, 22, · · · , p, by Inequality (42), we obtain that∑
n1,···,n2p≥1

a(n1, · · · , n2p)qzn1+···+n2p ≤ (
∑

n1,···,nl≥1

a(n1, · · · , nl)qzn1+···+nl)2p/l,
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which implies that
∑

n1,···,nl≥1 a(n1, · · · , nl)qzn1+···+nl ≥ 1. Thus by (43), we have∑
n1,···,nl≥1

b(n1, · · · , nl)qzn1+···+nl ≥ 4q, l = 2, 22, · · · , p.

Therefore

limx→z−
∑

n≥0 un,qx
n ≥ 2q + 2 ·

∑2p−1
j=1

∑
n1,···,nj≥1 b(n1, · · · , nj)q · zn1+···+nj

≥ 2q + 2 · y(L) · 4q

≥ 2q + 2L,

this and (45) yield the desired result.

Proposition 25 Let x(q) be defined by (31) and q0 be given as in Corollary 22 (ii), then

(i) x(q) = 1 for q ≤ q0;

(ii) if q > q0, then x(q) is the positive root of
∑

n≥0 un,qx
2n+3 = 1, and it is infinitely

differentiable on (q0,+∞), and

x′(q) = −
∑

n≥0(
∑

|J |=n ||MJ ||q log ||MJ ||) · x(q)2n+3∑
n≥0 un,q · (2n+ 3) · x(q)2n+2

,

(iii) x(q) is not differentiable at q = q0, moreover,

x′(q0−) = 0, x′(q0+) = −
∑

n≥0(
∑

|J |=n ||MJ ||q0 log ||MJ ||)∑
n≥0 un,q0 · (2n+ 3)

< 0.

Proof. Fix q ≤ q0. Since
∑

n≥0 un,q ≤ 1, it follows x(q) ≥ 1 by the definition (31). On the

other hand, un,q > ||Mn
0 ||q = (n+1)q, therefore

∑
n≥0 un,qx

2n+3 = ∞ if x > 1, thus x(q) ≤ 1

by (31). The statement (i) follows.

To show (ii), let q > q0. We have either 1 <
∑

n≥0 un,q < ∞ or
∑

n≥0 un,q = ∞. In

the former case,
∑

n≥0 un,qx
2n+3 is continuous on (0, 1) and thus there exists x0 satisfying∑

n≥0 un,qx
2n+3
0 = 1. By (31) x(q) = x0. Now we assume

∑
n≥0 un,q = ∞. By Lemma 24,

there exists 0 < t1 < t2 < 1 such that 1 <
∑

n≥0 un,qt
2n
1 < +∞ and t−3

1 <
∑

n≥0 un,qt
2n
2 <∞.

Thus 1 <
∑

n≥0 un,qt
2n+3
2 <∞, similarly we can show that x(q) satisfies

∑
n≥0 un,qx(q)

2n+3 =

1. Now we show below that x(q) is infinitely differentiable on (q0,+∞). Define

G(q, x) =
∑
n≥0

un,qx
2n+3.

Fix q1 ∈ (q0,+∞). As we have shown, there exists real number y > x(q1) such that 1 <

G(q1, y) < +∞. Take a real number z so that x(q1) < z < y, and take q2 such that

q2 > q1, 4q2−q1 <
y

z
.

Note that for any integer n ≥ 0,

un,q2
un,q1

≤ max
|J |=n

||MJ ||q2−q1 ≤ 4n(q2−q1).
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Therefore for any q < q2 and 0 < x < z, we have

G(q, x) ≤
∑
n≥0

un,q2z
2n+3

=
∑
n≥0

un,q1y
2n+34n(q2−q1)(

z

y
)2n+3 < +∞,

∑
n≥0

dun,q
dq

x2n+3 =
∑
n≥0

∑
|J |=n

||MJ ||q log ||MJ ||x2n+3 ≤
∑
n≥0

un,q(log 4
n)x2n+3

≤
∑
n≥0

un,q1y
2n+3(log 4n)4n(q2−q1)(

z

y
)2n+3 < +∞,

and ∑
n≥0

un,q(3 + 2n)x2n+2 <
∑
n≥0

un,q2(3 + 2n)z2n+3

=
∑
n≥0

un,q1y
2n+3(3 + 2n)4n(q2−q1)(

z

y
)2n+3 < +∞.

The above three inequality imply that G(q, x) is well defined and differentiable on (−∞, q2)×
(0, z). A similar more discussion shows that G(q, x) is infinitely differentiable on (−∞, q2)×
(0, z). Thus by the Implicit Function Theorem, x(q) is infinitely differentiable on a neigh-

borhood of q1. Since q1 is taken arbitrarily on (q0,+∞), x(q) is infinitely differentiable on

(q0,+∞) and (ii) follows.

To show the statement (iii), we only need to calculate x′(q0+). For q > q0, starting from

the fact that ∑
n≥0

un,qx(q)
2n+3 −

∑
n≥0

un,q0x(q0)
2n+3 = 0,

we have

x(q)− x(q0)

q − q0
= −

∑
n≥0

un,q − un,q0
q − q0

· x(q0)2n+3

∑
n≥0 un,q(x(q)

2n+2 + x(q)2n+1x(q0) + · · ·+ x(q0)2n+2)

= −

∑
n≥0

un,q − un,q0
q − q0∑

n≥0 un,q(x(q)
2n+2 + x(q)2n+2 + · · ·+ x(q) + 1)

.

Since
∑

n≥0 un,q(2n+3) < +∞ on a neighborhood of q0 (by Lemma 23 and 21), taking q ↓ q0
we get the desired result.

Proof of Theorem 16: it follows immediately from Lemma 19 and Proposition 25.

4.4 The Hausdorff dimension of graph(fλ)

Theorem 26 Let α = log λ−1

log 2 , then

dimH graph(fλ) =
logx(α)

log λ
,

33



where x(α) is the unique positive root of the transcendental equation

∞∑
n=0

un,αx
3+2n = 1.

Here u0,q = 2q and un,α =
∑

i∈{0,1}n ||Mi||α, n ≥ 1 .

Proof. The theorem follows from Lemma 9, Lemma 14 and Theorem 16.

4.5 The box-counting dimension and Hausdorff dimension of level sets of

fλ

4.5.1 Symbolic space

Recall that for any positive integer m, there is an one-to-one correspondence between the

collection of m-th net intervals associated with λ and the string set Sm which is defined by

Sm := {(xi)mi=1 ∈ Ξm : Hxi,xi+1 = 1, 1 ≤ i ≤ m− 1, x1 = a, b or c},

where Ξ = {a, b, c, d, e, f, f}, H is a 0-1 matrix defined by (20).

For any ω ∈ ∪m≥1S
m, we use Vω to denote the net interval corresponding to ω. Define

SN := {(xi)∞i=1 ∈ ΞN : Hxi,xi+1 = 1, i ≥ 1, x1 = a, b or c},

and consider the mapping Π : SN −→ [0, 1] defined by

ω = (xi)
∞
i=1 7→

⋂
m≥1

Vω|m, (46)

where ω|n denotes (xi)
m
i=1. Clearly Π is surjective. And it is also one-to-one except for a set

of countable points; more precisely, denote by L the set of all left and right endpoints of net

intervals associated with λ, that is, L = ∪m≥1Pm,λ, where Pm,λ is defined as in Section 2,

then Π is injective on [0, 1]\L and two-to-one on L.

Consider the set

SNb := {(xi)∞i=1 ∈ ΞN : Hxi,xi+1 = 1, i ≥ 1, x1 = b},

its image under the mapping Π is the 1-th net interval Vb = [1 − λ, λ]. By the generating

relations (19), any element in Σ := {b, d, e, f, f} generates out neither a nor c, it follows that

SNb = {(xi)∞i=1 ∈ ΣN : Ĥxi,xi+1 = 1, i ≥ 1, x1 = b},

where Ĥ = (Ĥi,j)i,j∈Σ is the restriction of H to the index set Σ, i.e.,

Ĥ =

b

d

e

f

f

b d e f f
0 1 0 0 0

0 0 1 1 1

1 0 0 0 0

0 1 0 0 0

0 1 0 0 0

 (47)

34



The matrix Ĥ is primitive, that is, there exists a positive integer m such that all the entries

of Ĥm are positive. In our case, Ĥ6 > 0.

Now let us consider the subshift space of finite type, (ΣN̂
H
, σ), where

ΣN̂
H

:= {(xi)∞i=1 ∈ ΣN : Ĥxi,xi+1 = 1, i ≥ 1},

and the shift mapping σ : ΣN̂
H

−→ ΣN̂
H

is defined by

(xi)
∞
i=1 7→ (xi+1)

∞
i=1.

In what follows we define a Markov measure on (ΣN̂
H
, σ).

Recall that we have used the letters b, f, f to denote the I-color ({−λ, 0}, 1 − λ), d to

denote the I-color ({λ− 1, 0}, λ), and e to denote ({λ− 1}, 2λ− 1). Now we define

γb = γf = γf = 1− λ, γd = λ, γe = 2λ− 1.

Define a matrix P = (Pi,j)i,j∈Σ by

Pi,j =

{
λ
γj
γi

if i generates out j in the sense of (19)

0 otherwise.

That is

P =

b

d

e

f

f

b d e f f
0 1 0 0 0

0 0 2λ− 1 1− λ 1− λ

1 0 0 0 0

0 1 0 0 0

0 1 0 0 0

,

Suppose p = (pb, pd, pe, pf , pf ) is the probability vector satisfying that pP = p. By direct

calculation,

p = (
1

7 + 4λ
,

1

1 + 2λ
,

1

7 + 4λ
,

1

4 + 3λ
,

1

4 + 3λ
)

= (
5− 2

√
5

5
,

√
5

5
,
5− 2

√
5

5
,
3
√
5− 5

10
,
3
√
5− 5

10
).

Since P is primitive, there exists a σ-invariant ergodic measure ξ ( which is often called the

(p, P ) Markov measure) on ΣN̂
H
, such that for any n-th cylinder set [x1x2 · · ·xn] ⊂ ΣN̂

H
,

ξ([x1x2 · · ·xn]) = px1Px1x2Px2x3 · · ·Pxn−1xn . (48)

( one may refer to [Wal] for further information about the (p, P ) measure ).

Now we consider the projection of the measure ξ under the mapping Π|
SNb

: SNb →

[1− λ, λ], which is written as (Π|
SNb

)#ξ and defined by

(Π|
SNb

)#ξ(A) = ξ(Π|−1

SNb
(A)), for A ⊂ [1− λ, λ].
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It is clear that (Π|
SNb

)#ξ is a Borel measure on [1− λ, λ]. The following lemma shows that

(Π|
SNb

)#ξ is equivalent to the Lebesgue measure on [1− λ, λ].

Lemma 27 For any Borel set A ⊂ [1− λ, λ], we have

(Π|
SNb

)#ξ(A) =
pb

2λ− 1
L(A).

Proof. For any n-th cylinder set [bx2 · · ·xn] ⊂ SNb , Π|
SNb

([bx2 · · ·xn]) is just the n-th net

interval Vbx2···xn . Note that the length of Vbx2···xn is equal to λnγxn , we have

L(Vbx2···xn) = L(Vb)×
L(Vbx2)

L(Vb)
× · · · × L(Vbx2···xn)

L(Vb···xn−1)

= λγb ×
λγx2

γb
× · · · × λγxn

γxn−1

= λγb · Pb,x2 · · ·Pxn−1,xn

=
λγb
pb
pbPb,x2 · · ·Pxn−1,xn

=
λγb
pb
ξ ([bx2 · · ·xn])

=
λγb
pb

(Π|
SNb

)#ξ (Vbx2···xn) ,

thus the lemma holds for all the n-th net intervals which contained in Vb. By a standard

argument, the lemma holds for every Borel subset of Vb.

Lemma 28 For ξ almost all ω = (xi)
∞
i=1 ∈ SNb ,

lim
n→∞

log ||Tω|n||
n

= (log 2)ξ([bde]) +
∑
k≥1

∑
i1,···,ik=0 or 1

(log ||Mi1···ik ||)ξ([bdXi1d · · ·Xikde])

where ω|n = (xi)
n
i=1, X0 = f , X1 = f , and Tx1···xn is defined by (25) and (28).

Proof. Let E denote the set

{(xi)∞i=1 ∈ ΣN̂
H

: ∃ integer sequence mj ↑ ∞, lim
j→∞

mj

mj+1
= 1, xmj = e}.

Since ξ is ergodic and ξ([e]) > 0, it follows that ξ(E) = 1.

For any ω = (xi)
∞
i=1 ∈ E

⋂
SNb , define the integer sequence mj(ω) ( j ∈ N) such that

1 < m1(ω) < m2(ω) < · · · < mn(ω) < · · ·
xmj(ω) = e, j = 1, 2, · · ·
xi 6= e, if i ∈ N\{mj(ω) : j ∈ N}.

We can write ω as

ω = ω1 ◦ ω2 ◦ · · · ◦ ωn ◦ · · · ,
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where ω1 = (xi)
m1(ω)
i=1 , ω2 = (xi)

m2(ω)
i=m1(ω)+1, · · ·, ωn = (xi)

mn(ω)
i=mn−1(ω)+1, · · ·. By the structure of

SNb , one can see that

ωj ∈ B = {bde}
⋃

{bdXi1d · · ·Xikde : k ∈ N, i1, · · · , ik = 0 or 1}

for each integer j. Thus by Lemma 15, we have

||Tω|mk(ω)|| = ||Tω1 || · ||Tω2 || · · · ||Tωk
||. (49)

For any ν ∈ B, denote by [ν] the cylinder set in SNb associated with ν. Then the formula

(49) means that

||Tω|mk(ω)|| =
∏

ν∈B,|ν|≤mk(ω)

||Tν ||
∑mk(ω)−|ν|

j=0 X[ν](σ
jω) (50)

where X[ν](·) is the characteristic function on [ν], that is,

X[ν](y) =

{
1 if y ∈ [ν]

0 otherwise.

Hence

log ||Tω|mk(ω)||
mk(ω)

=
∑

ν∈B,|ν|≤mk(ω)

1

mk(ω)

mk(ω)−|ν|∑
j=0

X[ν](σ
jω) log ||Tν ||. (51)

Since ξ is ergodic, by the Birkhoff ergodic theorem, for each ν ∈ B,

lim
k→∞

1

mk(ω)

mk(ω)−|ν|∑
j=0

X[ν](σ
jω) = ξ([ν]) for ξ almost all ω ∈ E

⋂
SNb . (52)

Combine (51) and (52) to obtain that

lim
k→∞

log ||Tω|mk(ω)||
mk(ω)

≥
∑
ν∈B

ξ([ν]) log ||Tν || for ξ almost all ω ∈ E
⋂
SNb . (53)

Since ||Tω|mk(ω)|| ≤ 4mk(ω), the right-hand side of the above inequality is convergent and

bounded by log 4.

Now fix l ∈ N. For any m > l and ν = bdXi1d · · ·Ximde ∈ B, we have

||Tν || ≤ ||TdXi1
d···Xil

d|| · ||TdXi2
d···Xil+1

d|| · · · ||TdXim−l+1
d···Ximd||.

Thus by the formula (50), for mk(ω) > 2l + 3,

log ||Tω|mk(ω)||
mk(ω)

≤
∑

ν∈B,|ν|≤2l+3

1

mk(ω)

mk(ω)−|ν|∑
j=0

X[ν](σ
jω) log ||Tν ||

+
∑

ν′∈{dXi1
···dXil

: i1,···,il=0 or 1}

1

mk(ω)

mk(ω)−2l∑
j=0

X[ν′](σ
jω) log ||Tν′ ||.
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By the above inequality and Birkhoff ergodic theorem, for ξ almost all ω ∈ E
⋂
SNb ,

lim
k→∞

log ||Tω|mk(ω)||
mk(ω)

≤
∑

ν∈B,|ν|≤2l+3

ξ([ν]) log ||Tν ||

+
∑

ν′∈{dXi1
···dXil

: i1,···,il=0 or 1}

ξ([ν ′]) log ||Tν′ ||. (54)

Note that for any ν ′ = dXi1d · · · dXil we have

ξ([ν ′]) = pdPdXi1
PXi1

d · · ·PdXil
=

pd
pbPbdPXil

dPde
· pbPbdPdXi1

PXi1
d · · ·PdXil

PXil
dPde

=
pd

pbPbdPXil
dPde

ξ([bdXi1d · · · dXile])

≤ max{ pd
pbPbdPfdPde

,
pd

pbPbdPfdPde
} × ξ([bdXi1d · · · dXile]),

and

log ||Tν′ || ≤ log ||TbdXi1
d···dXil

e||,

thus

∑
ν′∈{dXi1

···dXil
: i1,···,ik=0 or 1}

ξ([ν ′]) log ||Tν′ || ≤ max{ pd
pbPbdPfdPde

,
pd

pbPbdPfdPde
}

×
∑

ν∈B,|ν|=2l+3

ξ([ν]) log ||Tν ||

Since
∑

ν∈B ξ([ν]) log ||Tν || converges, the right-hand side of the above inequality tends to 0

when l → +∞. Thus by (53) and (54), we have

lim
k→∞

log ||Tω|mk(ω)||
mk(ω)

=
∑
ν∈B

ξ([ν]) log ||Tν || for ξ a.e. ω ∈ E
⋂
SNb .

Therefore we obtain the desired result by the facts lim
k→∞

mk+1(ω)

mk(ω)
= 1 for ω ∈ E

⋂
SNb and

ξ(E) = 1.

4.5.2 Box-counting dimension

Lemma 29 For L almost all t ∈ [1−λ, λ], the box-counting dimension of the t-level set Lt,λ

of fλ exists and is given by the following formula

dimB(Lt,λ) =
1

log 2

∑
ν∈B

ξ([ν]) log ||Tν || =
7
√
5− 15

10 log 2
·

∞∑
n=0

(
3−

√
5

2

)n+1 ∑
|J |=n

log ||MJ ||. (55)
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Proof. The first equality follows from Lemma 13, Formula (27), Lemma 27 and Lemma 28.

To see the second equality, note that

||Tbde|| = 2,

ξ([bde]) =
pb

2λ− 1
· L(Vbde) =

pb
2λ− 1

· λ3 · (2λ− 1) = pbλ
3

||TbdXi1
d···Xik

de|| = ||Mi1···ik ||,

ξ([bdXi1d · · ·Xikde]) =
pb

2λ− 1
· L(VbdXi1

d···Xik
de) = pbλ

2k+3,

thus,

∑
ν∈B

ξ([ν]) log ||Tν || = pb

∞∑
n=0

λ2n+3 ·
∑
|J |=n

log ||MJ ||

= pbλ

∞∑
n=0

λ2n+2 ·
∑
|J |=n

log ||MJ ||

=
λ

7 + 4λ

∞∑
n=0

λ2n+2 ·
∑
|J |=n

log ||MJ ||

=
7
√
5− 15

10
·

∞∑
n=0

(
3−

√
5

2

)n+1

·
∑
|J |=n

log ||MJ ||.

Theorem 30 For L almost all t ∈ [0, 1], the box-counting dimension of the t-level set Lt,λ

of fλ exists and is given by the following formula

dimB(Lt,λ) =
7
√
5− 15

10 log 2
·

∞∑
n=0

(
3−

√
5

2

)n+1

·
∑
|J |=n

log ||MJ ||.

Proof. Note that

(0, 1) = Vb
⋃

(∪∞
i=1Vaib)

⋃
(∪∞

j=1Vcjb).

For any i ∈ N, denote by Fi the affine mapping from Vaib onto Vb with the ratio λ−i. For

each x ∈ Vaib, the infinite Markov code Π−1(x) of x is of the form aib ◦ω (where Π is defined

as in (46)) and the infinite Markov code of Fi(x) is of the form b ◦ ω. Thus the mapping

Fi preserves the box-counting dimension of x-level set, therefore the formula (55) holds for

L almost all t ∈ Vaib. The same result holds for Vcjb, j ∈ N. Thus we have proved the

theorem.

4.5.3 Hausdorff dimension

As we have seen in the proof of Lemma 28, for L almost all t ∈ [1− λ, λ] there are infinitely

many e’s which appear in the code Π−1(t); We will show that for such t, the t-level set Lt,λ is
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a kind of Moran set–homogeneous Moran set and its Hausdorff dimension can be estimated

from below rigorously.

Let us recall the definition of homogeneous Moran set. Let {nk}k≥1 be a sequence of

positive integers and {ck}k≥1 be a sequence of positive numbers satisfying nk ≥ 2, 0 < ck < 1,

n1c1 ≤ δ and nkck ≤ 1 (k ≥ 2), where δ is some positive number. Let

D =
⋃
k≥0

Dk with D0 = {∅}, Dk = {(i1, · · · , ik); 1 ≤ ij ≤ nj , 1 ≤ j ≤ k}.

If σ = (σ1, · · · , σk) ∈ Dk, τ = (τ1, · · · , τm) ∈ Dm, we define σ ∗ τ = (σ1, · · · , σk, τ1, · · · , τm).

Suppose J be a closed interval of length δ. A collection F = {Jσ : σ ∈ D} of closed

subintervals of J is said to have a homogeneous Moran structure if it satisfies

(1) J∅ = J ;

(2) For any k ≥ 0 and σ ∈ Dk, J σ∗1, J σ∗2, · · · , J σ∗nk+1
are subintervals of Jσ and

o
J σ∗i

⋂ o
J σ∗j = ∅ (i 6 =j) where

o
A denotes the interior of A;

(3) For any k ≥ 1 and any σ ∈ Dk−1, 1 ≤ j ≤ nk, We have

|J σ∗j |
|J σ|

= ck

where |A| denotes the diameter of A.

Suppose that F is a collection of closed subintervals of J having homogeneous Moran

structure, E(F) :=
⋂
k≥1

⋃
σ∈Dk

Jσ is called a homogeneous Moran set determined by F and

the intervals in Fk = {Jσ; σ ∈ Dk} are called the k-order fundamental intervals of E(F)

and J is called the original interval of E(F). It can be seen from above definition that for

any fixed J , {nk}k≥1, {ck}k≥1, if the positions of k-order fundamental intervals are changed,

we get different homogeneous Moran sets. We use M(J, {nk}, {ck}) to denote the collection

of all such homogeneous Moran sets determined by J , {nk}k≥1, {ck}k≥1. One may refer to

[FWW, FRW] for more informations about homogeneous Moran sets. For the purpose of

the present paper, we only need a simplified version of a result contained in [FWW], whose

simpler proof will be given here for the convenience of the reader.

Proposition 31 For any F ∈ M(J, {nk}, {ck}), we have

dimH F ≥ lim inf
n→∞

log n1n2 · · ·nk
− log c1c2 · · · ck+1nk+1

.

Proof. Denote by t the right hand side of the above inequality. Suppose t > 0. Let µ be

the probability measure concentrated on F such that µ(A) = (n1n2 · · ·nk)−1 for any A ∈ Fk.

Let 0 < s < t. By the definition of t, there exists c > 0 such that

n1n2 · · ·nk(c1c2 · · · ck+1nk+1)
s ≥ c (∀k ≥ 1).

Let U ⊂ [0, 1] be an arbitrary closed interval with |U | ≤ c1. There exists a positive integer k

such that c1c2 · · · ck+1 ≤ |U | < c1c2 · · · ck. It follows that
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i) U intersects at most
3|U |

c1c2 · · · ck+1
(k + 1)-order fundamental intervals;

ii) U intersects at most 2 k-order fundamental intervals.

By using the inequality min(a, b) ≤ a1−sbs ( 0 ≤ s ≤ 1), we have

µ(U) ≤ min(
2

n1n2 · · ·nk
,

3|U |
c1c2 · · · ck+1nk+1

× 1

n1n2 · · ·nk
)

≤ 1

n1n2 · · ·nk

(
3|U |

c1c2 · · · ck+1nk+1

)s

21−s

≤ 1

c
3s21−s|U |s ≤ 6

c
|U |s.

This implies dimHF ≥ s then dimHF ≥ t.

Lemma 32 For L almost all t ∈ [1− λ, λ],

dimH(Lt,λ) =
7
√
5− 15

10 log 2
·

∞∑
n=0

(
3−

√
5

2

)n+1 ∑
|J |=n

log ||MJ ||.

Proof. We define the set E and the integer sequence mj(ω) ( j ∈ N) for every ω ∈ E
⋂
SNb

in the same way as in the proof of lemma 28. Let Π defined as in (46). If ω ∈ E
⋂
SNb , we

claim that

LΠ(ω),λ ∈ M([0, 1], {||Tωk
||}, {2−|ωk|}), (56)

where ω = ω1 ◦ ω2 ◦ · · · ◦ ωn ◦ · · ·. Using this claim and Proposition 31, we have

dimH LΠ(ω) ≥ lim inf
k→∞

log(||Tω1 || × · · · × ||Tωk
||)

log(2|ω1|+···+|ωk+1| × ||Tωk+1
||−1)

≥ lim inf
k→∞

log(||Tω1 || × · · · × ||Tωk
||)

log(2|ω1|+···+|ωk+1|)

= lim inf
k→∞

log(||Tω|mk(ω)||)
mk+1(ω) log 2

= lim inf
k→∞

log(||Tω|mk(ω)||)
mk(ω) log 2

,

thus according to Lemmas 27-29 and the fact that dimH(·) ≤ dimB(·), we have obtained the

result of this lemma.

Now we begin to prove the claim (56). Fix ω ∈ E
⋂
SNb . For any positive integer k the

II-color of the mk(ω)-th net interval Vω|mk(ω) is given by

E(||Tω|mk(ω)||) := ({(λ− 1, ||Tω|mk(ω)||)}, 2λ− 1),

thus from the definition of II-color, we know that the collection

Dk :=
{
i ∈ {0, 1}mk(ω) : Π(ω) ∈ ϕi,λ([0, 1])

}
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has the cardinality ||Tω|mk(ω)||, and any two elements i, j of Dk satisfy that ϕi,λ([0, 1]) =

ϕj,λ([0, 1]). Define J = [0, 1]. For any i ∈ Dk, define

Ji = ψi,λ ([0, 1]) . (recall that ψ0(x) = x/2, ψ1(x) = (x+ 1)/2.)

Then LΠ(ω),λ =
⋂∞

k=1

⋃
i∈Dk

Ji, and thus LΠ(ω),λ ∈ M([0, 1], {||Tωk
||}, {2−|ωk|}), which proves

the claim.

Theorem 33 For L almost all t ∈ [0, 1],

dimH(Lt,λ) =
7
√
5− 15

10 log 2
·

∞∑
n=0

(
3−

√
5

2

)n+1 ∑
|J |=n

log ||MJ ||.

Proof. It follows from Lemma 32 and a discussion similar to that in the proof of Theorem

30.

2

4.6 The Lq-spectrum of µλ

Theorem 34 For any q ∈ R, the Lq-spectrum τµλ
(q) of µλ is equal to

q log 2

log λ−1
+

logx(q)

log λ−1
,

where

x(q) = sup{x ∈ R :
∞∑
n=0

un,qx
3+2n ≤ 1},

and un,q =
∑

i∈{0,1}n ||Mi||q. There exists unique q0 < 0 such that
∞∑
n=0

(
∑

|J |=n ||MJ ||q0) = 1.

When q > q0, x(q) is the positive root of
∞∑
n=0

(
∑

|J |=n ||MJ ||q)x2n+3 = 1, and it is infinitely

differentiable on (q0,+∞). When q ≤ q0, x(q) = 1. Moreover x(2, q) is not differentiable at

q = q0.

Proof. The theorem follows from Corollary 5, Lemma 14, Lemma 19 and Theorem 16.

Remark 1 Using a different method, Lau and Ngai [LN2] obtained the same formula of

τµλ
(q) only for q > 0. And they proved the differentiability of τµλ

(q) on (0,+∞). Porzio [Po]

extended the range of differentiability to (−1
2 ,+∞). The above theorem give the complete

answer to the question posed in [LN2] that how to get the formula of τµλ
(q) for q < 0.

4.7 The dimensions of µλ

We first consider the local dimension of µλ. As we have shown in section 4.5., there is a natural

projection Π from the symbolic space SN onto the interval [0, 1]; see (46). Denote by L the

set of all left and right endpoints of net intervals associated with λ, that is, L = ∪m≥1Pm,λ,
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where Pm,λ is defined as in Section 2, then Π is injective on [0, 1]\L and two-to-one on L.

For x ∈ [0, 1], each point in Π−1(x) is called the infinite Markov code of x. We will give the

formula of the local dimension of µλ at x in terms of matrix products by the infinite Markov

code of x.

Theorem 35 For each ω = (xi)
∞
i=1 ∈ SN, the upper and lower local dimension of µλ at

Π(ω) are given by

d(µλ,Π(ω)) =
log 2

log λ−1
+ lim

n→∞
sup

log ||Tω|n||
n log λ

,

d(µλ,Π(ω)) =
log 2

log λ−1
+ lim

n→∞
inf

log ||Tω|n||
n log λ

,

where ω|n = x1 · · ·xn and Tω|n is defined as in (25) and (28).

Proof. By the definition of upper local dimension (see Section 1),

d(µλ,Π(ω)) = lim
r↓0

sup
logµλ(Π(ω)− r,Π(ω) + r)

log r

= lim
n→+∞

sup
logµλ(Π(ω)− λn,Π(ω) + λn)

log λn
.

By the above equality, Lemma 4(ii) and Lemma 6,

d(µλ,Π(ω)) = lim
n→+∞

sup
log 2−nNm,λ(Vω|n)

log λn
, (57)

where Vω|n is the net interval corresponding to ω|n, and Nm,λ(Vω|n) is the overlap times of

Vω|n.

Similarly, we have

d(µλ,Π(ω)) = lim
n→+∞

inf
log 2−nNm,λ(Vω|n)

log λn
. (58)

By Lemma 14, Nm,λ(Vω|n) = ||Tω|n||, this and (57)-(58) yield the desired formulas.

Theorem 36 For L almost all x ∈ [0, 1], the upper and lower local dimension of µλ at x

coincide, and the common value is equal to

d(µλ, x) =
log 2

log λ−1
+

7
√
5− 15

10 log λ
·

∞∑
n=0

(
3−

√
5

2

)n+1 ∑
|J |=n

log ||MJ ||.

Proof. There is a natural connection between the local dimension of µλ at a given point x

and the box-counting dimension of the x-level set Lx,λ of the limit Rademacher function fλ.

That is,

d(µλ, x) =
log 2

log λ−1
+

log 2

log λ
· dimBLx,λ

d(µλ, x) =
log 2

log λ−1
+

log 2

log λ
· dimBLx,λ
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for x ∈ [0, 1]\U, where U is a set of countable many points. This is the direct corollary of

Lemma 13(ii) and Formulas (57)-(58). By Theorem 30 we obtain the desired result.

Using Theorem 35, we can determine the set

R(µλ) := {y : ∃x ∈ [0, 1], d(µλ, x) = y}.

The following Theorem was first proved in [Hu] by using some combinatorial techniques..

Here we provide a different proof, the method used in which is valid to determine the sets

R(µλk
) for k ≥ 3; see Theorem 51, where we correct the false result given in [Hu] about

R(µλk
) for k ≥ 3.

Theorem 37 R(µλ) = [ log 2
log λ−1 − 1

2 ,
log 2

log λ−1 ].

Proof. Let B be the collection of letter strings defined as in (22). Since for any letter strings

i1, i2, · · · , in, · · · ∈ B,

i1 ◦ i2 ◦ · · · ◦ in ◦ · · · ∈ SN,

and

||Ti1◦i2◦···◦in || = ||Ti1 || × ||Ti2 || × · · · × ||Tin ||,

by Theorem 35 we have

R(µλ) ⊃ [
log 2

log λ−1
− 1

log λ−1
· x0,

log 2

log λ−1
− 1

log λ−1
· y0], (59)

where

x0 = sup
i∈B

log ||Ti||
|i|

, y0 = inf
i∈B

log ||Ti||
|i|

,

here |i| denotes the length of the letter string i. In the end of our proof, we will show that

x0 =
1
2 log λ

−1 and y0 = 0.

On the other hand, for any ω ∈ SN, ω|n is the prefix of an infinite letter string of the

following possible forms:

al ◦ i1 ◦ i2 ◦ · · · ◦ im ◦ · · · , i1 ◦ i2 ◦ · · · ◦ im ◦ · · · , cl ◦ i1 ◦ i2 ◦ · · · ◦ im ◦ · · · ,

where l ∈ N and i1, i2, · · · im, · · · ∈ B; furthermore, by the generating relation (19), there

exists a letter string j of length less than 4 such that the concatenation (ω|n)◦ j is of the

following possible forms

al ◦ i1 ◦ i2 ◦ · · · ◦ im, i1 ◦ i2 ◦ · · · ◦ im, cl ◦ i1 ◦ i2 ◦ · · · ◦ im,

where l ∈ N and i1, i2, · · · im ∈ B. Since ||Tal || = ||Tcl || = 1, therefore the above analysis

implies that

{y : ∃x ∈ [0, 1], d(µλ, x) = y} ⊂ [
log 2

log λ−1
− 1

log λ−1
· x0,

log 2

log λ−1
] (60)
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and

{y : ∃x ∈ [0, 1], d(µλ, x) = y} ⊂ [
log 2

log λ−1
− 1

log λ−1
· x0,

log 2

log λ−1
]. (61)

Therefore by (59)-(61) and y0 = 0(what we will prove afterwards),

R(µλ) = [
log 2

log λ−1
− 1

log λ−1
· x0,

log 2

log λ−1
− 1

log λ−1
· y0].

In what follows, we determine the exact values of x0 and y0.

Note that for any integer n > 0,

bd(fd)ne ∈ B, Tbd(fd)ne = (M0)
n =

(
1 n

0 1

)
,

it follows y0 = 0 since (log || Tbd(fd)ne||)/(2n+ 3) tends to 0 as n tends to infinity.

To determine the value of x0, let us consider the possible form of the element B. Recall

that each element of B is of the form

bdXi1d · · ·Xinde, n ≥ 0, i1, · · · , in = 0 or 1, (62)

where X0 = f and X1 = f ; and ||TbdXi1
d···Xinde

|| = ||Mi1 · · ·Min ||. For fixed integer n, one

can verify that the maximal value of ||Mi1 · · ·Min || is equal to

||M0M1M0 · · ·Mn(mod 2)|| =
2 + λ+ (−1)nλ2n+4

1 + λ2
· λ−n.

Therefore

x0 = sup
n≥0

log(
2 + λ+ (−1)nλ2n+4

1 + λ2
· λ−n)

2n+ 3

= sup
n≥0

log(
2 + λ+ (−1)nλ2n+4

1 + λ2
) + log λ−n

3 + 2n
.

Note that
1

3
log(

2 + λ+ (−1)nλ2n+4

1 + λ2
) ≤ 1

3
log(

2 + λ+ λ4

1 + λ2
) =

1

3
log 2,

1

2n
log λ−n =

1

2
log λ−1,

we have

x0 = max{1
3
log 2,

1

2
log λ−1} =

1

2
log λ−1.

The Hausdorff dimension and information dimension of µλ have been considered by many

people, e.g. see ([AY], [AZ], [LP1], [Ng], [SV]). For completeness, we present here Ngai’s

results:
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Lemma 38 ([Ng]) Suppose that ν is a Borel probability measure on R with bounded support

and its Lq-spectrum τν(q) is differentiable at q = 1. Then the local dimension d(ν, x) is

equal to τ ′ν(1) for ν almost all x ∈ R. As a result, the Hausdorff dimension and information

dimension of ν coincide, the common value is equal to τ ′ν(1).

The following theorem follows by a direct calculation of τ ′µλ
(1).

Theorem 39 ([Ng]) The Hausdorff dimension and information dimension of µλ satisfy

dimH µλ = diminfo µλ = − log 2

log λ
+

∞∑
n=0

2−2n−3
∑

|J |=n

||MJ || log ||MJ ||

9 log λ
.

5 The case ρ = λk (k ≥ 3).

In this section, we prove our main results for the case ρ = λk (k ≥ 3). The main ideas and

proofs are similar to that for the case ρ = λ. Certainly, the generating relations of I-colors

and II-colors for this case are much more complicated.

For simplicity, in this section we would use some symbols and notions the same as in

Section 4, however the meaning of which are changed here(e.g. Ξ, Σ, Sm, SN, Π, vm,q, Ti,j).

5.1 The generating relations of I-colors and II- colors.

At first we give the generating relations of I-colors associated with ρ = λk:

({0}, 1− ρk) −→ ({0}, 1− ρk) + ({ρk − 1, 0}, ρk)
+({−ρk}, 1− ρk − ρk−1)

({−ρk}, 1− ρk) −→ ({−ρk−1}, 1− ρk − ρk−1) + ({ρk − 1, 0}, ρk)
+({−ρk}, 1− ρk)

({ρi − 1, 0}, ρi) −→ ({−ρi−1, 0}, ρi−1) for 2 ≤ i ≤ k,

({ρ− 1}, ρ) −→ ({ρk − 1, 0}, ρk) + ({−ρk}, 1− 2ρk)

+({ρk − 1, 0}, ρk)
({−ρk}, 1− 2ρk) −→ ({−ρk−1}, 1− ρk − ρk−1) + ({ρk − 1, 0}, ρk)

+({−ρk}, 1− ρk − ρk−1)

({−ρk−j}, 1− ρk − ρk−j) −→ ({−ρk−j−1}, 1− ρk − ρk−j−1) + ({ρk − 1, 0}, ρk)
+({−ρk}, 1− ρk − ρk−1) for 1 ≤ j ≤ k − 2

({−ρ}, 1− ρk − ρ) −→ ({−ρk}, 1− ρk − ρk−1)

({−ρk}, 1− ρk − ρk−l) −→ ({−ρk−1}, 1− ρk − ρk−1) + ({ρk − 1, 0}, ρk)
+({−ρk}, 1− ρk − ρk−l−1) for 1 ≤ l ≤ k − 2

({−ρk}, 1− ρk − ρ) −→ ({−ρk−1}, 1− ρk − ρk−1)

Let Ξ = {a, b, c, d1, · · · , dk−1, e, f, f,g1, · · · , gk−1, h1, · · · , hk−1} be an alphabet set. For any

m ∈ N, we label every m-th net interval uniquely by a letter string of length m in the
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following way: let J = Jm be a m-th net interval. For 1 ≤ i ≤ m − 1, denote by Ji the i-th

net interval that contains J . Then J is labeled as (xi)
m
i=1 ∈ Ξm, where

xi =



a if Γi,ρ(Ji) = ({0}, 1− ρk)

b if Γi,ρ(Ji) = ({ρk − 1, 0}, ρk), and either

i = 1, or

i > 1 with Γi,ρ(Ji−1) 6= ({ρ− 1, 0}, ρ)
c if Γi,ρ(Ji) = ({−ρk}, 1− ρk)

dm (m = 1, · · · , k − 1) if Γi,ρ(Ji) = ({ρk−m − 1, 0}, ρk−m)

e if Γi,ρ(Ji) = ({−ρk}, 1− 2ρk)

f if Γi,ρ(Ji) = ({ρk − 1, 0}, ρk), i > 1,

Γi,ρ(Ji−1) = ({ρ− 1, 0}, ρ),
and Ji has the same left endpoint as Ji−1

f if Γi,ρ(Ji) = ({ρk − 1, 0}, ρk), i > 1,

Γi,ρ(Ji−1) = ({ρ− 1, 0}, ρ),
and Ji has the same right endpoint as Ji−1

gm (m = 1, · · · , k − 1) if Γi,ρ(Ji) = ({−ρk−m}, 1− ρk − ρk−m)

hm (m = 1, · · · , k − 1) if Γi,ρ(Ji) = ({−ρk}, 1− ρk − ρk−m)

The above generating relations of I-colors can be given formally as below:

a −→ a+ b+ h1

b −→ d1

c −→ g1 + b+ c

dm (1 ≤ m ≤ k − 2) −→ dm+1

dk−1 −→ f + e+ f

e −→ g1 + b+ h1

f −→ d1

f −→ d1

gm (1 ≤ m ≤ k − 2) −→ gm+1 + b+ h1

gk−1 −→ h1

hm (1 ≤ m ≤ k − 2) −→ g1 + b+ hm+1

hk−1 −→ g1

(63)

The above relations determine a 0-1 matrix Q = (Qi,j)i,j∈Ξ, so that Qi,j = 1 if i generates

out j.

For m ≥ 2, set

Sm := {(xi)mi=1 ∈ Ξm : Qxi,xi+1 = 1, 1 ≤ i ≤ m− 1, x1 = a, b or c}, (64)

then there is a one-to-one correspondence between Sm and the collection of all m-th net

intervals. For any ω ∈ Sm, we will use Vω to denote the m-th net interval corresponding to

ω.
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We would like to know more about the possible forms of the elements in Sm. For this

purpose, write

b(k) := bd1 · · · dk−1

X0(k) := fd1 · · · dk−1

X1(k) := fd1 · · · dk−1

Y0(j) := g1 · · · gj , j = 1, · · · , k − 1

Y1(j) := h1 · · ·hj , j = 1, · · · , k − 1

(65)

and define a collection Bk of letter strings as

Bk := {b(k)e}⋃
{b(k)Xj1(k) · · ·Xjl(k)e : l ∈ N, j1, · · · , jl = 0 or 1}⋃
{Yi1(p1) · · ·Yim(pm)b(k)e : m ∈ N, 1 ≤ p1, · · · pm−1 ≤ k − 1,

1 ≤ pm ≤ k − 2, ij =
1−(−1)j

2 (1 ≤ j ≤ m) or ij =
1+(−1)j

2 (1 ≤ j ≤ m)}⋃
{Yi1(p1) · · ·Yim(pm)b(k)Xj1(k) · · ·Xjl(k)e : l,m ∈ N,
j1, · · · , jl = 0 or 1, 1 ≤ p1, · · · pm−1 ≤ k − 1, 1 ≤ pm ≤ k − 2,

is =
1−(−1)s

2 (1 ≤ s ≤ m) or is =
1+(−1)s

2 (1 ≤ s ≤ m)}

(66)

then the generating relation (63) implies that each element in Sm is the prefix of a letter

string of the following three forms:

ω1 ◦ ω2 · · · ◦ ωn ◦ · · · , the first letter of ω1 is b

a · · · a︸ ︷︷ ︸
r a’s

◦ω1 ◦ ω2 · · · ◦ ωn ◦ · · · , the first letter of ω1 is b or h1

c · · · c︸ ︷︷ ︸
r c’s

◦ω1 ◦ ω2 · · · ◦ ωn ◦ · · · , the first letter of ω1 is b or g1

(67)

where r ∈ N and ωi ∈ Bk, i ∈ N.

Let us consider the generating relations of II-colors associated with λk. Denote by

A(1) := ({(0, 1)}, 1− ρk)

B(p,q) := ({(ρk − 1, p), (0, q)}, ρk)
C(1) := ({(−ρk, 1)}, 1− ρk)

D
(p,q)
m (1 ≤ m ≤ k − 1) := ({(ρk−m − 1, p), (0, q)}, ρk−m)

E(r) := ({(−ρk, r)}, 1− 2ρk)

F (p,q) := ({(ρk − 1, p), (0, q)}, ρk)
F

(p,q)
:= ({(ρk − 1, p), (0, q)}, ρk)

G
(r)
m (1 ≤ m ≤ k − 1) := ({(−ρk−m, r)}, 1− ρk − ρk−m)

H
(r)
m (1 ≤ m ≤ k − 1) := ({(−ρk, r)}, 1− ρk − ρk−m)
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then the generating relations of II-colors associated with λk can be written as:

A(1) =⇒ A(1) +B(1,1) +H
(1)
1

B(p,q) =⇒ D
(p,q)
1

C(1) =⇒ G
(1)
1 +B(1,1) + C(1)

D
(p,q)
m (1 ≤ m ≤ k − 2) =⇒ D

(p,q)
m+1

D
(p,q)
k−1 =⇒ F (p,p+q) + E(p+q) + F

(p+q,q)

E(r) =⇒ G
(r)
1 +B(r,r) +H

(r)
1

F (p,q) =⇒ D
(p,q)
1

F
(p,q)

=⇒ D
(p,q)
1

G
(r)
m (1 ≤ m ≤ k − 2) =⇒ G

(r)
m+1 +B(r,r) +H

(r)
1

G
(r)
k−1 =⇒ H

(r)
1

H
(r)
m (1 ≤ m ≤ k − 2) =⇒ G

(r)
1 +B(r,r) +H

(r)
m+1

H
(r)
k−1 =⇒ G

(1)
1

We can define a family of matrixes Ti,j for each pair ( i, j) ∈ Ξ× Ξ with i generating out

j in (63), such that if an I-color generating relation is given by

i −→ i1 + · · ·+ il,

then the associated II-color generating relation will be given by

I(n1,···,nr) =⇒ I
(n1,···,nr)·Ti,i1
1 + · · · I(n1,···,nr)·Ti,il

l . (68)

That is, 

Ta,a = 1, Ta,b = (1, 1),

Tb,d1 =

(
1 0

0 1

)
,

Tc,g1 = (1, 1), Tc,b = (1, 1), Tc,c = 1,

Tdm,dm+1 =

(
1 0

0 1

)
, (1 ≤ m ≤ k − 2)

Tdk−1,f =

(
1 1

0 1

)
, Tdk−1,e =

(
1

1

)
, Tdk−1,f

=

(
1 0

1 1

)
,

Te,g1 = 1, Te,b = (1, 1), Te,h1 = 1,

Tf,d1 =

(
1 0

0 1

)
, Tf,d1 =

(
1 0

0 1

)
,

Tgm,gm+1 = Tgm,h1 = 1, Tgm,b = (1, 1), (1 ≤ m ≤ k − 2)

Tgk−1,h1 = 1,

Thm,hm+1 = Thm,g1 = 1, Thm,b = (1, 1), (1 ≤ m ≤ k − 2)

Thk−1,g1 = 1.

(69)

For any ω = (xi)
m
i=1 ∈ Sm, define Tω = Tx1,x2 · Tx2,x3 · · ·Txm−1,xm . Then we have
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Lemma 40 For m ≥ 2, let J be a m-th net interval associated with λk corresponding to

ω = (xi)
m
i=1 ∈ Sm. Suppose its II-color is ({(t1, n1), · · · , (tr, nr)}, γ), then

Nm,λk
(J) :=

r∑
i=1

ni = ||Tx1,x2 · Tx2,x3 · · ·Txm−1,xm ||.

Furthermore if ω can be written as the concatenation ω1 ◦ω2, where the end-letter of ω1 is e,

then

Nm,λk
(Vω) = ||Tω|| = ||Tω1 || × ||Tω2 ||.

Define a sequence of integers {tr,k}∞r=0 such that t0,k = 1, and 1
2 tr,k (r > 0) is the number

of different integral solutions of the following conditional Diophantine equation:

p1 + · · ·+ pm = r such that m ∈ N, 1 ≤ p1, · · · , pm−1 ≤ k − 1, 1 ≤ pm ≤ k − 2.

Lemma 41 For any positive integer r,

tr,k = 2 · (1, 1, · · · , 1︸ ︷︷ ︸
k−2

, 0) ·



1 1 · · · 1 1

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0



r−1

1

0

0
...

0


.

Proof. Denote by 1
2 t

(i)
r,k (1 ≤ i ≤ k − 1) the number of integral solutions of the equation

p1 + · · ·+ pm = r, such that m ∈ N, 1 ≤ p1, · · · , pm−1 ≤ k − 1, pm = i,

then it is clear that

{
t
(1)
r+1,k =

∑k−1
i=1 t

(i)
r,k

t
(i)
r+1,k = t

(i−1)
r,k (2 ≤ i ≤ k − 1)

(70)

Note tr,k =
∑k−2

i=1 t
(i)
r,k, by (70) we can get the desired results.

For any integer m ≥ 1 and real number q, define

Sm
b,g1,h1

= {(xi)mi=1 ∈ Sm, x1 = b, g1, or h1},

vm,q =
∑

ω∈Sm
b,g1,h1

||Tω||q, q ∈ R,

where Sm is defined by (64) and Ti,j ’s are defined by (69).

By a discussion similar to that in the proofs of Lemma 17 and Lemma 18, we can show

the following two lemmas.
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Lemma 42 Let un,q be defined by (30). For m ≥ k + 2,

vm,q = (
m−1∑
l=k+1

cl,qvm−l,q) + dm,q,

where

cl,q =
∑

r,i≥0,r+ki+k+1=l

tr,kui,q, l = k + 1, k + 2, · · · (71)

and cm,q ≤ dm,q ≤ cm,q + cm+1,q + · · ·+ cm+k,q.

Lemma 43 lim
m→∞

(vm,q)
1
m = x(k, q)−1, where

x(k, q) = sup{x :

∞∑
l=k+1

cl,qx
l ≤ 1}. (72)

Now let us consider the differentiability of x(k, q).

Lemma 44 For any real number q, let x(k, q) be defined by (72). Then x(k, q) is the positive

root of
1− 2xk−1 + xk

1− 2x+ xk
·
∑
n≥0

un,qx
kn+k+1 = 1. Moreover, 0 < x(k, q) ≤ λk−1 and it is an

infinitely differentiable function of q on the whole line.

Proof. Note from (71) that

∞∑
l=k+1

cl,qx
l = (1 +

∑
r≥1

tr,kx
r)(
∑
n≥0

un,qx
kn+k+1). (73)

Using Lemma 40 and a direct calculation, we have

1 +
∑
r≥1

tr,kx
r =


1− 2xk−1 + xk

1− 2x+ xk
if 0 < x < λk−1

+∞ if x ≥ λk−1.
(74)

Thus to prove Lemma 44, by a reason similar to that in the proof of Proposition 25, we only

need to show that for any q there exists 0 < y < 1 such that 1 <
∑∞

l=k+1 cl,qy
l <∞.

Assume that this statement is not true, then there exist two real numbers q′ and 0 < x′ < 1

such that
∞∑

l=k+1

cl,q′(x
′)l ≤ 1

and
∞∑

l=k+1

cl,q′t
l = +∞ if t > x′. (75)

Since
∑∞

l=k+1 cl,q′(x
′)l ≤ 1, it follows from (73)-(74) that

x′ < λk−1,
∑
n≥0

un,q · (x′)kn+k+1 < +∞. (76)

51



Therefore by (75), we obtain∑
n≥0

un,qt
kn+k+1 = +∞ for t > x′, (77)

which means
∑

n≥0 un,q = +∞ since x′ < 1. According to Lemma 24, we can find 0 < y < 1

such that ∑
n≥0

un,q · (x′)kn <
∑
n≥0

un,q · ykn < +∞,

which leads to a contradiction with (77).

Lemma 45 Let Sm and Ti,j’s be defined as in (64), (69), then

lim
m→∞

(
∑

ω∈Sm

||Tω||q)
1
m = x(k, q)−1,

where x(k, q) is given as in (72).

Proof. Similar to the proof of Lemma 19.

5.2 The theorems

Theorem 46 For k ≥ 3, let αk = log λ−1
k / log 2, then

dimH graph(fλk
) =

logx(k, αk)

log λk
,

where 0 < x(k, αk) < λk−1, and it is the positive root of

1− 2xk−1 + xk

1− 2x+ xk
·
∑
n≥0

un,αk
xkn+k+1 = 1.

Proof. The theorem follows from Lemma 9, Lemma 40, Lemma 45 and Lemma 44.

Theorem 47 For k ≥ 3, denote by Lt,λk
the t-level set of fλk

. Then for L almost all

t ∈ [0, 1],

dimH(Lt,λk
) = dimB(Lt,λk

) =
(λk)

k(1− 2(λk)
k)2

(2− (k + 1)(λk)k) log 2

∞∑
n=0

((λk)
kn
∑
|J |=n

log ||MJ ||).

Proof. Denote Σ = {b, d1, · · · , dk−1, e, f, f , g1, · · · , gk−1, h1, · · · , hk−1}. Define a 0-1 matrix

Q̂ = (Q̂i,j)i,j∈Σ such that

Q̂i,j =

{
1, if i generates out j in the formula (63)

0, otherwise

Denote by γi(i ∈ Σ) be the relative length of the color i, that is,
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γb = γf = γf = (λk)
k, γe = 1− 2(λk)

k,

γds = (λk)
k−s, (s = 1, · · · , k − 1)

γgs = γhs = 1− (λk)
k − (λk)

k−s, (s = 1, · · · , k − 1)

Define a probability matrix P = (Pi,j)i,j∈Σ by

Pi,j =

{
λk ·

γj
γi
, if i generates out j in (63)

0, otherwise

Let p =(pi)i∈Σ be the probability vector such that p = pP . By direct calculation, we have

pb =
1− 2(λk)

k

2− (k + 1)(λk)k
· (λk)k, pd1 = · · · = pdk−1

=
(λk)

k

2− (k + 1)(λk)k
,

pf = pf =
(λk)

2k

2− (k + 1)(λk)k
, pe =

(λk)
k(1− 2(λk)

k)

2− (k + 1)(λk)k
,

pgs = phs =
λk

2− (k + 1)(λk)k
· (1− (λk)

k − (λk)
k−s), s = 1, · · · , k − 1.

Let ξ be the p-P Markov measure on the subshift space ΣN̂
Q

which is defined as

ΣN̂
Q

= {ω = (xi)
∞
i=1 ∈ ΣN : Q̂xi,xi+1 = 1 for all i ≥ 1}.

Then by a discussion similar to the proof of Lemma 28, we obtain that for ξ almost all

ω = (xi)
∞
i=1 ∈ ΣN̂

Q
,

lim
n→∞

log ||Tω|n||
n

=
∑
ν∈Bk

ξ([eν]) log ||Tν ||,

where Ti,j ’s and Bk are defined by (69), (66). Since each element ν of Bk can be written as

one of the following four forms:

(i). b(k)e,

(ii). b(k)Xj1(k) · · ·Xjl(k)e,

(iii). Yi1(p1) · · ·Yim(pm)b(k)e,

(iv). Yi1(p1) · · ·Yim(pm)b(k)Xj1(k) · · ·Xjl(k)e,

where j1, · · · , jl = 0 or 1, 1 ≤ p1, · · · pm−1 ≤ k− 1, 1 ≤ pm ≤ k− 2, and is =
1−(−1)s

2 (1 ≤ s ≤
m) or is =

1+(−1)s

2 (1 ≤ s ≤ m). And the values of ξ([eν]) and ||Tν || for these four cases are

equal to

ξ([eν]) ||Tν ||

(i).
pe
λk

· (λk)k+2 2

(ii).
pe
λk

· (λk)kl+k+2 ||Mj1 · · ·Mjl ||

(iii).
pe
λk

· (λk)p1+···pm+k+2 2

(iv).
pe
λk

· (λk)p1+···pm+kl+k+2 ||Mj1 · · ·Mjl ||
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Therefore∑
ν∈B

ξ([eν]) log ||Tν || =
pe
λk

·
+∞∑
l=0

(
∑
|J |=l

log ||MJ ||)(λk)lk+k+2

+
pe
λk

(
∑
r≥1

tr,k · (λk)r) ·
+∞∑
l=0

(
∑
|J |=l

log ||MJ ||)(λk)lk+k+2

=
pe
λk

· (1 +
∑
r≥1

tr,k · (λk)r) ·
+∞∑
l=0

(
∑
|J |=l

log ||MJ ||)(λk)lk+k+2

=
(λk)

k(1− 2(λk)
k)

2− (k + 1)(λk)k
· (λk)k+1 · 1− 2(λk)

k−1 + (λk)
k

1− 2λk + (λk)k

·
+∞∑
l=0

(
∑
|J |=l

log ||MJ ||)(λk)lk

=
(λk)

k(1− 2(λk)
k)2

(2− (k + 1)(λk)k)

∞∑
n=0

((λk)
kn
∑
|J |=n

log ||MJ ||).

By a discussion similar to that in the proof of Theorem 33, we have for L almost all t ∈ [0, 1],

dimH(Lt,λk
) = dimB(Lt,λk

) =
1

log 2

∑
ν∈B

ξ([eν]) log ||Tν ||

=
(λk)

k(1− 2(λk)
k)2

(2− (k + 1)(λk)k) log 2

∞∑
n=0

((λk)
kn
∑
|J |=n

log ||MJ ||).

Theorem 48 Let k ≥ 3. For any q ∈ R, the Lq-spectrum τλk
(q) of µλk

is equal to

q log 2

log λ−1
k

+
logx(k, q)

log λ−1
k

,

where 0 < x(k, q) < λk−1, and it satisfies that
1− 2xk−1 + xk

1− 2x+ xk
·
∑
n≥0

un,qx
kn+k+1 = 1.Moreover,

τλk
(q) is an infinitely differentiable function of q on the whole line.

Proof. The theorem follows from Corollary 5, Lemma 40, Lemma 45 and Lemma 44.

Define

SN = {(xi)∞i=1 ∈ ΞN : Qxi,xi+1 = 1 for all i ≥ 1, x1 = a, b or c}, (78)

there is a natural projection Π from the symbolic space SN onto the interval [0, 1], which is

defined by

(xi)
∞
i=1 7→ ∩n

i=1Vx1···xn ,

here Vx1···xn is the n-th net interval associated with λk corresponding to (xi)
n
i=1. Then by a

discussion similar to the proofs of Theorem 35 and Theorem 36, we obtain the following two

theorems.
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Theorem 49 Let Π : SN → [0, 1] defined as above. Then for each ω = (xi)
∞
i=1 ∈ SN, the

upper and lower local dimension of µλk
at Π(ω) are given by

d(µλk
,Π(ω)) =

log 2

log λ−1
k

+ lim
n→∞

sup
log ||Tω|n||
n log λk

,

d(µλk
,Π(ω)) =

log 2

log λ−1
k

+ lim
n→∞

inf
log ||Tω|n||
n log λk

.

Theorem 50 For L almost all x ∈ [0, 1], the upper and lower local dimension of µλk
at x

coincide, and the common value is equal to

d(µλk
, x) =

log 2

log λ−1
k

+
1

log λk
· (λk)

k(1− 2(λk)
k)2

(2− (k + 1)(λk)k)

∞∑
n=0

((λk)
kn
∑
|J |=n

log ||MJ ||).

Let consider the set

R(µλk
) := {y : ∃x ∈ [0, 1], d(µλk

, x) = y}

for k ≥ 3. Hu gave a result that R(µλk
) = [ log 2

log λ−1
k

− 1
k

log λ
log λk

, log 2

log λ−1
k

]; see Theorem 1.19 of

[Hu]. However, this result is false. In the following we give the correct result.

Theorem 51 For k ≥ 3, R(µλk
) = [ k

k+1 · log 2

log λ−1
k

, log 2

log λ−1
k

].

Proof. The proof given here is similar to that of Theorem 37. Let Bk be the collection

of letter strings defined as in (66) and Ti,j ’s defined by (69). Since for any letter strings

i1, i2, · · · , in, · · · ∈ Bk

i1 ◦ i2 ◦ · · · ◦ in ◦ · · · ∈ SN,

and

||Ti1◦i2◦···◦in || = ||Ti1 || × ||Ti2 || × · · · × ||Tin ||,

by Theorem 49 we have

R(µλ) ⊃ [
log 2

log λ−1
k

− 1

log λ−1
k

· x1,
log 2

log λ−1
k

− 1

log λ−1
k

· y1], (79)

where

x1 = sup
i∈Bk

log ||Ti||
|i|

, y1 = inf
i∈Bk

log ||Ti||
|i|

,

here |i| denotes the length of the letter string i. In the end of our proof, we will show that

x1 =
1

k+1 log 2 and y1 = 0.

On the other hand, for any ω ∈ SN (SN is defined by (78)), ω|n is the prefix of an infinite

letter string of the following possible forms:

i1 ◦ i2 ◦ · · · ◦ im ◦ · · · , the first letter of i1 is b

al ◦ i1 ◦ i2 ◦ · · · ◦ im ◦ · · · , the first letter of i1 is b or h1

cl ◦ i1 ◦ i2 ◦ · · · ◦ im ◦ · · · , the first letter of i1 is b or g1
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where l ∈ N and i1, i2, · · · im, · · · ∈ Bk; furthermore, by the generating relation (63), there

exists a letter string j of length less than k+2 such that the concatenation (ω|n)◦ j is of the

following possible forms

i1 ◦ i2 ◦ · · · ◦ im, the first letter of i1 is b

al ◦ i1 ◦ i2 ◦ · · · ◦ im, the first letter of i1 is b or h1

cl ◦ i1 ◦ i2 ◦ · · · ◦ im, the first letter of i1 is b or g1

where l ∈ N and i1, i2, · · · im ∈ Bk. Since ||Tal || = ||Tcl || = 1, therefore the above analysis

implies that

{y : ∃x ∈ [0, 1], d(µλ, x) = y} ⊂ [
log 2

log λ−1
k

− 1

log λ−1
k

· x1,
log 2

log λ−1
k

] (80)

and

{y : ∃x ∈ [0, 1], d(µλ, x) = y} ⊂ [
log 2

log λ−1
k

− 1

log λ−1
k

· x1,
log 2

log λ−1
k

]. (81)

Therefore by (79)-(81) and y1 = 0(what we will prove afterwards),

R(µλk
) = [

log 2

log λ−1
k

− 1

log λ−1
k

· x1,
log 2

log λ−1
k

− 1

log λ−1
k

· y1].

In what follows, we determine the exact values of x1 and y1.

Note that for any integer n > 0,

b(k)(X0(k))
ne ∈ Bk, Tb(k)(X0(k))ne = (M0)

n =

(
1 n

0 1

)
,

it follows y1 = 0 since (log || Tb(k)(X0(k))ne||)/(kn+ k + 1) tends to 0 as n tends to infinity.

To determine the value of x1, let us consider the possible form of the element Bk. Recall

that each element of Bk is of the forms

(i). b(k)e,

(ii). b(k)Xj1(k) · · ·Xjl(k)e,

(iii). Yi1(p1) · · ·Yim(pm)b(k)e,

(iv). Yi1(p1) · · ·Yim(pm)b(k)Xj1(k) · · ·Xjl(k)e,

where j1, · · · , jl = 0 or 1, 1 ≤ p1, · · · pm−1 ≤ k− 1, 1 ≤ pm ≤ k− 2, and is =
1−(−1)s

2 (1 ≤ s ≤
m) or is =

1+(−1)s

2 (1 ≤ s ≤ m). Since TY0(p) = TY1(p) = 1 for each 1 ≤ p ≤ k − 1, it follows

that

x1 = sup
l≥0, j1,···,jl=0 or 1

log ||Tb(k)Xj1
(k)···Xjl

(k)e||
|b(k)Xj1(k) · · ·Xjl(k)e|

= sup
l≥0, j1,···,jl=0 or 1

log ||Mj1···jl ||
kl + k + 1

= sup
l≥0

log ||M0M1 · · ·Ml(mod 2)||
kl + k + 1
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= sup
l≥0

log(2+λ+(−1)lλ2l+4

1+λ2 · λ−l)

kl + k + 1

= sup
l≥0

log(
2 + λ+ (−1)lλ2l+4

1 + λ2
) + log λ−l

(k + 1) + kl
.

Note that

1

k + 1
log(

2 + λ+ (−1)lλ2l+4

1 + λ2
) ≤ 1

k + 1
log(

2 + λ+ λ4

1 + λ2
) =

1

k + 1
log 2,

1

kl
log λ−l =

1

k
log λ−1,

we have

x1 = max{ 1

k + 1
log 2,

1

k
log λ−1} =

1

k + 1
log 2.

Theorem 52 The Hausdorff dimension and information dimension of µλk
(k ≥ 3) satisfy

dimH µλk
= diminfo µλk

= − log 2

log λk
+

(
2k − 3

2k − 1

)2

·

∞∑
n=0

2−kn−k−1
∑

|J |=n

||MJ || log ||MJ ||

log λk
.

Proof. By Theorem 48, τλk
(q) is a differentiable function of q. Thus by Lemma 38,

dimH µλk
= diminfo µλk

= τ ′λk
(1),

the desired result follows from the direct calculation of τ ′λk
(1) by the formula of τλk

(q). We

omit the detail of this calculation.

6 The case for other Pisot numbers.

In this section we will summarize some results for the reciprocals of general Pisot numbers.

Suppose ρ (> 1/2) is the reciprocal of a Pisot number. By Lemma 2, #Cρ < +∞, that

is, the number of different possible I-colors associated with ρ is finite. Thus according to

the generating relations of I-colors associated with ρ, we can find a finite alphabet set Ω =

{a, b, c, · · ·} (each letter in Ω represents an element of Cρ, sometimes several letters represent

the same one element of Cρ. We always use a to represent ({0}, 1−ρ
ρ ), b to ({ρ−1

ρ , 0}, 2ρ−1
ρ )

and c to ({1−2ρ
ρ }, 1−ρ

ρ ).), and obtain a 0-1 matrix H = (Hi,j)i,j∈Ω such that for any positive

integer n there exists a one-to-one correspondence between the collection of all the n-th net

intervals associated with ρ and the set

Sn := {(xi)ni=1 ∈ Ωn : Hxi,xi+1 = 1 for 1 ≤ i < n, and x1 = a, b or c}.
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Moreover, according to the generating relations of II-colors, we can define a family of matrixes

Ti,j for each pair (i, j) ∈ Ω×Ω withHi,j = 1, such that if them-th net interval J corresponding

to ω = (xi)
m
i=1 ∈ Sm has the II-color ({(t1, n1), · · · , (tr, nr)}, γ), then

(n1, · · · , nr) =

{
1 · Tx1,x2 · Tx2,x3 · · ·Txm−1,xm if x1 = a or c

(1, 1) · Tx1,x2 · Tx2,x3 · · ·Txm−1,xm if x1 = b
(82)

and

Nm,ρ(J) :=
r∑

i=1

ni = ||Tω||, (83)

where Tω := Tx1,x2 · · ·Txm−1,xm .

Before we give the explicit µρ measure of a given net interval, we define at first two families

of vectors pi, qi (i ∈ Ω). Suppose i ∈ Ω represents the I-color ({(t1, n1), · · · , (tr, nr)}, γ), then
define

pi =(1, · · · , 1︸ ︷︷ ︸)
r 1’s

and

qi =


µρ([−t1,−t1 + γ])

...

µρ([−tr,−tr + γ])

 .

By (82) and Lemma 4(i), we obtain

Theorem 53 If J is a m-th net interval corresponding to ω = (xi)
m
i=1 ∈ Sm, then

µρ(J) = 2−mpx1Tx1,x2 · · ·Txm−1,xmqxm .

Moreover {qi}i∈Ω satisfies {
qa + (1, 1)qb + qc = 2

qi = 2−1
∑

j, Hi,j=1 Ti,jqj , for i ∈ Ω
(84)

One may get the exact values of {qi}i∈Ω by using (84). For example in the case ρ =
√
5−1
2 ,

Ω = {a, b, c, d, e, f, f}, Ti,j ’s are given by (25), and

qa = qc =
2

3
,

qb = qf = qf =

(
1
3
1
3

)
,

qd =

(
2
3
2
3

)
,

qe =
1

3
.

Now define

SN = {(xi)∞i=1 ∈ ΩN : Hxi,xi+1 = 1 for 1 ≤ i <∞, and x1 = a, b or c}.
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And consider the mapping Π : SN → [0, 1] which is defined by

ω = (xi)
∞
i=1 7→

⋂
m≥1

Vω|m,

where ω|n denotes (xi)
m
i=1. Clearly Π is surjective, and it is one to one except at countable

many points.

Theorem 54 For each ω = (xi)
∞
i=1 ∈ SN, the upper and lower dimension of µρ at Π(ω) are

given by

d(µρ,Π(ω)) =
log 2

log ρ−1
+ lim

n→∞
sup

log ||Tω|n||
log ρ

d(µρ,Π(ω)) =
log 2

log ρ−1
+ lim

n→∞
inf

log ||Tω|n||
log ρ

Proof. It follows from Theorem 53, Corollary 3, Lemma 4(ii) and Lemma 6.

Lemma 55 For any q ≥ 0, the following limit

lim
m→∞

1

m
log

∑
ω∈Sm

||Tω||q (85)

exists.

Proof. Let L be the minimal positive integer such that for any i ∈ Ω, there is a string

W ∈ ∪L
m=1S

m such that the end letter of W is i. Define

Um = {(xi)ni=1 ∈ Ωn : Hxi,xi+1 = 1 for 1 ≤ i < n}, m = 1, 2, · · · .

Then for any positive integer m and real number q ≥ 0,

∑
ω∈Sm

||Tω||q ≤
∑

ω∈Um

||Tω||q ≤
L∑

j=0

∑
ω∈Sm+j

||Tω||q

≤
L∑

j=0

(
∑

ω∈Sm

||Tω||q
∑

ω′∈Uj

||Tω′ ||q)

=
∑

ω∈Sm

||Tω||q.(
L∑

j=0

∑
ω′∈Uj

||Tω′ ||q). (86)

Since for any q ≥ 0,
∑

ω∈Um ||Tω||q is a submultiplicative sequence of m, that is∑
ω∈Um+n

||Tω||q ≤
∑

ω∈Um

||Tω||q ×
∑
ω∈Un

||Tω||q

for any m,n. Therefore the limit limm→∞
1
m log

∑
ω∈Um ||Tω||q exists. This and (86) yield

the desired result.

By Lemma 9 and (83) we obtain
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Theorem 56 The Hausdorff dimension of fρ is equal to

lim
m→∞

1

m log ρ−1
log

∑
ω∈Sm

||Tω||− log ρ / log 2. (87)

By Corollary 5 and (83), we have

Theorem 57 For any real number q, the Lq-spectrum τµρ(q) is equal to

q log 2

log ρ−1
+ lim

m→∞
inf

1

m log ρ−1
log

∑
ω∈Sm

||Tω||q. (88)

As we have shown, the formulas (87) and (88) can be simplified furthermore for the cases

ρ = λk (k ≥ 2), the essential reason for which is that in these cases,

any I-color associated with ρ can generate out ultimately

an I-color of the form ({t1}, γ) (89)

and therefore ||Tω|| can be decomposed into some product of ||Tωi ||’s.
We call ρ−1 the Pisot number of the first class if the property (89) holds for ρ, or we

call it the Pisot number of the second class.

As we have mentioned in Section 1, there are only four algebraic integers of degree 3

to be Pisot numbers which are less than 2. They are respectively the positive roots of (i)

x3 − x2 − x− 1 = 0, (ii) x3 − x2 − 1 = 0, (iii)x3 − x− 1 = 0, and (iv) x3 − 2x2 + x− 1 = 0;

In Section 5, we have discussed the case when ρ is the reciprocal of the positive root of (i).

However what about the other three cases? By direct computation, (89) holds only if ρ is

the reciprocal of the positive root of (iv). In section 8, as an appendix, we will give the

generating relations of I-colors associated with the reciprocal of positive root of (iv). One

can simplify the formulas (87) and (88) for this case in a manner similar to that for the case

ρ = λk (k ≥ 2).

We end this section by two questions:

(i) Is the limit ( 85) always differentiable on q > 0 for any reciprocal of Pisot number?

(ii) Beside the generating relations of I-colors, is it possible to find a simpler method to

determine whether a given Pisot number is of the first class?

7 Final remarks

In this section, we would like to point out that with some additive work our method is valid

to analyze the local properties of some other self-similar measures.

(i) Biased Bernoulli convolutions associated with Pisot numbers: let ρ (> 1/2)

be the reciprocal of a Pisot number, for fixed 0 < p < 1, the Biased Bernoulli convolution

µ
(p)
ρ is defined as the self-similar measure satisfying that

µ(p)ρ = pµ(p)ρ ◦ ϕ−1
0,ρ + (1− p)µ(p)ρ ◦ ϕ−1

1,ρ,
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where ϕ0,ρ(x) = ρx and ϕ1,ρ(x) = ρx+ (1− ρ).

To consider µ
(p)
ρ , we define the net intervals and their I-colors the same as those in Section

2. In place of II-colors, we will introduce the notion of II(p)-colors. Let Λ = {0, 1}N be the

sequence space with the Bernoulli measure vp = (p, 1− p)N. It is not hard to see that

µ(p)ρ = vp ◦Π−1
ρ where Πρ(x) = (1− ρ)

∞∑
i=0

xnρ
n.

Now suppose J = [a, b] is a m-th net interval associated with ρ, the II(p)-color of J is defined

as an element of 2R×R ×R :

({(ϕω,ρ(0)− a

ρm
, u(ω)) : ω ∈ {0, 1}m such that − ρm < ϕω,ρ(0)− a ≤ 0}, b− a

ρm
),

where u(ω) = vp{x = (xi)
∞
i=1 ∈ Λ : Πρ(x) ∈ [a, b], ϕx1···xm,ρ(0) = ϕω,ρ(0)}.

By considering the generated relations of II(p)-colors, we can show similarly that the µ
(p)
ρ

measure on a m-th net interval is still given by the product of m matrixes. For simplicity,

here we only give some results for ρ =
√
5−1
2 .

Proposition 58 Let ρ =
√
5−1
2 . Suppose that J is a m-th net interval (m ≥ 2) corresponding

to ω = (xi)
m
i=1 ∈ Sm (Sm defined as in (21)), and the II(p)-color of J is ({(t1, u1), · · · , (tr, ur)}, γ),

then

(u1, · · · , ur) =



p2

1− p+ p2
· T (p)

x1,x2
· T (p)

x2,x3
· · ·T (p)

xm−1,xm
if x1 = a

(
p(1− p)2

1− p+ p2
,
p2(1− p)

1− p+ p2
) · T (p)

x1,x2
· T (p)

x2,x3
· · ·T (p)

xm−1,xm
if x1 = b

(1− p)2

1− p+ p2
· T (p)

x1,x2
· T (p)

x2,x3
· · ·T (p)

xm−1,xm
if x1 = c

and µ
(p)
ρ (J) = u1 + · · ·+ ur, where the matrixes T

(p)
i,j are given by

T
(p)
a,a = p, T

(p)
a,b = ((1− p)2, (1− p)p),

T
(p)
b,d =

(
1 0

0 1

)
,

T
(p)
c,b = ((1− p)p, p2), T

(p)
c,c = 1− p

T
(p)
d,f =

(
p(1− p) p2

0 p2

)
, T

(p)
d,e =

(
(1− p)p

(1− p)p

)
, T

(p)

d,f
=

(
(1− p)2 0

(1− p)2 (1− p)p

)
,

T
(p)
e,b = (1− p, p)

T
(p)
f,d =

(
1 0

0 1

)
,

T
(p)

f,d
=

(
1 0

0 1

)
,

Using the above proposition and similar proofs as in Section 4, we can give the explicit

formulas for the Hausdorff dimension, information dimension and Lq-spectrum of µ
(p)

(
√
5−1)/2

.

For example, we have
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dimH µ
(p)

(
√
5−1)/2

= diminfo µ
(p)

(
√
5−1)/2

=
p− p2

2 + p− p2
·
∑

n≥0

∑
|J |=n cJ log cJ

log((
√
5− 1)/2)

where

cJ = (1− p, p)M
(p)
j1

· · ·M (p)
jn

(
p− p2

p− p2

)

and M
(p)
0 = T

(p)
d,f , M

(p)
1 = T

(p)

d,f
.

More generally our method can be used to consider the following measures:

(ii) Self-similar measures generated by a family of similitudes with weak separate

condition. Let {Si}mi=1 be similitudes with the same contraction ratio ρ, {Si}mi=1 is said to

satisfy weak separate condition if there exists a positive constant c such that

|Si1 ◦ Si2 ◦ · · · ◦ Sin(0)− Sj1 ◦ Sj2 ◦ · · · ◦ Sjn(0)| = 0 or ≥ cρn

for integers n ≥ 1, 1 ≤ i1, · · · , in ≤ m, and 1 ≤ j1, · · · , jn ≤ m.(the weak separate condition

was first introduced in [LN1], the present setting is the same as in [FLN]). Let ν be the self-

similar measure generated by {Si}mi=1 with the probability weights (p1, · · · , pm). If {Si}mi=1

satisfies the weak separate condition, then one can still show that the ν measure on any net

interval is given by the matrix product( letting I denote the minimal bounded interval so

that Si(I) ⊂ (I) for 1 ≤ i ≤ m, then m-th net intervals are obtained by the partition of I by

all the endpoints of SJ(I), |J | = m.)

8 Appendix: the generating relations of I-colors associated

with the positive root of x3 − x2 + 2x− 1 = 0.

In this case the number of different I-colors is 29, which can be written as:
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V1 := ({0}, ρ2 − ρ+ 1),

V2 := ({−ρ2 + ρ− 1, 0},−ρ2 + ρ),

V3 := ({ρ2 − ρ}, ρ2 − ρ+ 1),

V4 := ({ρ2 − ρ}, ρ2),
V5 := ({−ρ, 0},−ρ+ 1),

V6 := ({ρ− 1}, ρ2),
V7 := ({ρ2 − ρ, 0}, ρ2 − ρ+ 1),

V8 := ({ρ− 1, 0}, ρ2),
V9 := ({−ρ2 + ρ− 1,−ρ2, 0},−ρ2 + ρ),

V10 := ({−ρ, ρ2 − ρ}, ρ2 − 2ρ+ 1),

V11 := ({−ρ2 + ρ− 1, ρ− 1, 0},−ρ2 + ρ),

V12 := ({ρ2 − 1, ρ2 − ρ}, ρ2),
V13 := ({−ρ, 0}, ρ2 − 2ρ+ 1),

V14 := ({−ρ2 + ρ− 1,−ρ2 + 2ρ− 1, 0},−ρ2 + ρ),

V15 := ({ρ− 1, ρ2 − ρ}, ρ2),
V16 := ({−ρ2 + ρ− 1,−ρ, 0},−ρ2 + ρ+ 0),

V17 := ({ρ2 − 2ρ, ρ2 − ρ}, ρ2 − 2ρ+ 1),

V18 := ({ρ2 − ρ, 0}, ρ2),
V19 := ({−ρ,−ρ2, 0},−ρ+ 1),

V20 := ({ρ2 − 1, ρ2 − ρ}, 2ρ2 − ρ),

V21 := ({−ρ,−ρ2 − ρ, 0},−ρ+ 1),

V22 := ({ρ2 − 1, ρ− 1}, ρ2),
V23 := ({−ρ, ρ2 − ρ, 0}, ρ2 − 2ρ+ 1),

V24 := ({−ρ2 + ρ− 1, ρ− 1,−ρ2 + 2ρ− 1, 0},−ρ2 + ρ),

V25 := ({ρ2 − 1, ρ− 1, ρ2 − ρ}, ρ2),
V26 := ({ρ− 1}, 2ρ− 1),

V27 := ({ρ− 1, ρ2 − ρ, 0}, ρ2),
V28 := ({−ρ2 + ρ− 1,−ρ,−ρ2, 0},−ρ2 + ρ),

V29 := ({ρ2 − 2ρ,−ρ, ρ2 − ρ}, ρ2 − 2ρ+ 1),

And the generating relations of I-colors can be written as:
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V1 → V1 + V2 + V4; V2 → V5;

V3 → V6 + V2 + V3; V4 → V6 + V2;

V5 → V7; V6 → V2 + V4;

V7 → V8 + V9 + V10 + V11 + V12; V8 → V2 + V4;

V9 → V13 + V14; V10 → V15;

V11 → V16 + V17; V12 → V6 + V2;

V13 → V18; V14 → V19;

V15 → V11 + V20 + V9; V16 → V21;

V17 → V22; V18 → V8 + V9;

V19 → V23 + V24 + V25; V20 → V26;

V21 → V27 + V28 + V29; V22 → V11 + V12;

V23 → V27; V24 → V28 + V29;

V25 → V11 + V20 + V9; V26 → V2;

V27 → V11 + V20 + V9; V28 → V23 + V24;

V29 → V25;

The reader may check that for any 1 ≤ i ≤ 29, the I-color Vi can generate out ultimately V26.
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