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Abstract
Let (�, σ ) be the one-sided shift space onm symbols. For any x = (xi)i�1 ∈ �
and positive integer n, define

Rn(x) = inf{j � n : x1x2 · · · xn = xj+1xj+2 · · · xj+n}.
We prove that for each pair of numbersα, β ∈ [0,∞] withα � β, the following
recurrent set

Eα,β =
{
x ∈ � : lim inf

n→∞
logRn(x)

n
= α, lim sup

n→∞
logRn(x)

n
= β

}
has Hausdorff dimension one.

AMS classification scheme number: 28A80

1. Introduction

Let (�, σ ) be the one-sided shift space onm symbols 1, 2, . . . , m (m � 2). A commonly used
metric on � is given by

d(x, y) = m− inf{k�0:xk+1 	=yk+1}

for x = (xi)∞i=1 and y = (yi)∞i=1.
For any x = (xi)i�1 ∈ � and positive integer n, define

Rn(x) = inf
{
j � n : x1x2 · · · xn = xj+1xj+2 · · · xj+n

}
that is, Rn(x) is the first moment j � n such that σ j (x) belongs to the n-cylinder
In(x) = {y ∈ � : yi = xi for 1 � i � n}. It was proved by Ornstein and Weiss (see
[OW]) that for each σ -invariant ergodic Borel probability measure µ on �,

µ

{
x ∈ � : lim

n→∞
logRn(x)

n
= hµ(σ )

}
= 1

here hµ(σ ) denotes the measure-theoretic entropy of µ with respect to σ .

0951-7715/01/010081+05$30.00 © 2001 IOP Publishing Ltd and LMS Publishing Ltd Printed in the UK 81



82 D-J Feng and J Wu

In this paper, we would like to consider a more subtle question: for each pair of numbers
α, β ∈ [0,∞] with α � β, what is the size of the following set:

Eα,β =
{
x ∈ � : lim inf

n→∞
logRn(x)

n
= α, lim sup

n→∞
logRn(x)

n
= β

}
.

Since these sets are very complicated, we only consider their Hausdorff dimensions. The
reader can refer to Falconer’s book [Fal] for the definition of Hausdorff dimension. We should
point out that under the metric d , the space � is of Hausdorff dimension one.

Our answer to the above question is the following theorem, which is somewhat surprising
since the collection {Eα,β} is an uncountable partition of the space �.

Theorem 1. For any α, β ∈ [0,∞] with α � β, we have

dimH Eα,β = 1

where dimH denotes the Hausdorff dimension.

The main idea of the proof is constructing Cantor-like subsets of Eα,β so that their
Hausdorff dimensions converge to one.

2. Proof of theorem 1

The proof of theorem 1 is based on the following lemma:

Lemma 1. Let {�n} be a sequence of positive integers such that (a) ∃n0, �n+1 � �n + 2n for
any n � n0 and (b) limn→∞ �n/n2 = ∞. Then the following set

A{�n} := {x ∈ � : ∃k0, Rk(x) = �k for k � k0}
has Hausdorff dimension one.

Proof. Write for brevityA = A{�n}. Since dimH � = 1, it suffices to show that dimH A � 1−δ
for any δ > 0.

Fix δ > 0. Choose an integer p � max{6, n0} so that p−2
p
> 1 − δ, and define

Fp = {x = (xi)i�1 ∈ � : xj = m for 1 � i � p, xpk+1 = xpk+p = 1 for k � 1}.
Since the set {x = (xi)i�1 ∈ � : xpk+1 = xpk+p = 1 for k � 0} can be viewed as a self-similar
set generated by mp−2 many similitudes with ratio m−p, its Hausdorff dimension is equal to

logmp−2

logmp
= p − 2

p

therefore dimH Fp = p−2
p
> 1 − δ.

In what follows, we will construct an injective map g from Fp toA such that g−1 is nearly
Lipschitz on g(Fp), i.e. ∀ε > 0, ∃M such that

d(g(x), g(y)) < m−k implies d(x, y) < m−(1−ε)k

for k � M . This means that dimH g(Fp) � dimH Fp (see proposition 2.3 of [Fal]) and thus,
dimH A � dimH g(Fp) � dimH Fp � 1 − δ, as we desired.

For each x = (xi)i�1 ∈ Fp, we construct x∗ ∈ � by induction. Define x(p−1) = x.
Suppose we have defined x(j) = x(j)1 x

(j)

2 · · · x(j)n · · · for p − 1 � j � k − 1, we define x(k) as
follows:

x(k) = x(k−1)
1 x

(k−1)
2 · · · x(k−1)

lk−1 ◦ wk ◦ x(k−1)
lk

x
(k−1)
lk+1 · · ·
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where wk is a word of length k + 3 such that

wk = 1x(k−1)
1 x

(k−1)
2 · · · x(k−1)

k yk1

here yk is a letter not equal to x(k−1)
k+1 . That is, x(k) is obtained by inserting a wordwk into x(k−1)

at the place �k .
The sequence {x(i)}i�p, defined above, satisfies the following properties:

(a) For any k � p, the prefix x(k−1)
1 x

(k−1)
2 · · · x(k−1)

lk−1 ◦ wk of x(k) is also the prefix of x(k+1).
This is deduced from the condition �k+1 � �k + 2k. Thus the sequence {x(i)}i�p converges
to a point x∗. Moreover, the first �k+1 − 1 � �k + 2k− 1 symbols of x∗ and x(k) coincide.

(b) For each k � p, Rk(x∗) = lk .
To see property (b), note first that x(k−1)

1 x
(k−1)
2 · · · x(k−1)

lk−1 ◦ wk is the prefix of x∗, thus by
the construction of wk we have d(σ �k (x∗), x∗) = m−k for each k � p. Let

θ = mm · · ·m︸ ︷︷ ︸
p

.

The block θ can only appear in the words wk and the beginning of x(k) for each k � p.
Combining this with the construction of x(p), we haveRp(x∗) = �p. To finish the proof of (b),
it is enough to show that for any k � p, d(σ �k+i(x∗), x∗) > m−k for any 1 � i < �k+1 − �k .
We prove this below by contradiction. Assume that d(σ �k+i(x∗), x∗) � m−k for some k � p
and some 1 � i < �k+1 − �k . Note that θ does not appear in the word x(k−1)

�k
x
(k−1)
�k+1 · · · x(k−1)

�k+1−1,

we must have i � k − 1 (using the fact that yk1x
(k−1)
�k

x
(k−1)
�k+1 · · · x(k−1)

�k+1−k−41 is the prefix of
σ �k+k(x∗)). Thus

x
(k−1)
i+1 x

(k−1)
i+2 · · · x(k−1)

k yk1x
(k−1)
�k

x
(k−1)
�k+1 · · · x(k−1)

�k+i−3 = x(k−1)
1 x

(k−1)
2 · · · x(k−1)

k . (1)

Since the left-hand side of (1) contains no copy of the blocks θ and

mm · · ·m︸ ︷︷ ︸
p−1

beginning after yk , the word x(k−1)
1 x

(k−1)
2 · · · x(k−1)

k yk1x
(k−1)
�k

x
(k−1)
�k+1 · · · x(k−1)

�k+i−3 contains at most

one more copy of θ than x(k−1)
1 x

(k−1)
2 · · · x(k−1)

k . In view of the fact that the number of
times that θ appears as a subword must be the same in both sides of (1), we must have
x
(k−1)
k−p+2x

(k−1)
k−p+3 · · · x(k−1)

k yk = θ . Therefore,

x
(k−1)
k−p+2x

(k−1)
k−p+3 · · · x(k−1)

k = mm · · ·m︸ ︷︷ ︸
p−1

.

Hence the block

mm · · ·m︸ ︷︷ ︸
p−1

is the suffix of the word x(k−1)
i+1 x

(k−1)
i+2 · · · x(k−1)

k yk1x
(k−1)
�k

x
(k−1)
�k+1 · · · x(k−1)

�k+i−3, which is a
contradiction to the fact that the block

mm · · ·m︸ ︷︷ ︸
p−1

does not appear in the word x(k−1)
�k

x
(k−1)
�k+1 · · · x(k−1)

�k+i−3. Thus we have proved that Rk(x∗) = �k
for k � p.
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Define g : Fp → A by x �→ x∗. It is clear from the construction that g is injective. In the
following we show that g−1 is nearly Lipschitz on g(Fp), i.e. ∀ε > 0, ∃M such that

d(x∗, y∗) < m−k implies d(x, y) < m−(1−ε)k

for k � M .
Since limn→∞ �n/n2 = ∞, there exists an integer N > p such that n2/�n < ε/2 for

any n � N . Let M = �N . If d(x∗, y∗) < m−k for some integer k � M , then we have
x∗

1x
∗
2 · · · x∗

k = y∗
1y

∗
2 · · · y∗

k . Let q be the integer so that �q � k � �q+1. Since k � �N , it
follows immediately q � N > p. By the construction of x∗ and y∗, we must have

x1x2 · · · xk′ = y1y2 · · · yk′
where k′ = k − ∑q+1

j=p(j + 3). Note that

k′ > k − 2q2 � k − ε�q � k(1 − ε)
we have d(x, y) � m−k′ � m−(1−ε)k , as we desired. �

Proof of theorem 1. By lemma 1, to prove the theorem it suffices to show that for any given
α, β ∈ [0,∞] with α � β there exists a sequence of positive integers {�n} such that it satisfies
the conditions (a) and (b) of lemma 1 and

lim inf
n→∞

log �n
n

= α lim sup
n→∞

log �n
n

= β.

In the following we will give concrete constructions of {�n} for different cases.

Case 1. α = β = ∞. In this case, define �n = [en
2
], here and afterwards [x] denote the

integral part of x.

Case 2. 0 < α = β <∞. In this case, define �n = [enα].

Case 3. α = β = 0. In this case, define �n = [e
√
n].

Case 4. 0 < α < β <∞. In this case, set

un =




[enα] if
2i−1∑
j=1

24j � n <
2i∑
j=1

24j for some integer i > 0

[enβ] otherwise

and define �n = ∑n
i=1 ui .

Case 5. 0 < α < β = ∞. In this case, define

un =




[enα] if
2i−1∑
j=1

24j � n <
2i∑
j=1

24j for some integer i > 0

[en
2
] otherwise

and define �n = ∑n
i=1 ui .
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Case 6. 0 = α < β <∞. In this case, set

un =




[e
√
n] if

2i−1∑
j=1

24j � n <
2i∑
j=1

24j for some integer i > 0.

[enβ] otherwise

and define �n = ∑n
i=1 ui .

Case 7. 0 = α, β = ∞. Define

un =




[e
√
n] if

2i−1∑
j=1

24j � n <
2i∑
j=1

24j for some integer i > 0

[en
2
] otherwise

and define �n = ∑n
i=1 ui . �

Remark 1. Theorem 1 can be generalized to transitive subshifts of finite type.

Let A = (ai,j ) be an m×m matrix with ai,j ∈ {0, 1}. Define

�A = {(xn) ∈ � : axn,xn+1 = 1, ∀n � 1}.
Note that σ�A ⊂ �A. The system (�A, σ ) is called a subshift of finite type. Suppose further
that all the entries of AM are strictly positive for some M � 1. Then the subshift is said
to be (topologically) transitive. Using the similar argument, we can obtain dimH Eα,β =
dimH �A = log ρ

logm , where ρ is the spectral radius of A.
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