The Hausdorff dimension of recurrent sets in symbolic spaces

De-Jun Feng ${ }^{1,2}$ and Jun Wu ${ }^{2,3}$
${ }^{1}$ Department of Mathematical Science, Tsinghua University, Beijing, 100084, People's Republic of China
${ }^{2}$ The Institute of Mathematical Science, The Chinese University of Hong Kong, Shatin N T, Hong Kong
${ }^{3}$ Department of Mathematics and Nonlinear Science Center, Wuhan University, Wuhan, 430072, People's Republic of China
E-mail: dfeng@math.tsinghua.edu.cn and wujunyu@public.wh.hb.cn

Received 3 May 2000, in final form 16 August 2000
Recommended by M Viana

Abstract

Let (Σ, σ) be the one-sided shift space on m symbols. For any $x=\left(x_{i}\right)_{i \geqslant 1} \in \Sigma$ and positive integer n, define

$$
R_{n}(x)=\inf \left\{j \geqslant n: x_{1} x_{2} \cdots x_{n}=x_{j+1} x_{j+2} \cdots x_{j+n}\right\} .
$$

We prove that for each pair of numbers $\alpha, \beta \in[0, \infty]$ with $\alpha \leqslant \beta$, the following recurrent set
$E_{\alpha, \beta}=\left\{x \in \Sigma: \liminf _{n \rightarrow \infty} \frac{\log R_{n}(x)}{n}=\alpha, \limsup _{n \rightarrow \infty} \frac{\log R_{n}(x)}{n}=\beta\right\}$ has Hausdorff dimension one.

AMS classification scheme number: 28A80

1. Introduction

Let (Σ, σ) be the one-sided shift space on m symbols $1,2, \ldots, m(m \geqslant 2)$. A commonly used metric on Σ is given by

$$
d(x, y)=m^{-\inf \left\{k \geqslant 0: x_{k+1} \neq y_{k+1}\right\}}
$$

for $x=\left(x_{i}\right)_{i=1}^{\infty}$ and $y=\left(y_{i}\right)_{i=1}^{\infty}$.
For any $x=\left(x_{i}\right)_{i \geqslant 1} \in \Sigma$ and positive integer n, define

$$
R_{n}(x)=\inf \left\{j \geqslant n: x_{1} x_{2} \cdots x_{n}=x_{j+1} x_{j+2} \cdots x_{j+n}\right\}
$$

that is, $R_{n}(x)$ is the first moment $j \geqslant n$ such that $\sigma^{j}(x)$ belongs to the n-cylinder $I_{n}(x)=\left\{y \in \Sigma: y_{i}=x_{i}\right.$ for $\left.1 \leqslant i \leqslant n\right\}$. It was proved by Ornstein and Weiss (see [OW]) that for each σ-invariant ergodic Borel probability measure μ on Σ,

$$
\mu\left\{x \in \Sigma: \lim _{n \rightarrow \infty} \frac{\log R_{n}(x)}{n}=h_{\mu}(\sigma)\right\}=1
$$

here $h_{\mu}(\sigma)$ denotes the measure-theoretic entropy of μ with respect to σ.

In this paper, we would like to consider a more subtle question: for each pair of numbers $\alpha, \beta \in[0, \infty]$ with $\alpha \leqslant \beta$, what is the size of the following set:

$$
E_{\alpha, \beta}=\left\{x \in \Sigma: \liminf _{n \rightarrow \infty} \frac{\log R_{n}(x)}{n}=\alpha, \limsup _{n \rightarrow \infty} \frac{\log R_{n}(x)}{n}=\beta\right\} .
$$

Since these sets are very complicated, we only consider their Hausdorff dimensions. The reader can refer to Falconer's book [Fal] for the definition of Hausdorff dimension. We should point out that under the metric d, the space Σ is of Hausdorff dimension one.

Our answer to the above question is the following theorem, which is somewhat surprising since the collection $\left\{E_{\alpha, \beta}\right\}$ is an uncountable partition of the space Σ.
Theorem 1. For any $\alpha, \beta \in[0, \infty]$ with $\alpha \leqslant \beta$, we have

$$
\operatorname{dim}_{H} E_{\alpha, \beta}=1
$$

where dim_{H} denotes the Hausdorff dimension.
The main idea of the proof is constructing Cantor-like subsets of $E_{\alpha, \beta}$ so that their Hausdorff dimensions converge to one.

2. Proof of theorem 1

The proof of theorem 1 is based on the following lemma:
Lemma 1. Let $\left\{\ell_{n}\right\}$ be a sequence of positive integers such that (a) $\exists n_{0}, \ell_{n+1} \geqslant \ell_{n}+2 n$ for any $n \geqslant n_{0}$ and $(b) \lim _{n \rightarrow \infty} \ell_{n} / n^{2}=\infty$. Then the following set

$$
A^{\left\{\ell_{n}\right\}}:=\left\{x \in \Sigma: \exists k_{0}, R_{k}(x)=\ell_{k} \text { for } k \geqslant k_{0}\right\}
$$

has Hausdorff dimension one.
Proof. Write for brevity $A=A^{\left\{\ell_{n}\right\}}$. Since $\operatorname{dim}_{H} \Sigma=1$, it suffices to show that $\operatorname{dim}_{H} A \geqslant 1-\delta$ for any $\delta>0$.

Fix $\delta>0$. Choose an integer $p \geqslant \max \left\{6, n_{0}\right\}$ so that $\frac{p-2}{p}>1-\delta$, and define $F_{p}=\left\{x=\left(x_{i}\right)_{i \geqslant 1} \in \Sigma: x_{j}=m\right.$ for $1 \leqslant i \leqslant p, x_{p k+1}=x_{p k+p}=1$ for $\left.k \geqslant 1\right\}$.
Since the set $\left\{x=\left(x_{i}\right)_{i \geqslant 1} \in \Sigma: x_{p k+1}=x_{p k+p}=1\right.$ for $\left.k \geqslant 0\right\}$ can be viewed as a self-similar set generated by m^{p-2} many similitudes with ratio m^{-p}, its Hausdorff dimension is equal to

$$
\frac{\log m^{p-2}}{\log m^{p}}=\frac{p-2}{p}
$$

therefore $\operatorname{dim}_{H} F_{p}=\frac{p-2}{p}>1-\delta$.
In what follows, we will construct an injective map g from F_{p} to A such that g^{-1} is nearly Lipschitz on $g\left(F_{p}\right)$, i.e. $\forall \epsilon>0, \exists M$ such that

$$
d(g(x), g(y))<m^{-k} \text { implies } d(x, y)<m^{-(1-\epsilon) k}
$$

for $k \geqslant M$. This means that $\operatorname{dim}_{H} g\left(F_{p}\right) \geqslant \operatorname{dim}_{H} F_{p}$ (see proposition 2.3 of [Fal]) and thus, $\operatorname{dim}_{H} A \geqslant \operatorname{dim}_{H} g\left(F_{p}\right) \geqslant \operatorname{dim}_{H} F_{p} \geqslant 1-\delta$, as we desired.

For each $x=\left(x_{i}\right)_{i \geqslant 1} \in F_{p}$, we construct $x^{*} \in \Sigma$ by induction. Define $x^{(p-1)}=x$. Suppose we have defined $x^{(j)}=x_{1}^{(j)} x_{2}^{(j)} \cdots x_{n}^{(j)} \cdots$ for $p-1 \leqslant j \leqslant k-1$, we define $x^{(k)}$ as follows:

$$
x^{(k)}=x_{1}^{(k-1)} x_{2}^{(k-1)} \cdots x_{l_{k}-1}^{(k-1)} \circ w_{k} \circ x_{l_{k}}^{(k-1)} x_{l_{k}+1}^{(k-1)} \cdots
$$

where w_{k} is a word of length $k+3$ such that

$$
w_{k}=1 x_{1}^{(k-1)} x_{2}^{(k-1)} \cdots x_{k}^{(k-1)} y_{k} 1
$$

here y_{k} is a letter not equal to $x_{k+1}^{(k-1)}$. That is, $x^{(k)}$ is obtained by inserting a word w_{k} into $x^{(k-1)}$ at the place ℓ_{k}.

The sequence $\left\{x^{(i)}\right\}_{i \geqslant p}$, defined above, satisfies the following properties:
(a) For any $k \geqslant p$, the prefix $x_{1}^{(k-1)} x_{2}^{(k-1)} \cdots x_{l_{k}-1}^{(k-1)} \circ w_{k}$ of $x^{(k)}$ is also the prefix of $x^{(k+1)}$. This is deduced from the condition $\ell_{k+1} \geqslant \ell_{k}+2 k$. Thus the sequence $\left\{x^{(i)}\right\}_{i \geqslant p}$ converges to a point x^{*}. Moreover, the first $\ell_{k+1}-1 \geqslant \ell_{k}+2 k-1$ symbols of x^{*} and $x^{(k)}$ coincide.
(b) For each $k \geqslant p, R_{k}\left(x^{*}\right)=l_{k}$.

To see property (b), note first that $x_{1}^{(k-1)} x_{2}^{(k-1)} \cdots x_{l_{k}-1}^{(k-1)} \circ w_{k}$ is the prefix of x^{*}, thus by the construction of w_{k} we have $d\left(\sigma^{\ell_{k}}\left(x^{*}\right), x^{*}\right)=m^{-k}$ for each $k \geqslant p$. Let

$$
\underline{\theta}=\underbrace{m m \cdots m}_{p} .
$$

The block $\underline{\theta}$ can only appear in the words w_{k} and the beginning of $x^{(k)}$ for each $k \geqslant p$. Combining this with the construction of $x^{(p)}$, we have $R_{p}\left(x^{*}\right)=\ell_{p}$. To finish the proof of (b), it is enough to show that for any $k \geqslant p, d\left(\sigma^{\ell_{k}+\mathrm{i}}\left(x^{*}\right), x^{*}\right)>m^{-k}$ for any $1 \leqslant i<\ell_{k+1}-\ell_{k}$. We prove this below by contradiction. Assume that $d\left(\sigma^{\ell_{k}+\mathrm{i}}\left(x^{*}\right), x^{*}\right) \leqslant m^{-k}$ for some $k \geqslant p$ and some $1 \leqslant i<\ell_{k+1}-\ell_{k}$. Note that $\underline{\theta}$ does not appear in the word $x_{\ell_{k}}^{(k-1)} x_{\ell_{k}+1}^{(k-1)} \cdots x_{\ell_{k+1}-1}^{(k-1)}$, we must have $i \leqslant k-1$ (using the fact that $y_{k} 1 x_{\ell_{k}}^{(k-1)} x_{\ell_{k}+1}^{(k-1)} \cdots x_{\ell_{k+1}-k-4}^{(k-1)} 1$ is the prefix of $\left.\sigma^{\ell_{k}+k}\left(x^{*}\right)\right)$. Thus

$$
\begin{equation*}
x_{i+1}^{(k-1)} x_{i+2}^{(k-1)} \cdots x_{k}^{(k-1)} y_{k} 1 x_{\ell_{k}}^{(k-1)} x_{\ell_{k}+1}^{(k-1)} \cdots x_{\ell_{k}+i-3}^{(k-1)}=x_{1}^{(k-1)} x_{2}^{(k-1)} \cdots x_{k}^{(k-1)} . \tag{1}
\end{equation*}
$$

Since the left-hand side of (1) contains no copy of the blocks $\underline{\theta}$ and

$$
\underbrace{m m \cdots m}_{p-1}
$$

beginning after y_{k}, the word $x_{1}^{(k-1)} x_{2}^{(k-1)} \cdots x_{k}^{(k-1)} y_{k} 1 x_{\ell_{k}}^{(k-1)} x_{\ell_{k}+1}^{(k-1)} \cdots x_{\ell_{k}+\mathrm{i}-3}^{(k-1)}$ contains at most one more copy of $\underline{\theta}$ than $x_{1}^{(k-1)} x_{2}^{(k-1)} \cdots x_{k}^{(k-1)}$. In view of the fact that the number of times that $\underline{\theta}$ appears as a subword must be the same in both sides of (1), we must have $x_{k-p+2}^{(k-1)} x_{k-p+3}^{(k-1)} \cdots x_{k}^{(k-1)} y_{k}=\underline{\theta}$. Therefore,

$$
x_{k-p+2}^{(k-1)} x_{k-p+3}^{(k-1)} \cdots x_{k}^{(k-1)}=\underbrace{m m \cdots m}_{p-1} .
$$

Hence the block

$$
\underbrace{m m \cdot \cdots}_{p-1}
$$

is the suffix of the word $x_{i+1}^{(k-1)} x_{i+2}^{(k-1)} \cdots x_{k}^{(k-1)} y_{k} 1 x_{\ell_{k}}^{(k-1)} x_{\ell_{k}+1}^{(k-1)} \cdots x_{\ell_{k}+\mathrm{i}-3}^{(k-1)}$, which is a contradiction to the fact that the block

$$
\underbrace{m m \cdot m}_{p-1}
$$

does not appear in the word $x_{\ell_{k}}^{(k-1)} x_{\ell_{k}+1}^{(k-1)} \cdots x_{\ell_{k}+1-3}^{(k-1)}$. Thus we have proved that $R_{k}\left(x^{*}\right)=\ell_{k}$ for $k \geqslant p$.

Define $g: F_{p} \rightarrow A$ by $x \mapsto x^{*}$. It is clear from the construction that g is injective. In the following we show that g^{-1} is nearly Lipschitz on $g\left(F_{p}\right)$, i.e. $\forall \epsilon>0, \exists M$ such that

$$
d\left(x^{*}, y^{*}\right)<m^{-k} \quad \text { implies } \quad d(x, y)<m^{-(1-\epsilon) k}
$$

for $k \geqslant M$.
Since $\lim _{n \rightarrow \infty} \ell_{n} / n^{2}=\infty$, there exists an integer $N>p$ such that $n^{2} / \ell_{n}<\epsilon / 2$ for any $n \geqslant N$. Let $M=\ell_{N}$. If $d\left(x^{*}, y^{*}\right)<m^{-k}$ for some integer $k \geqslant M$, then we have $x_{1}^{*} x_{2}^{*} \cdots x_{k}^{*}=y_{1}^{*} y_{2}^{*} \cdots y_{k}^{*}$. Let q be the integer so that $\ell_{q} \leqslant k \leqslant \ell_{q+1}$. Since $k \geqslant \ell_{N}$, it follows immediately $q \geqslant N>p$. By the construction of x^{*} and y^{*}, we must have

$$
x_{1} x_{2} \cdots x_{k^{\prime}}=y_{1} y_{2} \cdots y_{k^{\prime}}
$$

where $k^{\prime}=k-\sum_{j=p}^{q+1}(j+3)$. Note that

$$
k^{\prime}>k-2 q^{2} \geqslant k-\epsilon \ell_{q} \geqslant k(1-\epsilon)
$$

we have $d(x, y) \leqslant m^{-k^{\prime}} \leqslant m^{-(1-\epsilon) k}$, as we desired.

Proof of theorem 1. By lemma 1, to prove the theorem it suffices to show that for any given $\alpha, \beta \in[0, \infty]$ with $\alpha \leqslant \beta$ there exists a sequence of positive integers $\left\{\ell_{n}\right\}$ such that it satisfies the conditions (a) and (b) of lemma 1 and

$$
\liminf _{n \rightarrow \infty} \frac{\log \ell_{n}}{n}=\alpha \quad \limsup _{n \rightarrow \infty} \frac{\log \ell_{n}}{n}=\beta
$$

In the following we will give concrete constructions of $\left\{\ell_{n}\right\}$ for different cases.

Case 1. $\alpha=\beta=\infty$. In this case, define $\ell_{n}=\left[\mathrm{e}^{n^{2}}\right]$, here and afterwards $[x]$ denote the integral part of x.

Case 2. $0<\alpha=\beta<\infty$. In this case, define $\ell_{n}=\left[\mathrm{e}^{n \alpha}\right]$.
Case 3. $\alpha=\beta=0$. In this case, define $\ell_{n}=\left[\mathrm{e}^{\sqrt{n}}\right]$.
Case 4. $0<\alpha<\beta<\infty$. In this case, set

$$
u_{n}= \begin{cases}{\left[\mathrm{e}^{n \alpha}\right]} & \text { if } \sum_{j=1}^{2 \mathrm{i}-1} 2^{4 j} \leqslant n<\sum_{j=1}^{2 \mathrm{i}} 2^{4 j} \text { for some integer } i>0 \\ {\left[\mathrm{e}^{n \beta}\right]} & \text { otherwise }\end{cases}
$$

and define $\ell_{n}=\sum_{i=1}^{n} u_{i}$.
Case 5. $0<\alpha<\beta=\infty$. In this case, define

$$
u_{n}= \begin{cases}{\left[\mathrm{e}^{n \alpha}\right]} & \text { if } \sum_{j=1}^{2 \mathrm{i}-1} 2^{4^{j}} \leqslant n<\sum_{j=1}^{2 \mathrm{i}} 2^{4^{j}} \text { for some integer } i>0 \\ {\left[\mathrm{e}^{n^{2}}\right]} & \text { otherwise }\end{cases}
$$

and define $\ell_{n}=\sum_{i=1}^{n} u_{i}$.

Case 6. $0=\alpha<\beta<\infty$. In this case, set

$$
u_{n}= \begin{cases}{\left[\mathrm{e}^{\sqrt{n}}\right]} & \text { if } \sum_{j=1}^{2 \mathrm{i}-1} 2^{4^{j}} \leqslant n<\sum_{j=1}^{2 \mathrm{i}} 2^{4^{j}} \text { for some integer } i>0 \\ {\left[\mathrm{e}^{n \beta}\right]} & \text { otherwise }\end{cases}
$$

and define $\ell_{n}=\sum_{i=1}^{n} u_{i}$.

Case 7. $0=\alpha, \beta=\infty$. Define

$$
u_{n}= \begin{cases}{\left[\mathrm{e}^{\sqrt{n}}\right]} & \text { if } \sum_{j=1}^{2 \mathrm{i}-1} 2^{4^{j}} \leqslant n<\sum_{j=1}^{2 \mathrm{i}} 2^{4^{j}} \text { for some integer } i>0 \\ {\left[\mathrm{e}^{n^{2}}\right]} & \text { otherwise }\end{cases}
$$

and define $\ell_{n}=\sum_{i=1}^{n} u_{i}$.
Remark 1. Theorem 1 can be generalized to transitive subshifts of finite type.
Let $A=\left(a_{i, j}\right)$ be an $m \times m$ matrix with $a_{i, j} \in\{0,1\}$. Define

$$
\Sigma_{A}=\left\{\left(x_{n}\right) \in \Sigma: a_{x_{n}, x_{n+1}}=1, \forall n \geqslant 1\right\} .
$$

Note that $\sigma \Sigma_{A} \subset \Sigma_{A}$. The system $\left(\Sigma_{A}, \sigma\right)$ is called a subshift of finite type. Suppose further that all the entries of A^{M} are strictly positive for some $M \geqslant 1$. Then the subshift is said to be (topologically) transitive. Using the similar argument, we can obtain $\operatorname{dim}_{H} E_{\alpha, \beta}=$ $\operatorname{dim}_{H} \Sigma_{A}=\frac{\log \rho}{\log m}$, where ρ is the spectral radius of A.

Acknowledgments

The authors would like to express their deep gratitude to the referees for reading carefully the manuscript and making crucial suggestions. They thank also Dr Ercai Chen for pointing out reference [OW]. This work has been supported by Zheng Ge Ru Foundation and the Special Funds for Major State Basic Research Projects.

References

[OW] Ornstein D S and Weiss B 1993 Entropy and data compression schemes IEEE Trans. Inform. Theory 39 78-83
[Fal] Falconer K J 1990 Fractal Geometry-Mathematical Foundations and Applications (New York: Wiley)

