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Let K be the attractor of a linear iterated function system Sjx = ρjx+bj (j = 1, . . . , m) on the real
line satisfying the open set condition (where the open set is an interval). It is well known that the
packing dimension of K is equal to α, the unique positive solution y of the equation

∑m
j=1 ρy

j = 1;

and the α–dimensional packing measure Pα(K) is finite and positive. Denote by µ the unique
self–similar measure for the IFS

{
Sj

}m

j=1
with the probability weight

{
ρα

j

}m

j=1
. In this paper, we

prove that Pα(K) is equal to the reciprocal of the so–called “minimal centered density” of µ, and
this yields an explicit formula of Pα(K) in terms of the parameters ρj , bj (j = 1, . . . , m). Our
result implies that Pα(K) depends continuously on the parameters whenever

∑
j ρj < 1.

1 Introduction

In this paper we deal with the exact computation of packing measures for a special kind of linear Cantor
sets. Recall that a δ–packing of a given set E ⊂ Rn is a countable family of disjoint closed balls of radii
at most δ and with centers in E. For s ≥ 0, the s–dimensional packing premeasure of E is defined as

P s(E) = inf
δ>0

{P s
δ (E)} ,

where P s
δ (E) = sup

{∑
Bi∈R |Bi|s : R is a δ–packing of E

}
and |Bi| denotes the diameter of Bi. The

s–dimensional packing measure of E is defined as

Ps(E) = inf

{ ∞∑
i=1

P s(Ei) : E ⊂
∞⋃

i=1

Ei

}
.

The packing dimension of E is by definition the quantity

dimP(E) := inf
{
s ≥ 0 : Ps(E) = 0

}
= sup

{
s ≥ 0 : Ps(E) = ∞} .

The packing measure and packing dimension, introduced by Tricot [15], Taylor & Tricot [13, 14] and
Sullivan [12], play an important role in the study of fractal geometry in a manner dual to the Hausdorff
measure and Hausdorff dimension (see [9] and [4] for further properties of the above measures and
dimensions). However, because of the difficulty in the definition there are few results about the explicit
computation of packing measures for fractal sets. This is the motivation of this paper.

Let Sjx = ρjx+bj (j = 1, . . . , m) be a linear iterated function system (IFS for short) on the real line,
with contraction ratios satisfying 0 < ρj < 1. We assume the following form of the open set condition:
there exists an open interval I such that SjI ⊂ I and SjI are disjoint. We remark that this open
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set condition is less general than the usual one defined by [7] (see [2] for an example). Without loss of
generality, we take I = (0, 1), and we assume that the images SjI are in increasing order, with S1(0) = 0
and Sm(1) = 1. Define lj = Sj+1(0) − Sj(1) for j = 1, 2, . . . , m − 1. Let K denote the attractor of
the IFS (K is also called a self–similar set; see [7] for detailed properties). It is well known (see e. g.
Theorem 2.7 of [5]) that the Hausdorff dimension and the packing dimension of K are both equal to α,
where α satisfies

m∑
j=1

ρα
j = 1 .

Moreover the α–dimensional Hausdorff measure Hα(K) and α–dimensional packing measure Pα(K) of
K are both positive and finite. The problem of the exact computation of Hα(K) has been independently
studied by Marion [8], and Ayer & Strichartz [1]. In these papers, the exact value of Hα(K) is obtained
(under some additional hypothesis).

This paper is devoted to the exact computation of Pα(K) (we always assume that m ≥ 2 and α < 1).
Denote by µ the unique probability measure satisfying the self–similar relation

µ =
m∑

j=1

ρα
j µ ◦ S−1

j . (1.1)

Then by the scaling property of Pα, µ = cPα|K for c = 1/Pα(K). In this paper, we introduce the notion
of minimal centered density of µ. For any closed interval J , let d(J) = µ(J)/|J |α be the (α, J)–density
of µ. Then the minimal centered density of µ, denoted by dmin, is defined by

dmin = inf{d(J) : J a closed interval centered in K with J ⊂ [0, 1]} .

Using the density theorem of packing measure proved by Saint Raymond and Tricot (Corollary 7.2 of
[10]; see also [9], p. 95), we show that Pα(K) is equal to the reciprocal of dmin. Hence, our main purpose
is to determine the constant dmin. For any x ∈ R, let dist(x, K) denote the distance between x and K,
that is

dist(x, K) = inf{|x− y| : y ∈ K} .

Now we can formulate the main result of this paper as follows.

Theorem 1.1 With the above setting, we have Pα(K) = d−1
min, where

dmin =

{
min{2−αR0, 2−αR1} if m = 2 ,

min{2−αR0, 2−αR1, R2} if m ≥ 3 ,

and the constant R0, R1 and R2 are respectively defined by

R0 = min
2≤j≤m

∑j−1
k=1 ρα

k

|Sj(0)|α ;

R1 = min
1≤j≤m−1

∑m
k=j+1 ρα

k

|1 − Sj(1)|α ;

R2 = min
1≤j1<j2<m

∑j2
k=j1+1 ρα

k(
Sj2+1(0) − Sj1 (1) − 2 dist

(Sj2+1(0)+Sj1 (1)

2
, K
))α .

Let us give a simple example of the application of Theorem 1.1. For 0 < β < 1, denote by Cβ

the attractor of the IFS
{

1−β
2 x, 1−β

2 x + 1+β
2

}
. The set Cβ is called the β–center Cantor set, of

packing dimension α(β) = log 2
− log(1−β)/2

. It is well–known that the α(β)–dimensional Hausdorff measure
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of Cβ is equal to 1 (cf. Theorem 7.1 of [8], or Theorem 4.2 of [1]). By Theorem 1.1, one gets that
Pα(β)

(
Cβ

)
=
(

2+2β
1−β

)α(β).
It was proved in [1] that the α–dimensional Hausdorff measure Hα(K) does not depend continuously

on the parameters ρj and bj (j = 1, . . . , m). Notice that Theorem 1.1 implies that Pα(K) depends
continuously on these parameters.

If we admit the parameters ρj to be negative, it seems hard to get a uniform formula for Pα(K).
However, in some special cases (for example, ρ1ρm > 0 and lj > 0, lj+1 > 0 for some 1 ≤ j ≤ m − 2),
it can be proved by using a similar method that the result of Theorem 1.1 still remains true

(
in which

Sj(0), Sj(1) are replaced by uj, vj respectively for each j, with Sj(I) =
[
uj , vj

])
.

This paper is organized as follows: in Section 2 we consider the pointwise lower α–density of µ. We
prove that it is equal to dmin for µ almost all x ∈ R, which implies Pα(K) = d−1

min. In Section 3 we give
the explicit computation of dmin, which yields the proof of Theorem 1.1.

2 The pointwise lower α–densities of µ

In this section we will consider the pointwise lower α–densities of µ. For a given measure ν on R and
x ∈ R, the lower α–density of ν at x is defined by

Θα
∗ (ν, x) := lim inf

r→0
ν([x− r, x + r])/(2r)α .

The upper α–density Θ∗α(ν, x) is defined similarly by taking the upper limit. We have the following
result:

Theorem 2.1 For µ almost all x ∈ R, Θα
∗ (µ, x) = dmin, where dmin is the minimal centered density

of µ.
The analogue fact that the upper α–densities are µ–almost all equal to a constant was first proved

by Salli [11] in a more general setting. And the fact for the lower α–densities can now also be derived
from the so–called tangential measure (see [6]).

For the convenience of the readers, we would like to give a direct and elementary proof of Thereom
2.1, based on the following lemma which follows immediately from (1.1):

Lemma 2.2 Let J ⊂ [0, 1] be a closed interval, then for any 1 ≤ j ≤ m, the interval Sj(J) has the
same density as J , that is d

(
Sj(J)

)
= d(J). In other words, if J ′ is a subinterval of Sj([0, 1]) for some

1 ≤ j ≤ m, then d(J ′) = d
(
S−1

j (J ′)
)
.

P r o o f of Theorem 2.1. By the definition of dmin, we have Θα∗ (µ, x) ≥ dmin for all x ∈ K. Hence
Θα∗ (µ, x) ≥ dmin for µ almost all x ∈ R since µ is supported on K.

In what follows we prove the reverse inequality. It suffices to prove for any fixed ε > 0,

Θα
∗ (µ, x) ≤ dmin + ε for µ a. a. x .

By the definition of dmin, there exist x0 ∈ K and 0 < r0 < 1/2 such that [x0 − r0, x0 + r0] ⊂ (0, 1) and
d([x0 − r0, x0 + r0]) < dmin + ε/2. Thus there exist n0 ∈ N and t1, t2, . . . , tn0 ∈ {1, . . . , m} such that

[y − r0, y + r0] ⊂ (0, 1) , d([y − r0, y + r0]) ≤ dmin + ε (2.1)

for any y ∈ ST ([0, 1]) := St1St2 . . .Stn0
([0, 1]). We define for any p ∈ N ,

Ap =
∞⋃

n=p

⋃
j1,...,jn∈{1,...,m}

Sj1 . . .Sjn(ST ([0, 1])) . (2.2)

Then we have the following statements:

(i) For each x ∈ Ap, there exists r (depending on x) such that 0 < r ≤ ρp
max and d([x − r, x + r]) ≤

dmin + ε, where ρmax = max{ρj : 1 ≤ j ≤ m};
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(ii) µ
(
Ap

)
= 1 for all p ∈ N .

To prove (i), take any x ∈ Ap. Then x ∈ Sj1 . . .Sjn(ST ([0, 1])) for some n ≥ p and j1, . . . , jn ∈
{1, . . . , m}. Take y =

(
Sj1 . . .Sjn

)−1(x). Then y ∈ ST ([0, 1]). By Lemma 2.2 and (2.1),

d
(
[x − ρj1...ρjnr0, x + ρj1...ρjnr0]

)
= d

(
Sj1 . . .Sjn

(
[y − r0, y + r0]

))
= d

(
[y − r0, y + r0]

)
≤ dmin + ε ,

which proves (i). Now let us turn to the proof of (ii). By (2.2) we have

Ap =
⋃

j1,...,jp∈{1,...,m}
Sj1 . . . Sjp(A) ,

where

A =
∞⋃

n=0

⋃
j1,...,jn∈{1,...,m}

Sj1 . . .Sjn(ST ([0, 1])) .

By (1.1), we have

µ(Ap) =
∑

j1,...,jp∈{1,...,m}
ρα

j1 . . . ρα
jp

µ(A) = µ(A) .

Thus we only need to prove µ(A) = 1. Define B0 = ST ([0, 1]). For any integer k ≥ 1, we define

Bk =
⋃

j1...jkn0∈Fk

Sj1 . . .Sjkn0
(ST ([0, 1])) ,

where Fk :=
{
j1 . . . jkn0 ∈ {1, . . . , m}kn0 : jsn0+1 . . . j(s+1)n0 �= t1t2 . . . tn0 for 0 ≤ s ≤ k − 1

}
. This

definition implies that the sets Bk (k ≥ 0) have no overlap (more precisely, Bk ∩Bk′ consists of at most
finitely many points for k �= k′), and µ(Bk) =

(
1 − ρα

t1 . . . ρα
tn0

)k
ρα

t1 . . . ρα
tn0

. Hence

µ(A) ≥ µ

( ⋃
k≥0

Bk

)
=
∑
k≥0

µ(Bk) =
∑
k≥0

(
1 − ρα

t1
. . . ρα

tn0

)k
ρα

t1
. . . ρα

tn0
= 1 ,

and thus µ(A) = 1, which implies (ii).
Now take E =

⋂∞
p=1 Ap. By (i), we have Θα∗ (µ, x) ≤ dmin+ε for any x ∈ E. By (ii) we have µ(E) = 1.

This proves the proposition.

Denote by Pα|K the restriction of the α–dimensional packing measure on K, that is, Pα|K(A) =
Pα(A ∩ K) for any Borel set A ⊂ R. Since µ = cPα|K with c = 1/Pα(k), we have

Θα
∗ (µ, x) =

1
Pα(K)

Θα
∗ (Pα|K , x) , for all x ∈ R . (2.3)

As a corollary of Theorem 2.1, we have

Corollary 2.3 Pα(K) = d−1
min.

P r o o f. By (2.3), Θα∗ (Pα|K , x) = Pα(K)Θα∗ (µ, x) for any x ∈ R. Thus by Theorem 2.1, Θα∗ (Pα|K , x) =
Pα(K)dmin for Pα|K almost all x ∈ R. However, by using the lower density theorem proved by Saint
Raymond and Tricot (Corollary 7.2 of [10]; see also [9], p. 95), we have Θα

∗ (Pα|K , x) = 1 for Pα|K
almost all x ∈ R, which implies the desired result.
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3 The exact computation of dmin

At first, we consider the minimal value of (α, J)–densities of µ when J is of the form [0, x] or [y, 1]. For
this purpose, define

D0 = inf{d([0, x]) : 0 < x ≤ 1} , D1 = inf{d([y, 1]) : 0 ≤ y < 1} . (3.1)

We would like to characterize D0, D1 by the parameters ρj and lj (j = 1, . . . , m).
By Lemma 2.2, d([0, x]) = d

([
0, ρ−1

1 x
])

for 0 < x ≤ ρ1. Thus to determine the exact value of D0,
we only need to consider the interval [0, x] with ρ1 < x ≤ 1. Since d([0, x]) is a continuous function of
x, d([0, x]) attains its minimum D0 at some x0 ∈ [ρ1, 1]; furthermore we can assume x0 > ρ1 (noting
d([0, 1]) = D0 whenever d([0, ρ1]) = D0). Then we have the following result about x0:

Lemma 3.1 x0 ∈ {Sj(0) : 2 ≤ j ≤ m
}
.

P r o o f. It is clear that x0 is not contained in the interior of the set [0, 1]\⋃m
j=1 Sj([0, 1]). Therefore

x0 ∈ Sj([0, 1]) for some j ≥ 2. Fix this j and take u = x0 − Sj(0). It suffices to show u = 0. Assume
that u > 0. Then

d([0, x0]) =
µ([0, Sj(0)]) + µ([Sj(0), Sj(0) + u])

(Sj(0) + u)α

>
µ([0, Sj(0)]) + µ([Sj(0), Sj(0) + u])

(Sj(0))α + uα

≥ min
{

µ([0, Sj(0)])
(Sj(0))α

,
µ([Sj(0), Sj(0) + u])

uα

}
= min{d([0, Sj(0)]), d([Sj(0), Sj(0) + u])}
= min

{
d([0, Sj(0)]), d

(
[0, S−1

j (u)]
)}

,

which contradicts the minimality of d([0, x0]). This completes the proof.

As a corollary, we have
Corollary 3.2 Let D0 be defined as in (3.1), then

D0 = min
2≤j≤m

d
(
[0, Sj(0)]

)
= min

2≤j≤m

∑j−1
k=1 ρα

k

|Sj(0)|α .

Considering D1 dually, we have
Corollary 3.3 Let D1 be defined as in (3.1), then

D1 = min
1≤j≤m−1

d
(
[Sj(1), 1]

)
= min

1≤j≤m−1

∑m
k=j+1 ρα

k

|1− Sj(1)|α .

Lemma 3.4 dmin ≤ min
{
2−αD0, 2−αD1

}
.

P r o o f. It suffices to show that there exist intervals I0, I1 centered in K with Ij ⊂ [0, 1] (j = 0, 1)
such that d(I0) = 2−αD0 and d(I1) = 2−αD1. For simplicity, we only prove the first equality. By
Corollary 3.2, there exists x0 ∈ {Sj(0) : 2 ≤ j ≤ m} such that d([0, x0]) = D0. Since α < 1, there exists
1 ≤ i ≤ m − 1 with li > 0, where li = Si+1(0) − Si(1). Fix this i and take a positive integer k large
enough so that ρk

1x0 < li. Then the interval
[
Si+1(0)−ρi+1ρ

k
1x0, Si+1(0)

]
is contained in [Si(1), Si+1(0)]

and thus µ
([

Si+1(0)− ρi+1ρ
k
1x0, Si+1(0)

])
= 0. Define I0 :=

[
Si+1(0)− ρi+1 ρk

1x0, Si+1(0) + ρi+1ρ
k
1x0

]
.

We have

d(I0) =
µ
([

Si+1(0), Si+1(0) + ρi+1ρ
k
1x0

])
2α
(
ρi+1ρ

k
1x0

)α =
µ
(
Si+1 ◦ Sk

1 ([0, x0])
)

2α
∣∣Si+1 ◦ Sk

1 ([0, x0])
∣∣α

= 2−αd
(
Si+1 ◦ Sk

1 ([0, x0])
)

= 2−αd([0, x0]) = 2−αD0 ,

which concludes the proof.
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Define E =
{
closed interval J ⊂ [0, 1] centered in K: J �⊂ Sj([0, 1]), j = 1, . . . , m}. By Lemma 2.2,

we have

dmin = inf{d(J) : J ∈ E} . (3.2)

Lemma 3.5 If J ∈ E satisfies d(J) < min{2−αD0, 2−αD1}, then

|J | > min{ρmin, lmin} ,

where ρmin = min{ρj : 1 ≤ j ≤ m}, lmin = min
{
lj : 1 ≤ j ≤ m−1, lj �= 0

}
and |J | denotes the length

of J.

P r o o f. It suffices to show d(J) ≥ min{2−αD0, 2−αD1} under the assumption that J ∈ F1 and
|J | ≤ min{ρmin, lmin}. It is clear that under this assumption there are only three possible cases for J :

(i) There exists j such that Sj([0, 1]) and Sj+1([0, 1]) are touching, and J = J1 ∪ J2, where J1 ⊂
Sj([0, 1]) and J2 ⊂ Sj+1([0, 1]).

(ii) There exists j such that Sj([0, 1]) and Sj+1([0, 1]) are separate, and J = J1 ∪ J2, where J1 ⊂
Sj([0, 1]) and J2 ⊂ [Sj(1), Sj+1(0)].

(iii) There exists j such that Sj([0, 1]) and Sj+1([0, 1]) are separate, and J = J1 ∪ J2, where J1 ⊂[
Sj(1), Sj+1(0)

]
and J2 ⊂ Sj+1([0, 1]).

In case (i), we have

d(J) =
µ(J1) + µ(J2)
(|J1| + |J2|)α

>
µ(J1) + µ(J2)
|J1|α + |J2|α ≥ min{d(J1), d(J2)}

= min
{
d
(
S−1

j (J1)
)
, d
(
S−1

j+1(J2)
)}

.

Since d
(
S−1

j (J1)
)
, d
(
S−1

j+1(J2)
)

are of the forms [ y, 1] and [0, x] respectively, it follows that d(J) >

min{D0, D1}.
In case (ii), we have |J1| ≥ |J2| since J is centered in K. Thus

d(J) =
µ(J1)

(|J1|+ |J2|)α
≥ µ(J1)

(2|J1|)α
= 2−αd(J1) = 2−αd

(
S−1

j (J1)
)
,

which implies d(J) ≥ 2−αD1 since d
(
S−1

j (J1)
)

is of the forms [ y, 1].
In case (iii), we have d(J) ≥ 2−αD0 by a discussion similar to (ii).
Combining the above discussions completes the proof.

Proposition 3.6 Assume dmin < min
{
2−αD0, 2−αD1

}
. Then m ≥ 3 and

dmin = min
1≤l1<l2<m

∑l2
k=l1+1 ρα

k(
Sl2+1(0) − Sl1 (1) − 2 dist

(
Sl2+1(0)+Sl1(1)

2
, K
))α .

P r o o f. Since dmin < min{2−αD0, 2−αD1}, by (3.2) and Lemma 3.5 we have

dmin = inf {d(J) : J ∈ E , |J | > min{ρmin , lmin}} .

By the compactness of K, there exists J0 ∈ F with |J0| ≥ min{ρmin, lmin} such that

dmin = d(J0) .

By Lemma 2.2, we may assume J0 = [a0, b0] ∈ E . Denote c0 = (a0+b0)/2, then c0 ∈ K. For convenience,
we call each interval

[
Sj(1), Sj+1(0)

]
(1 ≤ j ≤ m− 1) a lake. First we prove the following statements:

(i) either a0 ∈ {Sj(1) : 1 ≤ j ≤ m − 1} or a0 is contained in the interior of one lake;
(ii) either b0 ∈ {Sj(0) : 2 ≤ j ≤ m} or b0 is contained in the interior of one lake;
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For simplicity we only prove (i). The statement (ii) follows by a similar argument. Assume that (i)
is not true, then a0 ∈ [Sj(0), Sj(1)

)
for some 1 ≤ j ≤ m − 1. Fix this j. In the following we will lead

to a contradiction. We first claim that c0 /∈ Sj([0, 1]), i. e., c0 > Sj(1). If c0 ∈ Sj([0, 1]), then

d([a0, b0]) =
µ([a0, b0])
(b0 − a0)α

≥ µ([a0, Sj(1)])
(b0 − a0)α

≥ µ([a0, Sj(1)])
2α(Sj(1) − a0)α

= 2−αd
(
S−1

j ([a0, Sj(1)])
)

≥ 2−αD1 ,

which contradicts the assumption dmin < min{2−αD0, 2−αD1}. It follows that

d([a0, b0]) =
µ([a0, Sj(1)]) + µ([Sj(1), 2c0 − Sj(1)]) + µ([2c0 − Sj(1), b0])(

2 |Sj(1) − a0| + |2c0 − 2Sj(1)|)α
>

µ([a0, Sj(1)]) + µ([Sj(1), 2c0 − Sj(1)]) + µ([2c0 − Sj(1), b0])(
2 |Sj(1) − a0|

)α +
(|2c0 − 2Sj(1)|)α

≥ µ([a0, Sj(1)]) + µ([Sj(1), 2c0 − Sj(1)])(
2 |Sj(1) − a0|

)α +
(|2c0 − 2Sj(1)|)α

≥ min

{
µ([a0, Sj(1)])(
2 |Sj(1) − a0|

)α ,
µ
(
[Sj(1), 2c0 − Sj(1)]

)
(|2c0 − 2Sj(1)|)α

}

= min
{
2−αd

(
S−1

j

(
[a0, Sj(1)]

)
, d
(
[Sj(1), 2c0 − Sj(1)]

)}
≥ min

{
2−αD1, d

(
[Sj(1), 2c0 − Sj(1)]

)}
.

Since [Sj(1), 2c0 − Sj(1)] is a subinterval of [0, 1] centered in K, the above inequality contradicts the
facts that d([a0, b0]) attains the minimum value dmin (< 2−αD1). Thus the statement (i) is true.

By the statements (i) and (ii), we have

a0 ∈ [Sl1 (1), Sl1+1(0)
)
, b0 ∈ (Sl2 (1), Sl2+1(0)] (3.3)

for some 1 ≤ l1 < l2 < m, which implies m ≥ 3 immediately. Since µ([a0, b0]) =
∑l2

k=l1+1 ρα
k and

d([a0, b0]) attains to the minimum, it follows that a0, b0 are taken such that b0 − a0 is the largest under
the conditions (3.3) and (a0 + b0)/2 ∈ K. Thus we have

b0 − a0 = Sl2+1(0) − Sl1 (1) − 2 dist
(

Sl2+1(0) + Sl1 (1)
2

, K

)

and

d([a0, b0]) =

∑l2
k=l1+1 ρα

k(
Sl2+1(0) − Sl1 (1) − 2 dist

(
Sl2+1(0)+Sl1 (1)

2 , K
))α . (3.4)

Therefore we complete the proof of Proposition 3.6.

P r o o f of Theorem 1.1. It follows immediately from Proposition 2.3, Lemma 3.4, and Proposition 3.6.

Acknowledgements The author would like to thank the referees and E. Olivier for their helpful comments

and suggestions that led to the improvement of the manuscript. This project has been supported by China

postdoctoral foundation, Morningside Center of Mathematics (CAS), and the Special Funds for Major State

Basic Research Projects.



Math. Nachr. 248-249 (2003) 109

References

[1] E. Ayer and R. S. Strichartz, Exact Hausdorff measure and intervals of maximum density for Cantor sets,
Trans. Amer. Math. Soc. 351, 3725 – 3741 (1999).

[2] C. Bandt, Self–similar sets 5. Integer matrices and fractal tilings of Rn, Proc. Amer. Math. Soc. 112,
549 – 562 (1991).

[3] K. J. Falconer, The Geometry of Fractal Sets (Cambridge University Press, 1985).
[4] K. J. Falconer, Fractal Geometry–Mathematical Foundations and Applications (John Wiley & Sons, 1990).
[5] K. J. Falconer, Techniques in Fractal Geometry (John Wiley & Sons, 1997).
[6] S. Graf, On Bandt’s tangential distribution for self–similar measures, Monatsh. Math. 120, 223 – 246 (1995).
[7] J. E. Hutchinson, Fractals and self–similarity, Indiana University Math. J. 30, 713 – 747 (1981).
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