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Abstract. For each 0 < s < 1, define

c(s) = inf
E

Ps(E)

Hs(E)
,

where Ps, Hs denote respectively the s–dimensional packing measure and Hausdorff measure, and
the infimum is taken over all the sets E ⊂ R with 0 < Hs(E) < ∞. In this paper we give a

nontrivial estimation of c(s), namely, 2s (1 + v(s))s ≤ c(s) ≤ 2s
(
2

1
s − 1

)s
for each 0 < s < 1,

where v(s) = min

{
16

− 1
1−s , 8

− 1
(1−s)2

}
. As an application, we obtain a lower density theorem for

Hausdorff measures.

1. Introduction

In this paper, we will compare packing measures to Hausdorff measures on the line.
For given E ⊂ Rn, a δ–packing of the set E is a countable family of disjoint closed
balls of radii at most δ and with centers in E. For s ≥ 0, the s–dimensional packing
premeasure of E is defined as

P s
0 (E) = inf

δ>0

{
P s

δ (E)
}

,

where P s
δ (E) = sup

{∑
Bi∈R |Bi|s : R is a δ–packing of E

}
and |Bi| denotes the

diameter of Bi. The s–dimensional packing measure of E is defined as

Ps(E) = inf

{ ∞∑
i=1

P s
0 (Ei) : E ⊂

∞⋃
i=1

Ei

}
.
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The packing dimension dimP is induced by packing measures by

dimP(E) = inf{s ≥ 0 : Ps(E) = 0} = sup{s ≥ 0 : Ps(E) = ∞} .

The packing measure and packing dimension were introduced by Tricot [13], Tay-

lor and Tricot [11, 12] and Sullivan [10]. As parameters to describe non–smooth
sets, the packing measure and packing dimension play an important role in the study
of fractal geometry in a manner dual to the Hausdorff measure and Hausdorff dimen-
sion (see [3, 8] for the definitions of Hausdorff measure and Hausdorff dimension).
Let Hs(E) and dimH(E) denote the s–dimensional Hausdorff measure and Hausdorff
dimension respectively. It was proved in [9, 12] that Ps(E) ≥ Hs(E) for each E ⊂ Rn

and s ≥ 0. The condition 0 < Ps(E) = Hs(E) < ∞ is a strong restriction: it implies
that s must be an integer and Hs–almost all of E can be covered with countably many
s–dimensional C1 submanifolds.

A natural question arises: if s < n is not an integer, then what is the infimum of
ratios Ps(E)/Hs(E) where E runs over the subsets of Rn with 0 < Hs(E) < ∞ ?
Denote by c(s, n) this infimum. In this paper, we consider the case n = 1 where we
write for simplicity c(s) = c(s, 1). The main result is the following.

Theorem 1.1. For 0 < s < 1, we have

2s(1 + v(s))s ≤ c(s) ≤ 2s
(
2

1
s − 1

)s

,

where v(s) = min
{

16−
1

1−s , 8−
1

(1−s)2
}
.

As an application, we obtain a lower density theorem for Hausdorff measures on the
line as follows:

Theorem 1.2. Given 0 < s < 1, let F ⊂ R be a Borel set such that Hs(F ) < ∞.
Then for Hs–almost all x ∈ F ,

lim inf
r↓0

Hs(F ∩ (x − r, x + r))
(2r)s

≤ c(s)−1 ≤ 2−s(1 + v(s))−s ,

where v(s) is defined as in Theorem 1.1.

It is well known that under the condition of Theorem 1.2,

lim inf
r↓0

Hs(F ∩ (x − r, x + r))
(2r)s

≤ 2−s for Hs–almost all x ∈ F ;

indeed this was first proved by Bescovitch [1] (it follows immediately from his es-
timates for one–sided upper and lower densities of Hausdorff measures). A similar
estimate in a more general setting was obtained by Mattila [7].
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2. Proof of the main results

Fix 0 < s < 1. First we give an elementary lemma.

Lemma 2.1. Let E ⊂ [a, b]. Suppose l ≤ b−a
6 is a positive number such that

E ∩ I �= ∅ for any subinterval I of [a, b] with |I| ≥ l. Then there exists a sequence of
disjoint subintervals {Ii}m

i=1 of [a, b] with centers in E, such that
m∑

i=1

|Ii|s ≥ 1
3

(b − a)ls−1 .

Proof . Let l be a number satisfying the condition of the lemma, and M the unique
integer such that b−a

l ∈ (2M − 1, 2M ]. The condition b−a
l ≥ 6 implies M − 1 ≥ b−a

3l .
For each positive integer 1 ≤ i ≤ M−1, pick one point xi from E∩(a+(2i−1)l, a+2il).
The intervals Ii = [xi − l/2, xi + l/2] are disjoint subintervals of [a, b], satisfying∑

i

|Ii|s = (M − 1) · ls ≥ b − a

3l
ls =

1
3

(b − a)ls−1. �

Define u = 8−
1

1−s and v = min
{

16−
1

1−s , 8−
1

(1−s)2
}

. It is easily checked that

(2.1) vs−1 · min
{

us,
1
2

}
≥ 8 .

Proposition 2.2. Suppose K ⊂ [a, b] is a Borel set with 0 < Hs(K) < +∞. Then
there exists a finite sequence of disjoint subintervals {Ii}m

i=1 of [a, b] with centers in
K, such that

(i)
m∑

i=1

|Ii|s >
1
6

uvHs(K).

(ii)
m∑

i=1

|Ii|s > 2s(1 + v)s ·
m∑

i=1

Hs(K ∩ Ii).

Proof . Take ε > 0 so that

1 + ε < min
{

16
15

,
(
1 − v2

)−s/2
}

.

We shall first prove a version of the proposition under an extra assumption, that, in
addition to the hypotheses of the proposition,

(2.2) Hs(K ∩ I) < (1 + ε) |I|s

for each interval I ⊂ [a, b]. We will prove that under this assumption there exists a
finite sequence of disjoint subintervals {Ii}m

i=1 of [a, b] with centers in K, such that

(iii)
m∑

i=1

|Ii|s >
1
3

uvHs(K).

(iv)
m∑

i=1

|Ii|s > (1 + ε)2s(1 + v)s ·
m∑

i=1

Hs(K ∩ Ii).
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Define l1 = u · (b − a). There are two possible cases:
(a) K ∩ I �= ∅ for any subinterval I of [a, b] with |I| ≥ l1.
(b) there exists (c, d ) ⊂ [a, b] with d − c > l1 so that K ∩ (c, d) = ∅ and c, d ∈ K.
For the case (a), by Lemma 2.1 and (2.2), there exists a finite sequence of disjoint

subintervals {Ii}m
i=1 of [a, b] with centers in K, such that

m∑
i=1

|Ii|s ≥ 1
3

(b − a) · [u(b − a)]s−1 =
1
3
(b − a)sus−1 =

8
3

(b − a)s >
5
2
Hs(K)

from which (iii) and (iv) follow immediately.
For the case (b), we may assume without loss of generality that Hs(K ∩ [a, c]) ≥

1
2 Hs(K). Thus by (2.2),

(c − a)s >
1

1 + ε
Hs

(
K ∩ [a, c]

)
>

1
2(1 + ε)

Hs(K) .

Let h = min{d − c, c − a}. Noting that d − c > l1 = u · (b − a), we have

hs = min
{
(d − c)s, (c − a)s

}
> min

{
us(b − a)s,

1
2(1 + ε)

Hs(K)
}

≥ min
{

us · 1
(1 + ε)

Hs(K),
1

2(1 + ε)
Hs(K)

}

≥ min
{

us,
1
2

}
· 1
1 + ε

Hs(K) .

(2.3)

Define l2 = vh. There are again two possible cases:
(b1) K ∩ I �= ∅ for every subinterval I of [c − h, c] with |I| ≥ l2.
(b2) there exists (e, f) ⊂ [c − h, c] with f − e ≥ l2 so that K ∩ (e, f) = ∅ and

e, f ∈ K.
For the case (b1), by Lemma 2.1, (2.2) and (2.3), there exists a finite sequence of
disjoint subintervals {Ii}m

i=1 of [c− h, c] with centers in K, such that
m∑

i=1

|Ii|s >
1
3

h · (vh)s−1 =
1
3

hsvs−1

≥ vs−1 · min
{

us,
1
2

}
1

3(1 + ε)
Hs(K)

≥ 8
3(1 + ε)

Hs(K)

>
5
2
Hs(K) .

(2.4)

from which (iii) and (iv) follow immediately. For the case (b2), let I1 = [e, 2c−e]. Then
the center of I1 is c which is contained in K, and K∩I1 = K∩[e, c] = (K ∩ [f, c])∪{e}.
By (2.3),

|I1|s ≥ (f − e)s ≥ vshs ≥ 1
3

vsusHs(K) >
1
3

uvHs(K)
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from which (iii) follows. Note also that

c − f = c − e − (f − e) ≤ c − e − hv ≤ (c − e)(1 − v) ,

so by (2.2), we have

Hs(K ∩ I1) = Hs(K ∩ [f, c])
≤ (1 + ε)(c − f)s

≤ (1 + ε)(c − e)s(1 − v)s

= 2−s |I1|s(1 + ε)(1 − v)s

< 2−s |I1|s 1
(1 + ε)(1 + v)s

from which (iv) follows.
We have proved the stronger results (iii) and (iv) under the assumption (2.2), and

we now get rid of this extra assumption. For each positive integer n, define

Kn =
{

x ∈ K : Hs(K ∩ I) ≤ (1 + ε) |I|s for all intervals I 
 x with |I| <
1
n

}
.

Then {Kn} is a sequence of Borel sets with Kn ⊂ Kn+1, and limn→∞ Hs(Kn) =
Hs(K) (see Theorem 2.3 of [2] for a proof).

For a fixed positive integer n, choose an integer M > n(b− a). For each 1 ≤ j ≤ M ,
if

Hs

(
Kn ∩

[
a + (j − 1)

b − a

M
, a + j

b − a

M

])
> 0 ,

then Proposition 2.2 (with the stronger conclusions (iii) and (iv)) remains true when
K and [a, b] are replaced by

K′
n,j := Kn ∩

[
a + (j − 1)

b − a

M
, a + j

b − a

M

]
and [

a′, b′
]

:=
[
a + (j − 1)

b − a

M
, a + j

b − a

M

]

respectively, since K′
n,j satisfies (2.2). Denote by An,j a collection of disjoint subinter-

vals Ii of [a′, b′] with centers in K′
n,j such that (iii) and (iv) hold, where K is replaced

by K′
n,j. Let

An =
⋃
j

An,j

where j is taken so that Hs
(
Kn ∩ [

a + (j − 1) b−a
M

, a + j b−a
M

])
>0. It is clear that the

intervals in An satisfy (iii) and (iv) where K is replaced by Kn. Set α = 1
1+ε

. Take a
large n so that

Hs(K) −Hs(Kn) ≤ 1
6

uv(1 − α)2−s(1 + v)−sHs(K) .
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It is clear the intervals in An satisfy (i); in what follows we show that they also satisfy
(ii). To see this, we note that

∑
I∈An

|I|s > (1 − α)
1
3

uvHs(Kn) + α(1 + ε)2s(1 + v)s
∑

I∈An

Hs(Kn ∩ I)

≥ (1 − α)
1
6

uvHs(K) + 2s(1 + v)s
∑

I∈An

Hs(K ∩ I)

− 2s(1 + v)s(Hs(K) −Hs(Kn))

≥ 2s(1 + v)s
∑

I∈An

Hs(K ∩ I) ,

which concludes the proof. �

Remark 2.3. It is clear that Proposition 2.2 remains true if the interval [a, b]
therein is replaced by any set U which is the union of finitely many intervals.

Proposition 2.4. Suppose K ⊂ [a, b] is a Borel set with 0 < Hs(K) < +∞. Then
there exists a finite or infinite sequence of disjoint subintervals {Ii}i of [a, b] with
centers in K, such that ∑

i

|Ii|s > 2s(1 + v)sHs(K) .

Proof . Write for simplicity r = 1
6 uv and d = 2s(1 + v)s. Assume the conclusion is

not true, that is, for each sequence of disjoint intervals {Ii}i of [a, b] with centers in
K,

∑
i |Ii|s ≤ dHs(K); in the following this will lead to a contradiction.

By Proposition 2.2, we can construct a collection A1 of finitely many disjoint subin-
tervals of [a, b] with centers in K, such that

∑
I∈A1

|I|s > rHs(K) and
∑

I∈A1
|I|s >

dHs
(
K ∩ ( ⋃

I∈A1
I
))

. Define V1 =
⋃

I∈A1
I and U1 = [a, b]\V1. Since

∑
I∈A1

|I|s ≤
dHs(K) by the assumption, we conclude that Hs(K ∩ U1) > 0.

By Proposition 2.2 and Remark 2.3, we can construct a collection A2 of finitely
many disjoint subintervals of U1 with centers in K ∩ U1, such that

∑
I∈A2

|I|s >

rHs(K ∩ U1) and
∑

I∈A2
|I|s > dHs

(
K ∩ ( ⋃

I∈A2
I
))

. Define V2 =
⋃

I∈A2
I and

U2 = [a, b]\(V1 ∪ V2). Since
∑

I∈A1∪A2
|I|s ≤ dHs(K) by the assumption, and∑

I∈A1∪A2
|I|s > dHs(K ∩ (V1 ∪ V2)), we conclude Hs(K ∩ U2) > 0.

Continuing the above procedure, we obtain a sequence of collections An and sets Vn

and Un. For each n, Un = [a, b]\(⋃n
i=1 Vi), and An+1 is a collection of finitely many

disjoint subintervals of Un such that
∑

I∈An+1
|I|s > rHs

(
K∩Un

)
and

∑
I∈An+1

|I|s >

dHs
(
K ∩ (⋃

An+1
I
))

and Vn+1 =
⋃

An+1
I.

Since Un+1 ⊂ Un for each n, it follows that the limit limn→∞Hs
(
K ∩Un

)
exists. If

this limit is 0, then
∑

I∈⋃∞
i=1 Ai

|I|s > dHs(K ∩ ( ⋃∞
i=1 Vi

))
= dHs(K) which contra-

dicts the assumption. If the limit is positive, then∑
I∈An+1

|I|s > rHs(K ∩ Un) ≥ r lim
n→∞Hs(K ∩ Un) > 0 , for all n
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from which we have
∑

I∈⋃∞
i=1 Ai

|I|s = ∞, which also contradicts the assumption. �

Corollary 2.5. For each set E ⊂ R, we have

(2.5) P s
0 (E) ≥ 2s(1 + v)sHs(E) ,

where P s
0 denotes the s–dimensional packing premeasure.

Proof . Denote by E the closure of E. Since P s
0 (E) = P s

0

(
E

) ≥ Hs
(
E

)
, we may

assume 0 < Hs
(
E

)
< ∞.

Let n be a positive integer. By Proposition 2.4, we know that for each integer l,
either Hs

(
E ∩ [

l
n , l+1

n

])
= 0 or there exists a sequence (finite or infinite) of disjoint

subintervals {Ii}i of
[

l
n , l+1

n

]
with centers in E such that

∑
i

|Ii|s > 2s(1 + v)sHs

(
E ∩

[
l

n
,
l + 1

n

])
.

Letting l run through Z, we deduce that there exists a sequence (finite or infinite) of
disjoint intervals {Ji}i of length less than 1

n and with centers in E such that∑
i

|Ji|s > 2s(1 + v)sHs
(
E

)
;

this implies that P s
1/n(E) = P s

1/n

(
E

)
> 2s(1 + v)sHs

(
E

)
. Letting n tends to infinity

we get the desired result. �

From the above Corollary and the definition of packing measure, we have immedi-
ately the following

Corollary 2.6. For each set E ⊂ R,

Ps(E) ≥ 2s(1 + v)sHs(E) .

Proof of Theorem 1.1. By Corollary 2.6, c(s) ≥ 2s(1 + v)s. Now let Es denote the
unique self–similar set generated by the iterated function system

{
1−β

2 x, 1−β
2 x+ 1+β

2

}
where β = 1 − 21− 1

s . The set Es is termed as the β–center Cantor set for which the
packing dimension and Hausdorff dimension coincide with the common value s. It is
well known that Hs(Es) = 1 (see e. g. page 15 of [2] for a proof). On the other hand,
Feng [5] showed recently that Ps(Es) = 2s

(
2

1
s − 1

)s. Thus c(s) ≤ 2s
(
2

1
s − 1

)s. �

To prove Theorem 1.2, we need the following lemma. For a proof, see Proposition 2.2
of [4] or Theorem 6.11 of [8].

Lemma 2.7. Let K ⊂ R be a Borel set, µ a finite Borel measure on R and 0 < t <
∞. If lim infr→0 µ((x − r, x + r))/(2r)s ≥ t for all x ∈ K then Ps(K) ≤ µ(K)/t.

Proof of Theorem 1.2. Assume the theorem is false, then there exists a real number
d > c(s)−1 and Borel set E ⊂ R with 0 < Hs(E) < ∞ such that there is a Borel set
F ⊂ E with Hs(F ) > 0,

lim inf
r↓0

Hs(E ∩ (x − r, x + r))
(2r)s

≥ d
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for all x ∈ F . Let µ = Hs|E , i. e, µ(B) = Hs(E ∩ B) for all B ⊂ R. Then by
Lemma 2.7, we have Ps(F ) ≤ µ(F )/d = Hs(F )/d < c(s)Hs(F ), which contradicts the
definition of c(s). �

We end this section by an unsolved question.

Question. Is it true that c(s) = 2s
(
2

1
s − 1

)s for all 0 < s < 1 ?
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