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THE PRESSURE FUNCTION FOR PRODUCTS
OF NON-NEGATIVE MATRICES

DE-JUN FENG AND KA-SING LAU

Abstract. Let (ΣA, σ) be a subshift of finite type and let M(x) be a continuous func-

tion on ΣA taking values in the set of non-negative matrices. We extend the classical

scalar pressure function to this new setting and prove the existence of the Gibbs mea-

sure and the differentiability of the pressure function. We are especially interested on

the case where M(x) takes finite values M1, · · · ,Mm. The pressure function reduces to

P (q) := limn→∞
1
n log

∑
J∈

∑
A,n

‖MJ‖q. The expression is important when we consider

the multifractal formalism for certain iterated function systems with overlaps.

1. Introduction

Let σ be the shift map on Σ = {1, 2, · · · , m}N, m ≥ 2. As usual Σ is endowed

with the metric d(x, y) = m−n where x = (xk), y = (yk) and n is the smallest of the

k such that xk 6= yk. Given an m×m matrix A with entries 0 or 1, we consider the

subshift of finite type (ΣA, σ) (see [B]). We shall always assume that A is primitive.

Suppose M is a continuous function on ΣA taking values in the set of all non-

negative d × d matrices. For q ∈ R, we define the pressure function P (q) of M

by

P (q) = lim
n→∞

1

n
log

∑
J∈ΣA,n

sup
x∈[J ]

‖M(x)M(σx) . . . M(σn−1x)‖q, (1.1)

where ΣA,n denotes the set of all admissible indices of length n over {1, . . . , m}; for

J = j1 · · · jn ∈ ΣA,n, [J ] denotes the cylinder set {x = (xi) ∈ ΣA : xi = ji, 1 ≤
i ≤ n}, ‖ · ‖ denotes the matrix norm defined by ‖B‖ := 1tB1, 1t = (1, 1, . . . , 1).

By using a subadditive argument, it is easy to show that for q > 0, the limit in

the above definition exists. With some additional conditions on the matrices (see

Theorem 1.1), the limit exists for q ∈ R.

The pressure function of the scalar case (i.e., M(x) = eφ(x) where φ(x) is a real

valued function called the potential of the subshift) has been studied in great detail
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in statistical mechanics and dynamical systems in conjunction with the Gibbs mea-

sure, the entropy and the variational principle (c.f., e.g., [B], [P], [R]); it has also

been used to study the multifractal structure of the self-similar (or self-conformal)

measures generated by iterated function systems (IFS) with no overlap (the open

set condition) ([MU], [FL]). By identifying with the symbolic space, such self-similar

measure µ is actually a Gibbs measure and the pressure function is directly related

to the scaling spectrum of µ [FL, Theorem 3.3]. In all the above cases, the pressure

functions under consideration are differentiable (actually real analytic). This prop-

erty is essential to investigate the phase transition in thermodynamics and for the

multifractal formalism in the dimension theory of fractals.

In the recent investigation of the self-similar measures generated by iterated func-

tion systems with overlaps, it is seen that in many interesting cases, such measure

µ can be put into a vector form with a new non-overlapping IFS and with matrix

weights ([LN1,2], [LNR], [Fe], [FeO]). In this way the validity of the multifractal for-

malism depends on the differentiability of the pressure function P (q) in (1.1) (more

precisely (1.4) in the following) [LN2]. In another direction, the expression of the

matrix product in (1.1) also appears in the study of the scaling functions in wavelet

theory (the matrices are allowed to be non-positive) in the form of Lq-joint spectral

radius and the Lq-Lipschitz exponent ([DL1, 2], [LM]); the problem of differentiabil-

ity of the P (q) also appears there. So far there is no general theorem to guarantee

this fact other than some special cases (e.g., [LN1], [FLN], [Fe], [FeO], [DL2]).

The main purpose of this paper is to consider the pressure functions and the Gibbs

measures for the products of matrices. We first study the case that the matrices

M(x), x ∈ ΣA are positive, we prove the following fundamental theorems.

Theorem 1.1. Suppose that M is a Hölder continuous function on ΣA taking values

in the set of positive d × d matrices. Then for any q ∈ R, there is a unique σ-

invariant, ergodic probability measure µq on ΣA of which one can find constants

C1 > 0, C2 > 0 such that

C1 ≤
µq([J ])

exp(−nP (q)) · ‖M(x)M(σx) . . . M(σn−1x)‖q
≤ C2 (1.2)

for any n > 0, J ∈ ΣA,n and x ∈ [J ].

The above measure µq is called the Gibbs measure associated with M and q.

We remark that the theorem generalizes the classical existence result of the Gibbs
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measure for a real-valued M(x) (see [B, §1.4]). The positivity of the matrices is used

to yield the follow simple estimate (Lemma 2.1)

‖M(x) · · ·M(σn+`−1x)‖ ≈ ‖M(x) · · ·M(σn−1x)‖ · ‖M(σnx) · · ·M(σn+`−1x)‖. (1.3)

By using this we can apply a technique of Brown, Michan and Peyriere [BMP] and

Carleson [C] to construct a certain ergodic measure which is the Gibbs measure

µq. The µq has the following quasi-Bernoulli property (Heurteaux [H]): there exists

C > 0 such that for any n, k ∈ N with I ∈ ΣA,n, J ∈ ΣA,k and IJ ∈ ΣA,n+k

C−1µq([I])µq([J ]) ≤ µq([IJ ]) ≤ Cµq([I])µq([J ]) (1.4)

This together with a result of Heurteux [H] imply

Theorem 1.2. Under the condition of Theorem 1.1, P (q) is differentiable for q 6= 0.

As an application, we let

E(α) :=
{
x ∈ ΣA : lim

n→∞

log ‖M(x)M(σx) · · ·M(σn−1(x)‖
n

= α
}
.

We prove the following dimension formula

Theorem 1.3. Under the same assumption of Theorem 1.1, we have for any α =

P ′(q), q 6= 0,

dimH E(α) =
1

log m
(−αq + P (q))

where dimH denotes the Hausdorff dimension.

The above theorems depend very much on the positivity of the matrix-valued

M(x). In order to extend them to nonnegative matrix-valued functions, we have to

impose more conditions on M(x):

(H1) M(x) = Mi if x ∈ [i], i = 1, · · · , m;

(H2) M is irreducible in the following sense: there exists r > 0 such that

for any i, j ∈ {1, 2, . . . , m},
r∑

k=1

∑
K∈ΣA,k;i,j

MK > 0 (1.5)

where ΣA,k;i,j denotes the set of all K ∈ ΣA,k such that iKj ∈ ΣA,k+2.

We see that under the assumption (H1), the pressure function in (1.1) can be re-

written as

P (q) = lim
n→∞

1

n
log

∑
J∈ΣA,n

‖MJ‖q. (1.6)
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where MJ = Mji
· · ·Mjn . If ΣA = Σ is the symbolic space with a full shift, then

(H2) is equivalent to
∑r

k=1(M1 + · · ·+ Mm)k > 0.

In this new setting, we use (H2) to adjust (1.3) and the required lemmas, the

Gibbs measure µq is shown to exist for q > 0. This time µq only satisfy µq([IJ ]) ≤
Cµq([I])µq([J ]) instead of (1.4); nevertheless we can still prove the differentiability

of P (q), q > 0 as in Theorem 1.2. Theorem 1.3 can be adjusted likewise.

For the organization of the paper, we prove the above results for the positive

matrix-valued functions in Section 2. In Section 3, we modify the proofs for the

non-negative matrix-valued functions with (H1) and (H2). In Section 4, we give an

illustration of reducing an IFS with overlap to a vector-valued IFS with no overlap,

and the pressure function in (1.6) arises. We also give some remark on the theorems

and raise a few unsettled problems.

Acknowledgment. The paper was originally written for the random products of

m-matrices. The authors like to thank the referee for the suggestion to modify it to

the present form which can be appealed to more general situation. They also thank

E. Olivier for introducing the multifractal results of [BMP, H] and Ö. Stenflo for

reading the manuscript carefully and suggesting some improvements.

2. Positive Matrices

In this section we assume that M is a Hölder continuous function on ΣA taking

values in the set of all positive d× d matrices.

For any two families of positive numbers {ai}i∈I , {bi}i∈I , we write, for brevity,

ai ≈ bi to mean the existence of a constant C > 0 such that C−1ai ≤ bi ≤ Cai for

all i ∈ I; ai 4 bi to mean the existence of a constant C > 0 such that ai ≤ Cbi for

all i ∈ I and ai < bi means bi 4 ai.

We start with a simple lemma:

Lemma 2.1. For any x ∈ ΣA, n, ` ∈ N,

‖M(x) · · ·M(σn+`−1x)‖ ≈ ‖M(x) · · ·M(σn−1x)‖ · ‖M(σnx) · · ·M(σn+`−1x)‖

(the involved constant in ≈ is independent of n, ` and x).

Proof. It is clear that

‖M(x) · · ·M(σn+`−1x)‖ ≤ ‖M(x) · · ·M(σn−1x)‖ · ‖M(σnx) · · ·M(σn+`−1x)‖.
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To prove the reverse inequality, we observe that M is positive and continuous, there

is a constant C > 0 such that

mini,j Mi,j(x)

maxi,j Mi,j(x)
≥ C ∀ x ∈ ΣA.

This implies that M(x) ≥ C
d
EM(x) (A ≥ B means that Ai,j ≥ Bi,j for each index

(i, j)) where E = (Ei,j)1≤i,j≤d is the matrix whose entries are all equal to 1. Let 1

be the d-dimensional column vector each coordinate of which is 1. Then

‖M(x) · · ·M(σn+`−1x)‖ ≥ ‖M(x) · · ·M(σn−1x)
C

d
EM(σnx) · · ·M(σn+`−1x)‖

=
C

d
‖M(x) · · ·M(σn−1x)1τ1M(σnx) · · ·M(σn+`−1x)‖

=
C

d
‖M(x) · · ·M(σn−1x)‖ · ‖M(σnx) · · ·M(σn+`−1x)‖.

2

For any I ∈ ΣA,n, we let

sn(I, q) = sup
x∈[I]

‖M(x)M(σx) . . . M(σn−1x)‖q , sn(q) =
∑

I∈ΣA,n

sn(I, q). (2.1)

Lemma 2.2. For each q ∈ R,

sn(I, q) ≈ ‖M(x)M(σx) . . . M(σn−1x)‖q ∀ I ∈ ΣA,n, x ∈ [I].

Proof. For any n ∈ N, define

ηn = sup
{Mi,j(x)

Mi,j(y)
: I ∈ ΣA,n, x, y ∈ [I], 1 ≤ i, j ≤ d

}
. (2.2)

Since each Mi,j is positive and Hölder continuous, we have | log ηn| ≤ Cm−αn for

some 0 < α < 1. It follows easily that η :=
∏∞

n=1 ηn < ∞ and hence for x ∈ [I],

‖M(x) . . . M(σn−1x)‖q ≤ sn(I, q) ≤ η|q|‖M(x) . . . M(σn−1x)‖q.

2

We have assumed that A is primitive, there is an integer p > 0 such that Ap > 0.

This implies that for any I ∈ ΣA,n, J ∈ ΣA,`, there exists K ∈ ΣA,p such that

IKJ ∈ ΣA,n+`+p.

Lemma 2.3. Let p be such that Ap > 0. Then for each q ∈ R,

(i) s`(q) ≈ s`−p(q) for all ` > p;
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(ii) For I ∈ ΣA,n, ` > p,
∑

J sn+`(IJ, q) ≈
∑

J sn+`(JI, q) ≈ sn(I, q)s`(q)

where the first (second) sum is taken over all J ∈ ΣA,` such that IJ ∈ ΣA,n+`

(JI ∈ ΣA,n+` respectively );

(iii)
∑

K: IKJ∈ΣA,i
si(IKJ, q) ≈ sn(I, q)s`(J, q)si−n−`(q) for all I ∈ ΣA,n, J ∈

ΣA,`, i > n + ` + 2p.

Proof. For any I ∈ ΣA,`, write I = KJ where J ∈ ΣA,`−p. By Lemmas 2.1, 2.2, we

have (note that p is fixed)

s`(I, q) ≈ s`−p(J, q).

Since Ap > 0, for J ∈ ΣA,`−p, we can find K ∈ ΣA,p such that I = KJ ∈ ΣA,`.

Hence when we take the sum of I ∈ ΣA,` on the left side of the expression, it is ≈
to the right side summing over all J ∈ ΣA,`−p. This implies (i).

To prove (ii), we fix I ∈ ΣA,n and take J ∈ ΣA,` such that IJ ∈ ΣA,n+`. By

Lemmas 2.2, 2.1, we have

sn+`(IJ, q) ≈ sn(I, q)s`(J, q).

Thus ∑
J

sn+`(IJ, q) 4 sn(I, q)s`(q).

For the reverse inequality we note for any J ′ ∈ ΣA,`−p, there is K ∈ ΣA,p such that

IKJ ′ ∈ ΣA,n+` and

sn+`(IKJ ′) ≈ sn(I, q)sp(K, q)s`−p(J
′, q) ≈ sn(I, q)s`−p(J

′, q).

Therefore summing over the above J ′, we have∑
IJ∈ΣA,n+`

sn+`(IJ, q) <
∑
J ′

sn+`(IKJ ′, q) ≈ sn(I, q)s`−p(q) ≈ sn(I, q)s`(q)

(we make used of Ap > 0 as in (i)). This proves one of the ≈ in (ii). The remaining

part follows from the same argument.

To prove (iii), we first observe that∑
K: IKJ∈ΣA,i

si(IKJ, q) ≈
∑

K: IKJ∈ΣA,i

sn(I, q)si−n−`(K, q)s`(J, q)

4 sn(I, q)s`(J, q)si−n−`(q)
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On the other hand, for any K1 ∈ ΣA,i−n−`−2p, there exists K2, K3 ∈ ΣA,p such that

IK2K1K3J ∈ ΣA,i. Therefore∑
K: IKJ∈ΣA,i

si(IKJ, q) < sn(I, q)s`(J, q)
∑

K1∈ΣA,i−n−`−2p

si−n−`−2p(K1, q)

≈ sn(I, q)s`(J, q)si−n−`−2p(q)

≈ sn(I, q)s`(J, q)si−n−`(q).

2

Lemma 2.4. For q ∈ R,

(i) s`+n(q) ≈ s`(q)sn(q).

(ii) sn(q) ≈ exp(nP (q)) where P (q) is the pressure function defined in (1.1).

Proof. From Lemma 2.3 (ii), there exist C, C ′ > 0 such that

C ′s`(q)sn(q) ≤ s`+n(q) ≤ Cs`(q)sn(q),

which proves (i). To prove (ii), we can write Cs`+n(q) ≤ (Cs`(q)) (Csn(q)). Hence

the subadditivity property implies

P (q) = lim
n→∞

log (Csn(q))

n
= inf

n

log (Csn(q))

n
,

so that C−1 exp(nP (q)) ≤ sn(q). The reverse inequality follows from a similar argu-

ment. 2

For each integer n > 0, let Bn be the σ-algebra generated by the cylinders [I],

I ∈ ΣA,n. We define a sequence of probability measures {νn,q} on Bn by

νn,q([I]) =
sn(I, q)

sn(q)
∀ I ∈ ΣA,n . (2.3)

Then there is a subsequence {νnk,q}k≥1 converges in the weak-star topology to a

probability measure νq. The following assertion shows that νq has the “Gibbs prop-

erty”.

Lemma 2.5. For fixed q ∈ R, νq([I]) ≈ sn(I, q) exp(−nP (q)) for all n > 0, I ∈
ΣA,n.
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Proof. Let p be such that Ap > 0. For any I ∈ ΣA,n and ` > n + p, we have

ν`,q([I]) =
∑

IJ∈ΣA,`

ν`,q([IJ ]) =
∑

IJ∈ΣA,`

s`(IJ, q)

s`(q)

≈ sn(I, q)
s`−n(q)

s`(q)
(by Lemma 2.3(ii))

≈ sn(I, q) exp(−nP (q)). (by Lemma 2.4).

Letting ` = nk ↑ ∞, we obtain the desired result. 2

Proof of Theorem 1.1. Fix q ∈ R. Let µq be a limit point of the subsequence

of { 1
n
(νq + νq ◦ σ−1 + . . . + νq ◦ σ−(n−1))} in the weak-star topology. Then µq is a

σ-invariant measure on ΣA. We have for each I ∈ ΣA,n and ` > p,

νq ◦ σ−`([I]) =
∑

JI∈ΣA,n+`

νq([JI])

≈
∑

JI∈ΣA,n+`

sn+`(JI, q) exp(−(n + `)P (q)) ( by Lemma 2.5)

≈ s`(q)sn(I, q) exp(−(` + n)P (q)) (by Lemma 2.3(ii))

≈ sn(I, q) exp(−nP (q)) (by Lemma 2.4). (2.4)

This proves that µq is a Gibbs measure. In what follows we prove that µq is ergodic.

First we show that there is a constant C > 0 such that for each I ∈ Σn, J ∈ Σ`,

lim
k→∞

1

k

k−1∑
i=0

µq

(
[I] ∩ σ−i([J ])

)
≥ Cµq([I])µq([J ]). (2.5)

Since µq is supported on ΣA, it suffices to prove (2.5) for I ∈ ΣA,n and J ∈ ΣA,`.

Note that when i > n + 2p,

µq

(
[I] ∩ σ−i([J ])

)
=

∑
K: IKJ∈ΣA,i+`

µq([IKJ ])

<
∑

K: IKJ∈ΣA,i+`

si+`(IKJ, q) exp(−(i + `)P (q))

≈ sn(I, q)s`(J, q)si−n(q) exp(−(i + `)P (q)) (by Lemma 2.3(iii))

≈ sn(I, q)s`(J, q) exp(−(n + `)P (q))

≈ µq([I])µq([J ])

from which (2.5) follows. Since the collection {[I] : I ∈ Σn, n ∈ N} is a semi-algebra

that generates the Borel σ-algebra on Σ, a standard argument (e.g., see the proof
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of [W, Theorem 1.17]) shows that for any Borel sets A, B ⊂ Σ,

lim
k→∞

1

k

k−1∑
i=0

µq

(
A ∩ σ−i(B)

)
≥ Cµq(A)µq(B).

This implies that for any Borel sets A, B ⊂ Σ with µq(A) > 0, µq(B) > 0, there

exists n > 0 with µq(A ∩ σ−n(B)) > 0. By [W, Theorem 1.5], µq is ergodic.

For the uniqueness we recall that any two distinct ergodic measures must be

singular to each other; but the Gibbs property (1.2) implies that any two µq must

be absolutely continuous to each other. Hence µq must be unique. 2

Corollary 2.6. Let µq be the Gibbs measure in Theorem 1.1, then there exist C > 0

such that for any I ∈ ΣA,n, J ∈ ΣA,` with IJ ∈ ΣA,n+`,

C−1µq([IJ ]) ≤ µq([I])µq([J ]) ≤ Cµq([I])µq([J ]).

Proof. We have seen from the proof of Lemma 2.3 that for the above I, J ,

sn+`(IJ, q) ≈ sn(I, q)s`(J, q) and from Lemma 2.4, s`+n(q) ≈ sn(q)s`(q). By the

definition of νn,q, we have

νn,q([IJ ]) ≈ νn,q([I])νn,q([J ])

which implies that the Gibbs measure µq has the same property. 2

The above property is called quasi-Bernoulli property by Heurteaux [H] (we re-

mark that Heurteaux only introduced and studied it for measures in the full shift

space Σ). To prove Theorem 1.2, we need a result in [H]. Let η be a probability

measure on Σ. For q ∈ R, let τη(q) be the Lq-spectrum of η, i.e.,

τη(q) = lim inf
n→∞

log
∑

I η([I])q

log m−n
,

where the summation is taken over all I ∈ Σn with η([I]) 6= 0.

Proposition 2.7. ([H, Theorem 2.1]) Let η be a probability measure on Σ. Assume

that there exists a constant C > 0 such that

η([IJ ]) ≤ Cη([I])η([J ]) ∀ I ∈ Σn, J ∈ Σ` . (2.6)

Then τ ′η(1) exists if η is a Young measure (i.e., lim
n→∞

log η
(
In(x)

)
log m−n

= constant for η

almost all x = (ji) ∈ Σ, here In(x) = [ji . . . jn]).
9



Proof of Theorem 1.2. For each q, let µq be the corresponding Gibbs measure

in Theorem 1.1. We can view µq as a measure on Σ. For t ∈ R, let τµq(t) be the Lt-

spectrum of µq. Since µq has the Gibbs property, it is easy to show by the definition

of Lt-spectrum that

τµq(t) =
tP (q)− P (qt)

log m
(2.7)

Note that µq satisfies the condition (2.6). Since µq is ergodic on Σ, it is a Young mea-

sure by the Shannon-McMillan-Brieman theorem (i.e., lim
n→∞

− log µq

(
In(x)

)
n

equals

the entropy of µq (with respect to σ) for µq-almost all x = (ji) ∈ Σ and In(x) =

[j1 . . . jn]). Hence by Proposition 2.7, τµq(t) is differentiable at t = 1. This implies

that P (q) is differential at any fixed q 6= 0, and

P ′(q) =
P (q)− log m · τ ′µq

(1)

q

2

Proof of Theorem 1.3. Let α = τ ′(q) with q 6= 0. Let µq be the corresponding

Gibbs measures in Theorem 1.1, then (2.7) implies that

τµ1(q) =
qP (1)− P (q)

log m

and

E(α) =
{
x ∈ Σ : lim

n→∞

log µ1([x1 · · ·xn])

log m−n
=

P (1)− α

log m

}
By [BMP, Theorem 1] or [LN2, Theorem 4.1], we have

dimH E(α) ≤
(P (1)− α

log m

)
q − τµ1(q) =

1

log m
(−αq + P (q)) ∀ q ∈ R.

(2.8)

For the reverse inequality, we see from the proof of Theorem 1.2 that τ ′µq
(1) exists

and

τ ′µq
(1) =

−qP ′(q) + P (q)

log m
.

By [N], we have for µq almost all I = (i1 . . . in . . . ) ∈ Σ,

lim
n→∞

log µq([i1, . . . , in])

log m−n
= τ ′µq

(1) =
−qP ′(q) + P (q)

log m
.

This implies that

lim
n→∞

log ‖M(x)M(σx) · · ·M(σn−1x)‖
n

= P ′(q) = α µq − a.a. x ∈ Σ.
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Therefore we have

dimH E(α) ≥ dimH µq =
−qα + P (q)

log m
.

2

3. Nonnegative matrices

In this section, we always assume that M is a function on ΣA taking values in the

set of all d× d non-negative matrices and satisfies (H1) and (H2) defined in Section

1. Let q > 0 be fixed. Then sn(I, q) and sn(q) in (2.1) are reduced to

sn(I, q) = ‖MI‖q ∀ I ∈ ΣA,n and sn(q) =
∑

I∈ΣA,n

sn(I, q).

For convenience, we let

b = min
s,t∈{1,2,...m}

min
1≤i,j≤d

( r∑
k=1

∑
K∈ΣA,k,s,t

MK

)
i,j

. (3.1)

Then b > 0 by (H2).

We will reformulate the three theorems in the previous section. The proofs are

almost the same and for simplicity, we only point out the differences. Here Lemmas

2.1, 2.2 do not hold anymore; on the other hand we can use (H2) to replace these

lemmas to obtain an analog of Lemma 2.3:

Lemma 3.1. For q > 0,

(i) s`+1(q) ≈ s`(q).

(ii) For I ∈ ΣA,n,
∑

J sn+`(IJ, q) ≈
∑

J sn+`(JI, q) ≈ sn(I, q)s`(q) where the

first (second) sum is taken over all J ∈ ΣA,` such that IJ ∈ ΣA,n+` ( JI ∈ ΣA,n+`

respectively).

(iii)
∑2r

k=1

∑
K: IKJ∈ΣA,i+k

si+k(IKJ, q) ≈ sn(I, q)s`(J, q)si−n−`(q) for all I ∈
ΣA,n, J ∈ ΣA,`, i > n + `.

Proof. For any I ∈ ΣA,`+1, write I = iJ with J ∈ ΣA,`. Using ‖MI‖ ≤ ‖Mi‖‖MJ‖,
we have for q > 0,

s`+1(q) ≤ m
(

sup
i∈{1,2,... ,m}

‖Mi‖q
)
s`(q).

That is, s`+1(q) 4 s`(q). For the reverse inequality, since for any J ∈ ΣA,`,

r∑
k=1

∑
K∈ΣA,k: KJ∈ΣA,`+k

‖MKJ‖ =
∥∥( r∑

k=1

∑
K∈ΣA,k: KJ∈ΣA,`+k

MK

)
MJ

∥∥ ≥ b‖MJ‖,
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it follows that
r∑

k=1

∑
K∈ΣA,k: KJ∈ΣA,`+k

‖MKJ‖q ≥
( b∑r

k=1 mk

)q‖MJ‖q.

This combines with s`+1(q) 4 s`(q) imply that

s`+1(q) <
r∑

k=1

s`+k(q) ≥ s`(q)

and completes the proof of (i).

To prove (ii), it follows from ‖MIJ‖ ≤ ‖MI‖‖MJ‖ that
∑

J∈ΣA,`:IJ∈ΣA,n+`
sn+`(IJ, q)

4 sn(I, q)s`(q). For the reverse inequality, we use (H2) as above to conclude that

for any J ∈ Σn,` ,

r∑
k=1

∑
K∈ΣA,k:IKJ∈ΣA,n+`+k

‖MIKJ‖ < ‖MI‖‖MJ‖.

Hence
∑r

k=1

∑
K∈ΣA,k:IKJ∈ΣA,n+`+k

‖MIKJ‖q < ‖MI‖q‖MJ‖q and therefore, summing

over the J ∈ Σn,`,

r∑
k=1

∑
L∈

∑
A,`+k:IL∈

∑
A,n+`+k

sn+`+k(IL, q) < sn(I, q)s`(q).

Since ∑
J∈

∑
A,`:IJ∈

∑
A,n+`

sn+`(IJ, q) <
∑

J∈
∑

A,`+1:IJ∈
∑

A,n+`+1

sn+`+1(IJ, q),

we have∑
J∈

∑
A,`:IJ∈

∑
A,n+`

sn+`(IJ, q) <
r∑

k=1

∑
J∈

∑
A,`+k:IJ∈

∑
A,n+`+k

sn+`+k(IJ, q) < sn(I, q)s`(q).

This completes the proof of an ≈ in (ii); the other ≈ follows from an identical

argument.

To prove (iii), we have,

2r∑
k=1

∑
K:IKJ∈ΣA,i+k

si+k(IKJ, q) ≤ sn(I, q)s`(J, q)
2r∑

k=1

si+k−n−`(q)

≈ sn(q)s`(J, q)si−n−`(q) (by (i)).

On the other hand, for any W ∈ ΣA,i−n−`(q), by (H2), there exist 1 ≤ k1 ≤ r,

K1 ∈ ΣA,k1 such that IK1W ∈ ΣA,i−`+k1 and

‖IK1W‖ ≥ b‖I‖‖W‖∑r
k=1 mk

,

12



where b is defined by (3.1). By using (H2) again, there exist 1 ≤ k2 ≤ r, K2 ∈ ΣA,k2

such that IK1WK2J ∈ ΣA,i+k1+k2 and

‖IK1WK2J‖ ≥
b‖IK1W‖‖J‖∑r

k=1 mk
≥ b2‖I‖‖W‖‖J‖

(
∑r

k=1 mk)2
.

Therefore we have

2r∑
k=1

∑
K:IKJ∈ΣA,i+k

si+k(IKJ, q) < sn(I, q)s`(J, q)si−n−`(q)

and (iii) follows. 2

We now state the corresponding theorems as in Section 1.

Theorem 3.2. Suppose M is a function on ΣA taking values in the set of all d× d

non-negative matrices and satisfies (H1) and (H2). Then for any q > 0, there is a

unique Gibbs measure µq on ΣA as in Theorem 1.1.

The proof is almost identical with that of Theorem 1.1 using Lemma 3.1. The

only adjustment is to replace

µq

(
[I] ∩ σ−i([J ])

)
≈ µq(I)µq(J), i > n + 2p.

by
2r∑

i=1

µq

(
[I] ∩ σ−i([J ])

)
≈ µq(I)µq(J) ∀ i > n.

We use the same proof as in Section 2 for the next two theorems.

Theorem 3.3. Under the same conditions of Theorem 3.2, P (q) is differentiable

for any q > 0

Theorem 3.4. Under the same conditions of Theorem 3.2, we have for any α =

P ′(q), q > 0,

dimH E(α) =
1

log m
(−αq + P (q))

where E(α) =
{
J = (ji) ∈ ΣA : limn→∞ log ‖Mj1 · · ·Mjn‖/n = α

}
.

13



To relate Theorem 3.4 to the classical random product of matrices, we let {Yn} be

the i.i.d. random variables that take values M1, . . . , Mm , invertible matrices and

with uniform distribution, then limn→∞
1
n

log ‖Yn . . . Y1‖ = λ a.s. and λ is called the

upper Lyapunov exponent ([FK], [BL, Chapter 1]). In comparison with Theorem

3.4, we let ΣA = Σ be the space of full shift (i.e., all the entries of A are 1), then

P (0) = log m. The limit of the random variables corresponds to the case for q = 0,

λ = P ′(0) and dimH E(λ) = P (0)/ log m = 1 (the existence of the derivative follows

from some additional assumptions on the Mj ([BL, p.119]).

We remark that if ΣA = Σ, then condition (H2) is reduced to a more simple form:∑r
k=1 Hk > 0 where H = M1+ · · ·+Mm. The condition is essential for the theorems

in Section 3. Indeed we have

Example 4.5. Let M1 =

(
2 0

0 1

)
and M2 =

(
2 0

0 3

)
. Then H = M1 + M2

is reducible. Since MJ =

(
2n 0

0 3k

)
where |J | = n and k is the number of 2’s

appeared in J .
∑

|J |=n ‖MJ‖q =
∑n

k=0

(
n
k

)
(2n + 3k)q. Note that

n∑
k=0

(
n

k

)
(2n + 3k)q ≥ max

{ n∑
k=0

(
n

k

)
2nq,

n∑
k=0

(
n

k

)
3kq
}

= max{2n(q+1), (1 + 3q)n}

and
n∑

k=0

(
n

k

)
(2n + 3k)q ≤

n∑
k=0

(
n

k

)
2q(2nq + 3kq) = 2q

(
2n(q+1) + (1 + 3q)n

)
.

We have P (q) = max{(q +1) log 2, log(1+3q)}, which is not differentiable at q = 1.

We see that the Gibbs measure µq in Section 2 has the quasi-Bernoulli property.

However for the case of non-negative matrices, only µq([IJ ]) ≤ Cµq([I])µq([J ]),

I ∈ Σn, J ∈ Σ`. The following example shows that the reverse inequality may not

hold.

Example 4.6. Let M1 =

(
1 1

0 1

)
and M2 an arbitrarily positive matrix, then

H = M1 + M2 is an irreducible positive matrix. Let J = 1 . . . 1 (n-times), then

‖MJ‖ = n + 2 and hence

‖MJ‖ ‖MJ‖ ≥ n

2
‖MJJ‖ .

Since µq(I) ≈ exp(−nP (q)) · ‖MI‖, I ∈ Σn, we see that there does not exist C ′ > 0

such that C ′µq([J ])µ([J ]) ≤ µ([JJ ]).
14



4. Examples and remarks

Consider the classical Bernoulli convolution X = (1− ρ)−1
∑∞

n=1 ρnXn where the

Xn’s are i.i.d. random variables which take values 0, 1 and with probability 1/2

on each value. Let µρ be the distribution measure of X. It is well known that for

0 < ρ < 1/2, the measure is a Cantor type measures. It was proved recently that

µρ is absolutely continuous for almost all 1/2 < ρ < 1 [S], however, it is still not

clear which µρ is absolutely continuous or singular. The question is subjected to

intensive investigation, the reader can refer to the survey articles [L], [PSS] and the

references there. The interest of the Bernoulli convolution in our setting is that the

µρ satisfies the self-similar identity

µρ =
1

2
µρS

−1
1 +

1

2
µρS

−1
2

where S1x = ρx, S2x = ρx + (1− ρ); {S1, S2} is the iterated function system (IFS).

The support of µq is [0, 1]. For 0 < ρ < 1/2, the SJ(0, 1)’s are disjoint (as in the

basic intervals of the Cantor set); for 1/2 < ρ < 1, the SJ(0, 1) overlaps which is the

source of difficulty.

For ρ = (
√

5 − 1)/2, the reciprocal of the golden ratio, it was shown by Erdös

that µρ is singular. In order to consider the multifractal structure of µρ, we can put

the IFS {S1, S2} to a new set of IFS {Ri}3
i=1with no overlap:

R1(x) = ρ2x, R2(x) = ρ3x + ρ2, and R3(x) = ρ2x + ρ.

Then the measure µρ satisfies

µρ([i1 . . . in]) ≈ 1

4n
‖Mi1 . . . Min‖

where [i1 . . . in] = Ri1 . . . Rin([0, 1]) and

M1 =

(
1 1

0 1

)
, M2 =

(
1
2

1
2

1
2

1
2

)
and M3 =

(
1 0

1 1

)
([LN1], [Fe], [FeO]). The {Mi}3

i=1 satisfies the conditions (H2). Hence by Theorem

3.2, 3.3, P (q) is differentiable for q > 0 and the multifractal formalism holds.

Actually more can be said about the Lq-spectrum τ(q) of µq: an explicit formula

was given in [LN1] for q > 0 and was extended to q < 0 in [Fe]. By using the

formula it was proved that τ(q) is differentiable (actually real analytic) on R except

one point in R−.

The above example of Bernoulli convolution gives rise to another interesting ques-

tion. Note that the above example is a special case of the overlapping IFS that can
15



be reduced to new sets of IFS with no overlap and the calculation of the τ(q) can

be converted into the product of matrices as in (1.4). Such IFS forms an important

subclass of those that satisfy the weak separation condition ([LN2], [LNR]). (it will

be interesting to classify this subclass of IFS. Under the weak separation condition

it was proved that the multifractal formalism is valid provided that τ(q) is differen-

tiable [LN2]. However we do not know its differentiability other than the case we

just considered.

The behavior for q < 0 is also important for the multifractal analysis. It does not

have a problem for M to be positive matrix-valued. For the non-negative matrix-

valued M , ‖MJ‖ can be 0, we have to modify the pressure function P (q) in (1.6)

slightly:

P (q) = lim
n→∞

1

n
log

∑
J∈Nn

‖MJ‖q (4.1)

where Nn consists of all the J ∈ ΣA,n such that MJ 6= 0. It is clear that if MJ 6= 0

for all J ∈ ΣA,n, then the super-additivity of the sum in (4.1) implies that the limit

exists. We include a simple proposition with ΣA = Σ to set up the consideration:

Proposition 4.4 Suppose M1, · · · , Mm are non-negative matrices and H =
∑m

i=1 Mi

is irreducible, then the limit in (4.1) exists for each q < 0 .

Proof. By the irreducibility, there exists integer r with
∑r

k=1 Hk > 0. Hence

there is a constant C > 0 such that for any two finite indices I, J , there exists

K0 ∈
⋃r

k=1 Σk satisfying

0 < ‖MIK0J‖ ≤ C‖MI‖‖MJ‖. (4.2)

Denote by sn =
∑

J∈Nn
‖MJ‖q. Then (4.2) implies sns` ≤ C−q

∑r
k=1 sn+`+k. From

(4.2) we also deduce that for any finite index I, there exists i ∈ Σ1 such that MIi 6= 0;

Since ‖MIi‖ ≤ C1‖MI‖ for some constant C1 > 0, we have sn ≤ C−q
1 sn+1 for any

integer n, `. It follows that sns` ≤ C ′sn+`+r for some constant C ′ > 0 (depending on

q), which implies that an = 1
C′ sn−r is super-multiplicative. This yields the existence

of the limit. 2.

The differentiability of such P (q) for q < 0 is still unknown. We know that in

the above Bernoulli convolution of the golden ratio, it is possible for the P (q) to be

non-differentiable at a point of q < 0 [Fe]. On the other hand, it is known that by

imposing some stronger conditions on the matrices, the pressure function P (q) is

analytic near q = 0 (see e.g., [BL, Theorem 4.3]).
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Finally we remark that we do not know whether the theorems can be extended

to non-positive matrices. An important theorem concerning this is in [BL, Theorem

4.3] for the analyticity of P (q) near zero. Much closer to our development is the

scaling functions: f(x) =
∑m

i=0 cif(2x − i). It is known that such function can be

put into matrix form as in the previous example [DL1]. Daubechies and Lagarias

studied the multifractal formalism of the well known scaling function D4 [DL2].

They showed the differentiability of the corresponding τ(q), but the consideration

depends on the two 2 × 2 matrices involved to have a common eigenvector. There

are some extensions in [LM].
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