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Abstract

Let q be a Pisot number and m a positive integer. Consider the increasing sequence

0 ¼ y0oy1o?oyko?

of those real numbers y which have at least one representation of the form

y ¼
Xn

i¼0

eiq
i

with some integer nX0 and coefficients eiAf0; 1;y;mg: When mXq � 1; we will

determine the structure of the difference sequence fykþ1 � ykgkX0; that is, it is the

image of a sequence generated by a substitution over a finite alphabet of symbols.

Then, we also give an algorithm to determine the exact value of infk ðykþ1 � ykÞ:
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1. Introduction

Fix a real number q > 1 and a positive integer m: Consider the increasing
sequence

0 ¼ y0oy1o?oyko? ð1:1Þ
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of those real numbers y which have at least one representation of
the form

y ¼
Xn

i¼0

eiq
i

with some integer nX0 and coefficients eiAf0; 1;y;mg: A question initiated
by Erdös et al. [EJK1] is to analyze the properties of the difference sequence
fykþ1 � ykgkX0:

Erdös and Komornik [EK] distinguished the cases mXq � 1 and
moq � 1:

Lemma 1.1. Let q > 1 and m be a positive integer. Then we have:

(i) If mXq � 1; then ykþ1 � ykp1 for each k;
(ii) If moq � 1; then there exists a subsequence fkng; such that yknþ1 �

ykn
tends to infinity.

Remark 1.2. Statement (ii) above is only implied in the proof of Lemma 2.1
in [EK].

To characterize this difference sequence, Bugeaud [B] proved that
lim infðykþ1 � ykÞa0 for every integer mX1 if and only if q is a Pisot
number. Recall that q > 1 is called a Pisot number if q is an algebraic
number and all its conjugates have moduli less than 1 (see [BDGPS,Sa] for
detailed properties of Pisot numbers). In his proof, Bugeaud used some
results of automata in [BF,F]. One may see [EJK2] or [EK] for a different
proof.

As we will prove in Section 2 (see Lemma 2.2), for a Pisot number
q with mXq � 1 the difference sequence fykþ1 � ykgkX0 can take

only finitely many distinct values. It is then natural to ask how to
describe the structure of this sequence. The first aim of this paper is
to prove by a concrete construction that this difference sequence can be
generated by a substitution over a finite alphabet (see Theorem 2.1).
Sequences generated by substitutions have many interesting properties. In
particular, it is related closely to number theory (see [Al] or [Sh] for a
survey).

After Erdös et al. [EJK1], several authors [EJJ,KLP] determined the exact
value of infkðykþ1 � ykÞ for some special Pisot numbers q and integers m

(Xq � 1) (see Section 3 for details). The method, which they used, depends
on the choice of q: They asked whether one can determine infkðykþ1 � ykÞ
for the general case. The second aim of this paper is to give an algorithm for
the general case. At the end of this paper, we will also give some examples
and computation results.
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2. Structure of the sequence of fykþ1 � ykgkX1

In this section, we will prove that the sequence fykþ1 � ykgkX1 can be

generated by a substitution over a finite alphabet. For this purpose, we recall
first some definitions.

Let A be a finite nonempty set. The set A is also called an alphabet and

its elements letters. The free monoid generated by A is denoted by An; it
contains all finite words, i.e., finite strings of symbols from A; including the
empty word. The length of a word w; denoted by jwj; is defined as the

number of letters of w: The operation which makes An a monoid is the
concatenation of words.

A substitution on An is a map s :An-An; such that, for any two words
u and v; one has sðuvÞ ¼ sðuÞsðvÞ: The substitution s is determined by the
image of the elements of A: We say s is of constant length if the length of
each word sðaÞ is equal to a constant for aAA:

Denote by AN the collection of all infinite words over A: A substitution s
on An can be uniquely extended to a map (denoted also by s) on AN in a

natural way. A sequence yAAN is called a fixed point of the substitution s if
sðyÞ ¼ y: If for some letter aAA; the word sðaÞ begins at a and has length at
least 2, then the sequence of words snðaÞ converges to a fixed point

sNðaÞAAN:

Let B be an alphabet. A sequence x ¼ x0x1?xn?ABN is called

substitutive if there exists a fixed point o ¼ o0o1?on?AAN of a
substitution s over an alphabet A and a map h :A-B such that
xi ¼ hðoiÞ; iX0; i.e., x is the image of o under h: In this case, we also
say that the sequence x is generated by the substitution s: The reader is
referred to Allouche [Al] and Queffélec [Q] for further properties of
substitutions.

Now we can formulate our result as follows.

Theorem 2.1. Fix a Pisot number q > 1 and a positive integer m: Let fykgkX0

be the sequence defined as in (1.1). If mXq � 1; the difference sequence

fykþ1 � ykgkX0 is the image of a substitution sequence over a finite alphabet of

symbols. If moq � 1; lim supðykþ1 � ykÞ ¼ N:

The above theorem generalizes a result of Bugeaud [B1], who
considered the case m ¼ 1 and obtained the corresponding sub-
stitution property for a special sequence of Pisot numbers in ð1; 2Þ (see
Remark 2.6 for details). The proof of Theorem 2.1 is based on the following
lemmas.

Lemma 2.2. Let q be a Pisot number and m a positive integer so that

mXq � 1: Then the sequence fykþ1 � ykgkX0 only takes a finite number of
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values, and this finite number is not greater than

ð2mÞd�1Qd�1
i¼1 ð1 � jaijÞ

; ð2:1Þ

where d is the degree of q and a1;y; ad�1 are the algebraic conjugates of q:

Remark 2.3. The finiteness of the number of distinct values of ðykþ1 � ykÞ
was proved by Bugeaud [B] for Pisot numbers 1oqo2:

Proof of Lemma 2.2. Since q is a Pisot number, a classic result of
algebraic number theory by Garsia (see [G, Lemma 1.51]) states that, if AðxÞ
is a polynomial with integer coefficients and height M for which AðqÞa0;
then

jAðqÞjX
Qd�1

i¼1 ð1 � jai jÞ
Md�1

: ð2:2Þ

Now assume that our lemma is not true, that is, the sequence fykþ1 � ykg
takes at least N distinct values, where N is strictly greater than

ð2mÞd�1=
Qd�1

i¼1 ð1 � jai jÞ:
Since ykþ1 � ykp1 for any k by Lemma 1.1(i), we see that either

0oykþ1 � yko
1

N

for some k; or, by Pigeon-hole Principle,

0oðyk0þ1 � yk0 Þ � ðyk00þ1 � yk00 Þp
1

N

for some k0 and k00: However due to (2.2) this cannot hold since ykþ1 � yk or
ðyk0þ1 � yk0 Þ � ðyk00þ1 � yk00 Þ is equal to BðqÞ for some polynomial BðxÞ with
integer coefficients and height not exceeding 2m: &

Proof of Theorem 2.1. Let q > 1 be a Pisot number and m a positive integer.
By Lemma 1.1, lim supðykþ1 � ykÞ ¼ N whenever moq � 1: In the
following we assume that q is not an integer and m > q � 1 (the case where
q is an integer is trivial, since the sequence ðykþ1 � ykÞ takes the constant
value 1 when m > q � 1). For each positive integer n; let

0 ¼ zn;0ozn;1o?ozn;sn

be all the distinct elements of the set

Xn ¼
Xn�1

i¼0

eiq
i : eiAf0; 1;y;mg

( )

and denote zn;snþ1 ¼ zn;sn
þ m

q�1
¼ mqn

q�1
:
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For each iAf0; 1;y; sng; the segment ½zn;i; zn;iþ1� is termed as an nth net

interval, for which we construct a set gn;i by

gn;i ¼ zn;j � zn;i : 0pjpi þ 1; zn;j � zn;iX�
m

q � 1

� �
:

We term gn;i as the nth color of the segment ½zn;i; zn;iþ1�: In particular, we

denote

jjgn;ijj ¼ zn;iþ1 � zn;i; ð2:3Þ

that is, jjgn;i jj represents the length of ½zn;i; zn;iþ1�:
Let A be the collection of all the sets gn;i; that is,

A ¼ fgn;i : nX1; iAf0; 1;y; sngg:

Using an argument similar to the proof of Lemma 2.2, we can show that A
has only finitely many elements. To see this, suppose that q is of degree d

and a1;y; ad�1 are its algebraic conjugates. If zn;j � zn;j0a0 for some n and

j; j0Af0; 1;y; sng; by (2.2),

jzn;j � zn;j0 jX
Qd�1

i¼1 ð1 � jai jÞ
md�1

;

thus each set gn;i consists of at most N1 ¼ md

ðq�1Þ
Qd�1

i¼1
ð1�jai jÞ

þ 2 elements. On

the other hand, the cardinality of the following set:

jzn;j � zn;j0 j : jzn;j � zn;j0 jp
m

q � 1
; nX0; j; j0Af0; 1;y; sng

� �

does not exceed N2 ¼ m
q�1

ð2mÞd�1Qd�1

i¼1
ð1�jai jÞ

: Therefore, the cardinality of A does

not exceed N1NN1

2 : Now, take an nth net interval J ¼ ½a; b� arbitrarily, and

denote qJ ¼ ½qa; qb�: It is clear that the endpoints of qJ are contained in the

set Xnþ1,fmqnþ1

q�1
g; and thus qJ is the union of some ðn þ 1Þth net intervals.

That is, (fj; j þ 1;y; j þ l � 1gCf0; 1;y; snþ1g; such that

qJ ¼
[l

k¼1

Jk; ð2:4Þ

where Jk ¼ ½znþ1;jþk�1; znþ1;jþk�: Let xk be the ðn þ 1Þth color of Jk; k ¼
1;y; l: As a word in An ¼

S
N

n¼1 An; x1?xl is determined completely by

the nth color, say x; of J: To see this, let x ¼ ft1; t2;y; trg; where t1;y; tr

are in the increasing order. Then by the definition of the nth color,

a �
m

q � 1
; b

	 

-Xn ¼ fa þ t1;y; a þ tr�1g; b � a ¼ tr:
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Since Xnþ1 ¼
Sm

i¼0 ðqXn þ iÞ; a direct check shows that

qa �
m

q � 1
; qb

	 

-Xnþ1

¼ qa þ qtj þ i : qtj þ iA �
m

q � 1
; qtr

	 

; 1pjpr � 1; 1pipm

� �
ð2:5Þ

and

½qa; qbÞ-Xnþ1

¼ fqa þ qtj þ i : qtj þ iA½0; qtrÞ; 1pjpr � 1; 1pipmg: ð2:6Þ

By (2.6), the number of ðn þ 1Þth net intervals contained in qJ ; denoted by l

in (2.4), is equal to the cardinality of the set

qtj þ i : qtj þ iA �
m

q � 1
; qtr

	 

; 1pjpr � 1; 1pipm

� �
:

Thus l only depends on x: Now for any integer 1pkpl; the ðn þ 1Þth color
xk of Jk ¼ ½znþ1;jþk�1; znþ1;jþk� can be written as

w � znþ1;jþk�1: wA qa �
m

q � 1
; qb

	 

-Xnþ1

�
;

�
m

q � 1
pw � znþ1;jþk�1p0

�
,fznþ1;jþk � znþ1;jþk�1g:

By (2.5) and (2.6), the differences w � znþ1;jþk�1 are independent of a; thus

xk only depends upon x: By the above process, we get a map s :A-An

defined by sðxÞ ¼ x1?xl ; where l varies depending on x: In other words, we
get a substitution s on A:

One can check that ½0; 1� is a 1st interval with the 1st color y ¼ f0; 1g; and
sðyÞ ¼ y1y2?y½q�þ1 (here and in the following formula we use ½x� to denote

the integral part of the number x), where

yi ¼ fai; ai þ 1;y; 0; 1g; ai ¼ maxf�i þ 1;�½ m
q�1

�g

for 1pip½q�

y½q�þ1 ¼ fb; b þ 1;y; 0; q � ½q�g; b ¼ maxf�½q�;�½ m
q�1

�g:

8>><
>>:

Since y ¼ y1; the infinite wordo ¼ limn-N snðyÞ is one fix point of the map s:
Define a map h :A-R by xAA/jjxjj; where jj � jj is defined as in (2.3).
For nX0; let I1; I2;y; ItðnÞ denote all the nth net intervals contained in the

interval ½0; qn� in increasing order, and x1; x2;y; xtðnÞ denote the correspond-

ing nth colors of I1; I2y; ItðnÞ: Then by our construction, the word

x1x2yxtðnÞ is just snðyÞ: Since the word snðyÞ is always a prefix of snþmðyÞ
for each mX1; it follows that for any integer m0; Xnþm-½0; qn� ¼ Xn-
½0; qn�: Denoted by kn the greatest number k such that ykA½0; qnÞ; then
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fykþ1 � ykg0pkpkn
is just the image of the word snðyÞ under the map h: This

proves Theorem 2.1. &

Remark 2.4. The substitution s we constructed in the above proof is not of
constant length whenever q is not an integer. To see this, we note that
jsðyÞj ¼ ½q� þ 1 > q; and jsnðyÞj is equal to the number of nth net intervals

contained in ½0; qn�; which implies that C�1qnojsnðyÞjoCqn for some
constant C > 0: Thus jsnðyÞjað½q� þ 1Þn for some n > 0; which implies that s
is not of constant length. However, we do not know in general whether
fykþ1 � ykg0pkpkn

can be an image of a substitution of constant length.

Example 2.5. Take q ¼ ð
ffiffiffi
5

p
þ 1Þ=2 and m ¼ 1: In this case, by a simple

calculation, the color set is A ¼ fa; b; c; dg; where

a ¼ f0; 1g; b ¼ f�1; 0; q � 1g; c ¼ f1 � q; 0; 1g; d ¼ f�1; 0; 1g

and

a-ab; b-c; c-db; d-cb:

The above substitution can be reduced to the substitution sðaÞ ¼ ab; sðbÞ ¼
a; which is usually called the Substitution of Fibonacci. The infinite sequence

o ¼ lim
n-N

snðaÞ ¼ abaababaabaababaababa?

is the unique fixed point of s on AN: Define h :A-R by hðaÞ ¼ 1 and
hðbÞ ¼ q � 1: Then the difference sequence fykþ1 � ykgkX0 is just the image

of o under the map h:
Furthermore, let m ¼ 1; let cX3 be an integer and q ¼ qc > 1 the positive

root of the polynomial qc � qc�1 �?� q � 1: In this case, by some
calculations, we get a substitution as follows: the color set A ¼ f1; 2;y; cg;
the substitution rule s is defined by

1/12; 2/13; y; ðc� 1Þ/1c; c/1;

this substitution is called the Rauzy Substitution over l letters.

Define h by hð1Þ ¼ 1 and hðiÞ ¼ qi�1 �
Pi�2

j¼0 qj for 2pipc: The difference

sequence fykþ1 � ykgkX0 is just the image of the substitution sequence

limn-N snð1Þ under the map h:

Remark 2.6. It was pointed out by the referee that Bugeaud had obtained
the results in the above example in his dissertation [B1, Théorème 4, p. 130],
by using a different method.

3. An algorithm to determine infk ðykþ1 � ykÞ

Before giving our algorithm, we would like to recall some known results
about the determination of infk ðykþ1 � ykÞ:
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Theorem 3.1 (Erdös et al. [EJJ]). Given an integer r > 1; let q be the unique

positive root of the polynomial qr � qr�1 �?� q � 1: Let m ¼ 1: Then

infk ðykþ1 � ykÞ ¼ 1=q:

Theorem 3.2 (Komornik et al. [KLP]). ðiÞ Let qE1:466 be the root of the

polynomial q3 � q2 � 1 and m ¼ 1; then infk ðykþ1 � ykÞ ¼ q2 � 1:

ðiiÞ Let q ¼ ð
ffiffiffi
5

p
þ 1Þ=2 be the golden ratio. Fix a positive integer m: Let c

be the integer defined by qc�2ompqc�1; then

inf
k

ðykþ1 � ykÞ ¼ jFcq � Fcþ1j;

where fFigiX0 is the Fibonacci sequence 0; 1; 1; 2; 3;y; which satisfies the

recurrence relation Fi ¼ Fi�1 þ Fi�2 with the initial condition F0 ¼ 0 and

F1 ¼ 1:

The proof of Theorem 2.1 contains an algorithm to determine all the
possible distinct values of ðykþ1 � ykÞ whenever q is a Pisot number and
mXq � 1:

To see this, let s be the substitution over A introduced as in the above
proof and y be the color of the 1st net interval ½0; 1�: An element x in A is
said to be relative to y if there exists n such that x is a letter in the word snðyÞ:
Since we have had an easy algorithm to determine the word sðZÞ for ZAA;
we can determine the set B of all the elements relative to y in a finite number
of steps. The set of all the possible distinct values of ðykþ1 � ykÞ is nothing
but the set fjjxjj: xABg:

However, the above algorithm consists of a large amount of computations
when q is of high degree. In this section, we will give another much faster
algorithm. Set for each integer nX0;

En ¼
Xn

i¼0

eiq
i: eiAf�m;�m þ 1;y; 0;y;mg

( )

and Ln ¼ En-½0;m=ðq � 1Þ�: Define E ¼
S

nX0 En and L ¼
S

nX0 Ln: Our

algorithm is based on the following simple lemma:

Lemma 3.1. If q is a Pisot number and mXq � 1; then

(i) LnCLnþ1 for every integer nX0;
(ii) infk ðykþ1 � ykÞ ¼ minfza0: zALg;
(iii) if Ln0þ1 ¼ Ln0

for some integer n0; then L ¼ Ln0
:

Proof. Statement (i) is trivial, it suffices to prove statements (ii) and (iii).
The inequality ‘‘X’’ in statement (ii) is clear, since ykþ1 � ykAL for each

kX0 by Lemma 1.1. To see the opposite inequality ‘‘p’’, note that every

zALn with za0 can be written as
Pn

i¼0 eiq
i �
Pn

i¼0 e
0
iq

i; where
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ei; e0iAf0; 1;y;mg for 0pipn: That is, z ¼ ys � yt for some integers s >
tX0; thus zXinfk ðykþ1 � ykÞ:

To prove statement (iii), it suffices to establish the following relation:

Lnþ1 ¼
[m

i¼�m

ð7qLn þ iÞ

 !
- 0;

m

q � 1

	 �
; 8nX0: ð3:1Þ

To see the above equality, pick any zALnþ1 and suppose z ¼
Pnþ1

i¼0 eiq
i

where eiAf�m;�m þ 1;y;mg for 0pipn þ 1: Since zA½0;m=ðq � 1Þ�;

z � e0
q

¼
Xn

i¼0

eiþ1qiAEn

and

jðz � e0Þ=qjpðz þ mÞ=qpðm=ðq � 1Þ þ mÞ=q ¼ m=ðq � 1Þ:

That means jðz � e0Þ=qjALn; therefore ‘‘C’’ holds in (3.1). One can check the
relation ‘‘*’’ easily. Thus we complete the proof of statement (iii). &

By the above lemma, to determine infk ðykþ1 � ykÞ; it suffices to determine
the set L: In the following, we give a recursive algorithm to determine L:

For each real number z; denote by TðzÞ the set

f7qz þ i: iAf�m;�m þ 1;y;mgg-½0;m=ðq � 1Þ�:

Note that L0 ¼ f0; 1;y; cg with c ¼ minfm; ½m=ðq � 1Þ�g; here ½m=ðq � 1Þ�
denotes the integral part of m=ðq � 1Þ: By (3.1), we can determine L1 by
L1 ¼

S
zAL0

TðzÞ:
Suppose we have determined the set Ln with LnaLn�1; then we obtain the

set Lnþ1 by

Lnþ1 ¼ Ln,
[

zALn\Ln�1

TðzÞ

 !
:

Since as in the proof of Theorem 2.1, the cardinality of L does not exceed

N2 ¼
m

q � 1

ð2mÞd�1Qd�1
i¼1 ð1 � jaijÞ

;

where d is the degree of q and a1;y; ad�1 the algebraic conjugates of q; there
exists n0pN2 such that Ln0

¼ Ln0�1 and thus L ¼ Ln0
:

Example 3.2. Given rAN; m ¼ 1: Let q denote the unique positive real
solution of the equation

qr ¼ qr�1 þ qr�2 þ?þ 1:

This implies

1

q � 1
¼ 1 þ

1

qr � 1
and

1

q
¼ qr�1 � qr�2?� 1:
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By a simple calculation, we get

L0 ¼ f0; 1g; Tð1Þ ¼ fq � 1g; T2ð1Þ ¼ Tðq � 1Þ ¼ fq2 � q � 1g;y

and

Tr�1ð1Þ ¼ Tðqr�2 � qr�3 �?� 1Þ ¼ qr�1 � qr�2 �?� 1 ¼
1

q

� �
:

Notice that Trð1Þ ¼ Tð1
q
Þ ¼ f0; 1g; Lr ¼ Lr�1; we get therefore by Theorem

3.3(iii), L ¼ Lr�1; and

inf
kX0

ðykþ1 � ykÞ ¼ infðL\f0gÞ ¼ 1=q;

this is exactly the conclusion of Theorem 3.1.

Using the above algorithm, by computation experiments we can easily
determine infk ðykþ1 � ykÞ for Pisot numbers q of small degree and small
integer m: In the following Tables 1–3 we give some results by computation
experiments.

Table 1

infk ðykþ1 � ykÞ corresponding to the first nine smallest Pisot number q and m ¼ 1

Polynomial for q Numer.

est. of q

infk ðykþ1 � ykÞ Numer.

est. of

infk ðykþ1 � ykÞ

x3 � x � 1 1.324717 �3q2 þ q þ 4 0.06008495

x4 � x3 � 1 1.380277 q3 � 4q2 þ 5 0.00899345

x5 � x4 � x3 þ x2 � 1 1.443268 4q2 � 3q � 4 0.00229284

x3 � x2 � 1 1.465571 q2 � 2 0.14789903

x6 � x5 � x4 þ x2 � 1 1.501594 �q5 � 2q4 þ 4q3 þ 3q2 � 3q þ 2 0.00034913

x5 � x3 � x2 � x � 1 1.534157 �2q4 þ 3q3 � q2 þ 3q � 2 0.00215591

x7 � x6 � x5 þ x2 � 1 1.545215 �3q6 þ 2q5 þ 8q4 � 2q3 � 8q2 þ 2q þ 1 0.00004243

x6 � 2x5 þ x4 � x2 þ x � 1 1.561752 �5q5 þ 8q4 þ q3 � 3q2 þ 6q � 7 0.00022195

x5 � x4 � x2 � 1 1.570147 q4 � 2q2 � 2q þ 2 0.00699287

Table 2

qE1:46557123 be the real root of x3 � x2 � 1 ¼ 0 and 1pmp10

m infk ðykþ1 � ykÞ Numer. est. of

infk ðykþ1 � ykÞ

1 q2 � 2 0.14789903

2 �3q2 þ q þ 5 0.02187412

3 q2 þ 4q � 8 0.01018396

4 �8q2 þ 9q þ 4 0.00694880

5 9q2 � 5q � 12 0.00323516

6 9q2 � 5q � 12 0.00323516

7 �5q2 � 7q þ 21 0.00150619

8 �5q2 � 7q þ 21 0.00150619

9 21q2 � 26q � 7 0.00102772

10 21q2 � 26q � 7 0.00102772
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