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Abstract. Let µ be the self-similar measure for a linear function system

Sjx = ρx+ bj (j = 1, 2, . . . ,m) on the real line with the probability weight {pj}mj=1.

Under the condition that {Sj}mj=1 satisfies the finite type condition, the Lq-spectrum

τ(q) of µ is shown to be differentiable on (0,∞); as an application, µ is exact

dimensional and satisfies the multifractal formalism.

1. Introduction

Let ν be a finite Borel measure on Rn with compact support. For q ∈ R, the

Lq-spectrum of ν is defined by

τ(q) = τ(ν, q) = lim infδ↓0
log (sup

∑
i ν(Bδ(xi))

q)

log δ
,

where the supremum is taken over all the families of disjoint balls Bδ(xi) of radius

δ and center xi ∈ supp(ν).

The Lq-spectrum of a measure is one of the basic ingredients in the study of

multifractal phenomena. It is well known that if µ is the self-similar measure defined

by a family of contractive similitudes {Sj}mj=1 which satisfies the open set condition

[8], τ(q) can be calculated by an explicit formula and it is analytic on R ([2, 18]).

Moreover, the Legender transform of τ(q) (i.e., τ ∗(α) = inf{qα − τ(q) : q ∈ R})
equals the Hausdorff dimension of the set

K(α) =
{
x ∈ supp(µ) : lim

δ→0

log µ(Bδ(x))

log δ
= α

}
.
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The relationship between τ(q) and the dimension of K(α) as above is the well-known

multifractal formalism. One may refer to [3, 18, 21, 22] for some further properties

of Lq-spectrum and multifractal formalism.

Following the terminology of Barnsley [1], we call the above family of contractive

similitudes {Sj}mj=1 an iterated function system (IFS). If the family does not satisfy

the open set condition, it is much harder to obtain a formula for τ(q) and it is not

known whether the multifractal formalism will hold in general. Nevertheless, Lau

and Ngai proved in [13] that the multifractal formalism holds if the IFS {Sj}mj=1

satisfies the weak separation condition and in the mean time τ(q) is differentiable

for 0 < q < ∞. That is, dimH K(α) = τ ∗(α) for any α = τ ′(q) with q > 0.

The weak separation condition is strictly weaker than the open set condition and

is satisfied by many interesting overlap cases. A question arises naturally whether

or not τ(q) is differentiable on (0,∞) for every self-similar measure. To our best

knowledge, except for a few examples (e.g. [12, 14, 23]), there is no general theorem

to guarantee the differentiability of τ(q) for self-similar measures with overlaps.

In this paper, we provide a rigorous proof of the smoothness of τ(q) on (0,∞) for

a class of self-similar measures with overlaps. We say that a family of similitudes

Sj(x) = ρx+ bj, 0 < ρ < 1, bj ∈ R, j = 1, . . . ,m

satisfies the finite type condition if there is a finite set Γ such that for each integer

n > 0 and any two indices J = j1 . . . jn and J ′ = j′1 . . . j
′
n,

either ρ−n|SJ(0)− SJ ′(0)| > c or ρ−n|SJ(0)− SJ ′(0)| ∈ Γ,

(1.1)

where SJ denotes the composition Sj1 ◦ . . . ◦ Sjn and

c = (1− ρ)−1( max
1≤j≤m

bj − min
1≤i≤m

bi).

Denotes by K the self-similar set generated by {Sj}mj=1 (see [8]). It is not hard to

see c = diam(K). The finite type condition defined under the present setting is

equivalent to the more general definition introduced in [16] where the contraction

ratios ρj can be different for different Sj and the domain of Sj is Rd. It was proved by

Nguyen [17] that an IFS of finite type always satisfies the weak separation condition.
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Under the finite type condition, the Hausdorff dimension of K has been studied in

[7, 9, 16, 24, 26, 28].

For a given probability weight {pj}mj=1, it is well known (see [8]) that there is a

unique one probability measure µ on R satisfying the relation

µ =
m∑
j=1

pjµ ◦ S−1
j . (1.2)

This measure is often called the self-similar measure generated by {Si}mi=1.

Now we can formulate our main results as follows:

Theorem 1.1. Let µ be the self-similar measure on R generated by an IFS

Sjx = ρx+bj (j = 1, 2 . . . ,m) satisfying the finite type condition with the probability

weight {pj}mj=1. Then the Lq-spectrum τ(q) of µ is differentiable on (0,∞).

This combining with the result of Lau and Ngai (Theorem B of [13]) or a recent

result of Feng and Lau (Theorem 3.4 of [5]) yields immediately

Theorem 1.2. Under the condition of Theorem 1.1, the multifractal formalism holds

for µ. That is,

dimH K(α) = inf{αt− τ(t) : t ∈ R} = αq − τ(q), ∀α = τ ′(q) for q > 0.

Recall a Borel measure µ on Rn is called exact dimensional (or more precisely d

exact dimensional) if there exists a constant d such that

lim
δ→0

log µ(Bδ(x))

log δ
= d

for µ almost all x ∈ Rn. In [15] Ngai proved that if µ is a compactly supported

probability Borel measure on Rn and the Lq spectrum of µ is differentiable at 1,

then µ is exact dimensional and

dimH µ = dime µ = τ ′(1),

where dimH µ denotes the Hausdorff dimension of µ and dime µ denotes the entropy

dimension of µ (see [22, 27] for the definitions of different dimensions of a measure).

The above result has also been obtained (in generalized form) by Heurteaux [6] and

Olsen [19]. This combining with Theorem 1.1 yields
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Theorem 1.3. Under the condition of Theorem 1.1, µ is exact dimensional with

dimH µ = dime µ = τ ′(1).

The above results can be applied directly to the classical Bernoulli convolutions

associated with Pisot numbers. Let µ be the self-similar measure generated by

S1(x) = ρx, S2(x) = ρx+ (1− ρ)

with probability weight {1/2, 1/2}, where 1/2 < ρ < 1. Such measures are known

as the classical Bernoulli convolutions and have been studied for a long time (see

[11, 20] and references therein). It is known that if ρ−1 is a Pisot number, the

corresponding maps {S1, S2} satisfies the finite type condition (see e.g. [7, 16]).

Recall that β > 1 is called a Pisot number if β is an algebraic integer and all its

conjugates have moduli less than 1.

Theorem 1.3 generalizes a result of Lalley. In [10] Lalley showed that the Bernoulli

convolutions associated with Pisot numbers are exact dimensional, and dimH µ can

be expressed as the top Lyapunov exponent of certain random matrix products.

We remark that under the condition of Theorem 1.1, the function τ(q) may be

not differentiable for some q < 0. In [4], the author gave a complete explicit formula

of τ(q) (q ∈ R) for the Bernoulli convolution associated with ρ =
√

5−1
2

and showed

that τ(q) is not differentiable at one point q0 < 0.

Let us give a brief description of our idea in the proof of Theorem 1.1. First we

define a family of so-called basic net intervals which has a net structure. Using the

finite type condition, we construct a symbolic space with finite states and a family

of transition matrices (maybe not squared) on these states, so that each basic net

interval can be identified as an admissible string in the symbolic space, and the

distribution of the measure µ (written in a vector form) on each basic net interval

can be expressed as a product of these matrices. Using an additional technique, we

construct a family of non-negative squared matrices so that their sum is irreducible,

and the measure µ can be re-expressed as a product of these squared matrices on

a subclass of basic net intervals. In this way we can show that τ(q) = P (q)
− log ρ

for

q > 0, where P (q) is the pressure function for these squared matrices (see Section

5 for the definition). A recent result of Feng and Lau [5] shows that P (q) is always
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differentiable on (0,∞) under the irreducible condition. This leads to our differential

result for τ(q).

The method used above for constructing the symbolic space and corresponding

transition matrices extends an idea in [4], and it is different from that of Lalley in

[10]. In fact, it seems hard to set up completely the relationship between τ(q) and

the pressure function for the matrices derived from Lalley’s method.

We organize the paper as follows. In Section 2, we study the structure of basic

net intervals and give the symbolic expressions (i.e. Markov strings in a subshift

space) for them. In section 3, we express the distribution of µ (written in a vector

form) on each basic net interval as a product of some non-negative matrices (maybe

not squared). In Section 4, we re-express it as a product of some squared matrices,

and prove the irreducibility of the sum of these matrices. In Section 5, we set up

the relationship between τ(q) and P (q), which completes the proof of Theorem 1.1.

2. Basic net intervals and their symbolic expressions

Let Sjx = ρx+ bj (j = 1, 2, . . . ,m) be an IFS satisfying the finite type condition

and µ the self-similar measure generated by {Sj}mj=1 with the probability weight

{pj}mj=1. Without loss of generality, here and afterwards we always assume

0 = b1 < b2 < . . . < bm = 1− ρ.

Under this assumption, the convex hull of K is just the interval [0, 1], where K is

the self-similar set generated by {Sj}mj=1. And also the constant c in (1.1) equals 1.

In what follows we will define basic net intervals and their symbolic expressions.

WriteA = {1, . . . ,m}. For n > 0 denote byAn the collection of all indices j1 . . . jn

of length n over A. We define two families of sets P 0
n , P

1
n (n ≥ 0) in the following

way: P 0
0 = {0}, P 1

0 = {1}, and P 0
n = {Sσ(0) : σ ∈ An}, P 1

n = {Sσ(1) : σ ∈ An} for

n ≥ 1. Define Pn = P 0
n

⋃
P 1
n for n ≥ 0. Let h1, . . . , hsn be all the elements of Pn

ranked in the increasing order. Define

Fn = {[hj, hj+1] : 1 ≤ j < sn, (hj, hj+1) ∩K 6= ∅} .

Each element in Fn is called a n-th basic net interval.
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The following facts about basic net intervals can be checked easily: (i)
⋃

∆∈Fn ∆ ⊃
K for any n ≥ 0; (ii) For any ∆1,∆2 ∈ Fn with ∆1 6= ∆2, int(∆1) ∩ int(∆2) = ∅;
(iii) For any ∆ ∈ Fn (n ≥ 1), there is a unique element ∆̂ ∈ Fn−1 such that ∆̂ ⊃ ∆.

For each ∆ = [a, b] ∈ Fn (n ≥ 0), we will define a positive number `n(∆), a

vector Vn(∆) and a positive integer rn(∆). If ∆ = [0, 1] ∈ F0, we define `0(∆) = 1,

V0(∆) = 0 and r0(∆) = 1. Otherwise for n ≥ 1, we define `n(∆) and Vn(∆) directly

by

`n(∆) = ρ−n(b− a)

and

Vn(∆) = (a1, . . . , ak).

where a1, . . . , ak (ranked in the increasing order) are all the element of the following

set

{ρ−n(a− Sσ(0)) : σ ∈ An, Sσ(K) ∩ (a, b) 6= ∅}.

Denote by vn(∆) the dimension of Vn(∆), that is, vn(∆) = k. We define rn(∆)

in the following way: let ∆̂ be the unique one interval in Fn−1 containing ∆, and

∆1, . . . ,∆k (ranked in the increasing order) be all the elements in Fn satisfying

∆j ⊂ ∆̂, `n(∆j) = `n(∆), Vn(∆j) = Vn(∆) for 1 ≤ j ≤ k. Define rn(∆) to be the

integer r so that ∆r = ∆.

For convenience, we call the triple

Cn(∆) := (`n(∆), Vn(∆), rn(∆))

the n-th characteristic vector of ∆, or simply characteristic vector of ∆. The vector

Cn(∆) contains the information about the length and neighborhood relation of ∆.

The following elementary but important fact is our start point.

Lemma 2.1. For a given ∆ ∈ Fn(n ≥ 0), let ∆1, . . . ,∆k (ranked in the increasing

order) be all the elements in Fn+1 which are subintervals of ∆. Then the number k,

the vectors Cn+1(∆i) (1 ≤ i ≤ k) are determined by `n(∆) and Vn(∆) (thus they are

determined by Cn(∆)).

Proof. Let ∆ = [a, b] ∈ Fn. Write Vn(∆) = (a1, . . . , avn(∆)).
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To determine the subintervals of ∆ which belong to Fn+1, we first determine

the points in [a, b] ∩ Pn+1. Assume σ = j1 . . . jn+1 ∈ An+1 such that Sσ(0) or

Sσ(1) belongs to the interval (a, b). Then Sσ(K) ∩ (a, b) 6= ∅, and consequently

Sσ̂(K) ∩ (a, b) 6= ∅, where σ̂ = j1 . . . jn ∈ An. Hence Sσ̂(0) ∈ {a − ρnai : 1 ≤ i ≤
vn(∆)} and therefore

Sσ(0) ∈ {a− ρnai + ρnbs : 1 ≤ i ≤ vn(∆), 1 ≤ s ≤ m}

and

Sσ(1) ∈
{
a− ρnai + ρnbs + ρn+1 : 1 ≤ i ≤ vn(∆), 1 ≤ s ≤ m

}
.

This implies that

(a, b) ∩ Pn+1 = (a, a+ ρn`n(∆))

∩
{
a− ρnai + ρnbs + ερn+1 : 1 ≤ i ≤ vn(∆), 1 ≤ s ≤ m, ε = 0 or 1

}
.

Denote by a + ρncj (1 ≤ j ≤ u) all the elements of [a, b] ∩ Pn+1 ranked in the

increasing order. The above equality shows that the points cj (1 ≤ j ≤ u) are

determined completely by `n(∆) and Vn(∆) (independent of a and n).

Let ∆1, . . . ,∆k (ranked in the increasing order) be all the elements in Fn+1 which

are subintervals of ∆. Then ∆i (1 ≤ i ≤ k) are exact the intervals in the following

collection:

{[a+ ρncj, a+ ρncj+1] : 1 ≤ j ≤ u− 1, (a+ ρncj, a+ ρncj+1) ∩K 6= ∅} .

Note that for a given j,

(a+ ρncj, a+ ρncj+1) ∩K 6= ∅

⇐⇒ (a+ ρncj, a+ ρncj+1) ∩

 ⋃
σ∈An: Sσ(K)∩(a,b)6=∅

Sσ(K)

 6= ∅
⇐⇒ (a+ ρncj, a+ ρncj+1) ∩

vn(∆)⋃
i=1

(ρnK + a− ρnai)

 6= ∅
⇐⇒ (cj, cj+1) ∩

vn(∆)⋃
i=1

(K − ai)

 6= ∅
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It implies that whether or not [a+ ρncj, a+ ρncj+1] is a (n+ 1)-th basic net interval

is determined by `n(∆) and Vn(∆). Therefore if we write ∆i = [a+ ρndi, a+ ρndi+1]

(i = 1, . . . , k), then di (1 ≤ i ≤ k + 1) are determined by `n(∆) and Vn(∆).

Recall that

{Sσ(0) : σ ∈ An+1, Sσ(K) ∩ (a, b) 6= ∅}

⊂ {a− ρnai + ρnbs : 1 ≤ i ≤ vn(∆), 1 ≤ s ≤ m}.

By the definition of characteristic vector and the analysis in the preceding paragraph,

we know that the vectors Cn+1(∆i) (1 ≤ i ≤ k) are determined by `n(∆) and Vn(∆).

2

In the following we would like to use a finite sequence of characteristic vectors to

identify a basic net interval. For each ∆ ∈ Fn (n ≥ 0), we list the intervals

∆0,∆1, . . . ,∆n

such that ∆n = ∆, and ∆j (j = 0, . . . , n− 1) is the unique element in Fj such that

∆j ⊃ ∆j+1. The sequence

C0(∆0), C1(∆1), . . . , Cn(∆n)

is called the symbolic expression for ∆.

For a given ∆ ∈ Fn(n ≥ 0), let ∆1, . . . ,∆k (ranked in the increasing order) be

all the elements in Fn+1 which are subintervals of ∆. The introduction of the third

term in a characteristic vector guarantees that Cn+1(∆j) (1 ≤ j ≤ k) are distinct

with each other. By induction, we have

Lemma 2.2. For any ∆1,∆2 ∈ Fn(n ≥ 1) with ∆1 6= ∆2, the symbolic expression

of ∆1 is different from that of ∆2. 2

Define

Ω = {Cn(∆) : n ≥ 0, ∆ ∈ Fn}. (2.1)

For any α ∈ Ω, we write for simplicity

`(α) = `n(∆), V (α) = Vn(∆), v(α) = vn(∆), r(α) = rn(∆), (2.2)
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if ∆ ∈ Fn and Cn(∆) = α.

The finite type condition of {Si}mi=1 implies

Lemma 2.3. The set Ω is finite.

Proof. It suffices to prove the finiteness of {`n(∆) : n ≥ 0, ∆ ∈ Fn}, {Vn(∆) :

n ≥ 0, ∆ ∈ Fn} and {rn(∆) : n ≥ 0, ∆ ∈ Fn} respectively. For simplicity, we only

prove that of {Vn(∆) : n ≥ 0, ∆ ∈ Fn}. To prove this, take any ∆ = [a, b] ∈ Fn and

e ∈ Vn(∆). There exists σ ∈ An such that Sσ(K)∩(a, b) 6= ∅ and e = ρ−n(a−Sσ(0)).

By the definition of basic net intervals, Sσ(0) 6∈ (a, b). Therefore a−ρn ≤ Sσ(0) ≤ a.

It follows that e ∈ Γ whenever a ∈ P 0
n , and 1− e ∈ Γ whenever a ∈ Pn(1), where Γ

is defined as in (1.1). By the finiteness of Γ, the set {Vn(∆) : n ≥ 0, ∆ ∈ Fn} is

finite. 2

Now we are going to define a natural map ζ from Ω to Ω∗, where Ω∗ denotes the

collection of all finite words over Ω. For any α ∈ Ω, pick n and ∆ ∈ Fn such that

α = Cn(∆). Let ∆1, . . . ,∆k (ranked in the increasing order) be all the elements in

Fn+1 which are subintervals of ∆. Write αj = Cn+1(∆j) for 1 ≤ j ≤ k. By Lemma

2.1, the word α1 . . . αk depend only on α (independent of the choice of n and ∆).

We define ζ by

ζ(α) = α1 . . . αk.

Define a 0-1 matrix A on Ω× Ω in the following way:

Aα,β =

{
1 if β is a letter of ζ(α),

0 otherwise.

A word β1 . . . βn ∈ Ω∗ is called a admissible word if Aβj ,βj+1
= 1 for 1 ≤ j < n.

For our convenience, denote by γ0 = C0([0, 1]). Combining Lemma 2.2 and the

above definitions, we have

Lemma 2.4. Any ∆ ∈ Fn(n ≥ 0) can be identified (via its symbolic expression) as

an admissible word in Ω∗ of length n+ 1 starting from the letter γ0. 2
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3. The distribution of µ on basic net intervals

In this section, we will analyze the distribution of µ on basic net intervals. We

construct a family of non-negative matrices (maybe not squared), such that the

distribution of µ (written in a vector form) on any basic net interval can be expressed

as a product of these matrices.

Let ∆ = [a, b] be a n-th basic net interval. Iterating (1.2) n times we obtain

µ(∆) =
∑
σ∈An

pσµ(S−1
σ (∆)),

where pσ denotes the product pj1 . . . pjn for σ = j1 . . . jn. Since µ is a non-atomic

measure supported on K, we have

µ(∆) =
∑

σ∈An: Sσ(K)∩(a,b)6=∅

pσµ(S−1
σ (∆)). (3.1)

Write Vn(∆) = (a1, . . . , avn(∆)). By the definition of Vn(∆), we can rewrite (3.1) as

µ(∆) =

vn(∆)∑
i=1

∑
σ∈An: ρ−n(a−Sσ(0))=ai

pσµ(S−1
σ (∆))

=

vn(∆)∑
i=1

µ([ai, ai + `n(∆)])
∑

σ∈An: Sσ(0)=a−ρnai

pσ. (3.2)

Now we define a vn(∆)-dimensional row vector Qn(∆) = (q1, . . . , qvn(∆)) by

qi = µ([ai, ai + `n(∆)])
∑

σ∈An: Sσ(0)=a−ρnai

pσ, i = 1, . . . , vn(∆).

(3.3)

By (3.2), µ(∆) = ‖Qn(∆)‖ :=
∑vn(∆)

i=1 qi. We call Qn(∆) the vector form of µ on ∆.

Lemma 3.1. Qn(∆) is a positive vn(∆)-dimensional vector for any n ≥ 0 and

∆ ∈ Fn.

Proof. Let qi be defined as in (3.3). It suffices to prove qi > 0 for any 1 ≤ i ≤
vn(∆). For any given i, since there exists a δ ∈ An so that Sδ(0) = a − ρnai and

S−1
δ (a, b) ∩ K 6= ∅, it follows that

∑
σ∈An: Sσ(0)=a−ρnai pσ ≥ pδ > 0, and µ([ai, ai +

`n(∆)]) = µ(S−1
δ (a, b)) > 0. Thus qi > 0. 2
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The following result is essential in our analysis.

Lemma 3.2. For any ∆ ∈ Fn (n ≥ 1), denote by ∆̂ the unique element in Fn−1 so

that ∆̂ ⊃ ∆. There is a vn−1(∆̂)× vn(∆) matrix T (Cn−1(∆̂), Cn(∆)) which depends

only on Cn−1(∆̂) and Cn(∆) such that

Qn(∆) = Qn−1(∆̂)T (Cn−1(∆̂), Cn(∆)).

Proof. Assume ∆ = [a, b] and ∆̂ = [c, d]. Write Vn(∆) = (a1, . . . , avn(∆)) and

Vn−1(∆̂) = (c1, . . . , cvn−1(∆̂)). Also Write Qn(∆) = (q1, . . . , qvn(∆)) and Qn−1(∆̂) =

(u1, . . . , uvn−1(∆̂)). By the definition of Qn(∆) and Qn−1(∆̂),

qi = µ([ai, ai + `n(∆)])
∑

σ∈An: Sσ(0)=a−ρnai

pσ, i = 1, . . . , vn(∆),

and

uj = µ([cj, cj + `n−1(∆̂)])
∑

σ′∈An−1: Sσ′ (0)=c−ρn−1cj

pσ′ , j = 1, . . . , vn−1(∆̂).

For σ = i1 . . . in ∈ An, write σ̂ = i1 . . . in−1. By the definition of basic net intervals,

we see that if Sσ(0) = a− ρnai for some i, then

Sσ̂(0) ∈
{
c− ρn−1cj : 1 ≤ j ≤ vn−1(∆̂)

}
.

Now define for any i ∈ {1, . . . , vn(∆)} and j ∈ {1, . . . , vn−1(∆̂)},

wj,i =

{
ps ∃s ∈ A so that c− ρn−1cj + ρn−1bs = a− ρnai,
0 otherwise.

That is wj,i = ps if and only if there is σ = i1 . . . in ∈ An with in = s such that

Sσ(0) = a− ρnai and Si1...in−1(0) = c− ρn−1cj. Therefore

∑
σ∈An: Sσ(0)=a−ρnai

pσ =

vn−1(∆̂)∑
j=1

wj,i
∑

σ′∈An−1: Sσ′ (0)=c−ρn−1cj

pσ′ , i = 1, . . . , vn(∆).

Define a vn−1(∆̂)× vn(∆) matrix T = (tj,i) by

tj,i =
wj,iµ ([ai, ai + `n(∆)])

µ
(

[cj, cj + `n−1(∆̂)]
) , 1 ≤ j ≤ vn−1(∆̂), 1 ≤ i ≤ vn(∆).

We have

Qn(∆) = Qn−1(∆̂)T.
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Since ρ−n(c−a) depends only on Cn−1(∆̂) and Cn(∆), so does (wj,i). Thus T depends

only on Cn−1(∆̂) and Cn(∆). This completes the proof. 2

The above result, together with the fact Q0([0, 1]) = 1, yields immediately

Theorem 3.3. There exists a family of non-negative matrices {T (α, β) : α, β ∈
Ω, Aα,β = 1}, such that for any ∆ ∈ Fn,

Qn(∆) = T (γ0, γ1) . . . T (γn−1, γn),

where γ0 . . . γn is the symbolic expression of ∆. 2

As a corollary of Theorem 3.3 and Lemma 3.1, we have

Corollary 3.4. Suppose α1α2 . . . αn is an admissible word in Ω∗. Denote by e(α1)

the v(α1)-dimensional row vector of which each coordinate equals 1. Then

e(α1)T (α1, α2)T (α2, α3) . . . T (αn−1, αn) (3.4)

is a positive v(αn)-dimensional row vector.

Proof. Since α1α2 . . . αn is an admissible word in Ω∗, there exists γ1, . . . , γl such

that

γ0γ1 . . . γlα1α2 . . . αn

is an admissible word in Ω∗ starting from γ0. Therefore by Lemma 2.4 there is ∆ ∈
Fn+l such that the symbolic expression of ∆ is γ0γ1 . . . γlα1α2 . . . αn. By Theorem

3.3 and Lemma 3.1,

T (γ0, γ1) . . . T (γl−1, γl)T (γl, α1)T (α1, α2) . . . T (αn−1, αn)

is a positive v(αn)-dimensional row vector, which implies that (3.4) is positive. 2

By the construction of the matrices T (α, β), we can express precisely the entries

of the product T (α1, α2) . . . T (αn−1, αn) for a given admissible word α1 . . . αn. To

see this, choose t ∈ N and ∆ = [a, b] ∈ Ft so that Ct(∆) = α1. Assume that

the symbolic expression of ∆ is γ0 . . . γt−1α1. By Lemma 2.4, there is a unique

one ∆′ = [e, f ] ∈ Ft+n−1 whose symbolic expression is γ0 . . . γt−1α1 . . . αn. Write

Vt(∆) = (a1, . . . , avt(∆)) and Vt+n−1(∆′) = (e1, . . . , evt+n−1(∆′)). Denote for simplicity
12



X = T (α1, α2) . . . T (αn−1, αn). Then from the construction of T (α, β), we have by

induction that

Proposition 3.5. For any 1 ≤ j ≤ vt(∆), and 1 ≤ i ≤ vt+n−1(∆′),

Xj,i =
µ([ei, ei + `t+n−1(∆′)]

µ([aj, aj + `t(∆)])
·

∑
ξ∈An−1: a−ρtaj+ρtSξ(0)=e−ρt+n−1ei

pξ.

2

4. Products of squared matrices

Let Ω be the set defined as in (2.1). A non-empty subset Ω̂ of Ω is said to be an

essential class of Ω if it satisfies: (i) {β ∈ Ω : Aα,β = 1} ⊂ Ω̂ for any α ∈ Ω̂; (ii) for

any α, β ∈ Ω̂, there exist γ1, . . . , γn ∈ Ω̂ such that γ1 = α, γn = β and Aγi,γi+1
= 1

for 1 ≤ i ≤ n − 1. The existence of at least one essential class is well known (see,

e.g. Lemma 1.1 of [25]).

Now fix an essential class Ω̂ of Ω. Let η1, . . . , ηs be all the elements in Ω̂. Set

d =
s∑
i=1

v(ηi),

where v(·) is defined as in (2.2). In the following we construct a family of d × d

matrices {Mi}si=1. For any 1 ≤ i ≤ s, define Mi to be the partitioned matrix
U i

1,1 U i
1,2 · · · U i

1,s

U i
2,1 U i

2,2 · · · U i
2,s

...
...

. . .
...

U i
s,1 U i

s,2 · · · U i
s,s

 ,

where for each 1 ≤ j, k ≤ s, U i
j,k is a v(ηj)× v(ηk) matrix defined by

U i
j,k =

{
T (ηj, ηi) if k = i and Aηj ,ηi = 1,

0 otherwise.

Choose an integer n0 and I0 ∈ Fn0 so that Cn0(I0) = η1. Denote by Θ =

γ0 . . . γn0−1η1 the symbolic expression of I0. In the following we consider the distri-

bution of µ on basic net intervals which are contained in I0.
13



Given ∆ ∈ Fn (n ≥ n0) with ∆ ⊂ I0, define Q̂n(∆) to be the partitioned vector

(W1, . . . ,Ws), where Wi is a v(ηi)-dimensional row vector defined by

Wi =

{
Qn(∆) if ηi = Cn(∆),

0 otherwise.

It is clear that Q̂n(∆) is a d-dimensional row vector, which we call the uniform

vector form of µ on ∆. By Lemma 3.2, Theorem 3.3 and the product formula of

partitioned matrices, we have

Lemma 4.1. (1) Given ∆ ∈ Fn0+k (k ≥ 1) with ∆ ⊂ I0, we have

Q̂n0+k(∆) = Q̂n0(I0)Mi1 . . .Mik ,

where Θηi1 . . . ηik is the symbolic expression of ∆.

(2) Mi1 . . .Mik 6= 0 if and only if ηi1 . . . ηik is an admissible sequence. 2

In the remain part of this section, we will prove the following proposition, which

is needed in our proof of Theorem 1.1.

Proposition 4.2. The matrix H :=
∑s

i=1Mi is irreducible. That is, there exists an

integer r > 0 such that Hr > 0.

The proof of the above result is based on several lemmas.

Let {T (α, β) : α, β ∈ Ω, Aα,β = 1} be the family of matrices we constructed in

Section 3. By the definition of the matrices Mi (1 ≤ i ≤ s) and the product formula

of partitioned matrices, we have immediately

Lemma 4.3. Given an admissible word ηi1 . . . ηin with n ≥ 2, write the matrix

Mi2 . . .Min in the form of the partioned matrix
(
Ui,j
)

1≤i,j≤s, where Ui,j is a v(ηi)×
v(ηj) matrix. Then Ui1,in = T (i1, i2) . . . T (in−1, in). 2

The following lemma is a key part for the proof of Proposition 4.2.

Lemma 4.4. Given i ∈ {1, . . . , s} and k ∈ {1, . . . , v(ηi)}, for each j ∈ {1, . . . , s}
there exists an admissible sequence ηi1ηi2 . . . ηin such that ηi1 = ηi, ηin = ηj and all

the entries of the k-th row of the matrix T (ηi1 , ηi2) . . . T (ηin−1 , ηin) are positive.
14



Proof. Suppose i, j, k are given. Choose n > n0 and ∆ = [a, b] ∈ Fn so that ∆ ⊂ I0

and Cn(∆) = ηi.

Write Vn(∆) = (a1, . . . , avn(∆)). By the definition of Vn(∆), there exists σ ∈ An
with Sσ(0) = a − ρnak and Sσ(K) ∩ (a, b) 6= ∅. Find a large integer l and φ ∈
Al so that Sσφ(K) ⊂ (a, b) and thus Sσφ([0, 1]) ⊂ (a, b), where σφ denotes the

concatenation of σ and φ.

Pick i0 ∈ {1, . . . , s} such that (i) `(ηi0) = min{`(ηu) : 1 ≤ u ≤ s}; (ii) v(ηi0) =

max{v(ηu) : 1 ≤ u ≤ s, `(u) = `(ηi0)}, where v(·) and `(·) are defined as in (2.2).

Choose n1 ∈ N and ∆1 = [c, d] ∈ Fn1 so that ∆1 ⊂ I0 and Cn1(∆1) = ηi0 . Write

Vn1(∆1) = (c1, . . . , cvn1 (∆1)).

Denote ∆2 = Sσφ(∆1). It is clear ∆2 ⊂ (a, b) since Sσφ([0, 1]) ⊂ (a, b). We claim

that ∆2 ∈ Fn+l+n1 with Vn+l+n1(∆2) = Vn1(∆1) and `n+l+n1(∆2) = `n1(∆1). First

we show ∆2 ∈ Fn+l+n1 and `n+l+n1(∆2) = `n1(∆1). To see this, we observe that

the two endpoints of ∆2 belong to the set Pn+l+n1 since those of ∆1 belong to Pn1 ;

and ∆2 ∩ K 6= ∅ by ∆1 ∩ K 6= ∅. Therefore, ∆2 contains at least an elements in

Fn+l+n1 . On the other hand the minimality of `(ηi0) shows that each (n+ l+n1)-th

basic net interval contained in I0 has length at least ρn+l+n1`(ηi0), i.e., the length of

∆2. Combining these two facts we have ∆2 ∈ Fn+l+n1 and `n+l+n1(∆2) = `(ηi0) =

`n1(∆1). To show Vn+l+n1(∆2) = Vn1(∆1), by the maximum of v(ηi0) it suffices

to show each coordinate of the vector Vn1(∆1) is a coordinate of Vn+l+n1(∆2). To

prove this, note that for any 1 ≤ u ≤ vn1(∆1), there exists ψ ∈ An1 such that

Sψ(0) = c− ρn1cu and Sψ(K) ∩ (c, d) 6= ∅. Therefore, Sσφψ(0) = Sσφ(c)− ρn+l+n1cu

and Sσφψ(K) ∩ int(Sσφ(∆1)) 6= ∅. Note that ∆2 = Sσφ(∆1) and Sσφ(c) is the left

endpoint of ∆2. By the definition of Vn+l+n1(∆2), cu is a coordinate of Vn+l+n1(∆2).

This finishes the proof of the above claim.

Let e be the unique integer in {1, . . . , s} so that Cn+l+n1(∆2) = ηe. By the above

claim, V (ηe) = V (ηi0) and `(ηe) = `(ηi0). Denote by γ0 . . . γn−1ηi the symbolic

expression of ∆. Since ∆2 ⊂ ∆, we can denote by γ0 . . . γn−1ηiηi2 . . . ηi`+n1ηe the

symbolic expression of ∆2. Denote

X = T (ηi, ηi2) . . . T (ηil+n1 , ηe).
15



By Proposition 3.5, for any 1 ≤ u ≤ v(ηe),

Xk,u =
µ([cu, cu + `(ηe)])

µ([ak, ak + `(ηi)])
·

∑
ξ∈Al+n1 : a−ρnak+ρnSξ(0)=Sσφ(c)−ρn+l+n1cu

pξ.

(4.1)

Recall we have proved in last paragraph that for each 1 ≤ u ≤ v(ηe), there exists

ψ ∈ An1 such that Sσφψ(0) = Sσφ(c)− ρn+l+n1cu. Note that

Sσφψ(0) = Sσ(0) + ρnSφψ(0) = a− ρnak + ρnSφψ(0).

By (4.1), Xk,u > 0. Therefore

ei,kT (ηi, ηi2) . . . T (ηil+n1 , ηe) > 0, (4.2)

where ei,k denotes the v(ηi)-dimensional row vector whose k-th coordinate is 1 and

all other coordinates are 0.

Choose an admissible sequence ηj1 . . . ηjt such that ηj1 = ηe and ηjt = ηj. By (4.2)

and (3.4),

ei,kT (ηi, ηi2) . . . T (ηil+n1 , ηe)T (ηe, ηj2) . . . T (ηjt−1 , ηj) > 0, (4.3)

That is, all the entries of the k-th row of the matrix

T (ηi, ηi2) . . . T (ηil+n1 , ηe)T (ηe, ηj2) . . . T (ηjt−1 , ηj)

are positive, which completes the proof of the lemma. 2

Proof of Proposition 4.2: To show that H =
∑s

i=1Mi is irreducible, it is equiv-

alent to show that for any 1 ≤ u, l ≤ d, there exists i1, i2, . . . , in such that the

(u, l)-entry of the matrix Mi1Mi2 . . .Min is positive.

Now fix u, l. Let i, j ∈ {1, . . . , s} and k, k1 ∈ {1, . . . , v(ηi)} be the integers such

that

u =
∑
t≤i−1

v(ηt) + k, and l =
∑
t≤j−1

v(ηt) + k1.

By Lemma 4.4, there exists an admissible sequence ηiηi1 . . . ηin with in = j so that

the (k, k1)-entry of the matrix T (ηi, ηi1) . . . T (ηin−1 , ηin) is positive. By Lemma 4.3,

the (u, l)-entry of the matrix Mi1 . . .Min is positive, which finishes the proof. 2
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5. Proof of Theorem 1.1

Let M1, . . . ,Ms be the d× d non-negative matrices we constructed in Section 4.

For q ∈ R, define

P (q) = lim
n→∞

1

n
log
(∑

‖Mi1 . . .Min‖q
)
,

where the summation is taken over all indices i1 . . . in over {1, . . . , s} such that

Mi1 . . .Min 6= 0. We remark that the limit in the above definition exists under

the condition that
∑s

i=1Mi is irreducible (cf. [5]). The function P (q) is called

the pressure function of M1, . . . ,Ms. The following result (for general non-negative

matrices ) was proved by Feng and Lau [5]:

Proposition 5.1. (Theorem 3.3 of [5]) The pressure function P (q) is differentiable

for q > 0 under the condition that
∑s

i=1 Mi is irreducible.

By Proposition 4.2 and Proposition 5.1, P (q) is differentiable. This combining

the following theorem yields Theorem 1.1:

Theorem 5.2. Under the condition of Theorem 1.1, τ(q) = P (q)/ log ρ for any

q > 0. 2

In the remaining part of this section we will prove the above theorem.

Let I0 be given as in the last section. Denote µ0 = µ|I0 , i.e., µ0(A) = µ(I0 ∩ A)

for all Borel set A ⊂ R. Let τ(µ0, q) be the Lq-spectrum of µ0.

Lemma 5.3. τ(q) = τ(µ0, q) for any q ≥ 0.

Proof. Fix q ≥ 0. Since µ(A)q ≥ µ0(A)q for each Borel set A ⊂ R, it follows from

the definition of the Lq-spectrum that

τ(q) ≤ τ(µ0, q).

To show the reverse inequality, write I0 = [a0, b0]. Find δ0 > 0, n ∈ N and φ ∈ An
such that Sφ([0, 1]) ⊂ [a0 − δ0, b0 + δ0]. For each 0 < δ < δ0 and a family of disjoint

intervals [xi − δ, xi + δ] with xi ∈ K, observe that {Sφ([xi − δ, xi + δ])} is a family
17



of disjoint intervals of radius ρnδ and with centers in supp(µ0). It follows that∑
i

µ0(Sφ([xi− δ, xi + δ]))q =
∑
i

µ(Sφ([xi− δ, xi + δ]))q ≥ pqφ
∑
i

µ([xi− δ, xi + δ])q,

which combining the definition of the Lq spectrum yields

τ(µ0, q) ≤ lim inf
δ→0

log pqφ
log δ

+ τ(q) = τ(q).

This completes the proof. 2

Lemma 5.4. For any n ∈ N, ∆ = [a, b] ∈ Fn, let Vn(∆) = (a1, . . . , avn(∆)). For

each j ∈ {1, . . . , vn(∆)}, pick σ ∈ An with Sσ(0) = a− ρnaj. There is an integer k0

(independent of n, ∆, j and σ) such that there is ω ∈ Ak0 satisfying

Sσω([0, 1]) ⊂ (a, b) and Sσω(0)− a ≥ |Sσω([0, 1])|.

Proof. For any α ∈ Ω, pick n ∈ N and ∆ = [a, b] ∈ Fn with Cn(∆) = α. Write

Vn(∆) = (a1, . . . , avn(∆)). For each j ∈ {1, . . . , vn(∆)}, pick σ ∈ An with Sσ(0) =

a− ρnaj. Since Sσ(K) ∩ (a, b) 6= ∅, there is k = k(α) ∈ N and φ = φ(α) ∈ Ak such

that

Sσφ([0, 1]) ⊂ (a, b) and Sσφ(0)− a ≥ |Sσφ([0, 1])|. (5.1)

Observe that for any other ∆1 = [c, d] ∈ Fn1 with Cn1(∆1) = α, if pick σ1 ∈ An1

with Sσ(0) = c− ρn1aj, we still have

Sσ1φ([0, 1]) ⊂ (c, d) and Sσ1φ(0)− c ≥ |Sσ1φ([0, 1])|.

Let k0 = maxα∈Ω k(α). And choose φ̂(α) ∈ Ak0 so that φ(α) is the prefix of φ̂(α).

It is clear that (5.1) still holds if in which φ is replaced by φ̂(α). This completes the

proof. 2

Lemma 5.5. There exist two constants C1, C2 > 0 such that for each n and ∆ ∈ Fn
there is a subinterval [x − C1ρ

n, x + C1ρ
n] of ∆ with x ∈ K and µ([x − C1ρ

n, x +

C1ρ
n]) ≥ C2µ(∆).

18



Proof. Suppose ∆ = [a, b] ∈ Fn. Write Vn(∆) = (a1, . . . , avn(∆)). Recall that

µ(∆) =

vn(∆)∑
i=1

µ([ai, ai + `n(∆)])
∑

σ∈An: Sσ(0)=a−ρnai

ρσ.

Choose j ∈ {1, . . . , vn(∆)} such that∑
σ∈An: Sσ(0)=a−ρnaj

ρσ = max
1≤i≤vn(∆)

∑
σ∈An: Sσ(0)=a−ρnai

ρσ.

We have

µ(∆) ≤ vn(∆)
∑

σ∈An: Sσ(0)=a−ρnaj

ρσ. (5.2)

Now pick σ0 ∈ An so that Sσ0(0) = a − ρnaj. By Lemma 5.4 we can find ω ∈ Ak0
such that

Sσ0ω([0, 1]) ⊂ (a, b), Sσ0ω(0)− a ≥ |Sσ0ω([0, 1])|. (5.3)

Set x = Sσ0ω(0). Then x ∈ K since 0 ∈ K. By (5.3), we have

[x− ρn+k0 , x+ ρn+k0 ] ⊂ (a, b).

Note that

µ([x− ρn+k0 , x+ ρn+k0 ]) ≥ µ(Sσ0ω([0, 1]))

=
∑

γ∈An+k0

pγµ(S−1
γ (Sσω([0, 1])))

≥
∑

σ∈An: Sσ(0)=a−ρnaj

pσωµ(S−1
σω (Sσ0ω([0, 1])))

=
∑

σ∈An: Sσ(0)=a−ρnaj

pσω

≥ pω
µ(∆)

vn(∆)
( by (5.2) )

≥
minω′∈Ak0 pω′

maxα∈Ω v(α)
µ(∆).

Letting C =
minω′∈Ak0 pω′

maxα∈Ω v(α)
, we complete the proof. 2
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Proposition 5.6. For each q ∈ R,

τ(q) = lim inf
n→∞

1

n log ρ
log

∑
∆∈Fn

µ(∆)q, τ(µ0, q) = lim inf
n→∞

1

n log ρ
log

∑
∆∈Fn, ∆⊂I0

µ(∆)q.

Proof. For simplicity we only prove the first equality. The second one follows by a

similar argument.

First we show τ(q) ≥ lim infn→∞
1

n log ρ
log
∑

∆∈Fn µ(∆)q. To see this, by Lemma

5.5, for each ∆ ∈ Fn pick [x∆ − ρn+k0 , x∆ + ρn+k0 ] ⊂ int(∆) such that x∆ ∈ K and

Cµ(∆) ≤ µ([x∆ − ρn+k0 , x∆ + ρn+k0 ]) ≤ µ(∆).

Note that {[x∆ − ρn+k0 , x∆ + ρn+k0 ] : ∆ ∈ Fn} is a family of disjoint intervals with

x∆ ∈ K, we have for q ∈ R,

τ(q) ≤ lim inf
n→∞

1

(n+ k0) log ρ
log

∑
∆∈Fn

(
µ([x∆ − ρn+k0 , x∆ + ρn+k0 ])

)q
= lim inf

n→∞

1

n log ρ
log

∑
∆∈Fn

µ(∆)q.

To see the reverse inequality, for any 0 < δ < ρ, let k be the integer so that

ρk < δ ≤ ρk−1. Suppose that {[xi − δ, xi + δ]} is a family of disjoint intervals with

xi ∈ K. Observe there is a constant D such that each [xi − δ, xi + δ] intersects at

most D many different ∆ ∈ Fk, it follows that for q ≥ 0,

µ([xi − δ, xi + δ])q ≤
( ∑

∆∈Fk, ∆∩[xi−δ,xi+δ]6=∅

µ(∆)
)q
≤ Dq

∑
∆∈Fk, ∆∩[xi−δ,xi+δ]6=∅

µ(∆)q.

Taking the summation over i and observing that each ∆ ∈ Fk intersects at most

two different intervals [xi − δ, xi + δ], we have∑
i

µ([xi − δ, xi + δ])q ≤ 2Dq
∑

∆∈Fk

µ(∆)q, ∀q ≥ 0. (5.4)

By the way each [xi − δ, xi + δ] contains at least one ∆ ∈ Fk, it follows that∑
i

µ([xi − δ, xi + δ])q ≤
∑

∆∈Fk

µ(∆)q, ∀q < 0. (5.5)

Combining (5.4) and (5.5) we have

τ(q) ≥ lim inf
n→∞

1

n log ρ
log

∑
∆∈Fk

µ(∆)q,
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which completes the proof. 2

Proposition 5.7. τ(µ0, q) = P (q)/ log ρ, ∀q ∈ R.

Proof. By Proposition 5.6 and Lemma 4.1,

τ(µ0, q) = lim inf
n→∞

1

n log ρ
log
∑
‖Q̂n0(I0)Mi1 . . .Min‖q, (5.6)

where the summation is taken over all indices i1 . . . in so that η1ηi1 . . . ηin is an

admissible sequence. In the following we write for simplicity MI = Mi1 . . .Min for

I = i1 . . . in.

For i = 1, . . . , s, write ei to be the partitioned vector (f1,i, f2,i, . . . , fs,i), where fj,i

is a v(ηj)-dimensional row vector defined by

fj,i =


(1, . . . , 1︸ ︷︷ ︸
v(ηi)’s 1

) if j = i

0 otherwise

and write e = (1, . . . , 1︸ ︷︷ ︸
d’s 1

). Since Q̂n0(I0) ≈ e1 ≈ eM1 (here and afterwards we write

(a1, . . . , ad) ≈ (b1, . . . , bd) if Cb−1
i ≤ ai ≤ Cbi for some C > 0), it follows from (5.6)

and Lemma 4.1 that

τ(µ0, q) = lim inf
n→∞

1

n log ρ
log

∑
I∈{1,... ,s}n: M1I 6=0

‖M1I‖q.

To show τ(µ0, q) = P (q)
log ρ

, it suffices to show

lim inf
n→∞

1

n
log

∑
I∈{1,... ,s}n: M1I 6=0

‖M1I‖q = lim
n→∞

1

n
log

∑
I∈{1,... ,s}n: MI 6=0

‖MI‖q.

The part“≤” is clear. To prove the reverse part, denote by

Rn(q) =
∑

I∈{1,... ,s}n: M1I 6=0

‖M1I‖q.

Using the fact ‖MiIj‖ ≤ ‖MiI‖‖Mj‖, we have

Rn(q) ≥ BRn+1(q) for q ≥ 0 and Rn(q) ≤ BRn+1(q) for q < 0,

(5.7)
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where B > 0 depends only on q. For each j ∈ {1, . . . , s}, there is an admissible

word η1ηi1 . . . ηilj ηj with length lj + 2. Note that eM1Mi1 . . .Milj
Mj ≈ ej ≈ eMj,

for any I ∈ {1, . . . , s}n with MjI 6= 0, we have

1

Cj
‖MjI‖ ≤ ‖M1i1...ilj jI

‖ ≤ Cj‖MjI‖,

where Cj > 0 is a constant independent of n and I. Therefore∑
I∈{1,... ,s}n: MjI 6=0

‖MjI‖q ≤ (Cj)
|q|Rn+lj+1(q).

Taking the summation over j and letting C = max1≤j≤sCj, l = max1≤j≤s lj, we have

∑
I∈{1,... ,s}n+1: MI 6=0

‖MI‖q ≤ sC |q|
l∑

k=0

Rn+k+1(q).

Combining it with (5.7) yields∑
I∈{1,... ,s}n+1: MI 6=0

‖MI‖q ≤ DRn(q) for q ≥ 0

and ∑
I∈{1,... ,s}n+1: MI 6=0

‖MI‖q ≤ DRn+l+1(q) for q < 0,

where D is a positive constant depending on q. This implies the “≥” part and the

proof is completed. 2

Proof of Theorem 5.2: It follows directly from Lemma 5.3 and Proposition 5.7.

2
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