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LYAPUNOV EXPONENTS FOR PRODUCTS OF
MATRICES AND MULTIFRACTAL ANALYSIS.
PART I: POSITIVE MATRICES

DE-JUN FENG

ABSTRACT. Let (X, 0) be a full shift space on an alphabet consisting
of m symbols and let M: ¥ — LT (R% R?) be a continuous function
taking values in the set of dx d positive matrices. Denote by Ay () the
upper Lyapunov exponent of M at x. The set of possible Lyapunov
exponents is just an interval. For any possible Lyapunov exponent «,
we prove the following variational formula

. 1.
dim{z € ¥: Ay (z) =a} = Togm ;relﬂg{—aq + Prn(q)}
1
= Togm max{h(p): M.(n) = o},

where dim is the Hausdorff dimension or the packing dimension,
Pri(q) is the pressure function of M, p is a o-invariant Borel proba-
bility measure on X, h(u) is the entropy of u, and

M. (p) :nlij;o%/logllM(y)M(Uy)~~-M(U"_1y)||du(y)-

1. INTRODUCTION

Let o be the shift map on ¥ = {1,2,...,m}" (m > 2 an integer). Let M
be a continuous function defined on ¥ taking values in L (Rd, R%), the set
of d x d matrices with positive entries. We define the upper Lyapunov
exponent \/(x) of M by

1
(1.1) My(z) = lim —log ||M(z)M(oz) ... M(c" tz)|,
n—oo n
when the limit exists. Here || - || denotes the matrix norm defined by
|Al| := 17 A1, where 1 is the d-dimensional column vector each coordinate

of which is 1.

Let Lys be the set of point @ € R such that a = Aps(z) for some = € X.
By using the specification property of 3 and the continuity of M, we show
that Ljys is a non-empty closed interval (see Proposition 2.2).
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Hausdorff dimensions, Packing dimensions, Entropies, Pressure functions, Multifractals.
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For any ¢q € R, define

1
Pyr(g) = lim —log Z sup |[M(z)M(ozx)... M(c™ 1 z)|4,
neon UJEZn xe[w}

where ¥, denotes the set of all words of length n over {1,...,m}; for
W= wi...wn € Xp, [w]| denotes the cylinder set {x = (z;) € X: x; =
wi, 1 <14 < n}. An subadditive argument shows that the limit in the
above definition exists. We call Pys(q) the pressure function of M.

Let M, (X) be the set of all o-invariant Borel probability measures on
Y. The map M: ¥ — LT(R% R?) induces a map M,: M,(X) — R given
by

M) = tim [ log M ()M (oy) ... M )ldn(y). e Mo()

The limit exists by an subadditive argument. In 1960, Furstenberg and
Kesten [21] considered the products of random matrices and proved that
for each ergodic measure p on X,

A () = M (p), pas. x€X.

The above fact follows also by Kingman’s Subadditive Ergodic Theorem
(see [37]).

In this paper, we investigate the sizes of the sets with given Lyapunov
exponents:

Ey(a) ={x € X: Ay(z) = o} (€ Lypy).

Recall that X is a metric space where a metric is defined by d(z,y) = m™"

for = (x)j>1 and y = (y;)>1 where n is the largest one such that
xzj = y; (1 < j < n). Different notions of dimensions are then defined
on X. We shall talk about the Hausdorff dimension dimy;, the packing
dimension dimp and the upper box dimension dimp (see [11, 28] for a
general account of dimensions). The sizes of the sets in question will be
described by their dimensions.

In the special case d = 1, M is just a real-valued continuous function;
we would rather write ® instead of M in this case. The first historical
example of this type is due to Besicovitch [4] and Eggleston [10], they
proved that for 0 < a < 1, the set

n

N, im - )=
x = (zn) € {1,2}: nlLrlgonjz::l(x] -1)=«
has Hausdorff dimension —[alogy o+ (1 — @) logy(1 — )]. In this case
the corresponding function @ is given by ®(x) = 1if 21 = 1, and ®(z) = e
if z1 = 2. A slightly more elaborate example was given by Billingsley in
[5]. Some further consideration of the multifractal formalism for Holder
continuous ¢ was given in [12, 14, 33, 38]. The case that ® is only assumed



LYAPUNOV EXPONENTS FOR PRODUCTS OF MATRICES 3

to be continuous, was considered by Fan, Feng and Wu [13], Feng, Lau
and Wu [17] and Olivier [29].

In the case d > 2, M is a matrix-valued continuous function. As we
know, there are few results about this topic. In [27], Ledrappier and Porzio
considered a special kind of product of matrices of order two, and obtained
a local result of multifractal spectrum by using some classical random
matrix products theory and perturbative theory; Porzio [35] strengthened
that result somewhat by a study of Ruelle-Perron-Frobenius operator as-
sociated with random matrix products.

The main result of the present paper is the following theorem.

Theorem 1.1. Suppose M: ¥ — LT (R? RY) is a continuous function
taking values in the set of d X d positive matrices. For any a € Ly, we
have the following formula

dimg Fp(a) = dimp Ej(a)

(1.2) = oy inf {—aa + Pua)}
(1.3) - loglmsup{hm):uewz), M.() = o}

Moreover, dimpg Ep(«) is a concave and continuous function of c on Lyy.

We remark that under this setting, the pressure function Pys(q) of ¢
may be not differentiable. Under a stronger condition that M is Holder
continuous, the formula (1.2) has been proved by Feng and Lau [16], and
in that case Py/(q) is a differentiable function of ¢ over R.

What we state in Theorem 1.1 is a kind of multifractal analysis. But
it is a little different from the multifractal analysis of measures to which
the term “ multifractal ” is often attached. Let us mention [1, 2, 7, 9, 8,
14, 20, 22, 23, 26, 30, 32, 34| (it is far from exhaustive). Another kind
of multifractal analysis was engaged in [25] (see more references herein)
where functions rather than measures are studied.

Now we state some ideas in the proof of Theorem 1.1. First we con-
sider a special case that the map M (z) depends only upon finitely many
coordinates of x. In this case, we prove that the corresponding product
of matrices is associated with a measure v on ¥ satisfying the so-called
quasi-Bernoulli property: there is a constant C' > 1 such that

1

SN < w1 < (), VI, Je |

n>1

By using some multifractal results on quasi-Bernoulli measures obtained
by Brown, Michon & Peyriere [7] and Heurteaux [23], we can prove the
desired results for matrix products. To consider the general case, we first
prove a formal formula for dimpg Fj/(«). More precisely, for any o € Lyy,
n > 1 and € > 0, we define

flasn, €) = #F(a;n, €)
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with
F(asn,e)

= {wezn:

We prove (Proposition 3.2, Proposition 3.3)
(1.4)

1
—log||M(z)... M(c" tz)| — oz’ < e for some z € [w}} .
n

dimpg Fj(«) = lim lim inf log f(ain, €) = lim lim sup M.
e—0 n—oo log m™ e—0 p—ooo log m™
Using the above formula, we can prove the general results by approximat-
ing M by a sequence of maps { M} } such that M} depends only upon the
first k coordinates.

We organize the materials in the paper as follows. In Section 2, we give
some properties of the set Lj; and the pressure function Pys(q). In Section
3, we prove (1.4) by using a dimensional result for the homogeneous Moran
sets. In Section 4, we consider the case that M depends upon finitely
many coordinates. In Section 5, we complete the proof of Theorem 1.1.
In Section 6, we give several remarks.

2. LYAPUNOV EXPONENTS AND THE PRESSURE FUNCTION

Let M: Y — LT(R% R?) be a continuous map. In this section, we will
consider the set Ljs of possible Lyapunov exponents and some relations
between Lj; and the pressure function Py/(q). We also give some ele-
mentary results about convex functions and invariant measures on .. For
convenience, we write 7, M (x) for the product M (x)M (oz)... M (o™ 1z)
throughout this paper.

Let us start from a simple lemma.

Lemma 2.1. There exists a constant C > 0 (depending on M ) such that
for any x € ¥ and n,m € N,

Cln M) | im0 ) | < 0 M @) | < 1 M (@) N M (0"
PrROOF. The second inequality is obvious. We only need to prove the
first one. Since M is continuous, there is a constant C' > 0 such that

mini; Mig(2) o 40 vaes,

max; ; Mi,j (x)
which implies that M(z) > CEM(z) (here and afterwards we write A >
B for two matrices A, B if A;; > B;; for each index (7,j)), here £ =
(E; j)i<ij<d is the matrix whose entries are all equal to 1. Let 1 be the
d-dimensional column vector each coordinate of which is 1. Then

[TnamM (@) = || (7 M (2)) CE (0 M (0" 2)) |

= O|(maM(2)171(mp M (0"))]|
= CllmaM(@)| - lmmM (0" )]
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Proposition 2.2. Set

1
(2.1) ay = lim — inglogHwnM(x)H,

n—oo N xe

1
(2.2) By = lim —suplog |7, M (x)||.

Then Ly = [ag, Bur]-

PROOF.  We first show that the limits in (2.1) and (2.2) exist. To see
this, write

(2.3) ap = inf log ||m, M (z)||, b, = suplog ||m, M (x)]|.
TEY LIS

By Lemma 2.1, we have
An+m 210g0+an+am7 bn+m Sbn+bm7 Vn,mZ 17

where C' is the constant in Lemma 2.1. This declares that the sequences
{log C+ay} and {b,} are superadditive and subadditive respectively, from
which the existence of the limits follows.

By the definition of upper Lyapunov exponents, we have Ly; C [aar, O]
immediately. Hence, to prove the proposition, it suffices to prove that for
any t € [anr, O], there exists y € 3 such that Ays(y) = t.

Now fix a real number ¢ € [apy, Bar]. Then there is a number p € [0, 1]
such that t = paps + (1 — p)Byr. For convenience, we define a sequence
of real numbers {r,} by 72, = aps and ro,—1 = Oy for n > 1. By the
continuity of M and the definitions of ajs and (s, there exist a sequence
of words {w,} (w, € ) and a sequence of positive numbers {e,} which

tend to 0 such that
(2.4)

1
Elog |mn M ()] — Tn| < €n, YV € [wy)].

Now construct a sequence of positive integers { N, } by

N — [pn + logn], if n is odd,
"1 [(1=p)n+logn], otherwise,

where [z] denotes the integral part of z. It can be checked directly that
nNn Z?:l(Qi - 1)]\722'_1

lim N, =00, lim —5—F= =0, lim =p
"N 2n .
oo n—o0 3 i1 ilV; e > i1 JN;
Now define
Yy=wi...wiwa...w2...Wp...Wp....
N — N — N—_——
Ny No Ny,

In the following we show that A(y) = ¢. In fact, for each integer k > Ny,
there is an integer n > 0 such that

n+1

En:uvi <k <> il
=1 =1
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By Lemma 2.1 and (2.4), we have

lme M < N7 4ctnNa -t M) 1Ty —.ma, M (Mg |

< exp (iz]\@(n + 61)) - exp ((k: — (N1 +...+ nNn))b1>7
i=1

which implies that
1 Yy iNi(rite) k= (Ni+... +nNn)
k k 2

where by is defined by (2.3). Letting k tend to the infinity we have

log || M (y)|| < < by,

1
lim sup z log ||me M (y)|| < t.

k—o0

Now by Lemma 2.1, we have also that

ImeM @) = Cllmntosnnu aM (@)l exp (k= (N1 + ...+ nNy)ar )
> CN1+N2+...+N7L+1 exp (ZlNz(Tz _ 61))
=1

- exp ((k — (N1 +...+ nNn))cu),

which implies that

1 ?_ iN;(r; — ¢ Ni+...+ N,
Hlogm(y)] > Zemnm e Mt R
k—(Ni+...+nNy,)

+ A S Q.

By taking the limit we have

1
k
This finishes the proof. O

ligninf log ||k M (y)|| > t.

The following proposition gives some relations between Lj; and the
pressure function Pps(q).

Proposition 2.3. Py(q) is a convex function of ¢ on R. Furthermore,
let apr and Bay be defined as in Proposition 2.2, then we have

P (q) P(q)

lim = ayy, lim
g——c0 g—+oo g

= Pum-

PROOF. The convexity of Pys(q) follows by a standard argument.
Let the sequences {ay, }, {b,} be defined as in (2.3). Then for each n > 1,

{ exp(bnq) < 3 ex, SUPsef) ITn M (2)[|7 < m™ exp(bng), V¢ >0
exp(ang) < D ex, SUPzep) |Tn M (2)[|7 < m™ exp(ang), V¢ <0
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which implies that

(2.5) aBm < Pu(q) <logm+qBy, Vq=>0
' gan < Puy(q) <logm +qay, YV qg<O0
By taking the limit we obtain the desired result. O

Proposition 2.4. Suppose that N: ¥ — L1T(R% RY) is a continuous map,
and there is a real number § > 0 such that

(1+6)'"M(x) <N@)<(A+6)M(x), VzeX

Let Ly denote the set of all possible upper Lyapunov exponents of N, and
Pn(q) denote the pressure function of N. Then

Ly O [an +log(1+6), Bur — log(1 + ).
Moreover, we have
|Pn(q) — Pa(q)] < [qlog(1 4 ).
Proor. It follows immediately from Proposition 2.2 and the definitions

of Ly and Py(q). O
Proposition 2.5. Let f be a convex real-valued function on R. Denote
(2.6) a= lim M, b= lim fz)

r——00 I r—oo I

(i) Suppose that {f,} is a sequence of differentiable convex functions
converging to f pointwisely. Then for any ¢ € (a,b), there exist
N > 0 and a uniformly bounded sequence of real numbers {xy, },>nN
such that f](x,) = c.

(ii) Assume —oo < a < b < co. Then we have

lim inf {22 + f(2)} > inf {~be + f(2)},
and
lim inf {—zz + f(z)} > irel]%{—aaz + f(z)}.

zla zeR
M is an increasing function of x.
x
Thus the limits in (2.6) exist. Take € > 0 with a + € < ¢ < b —e. Pick
t > 0 large enough so that
t) — —t) —
0105, SO
Since the sequence {f,} converges to f pointwisely, there exists N > 0
such that for each n > N,

fn(t) — fn(o)
t

PROOF. Since f is convex,

<c—e.

fn(_t) — fn(o)
—t

Note that each f, is continuously differentiable since it is differentiable

convex (see [36, Theorem 25.3]). By using the Mean Value Theorem and

>c+e/2, <c—e€/2.
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the Intermediate Value Theorem, we see that for each n > IV, there exists
xpn € (—t,t) such that f/(x,) = ¢. This concludes statement (i).

To prove statement (ii), denote f*(z) = infyer{—2x + f(x)}. It can
be checked directly that f* is a concave function on [a,b], and thus it is
lower semi-continuous on [a,b] (see [36, Theorem 10.2]), which concludes
statement (ii). O

The following proposition is needed in the proof of (1.3).

Proposition 2.6. For any u € My(X), there is a sequence of ergodic
measures {p}>1 C Mg () such that

p=w'- lim oy, h(p) = lm h(u).

k—o0

PROOF. First we assume that p is fully supported on . For each integer
n > 2, let p, be the unique equilibrium state (see [6]) of the potential
¢n: 2 — R defined by

On(x) =logpu([zy...xn)) —logpu([z1 ... 2n-1]), Vo= (x;).
One may check that u, has the following property: for any integer ¢ > 0
and i1 ...1p € Xy,
,u,([il...ig]), ifﬂgn,
pn([i1 ... 0g]) = 1. in)) Hﬁ;g&l M([Z] e Z.]:Jrnfl])
il iy ma))
This means that pu, converges to p in the weak-star topology. By the
upper-semi continuity of the entropy of u, we have

(2.7) h(p) > limsup h(pn).

n—oo

, otherwise.

Furthermore, by using the Variational Principle for equilibrium states (see
[37]), we obtain

[ utint ) < [ dnidin + i),

which yields h(p) < h(pyn). This together with (2.7) yields h(p) =
limy, 00 A(ftn).

Now assume that p is not fully supported. Denote by v a fully supported
invariant measure on ¥. Then we can approximate p by a sequence of
fully supported invariant measures {”Tfl w+ %u} We can see that these
measures converge to p in the weak-star topology, and their entropies
converge to h(u) (since h(Z2p + Lv) = 2=1h(u) + Lh(v) ). Combining
this with the results in the last paragraph, we can obtain the desired
result. g

3. HOMOGENEOUS MORAN SETS AND A FORMAL FORMULA OF
dimpy Fy(a)

In this section, we first recall the definition and some dimensional re-
sults of homogeneous Moran sets; then by using these results and some



LYAPUNOV EXPONENTS FOR PRODUCTS OF MATRICES 9

furthermore constructions we give a formal formula of dimy Fpr(a). The
main results in this section are Proposition 3.2 and Proposition 3.3, in
their proof we adopt some ideas from the proof of [12, Theorem 4].

It is helpful to think of ¥ as the interval [0, 1] and cylinders as subin-
tervals. Let {ny}r>1 be a sequence of positive integers and {c}r>1 be a
sequence of positive numbers satisfying ny > 2, 0 < ¢ < 1, n1c; < 0 and
nrcr < 1 (k> 2), where ¢ is some positive number. Let

D=|]J Dy
k>0
with Do = {@} and Dk = {(’il,...,ik); 1 S ij S nj, 1 S ] S k‘}
Suppose that J is an interval of length 4. A collection F ={J,: o € D}
of subintervals of J is said to have a homogeneous Moran structure
if it satisfies
(1) Jop =J;
(2) For any £k > 0 and 0 € Dy, Jy; (i = 1,...,ny1) are disjoint
subintervals of J, such that
‘J0i|
|Jo|
where |A| denotes the length of A.
If F is such a collection, F := (| |J J, is called a homogeneous
k>1 o€Dy
Moran set determined by F. One may refer to [19, 18] for more infor-
mation about homogeneous Moran sets. For the purpose of the present
paper, we only need the following simplified version of a result contained
in [19], whose simpler proof was given in [12, Proposition 3].

= Ck+41, vlSZSnk‘+17

Proposition 3.1. For the homogeneous Moran set defined above, we have

. L logning...n
dimyg E > liminf & i .
n—oo —logciea. .. Cpy1Mkt1

For x = (x;) € X, denote I,(x) = {y = (y;) € X: 2, = y;, 1 < i < n}.
We call I,(x) the n-cylinder about x. Write M (x) = (M”(:z)
For each n € N, define

5, (M) = Sup{ max M@)o In(y)}.

yex L1siy=d Mij(y)’

1<ij<d

Since M: ¥ — LT (R4 R?) is continuous, we have lim,_, 6, (M) = 1.
For any a € Lps, n > 1 and € > 0, we define
F(a;n,e)

= {wEEn:

1
glog |mn M (x)|| — a| < € for some x € [w}}
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and f(a;n,e) = #F(a;n,e).
Proposition 3.2. For a € Ly;, we have

1 : 1 :
lim Tim inf 28O i sup 12851y,
e—0 n—oo log m™ e—0 nooo log m™

The function Apr: Ly — [0, 1] is concave and continuous.

ProOOF. We first show that log f(a;n,€), as a sequence of n, has a kind
of subadditivity. More precisely, for any ¢ > 0, there is an N such that

[f(a;n, €)]P < fla;np,2¢)  (Yn > N,Vp>1).

In fact, suppose {w1,...,wp} C F(o;n,€). Let w = wy...wpy. Let z3, €
[wi] (1 <k < p) be a point such that

1 _
ElogHM(mk)...M(o” e —al <e

Let = be a point in [w]. Note that for any 1 < j <p,
TnM (2;)
01 (M)...0n(M)

T M (U~ Dng)

IN

< 5y(M) ... 80(M)myM(z;)
We have

1 : 1

‘ﬁ log || M (U= D7g) || — a‘ < e+ log(01(M).....6,(M))

for all 1 < j < p. It follows that

1 1 log C
‘n—plogHanM(x)H—a’<6+Elog((51(M)...5n(M))+ o

where C' is the constant in Lemma 2.1. Since lim,, o 0, (M) = 1, there
exists N such that 1 log (81 (M) ... 8, (M))+'2% < ¢ for n > N. Tt follows
that

1
’Fp log [|mpM (z)]| — a| < 2¢

for n > N and for all p > 1. Then [w], which contains z, is in F(«; np, 2¢).
Notice that different choices {w1,...,wp} give rise to different w’s. Thus
we get the desired subadditivity. By using this subadditivity, it is easy to
get
lim sup log f(ain, €) < liminf log f(a;n, 2¢)
n—oo log m™ n—00 logm™

from which the equality of the two limits follows.

It is evident that 0 < Ap/(a) < 1. Let o, 8 € Ly. Let p,q be two
positive integers. By subadditivity, for large n we have

[f(a;n, e)PLf(B;n, )] < fla;np, 2€) (55 ng, 2€).
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Let u € F(a;np,2¢) and v € F(B;nq,2¢). Take a point z € [uv]. As
above, we can get

log || TnpngM ()]| — npor — ngf|
< 2en(p+q) +10a(31 (M) ... 6,p(M))
+1og(01(M) ... 6ng(M)) +logC.

It follows that if n is sufficiently large, uv € F(%; n(p+ q), 3¢). Con-
sequently, for large n we have

po+qp
f(asnp, 2€) f(B;ng, 2¢) < f(ﬂ% n(p +q), 3¢)
By the equality of the two limits that we have already proved, we can get
p q p q
——Au(a) + ——Au(B) < Apy(——a+ ——0).
pP+4q pP+q p+q pP+q
This gives the rational concavity of the (bounded) function A,s. However,
the concavity of Aj; on the interval Ljs is a consequence of its rational
concavity and its upper semi-continuity that we prove below.
Given a € Lys. For any n > 0, there is € > 0 such that

1 .
liminfm < Ap(a) +1.
n—o0 logm™
As above, it can be proved that for 3 € Ly with [3 — a| < § we have

F(B;n,€/3) C F(a;n,e)

when n is sufficiently large. It follows that f(5;n,€/3) < f(a;n,€). There-
fore

1 ; 3 ] .
Ap(B) < liminf Ogj;(ﬂ,n;e/) < liminf %7:’6)
n—oo ogm n—oo logm
< Au(@)+7.

This establishes the upper semi-continuity of Ay; at .
The continuity of Aps on the interval Ly follows from its concavity and
its upper semi-continuity. Il

Proposition 3.3. For a € Ly;, we have
dimg Ey (o) = dimp Ep(a) = Apr(a).

PROOF. Step 1. For a € Ly, we have dimp Epr(o) < Aps(cv).
Let

Glask,e) = ﬁ {x e )%HMM(Q;)H ~al< e}.
n==k

It is clear that for any € > 0,

Ey(a) C | Glask,e).
k=1
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Notice that if n > k, G(«; k, €) is covered by the union of all cylinders [w]
with w € F(a;n,€) whose total number is f(«a;n,€). Therefore we have
the following estimate

dimpG(a; k, €) < limsup w

n—oo ].Og mn

(Ve > 0,Vk > 1).

On the other hand, by using the o-stability of the packing dimension, we
have

dimp Ejy(o) < dimp (U G(a;k,e)) < supdimp G(a; k, €)
k
k=1
< supdimpG(a;k,e).

k
This, together with the last proposition, leads to the desired result.
Step 2. For o € Ly, we have dimyg Ey(a) > Apr(a).

Given 0 > 0. By the last proposition, there are £; T oo and ¢; | 0 such
that

Flasty, ) > mb(@=32),
Write simply Fy, = F(a;¢j,¢;) and fy; = f(a;¢j,¢;). Define a new se-
quence {£;} in the following manner
AT AT N S TN O F
W N,
where N; is defined recursively by

Nj =2t (5 >2), Ny =1.

Denote nj = f(;'_‘ and ¢; = m ™% . Define

o0
o =] Fys.
j=1

Observe that ©* is a homogeneous Moran set in 3. More precisely ©* is
constructed as follows. At level 0, we have only the initial cylinder 3. In
step j, cut a cylinder of level 5 — 1 into mbi cylinders and pick up n; ones.
By Proposition 3.1, we have

1 ...
dimyg ©* > liminf og(n1 .. 1)
k—oo —log(cy ... cxCry1nks1)

log(fp{ P fgz)

T
Z hﬂgf log(20 T TGt lisr)
lo T
= liminf M
k—o0 log(2 1+"'+Ek)
> Ay(a) — 0.
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However by a direct check, ©* is a set in Ej(«). Hence dimpg Fy(a) >
Apr(@) — 6. And thus dimyg Ey(a) > Apr(a) since 6 can be picked small
arbitrary. O

4. THE CASE THAT M DEPENDS UPON FINITELY MANY COORDINATES

In this section, we always assume that M depends upon finitely many
coordinates. That is, there exists an integer & > 1 such that M (x) depends
upon the first k& coordinates of z for all x = (x;) € 3. For simplicity, we
write M(z) = M(x;...x). We will prove the following proposition by
using some multifractal results about quasi-Bernoulli measures.

Proposition 4.1. Suppose that the map M: ¥ — LT(R? R?) depends
only upon the first k coordinates. Then Py(q) is a differentiable function
of ¢ on R. Moreover, if « = Py (t) for somet € R, then

1 1
i) dimg F = inf {— P = —— (—at+ Py(1)).
() dimys Eay(0) = = inf {—agq+Par(0)} = = (<ot + Par(t)
(ii) There exists an ergodic measure py on X such that

h(p) 1
logm logm

M, () =« and dimpg p = (—at + Py(t)) .

Before giving the proof of the above proposition, we recall some multi-
fractal results about quasi-Bernoulli measures. Let v be a Borel probabil-
ity measure on Y. We recall that v is quasi-Bernoulli if there exists a
constant C' > 1 such that

(1) S < () < Culll), - Y1, 7€ (5
n>1

Let p be a Borel probability measure on . For any ¢ € R, the L9-
spectrum of u is defined by
o1
Tu(q) = lggg.}fnlogzlzu([f])q,
where the summation is taken over all I € 3, with p([I]) > 0.

Brown, Michon & Peyriere [7] and Heurteaux [23] have considered the
multifractal properties of quasi-Bernoulli measures. They proved

Proposition 4.2. Suppose that v is a quasi-Bernoulli measure. Then the
Li-spectrum 1,(q) is differentiable for ¢ € R. Moreover, if a = 7,,(t) for
some t € R, then

(i)

] . logv(Br(x)) .
dimgy {x SIF rlggo T =« = ;Ielﬂlé{aq ()}

= at—T1,(t);
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(ii) there exists an ergodic measure p; on ¥ such that

,ut{:veZ: limlogV(BT(x)):a}:l

700 logr

and dimpg py = lo(g“:yz =at —7,(t).

We remark that statement (ii) is only implicit in [23].

The following lemma plays a crucial role in the proof of Proposition 4.1.

Lemma 4.3. There exist a Borel probability measure pu on ¥ and two
positive constants p, C such that for anyn > 1 and iy ... tn1k-1 € Xntk—1,

C ™| MGy .. ig)M(ig .. iggr) . M(ip .. ipg)||
p(fin - - dngr—1])

PROOF. At first we declare that, there exist positive numbers p1, p2 and
d-dimensional column vectors u(iy ...ig), v(ii...ig) (i1...9 € X,) with
positive entries such that for any iy ...4; € X,

(4.2)  u(ip...ip)” = —Z (it .. i) M (i1 .. ip_1),

<
<

(4.3) v(iy...ig) = —ZM Cigi)v(ia . . . igi).

To see it, without loss of generahty we assume m = 2 and k = 2. We
construct a new 4d x 4d matrix H by
M(11) 0 M(21) 0

(11) 0 M(21) 0

0 M(12) 0 M(22)

0 M(12) 0 M(22)
Since M(ij) (ij € ¥2) are positive matrices, H are primitive (one checks
that H? is positive). Thus by the Perron-Frobenius theorem (see [24]),
there exist a positive number p; and a 4d-dimensional positive column

H =

1
vector s such that s™ = —s” H. Write s” as the form
Pl

s’ = (u(11)",u(12)7,u(21)",u(22)"),
where u(ij) are d-dimensional column vectors. Then it is clear that the
vectors u(ij) satisfy (4.2). The proof of (4.3) follows by a similar discus-

sion.
Define two functions n; and 75 on Unzk Y by

nl(ilig R inJrk,l) = pl_nu(il .. .ik)TM<i1 - Zk)M(ZQ - ik+1)
.. M(Zn e ’in+k_1)V(in e in+k_1)
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and
ng(ilig - in—}—k—l) = p;nu(il .. .ik)TM(il - lk)M(lg - ik—i—l)
.. M(Zn . in+k,1)V(in e Z.n+k-,1).
By (4.2) and (4.3) we have
(4 4) Zz nl(iilig e in+k—1) =M (ilig e in—&—kz—l)»
) Zz 772(’i1i2 e in—l—k—li) = T}Q(ilig . in+k—1)7
which implies that for each n > k,
> omw) =D mW), > mw) =D m(W).
wEYX, w' €y wWEYX, w' ey
We deduce from the above equalities that p; = p2 since
(p1/p2)" = > mw)/ > mw) =Y mw)/ > mw).
WEYX, wWEYX, WEX wWEX
And thus 7, = n2. Define n on (J,,5;, ¥n by
nw)=mw)/ Y mw), Vwel]Z.
w' ey n>k

By the Kolmogrov consistence theorem, there is a unique invariant Borel
probability measure p on ¥ such that u([w]) = n(w) for any w € U5, Xn-
This completes the proof. O

Proof of Proposition 4.1. Let p be the measure as in Lemma 4.3 and
p the corresponding constant. By Lemma 4.3 and Lemma 2.1, y is a
quasi-Bernoulli measure. Moreover,

ri(g) = qlogp — Py(q) (¥ g €R)

logm
and
1 B 1 —
Ey(a) = {x € X: lim o 1l B:(2)) = 08P a} (V a € Ly).
r—00 log’l" logm
Using Proposition 4.2, we obtain the desired result. O

5. The Proof of Theorem 1.1
We divide the proof into 4 small steps:
Step 1. dimp Ey(a) < 2 (—aq+ Py(q)) (a € Ly, q €R).

— logm

For any a € Ly, € > 0 and n € N, let f(a;n,€) be defined as in Section
3. Then

flain, € exp(ng(a — ), ifq >0
q
2 s m M 2{ Flain, ) exp(ngla +€)), if g <0
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which implies that for any ¢ € R,

1 .
Pr(g) > g + lim lim in 287(%™:9)
€—00 M—00 n
Combining it with Propositions 3.2 and 3.3, we obtain

] 1
dimp Bar(@) < o (—ga + Pur(0).

Step 2. We prove the following inequality:

1
. i > i — .
(5.1) dimpg Ep(o) > logm ;Iel]fR{ aq + Py(q)} (aw € Lyy)

At first we consider a trivial case: ap = By (aps and [as are defined
as in Proposition 2.2). In this case, we have A\y/(z) = aps for all z € X.
By (2.5), we have

1
dimH EM(aM) = dimHE =1> logm (;Ielﬂg{—an + PM(q)}

From now on we assume that ays # Bar.

First we consider a € (ans, Byr). For each k € N, we define a map
M;: ¥ — LT (R4, R?) such that Mj, depends upon the first k coordinates
of  and My(z) = M(y) for some y € I,(x). It is clear that Mj is
continuous. Moreover there is a sequence of real numbers {d;} | 0 such
that

(5.2) (1+0p) " M(z) < My(z) < (14 6,)M(z), VazeX
Pick € > 0 with € < %min{a — aypg, By — o). For each k,n € N, define
Fi(asn,€/2)

1
—log || My (z)]| — af < % for some z € [w]}
n

= {w € Xy
and

fi(asn, e/2) = #Fy(ain, e/2).
Take a large integer ko such that log(1 + dx) < €/2 for any k > kg. Then
by (5.2) we have Fy(a;n,e/2) C F(a;n,€) and hence

(5.3) fr(a;n,e/2) < f(a;n,e) (k > ko).

By (5.2) and Proposition 2.4, Py, (¢q) converges to Pys(g) uniformly on
compact sets. And thus by Proposition 2.5, there exists k1 > kg and a
bounded sequence of real numbers {gx }x>k, such that o = P]'Wk (qx). By
Proposition 3.2, Proposition 3.3 and Proposition 4.1,

1 .
lim sup 0og fk (Oé, n, 6/2>

n—00 n

logm - dimpy Ep, («)
= Inf{-aq+ Py, (9)}

(5.4) = —aq + Py, (qr).
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Since the sequence {gx} is bounded, there is a subsequence {g, } which
converges to a finite point ¢s. It follows from Proposition 2.4 that

|PMkZ(qkz) - PM(QOO)|
< [Puy, (k) — Prr(aw)| + [Pr(ar;) — Pr(goo)]
< gk,| - log(1 + d,) + | Prr(gr,) — Pr(geo)l-

By the continuity of Pys(g), we have lim; . Py, (qr;) = Prr(goo). Thus
by (5.3) and (5.4) we have

1 .

n—00 n

> —oo + Pr(goo) > ;gﬂg{*aq + Pr(q)}.

Since € can be picked arbitrary small, by Proposition 3.2 and 3.3, we
obtain (5.1) for « € (aps, Bur)-

Now we consider the case a = ays or a = (By7. By Proposition 3.2 and
3.3, we have

zlan
and
dimg Epy(By) = lim dimyg Ep(2).
z18m
Thus
dimp Epy (o) 2 oz Jim ;gﬂg{—zq + Pu(q)}
and

dimpg En(Bar) > lim inf{—zq + Pur(q)}.

log m 218 g€R

By Proposition 2.5, we have

inf {—anrq + Pu(q)}

di FE >
imr Enr (o) = log m ¢eR

and

dimy Ey(Bu) > inf {—pBnq+ Pu(q)},

log m ¢cR
which finishes the proof of (5.1).

Step 3. dim Ep(a) > e max{h(u): M.(p) = a} (Vo € Lyy).
logm p

To see it, if p € M,(X) satisfies M, () = «, then by Proposition 2.6,
there exists a sequence of ergodic measures pg on 3 converging to p in the
weak-star topology, satisfying limg . h(ur) = h(pn). Let ap = My (u).
Then by (2.1), limg_. o = a. By Furstenberg and Kesten’s Theorem
[21], pr(Enr (o)) = 1. By the Shannon-McMillan-Breiman theorem (see
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h h
[37]), dimpg pp = (Mk) Hence we have dimpy Eps(ay) > (Mk) Thus,
logm logm
by Proposition 3.2 and 3.3,
h(pr) _ h(p)

dimH EM(a) = klinolodlmH EM(Oék) > kll_}H;Q logm = logm'

Step 4.  dim Ep(«) max{h(u): M,(n) =a} (Va € Lyy).

<
~logm u

For the trivial case aj; = (s, take u to be the Parry measure on X
(i.e. p([I]) = m™™ for each I € %,). Then one can check directly that
M, (1) = apr and

logm
In what follows we assume that aj; < Bps. First we consider a €
(aar, Bar). We define the maps Mj: ¥ — LT (RY,RY) for k € N the same
as in Step 2. As we have mentioned, there exists k1 > ko and a bounded
sequence of real numbers {qx } >, such that o = Py, (g). By Proposition
4.1, there exists a sequence of ergodic measures v, on ¥ such that

(55) (M) =a and h(v) = —ag + P, ().

Since the sequence {gi} is bounded, there is a subsequence {g, } which
converges to a finite point ¢.o; in the mean time 14, converges to an
invariant measure v in the weak-star topology. By (2.1) and (5.2), we see
that M, (v) = lim; oo My (vg,) = limy_oo(My, )«(v5,) = a. By the upper
semi-continuity of the entropy of invariant measures on ¥ and the result
proved in Step 1, we have

h(v) > limsuph(vy,)
1—00
= limsup(—aqk, + Pum,, (qk;)) = —Goo + Prr(doo)
1—00

> logm - dimy Epy(«).
Now assume a = aypy or [ar. Pick oy, € (s, Bar) such that

lim o, = a.
n—oo

Choose v, € M,(X) such that
M. (vy) = a, and h(vy,)/logm > dimpg Ep(ay).
Let v be a cluster point of {v,} in the weak-star topology. Then by (5.2)

M.(v) = lim M,(v,) = lim o, = a.
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By Proposition 3.2 and 3.3, and the upper semi-continuity of the entropy
of invariant measures on X,

h h
dimyg Ey (o) = lim dimy Ey(ay,) < lim hvn) < ﬂ,
n—00 n—oo logm ~ logm

which completes the proof. O

6. FINAL REMARKS

In this section we give several remarks.

First Theorem 1.1 can be extended from the full shift space (3,0) to a
subshift space (X 4,0) where A is a m x m 0-1 primitive matrix. To attain
this, one needs to modify our proof slightly.

The reader may care about how to deal with the points z at which
A () does not exist. Actually we can define Ays(z) and A/ (z) by taking
limsup and liminf in (1.1), respectively. By Proposition 2.2, the ranges of
Aur(z) and Ay (z) are both equal to Lyy.

We remark that for any o € Ly,

dimg{zr € ¥: Ay (2) = a} = dimg{z € ¥: )\, (z) = a}
= Au(e)
= dimg{z € ¥: Ay(z) = a}.
It is obvious that dimy{z € ¥: Ay (z) = a} > Apy(a) and dimy{z €
Y: Ay (@) = a} > Apy(a). Now we prove the “<”. Assume that Ays(a) <
t. By Proposition 3.2, there exist € > 0, § > 0 and Ny € N such that
flazn,e) < mt=9), vV n > Np.

Note that for any £ > Np, {x € X: A\y(z) = a} and {z € X: \y,(z) = o}

are subsets of
AU Flasn
k=ln>k

Therefore, for any ¢ > Ny, the collection
Gr = {|w]: w € F(a;n,e) for some n > £}
is a cover of the sets {x € ¥: A\ys(2) = a} and {z € ¥: A\, (x) = a}. Since

Y (diam[w])' = Z > (diam[w])’

[w]€Ge ={ [w]EF (a;n,e€)
1
§ : n(t—9),,,—nt

for each ¢ > Ny, we have dimpy{z € X: Ay (z) = a} <t and dimg{x €
¥: Ay (x) = a} < t. This finishes the proof.
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Using a method similar to that in [13] or [17], one can prove that if
anr < B, then

dimg{zr € ¥: A\ (z) < Ay(2)} = dimy 2.

For related results in the scalar function case, see e.g. [3, 13, 17, 31].
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