Israel J. Math. 138 (2003), 353-376.

LYAPUNOV EXPONENTS FOR PRODUCTS OF MATRICES AND MULTIFRACTAL ANALYSIS. PART I: POSITIVE MATRICES

DE-JUN FENG

$$
\begin{aligned}
& \text { Abstract. Let }(\Sigma, \sigma) \text { be a full shift space on an alphabet consisting } \\
& \text { of } m \text { symbols and let } M: \Sigma \rightarrow L^{+}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) \text { be a continuous function } \\
& \text { taking values in the set of } d \times d \text { positive matrices. Denote by } \lambda_{M}(x) \text { the } \\
& \text { upper Lyapunov exponent of } M \text { at } x \text {. The set of possible Lyapunov } \\
& \text { exponents is just an interval. For any possible Lyapunov exponent } \alpha \text {, } \\
& \text { we prove the following variational formula } \\
& \qquad \begin{array}{r}
\operatorname{dim}\left\{x \in \Sigma: \lambda_{M}(x)=\alpha\right\} \\
=\frac{1}{\log m} \inf _{q \in \mathbb{R}}\left\{-\alpha q+P_{M}(q)\right\} \\
\\
=\frac{1}{\log m} \max _{\mu}\left\{h(\mu): M_{*}(\mu)=\alpha\right\},
\end{array}
\end{aligned}
$$

where dim is the Hausdorff dimension or the packing dimension, $P_{M}(q)$ is the pressure function of M, μ is a σ-invariant Borel probability measure on $\Sigma, h(\mu)$ is the entropy of μ, and
$M_{*}(\mu)=\lim _{n \rightarrow \infty} \frac{1}{n} \int \log \left\|M(y) M(\sigma y) \ldots M\left(\sigma^{n-1} y\right)\right\| d \mu(y)$.

1. Introduction

Let σ be the shift map on $\Sigma=\{1,2, \ldots, m\}^{\mathbb{N}}$ ($m \geq 2$ an integer $)$. Let M be a continuous function defined on Σ taking values in $L^{+}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$, the set of $d \times d$ matrices with positive entries. We define the upper Lyapunov exponent $\lambda_{M}(x)$ of M by

$$
\begin{equation*}
\lambda_{M}(x)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|M(x) M(\sigma x) \ldots M\left(\sigma^{n-1} x\right)\right\| \tag{1.1}
\end{equation*}
$$

when the limit exists. Here $\|\cdot\|$ denotes the matrix norm defined by $\|A\|:=\mathbf{1}^{\tau} A \mathbf{1}$, where $\mathbf{1}$ is the d-dimensional column vector each coordinate of which is 1 .

Let L_{M} be the set of point $\alpha \in \mathbb{R}$ such that $\alpha=\lambda_{M}(x)$ for some $x \in \Sigma$. By using the specification property of Σ and the continuity of M, we show that L_{M} is a non-empty closed interval (see Proposition 2.2).

[^0]For any $q \in \mathbb{R}$, define

$$
P_{M}(q)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \sum_{\omega \in \Sigma_{n}} \sup _{x \in[\omega]}\left\|M(x) M(\sigma x) \ldots M\left(\sigma^{n-1} x\right)\right\|^{q}
$$

where Σ_{n} denotes the set of all words of length n over $\{1, \ldots, m\}$; for $\omega=\omega_{1} \ldots \omega_{n} \in \Sigma_{n},[\omega]$ denotes the cylinder set $\left\{x=\left(x_{i}\right) \in \Sigma: x_{i}=\right.$ $\left.\omega_{i}, 1 \leq i \leq n\right\}$. An subadditive argument shows that the limit in the above definition exists. We call $P_{M}(q)$ the pressure function of M.

Let $\mathcal{M}_{\sigma}(\Sigma)$ be the set of all σ-invariant Borel probability measures on Σ. The $\operatorname{map} M: \Sigma \rightarrow L^{+}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ induces a map $M_{*}: \mathcal{M}_{\sigma}(\Sigma) \rightarrow \mathbb{R}$ given by

$$
M_{*}(\mu)=\lim _{n \rightarrow \infty} \frac{1}{n} \int \log \left\|M(y) M(\sigma y) \ldots M\left(\sigma^{n-1} y\right)\right\| d \mu(y), \quad \mu \in \mathcal{M}_{\sigma}(\Sigma)
$$

The limit exists by an subadditive argument. In 1960, Furstenberg and Kesten [21] considered the products of random matrices and proved that for each ergodic measure μ on Σ,

$$
\lambda_{M}(x)=M_{*}(\mu), \quad \mu \text { a.s. } x \in \Sigma
$$

The above fact follows also by Kingman's Subadditive Ergodic Theorem (see [37]).

In this paper, we investigate the sizes of the sets with given Lyapunov exponents:

$$
E_{M}(\alpha)=\left\{x \in \Sigma: \lambda_{M}(x)=\alpha\right\} \quad\left(\alpha \in L_{M}\right)
$$

Recall that Σ is a metric space where a metric is defined by $d(x, y)=m^{-n}$ for $x=\left(x_{j}\right)_{j \geq 1}$ and $y=\left(y_{j}\right)_{\geq 1}$ where n is the largest one such that $x_{j}=y_{j}(1 \leq j \leq n)$. Different notions of dimensions are then defined on Σ. We shall talk about the Hausdorff dimension dim_{H}, the packing dimension dim_{P} and the upper box dimension $\overline{\operatorname{dim}}_{B}$ (see [11, 28] for a general account of dimensions). The sizes of the sets in question will be described by their dimensions.

In the special case $d=1, M$ is just a real-valued continuous function; we would rather write Φ instead of M in this case. The first historical example of this type is due to Besicovitch [4] and Eggleston [10], they proved that for $0 \leq \alpha \leq 1$, the set

$$
\left\{x=\left(x_{n}\right) \in\{1,2\}^{\mathbb{N}}: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n}\left(x_{j}-1\right)=\alpha\right\}
$$

has Hausdorff dimension $-\left[\alpha \log _{2} \alpha+(1-\alpha) \log _{2}(1-\alpha)\right]$. In this case the corresponding function Φ is given by $\Phi(x)=1$ if $x_{1}=1$, and $\Phi(x)=e$ if $x_{1}=2$. A slightly more elaborate example was given by Billingsley in [5]. Some further consideration of the multifractal formalism for Hölder continuous Φ was given in $[12,14,33,38]$. The case that Φ is only assumed
to be continuous, was considered by Fan, Feng and Wu [13], Feng, Lau and Wu [17] and Olivier [29].

In the case $d \geq 2, M$ is a matrix-valued continuous function. As we know, there are few results about this topic. In [27], Ledrappier and Porzio considered a special kind of product of matrices of order two, and obtained a local result of multifractal spectrum by using some classical random matrix products theory and perturbative theory; Porzio [35] strengthened that result somewhat by a study of Ruelle-Perron-Frobenius operator associated with random matrix products.

The main result of the present paper is the following theorem.
Theorem 1.1. Suppose $M: \Sigma \rightarrow L^{+}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is a continuous function taking values in the set of $d \times d$ positive matrices. For any $\alpha \in L_{M}$, we have the following formula

$$
\begin{align*}
& \operatorname{dim}_{H} E_{M}(\alpha)=\operatorname{dim}_{P} E_{M}(\alpha) \\
= & \frac{1}{\log m} \inf _{q \in \mathbb{R}}\left\{-\alpha q+P_{M}(q)\right\} \tag{1.2}\\
= & \frac{1}{\log m} \sup \left\{h(\mu): \mu \in \mathcal{M}_{\sigma}(\Sigma), M_{*}(\mu)=\alpha\right\} \tag{1.3}
\end{align*}
$$

Moreover, $\operatorname{dim}_{H} E_{M}(\alpha)$ is a concave and continuous function of α on L_{M}.
We remark that under this setting, the pressure function $P_{M}(q)$ of q may be not differentiable. Under a stronger condition that M is Hölder continuous, the formula (1.2) has been proved by Feng and Lau [16], and in that case $P_{M}(q)$ is a differentiable function of q over \mathbb{R}.

What we state in Theorem 1.1 is a kind of multifractal analysis. But it is a little different from the multifractal analysis of measures to which the term " multifractal" is often attached. Let us mention [1, 2, 7, 9, 8, $14,20,22,23,26,30,32,34]$ (it is far from exhaustive). Another kind of multifractal analysis was engaged in [25] (see more references herein) where functions rather than measures are studied.

Now we state some ideas in the proof of Theorem 1.1. First we consider a special case that the map $M(x)$ depends only upon finitely many coordinates of x. In this case, we prove that the corresponding product of matrices is associated with a measure ν on Σ satisfying the so-called quasi-Bernoulli property: there is a constant $C \geq 1$ such that

$$
\frac{1}{C} \nu([I]) \nu([J]) \leq \nu([I J]) \leq C \nu([I]) \nu([J]), \quad \forall I, J \in \bigcup_{n \geq 1} \Sigma_{n}
$$

By using some multifractal results on quasi-Bernoulli measures obtained by Brown, Michon \& Peyriere [7] and Heurteaux [23], we can prove the desired results for matrix products. To consider the general case, we first prove a formal formula for $\operatorname{dim}_{H} E_{M}(\alpha)$. More precisely, for any $\alpha \in L_{M}$, $n \geq 1$ and $\epsilon>0$, we define

$$
f(\alpha ; n, \epsilon)=\# F(\alpha ; n, \epsilon)
$$

with

$$
\begin{aligned}
& F(\alpha ; n, \epsilon) \\
= & \left\{\omega \in \Sigma_{n}:\left|\frac{1}{n} \log \left\|M(x) \ldots M\left(\sigma^{n-1} x\right)\right\|-\alpha\right|<\epsilon \text { for some } x \in[\omega]\right\} .
\end{aligned}
$$

We prove (Proposition 3.2, Proposition 3.3)

$$
\begin{equation*}
\operatorname{dim}_{H} E_{M}(\alpha)=\lim _{\epsilon \rightarrow 0} \liminf _{n \rightarrow \infty} \frac{\log f(\alpha ; n, \epsilon)}{\log m^{n}}=\lim _{\epsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{\log f(\alpha ; n, \epsilon)}{\log m^{n}} \tag{1.4}
\end{equation*}
$$

Using the above formula, we can prove the general results by approximating M by a sequence of maps $\left\{M_{k}\right\}$ such that M_{k} depends only upon the first k coordinates.

We organize the materials in the paper as follows. In Section 2, we give some properties of the set L_{M} and the pressure function $P_{M}(q)$. In Section 3 , we prove (1.4) by using a dimensional result for the homogeneous Moran sets. In Section 4, we consider the case that M depends upon finitely many coordinates. In Section 5, we complete the proof of Theorem 1.1. In Section 6, we give several remarks.

2. LYAPUNOV EXPONENTS AND THE PRESSURE FUNCTION

Let $M: \Sigma \rightarrow L^{+}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ be a continuous map. In this section, we will consider the set L_{M} of possible Lyapunov exponents and some relations between L_{M} and the pressure function $P_{M}(q)$. We also give some elementary results about convex functions and invariant measures on Σ. For convenience, we write $\pi_{n} M(x)$ for the product $M(x) M(\sigma x) \ldots M\left(\sigma^{n-1} x\right)$ throughout this paper.

Let us start from a simple lemma.
Lemma 2.1. There exists a constant $C>0$ (depending on M) such that for any $x \in \Sigma$ and $n, m \in \mathbb{N}$,

$$
C\left\|\pi_{n} M(x)\right\|\left\|\pi_{m} M\left(\sigma^{n} x\right)\right\| \leq\left\|\pi_{n+m} M(x)\right\| \leq\left\|\pi_{n} M(x)\right\|\left\|\pi_{m} M\left(\sigma^{n} x\right)\right\|
$$

Proof. The second inequality is obvious. We only need to prove the first one. Since M is continuous, there is a constant $C>0$ such that

$$
\frac{\min _{i, j} M_{i, j}(x)}{\max _{i, j} M_{i, j}(x)} \geq d C, \quad \forall x \in \Sigma
$$

which implies that $M(x) \geq C E M(x)$ (here and afterwards we write $A \geq$ B for two matrices A, B if $A_{i, j} \geq B_{i, j}$ for each index $\left.(i, j)\right)$, here $E=$ $\left(E_{i, j}\right)_{1 \leq i, j \leq d}$ is the matrix whose entries are all equal to 1 . Let $\mathbf{1}$ be the d-dimensional column vector each coordinate of which is 1 . Then

$$
\begin{aligned}
\left\|\pi_{n+m} M(x)\right\| & \geq\left\|\left(\pi_{n} M(x)\right) C E\left(\pi_{m} M\left(\sigma^{n} x\right)\right)\right\| \\
& =C\left\|\left(\pi_{n} M(x)\right) \mathbf{1}^{\tau} \mathbf{1}\left(\pi_{m} M\left(\sigma^{n} x\right)\right)\right\| \\
& =C\left\|\pi_{n} M(x)\right\| \cdot\left\|\pi_{m} M\left(\sigma^{n} x\right)\right\| .
\end{aligned}
$$

Proposition 2.2. Set

$$
\begin{align*}
\alpha_{M} & =\lim _{n \rightarrow \infty} \frac{1}{n} \inf _{x \in \Sigma} \log \left\|\pi_{n} M(x)\right\| \tag{2.1}\\
\beta_{M} & =\lim _{n \rightarrow \infty} \frac{1}{n} \sup _{x \in \Sigma} \log \left\|\pi_{n} M(x)\right\| \tag{2.2}
\end{align*}
$$

Then $L_{M}=\left[\alpha_{M}, \beta_{M}\right]$.
Proof. We first show that the limits in (2.1) and (2.2) exist. To see this, write

$$
\begin{equation*}
a_{n}=\inf _{x \in \Sigma} \log \left\|\pi_{n} M(x)\right\|, \quad b_{n}=\sup _{x \in \Sigma} \log \left\|\pi_{n} M(x)\right\| \tag{2.3}
\end{equation*}
$$

By Lemma 2.1, we have

$$
a_{n+m} \geq \log C+a_{n}+a_{m}, \quad b_{n+m} \leq b_{n}+b_{m}, \quad \forall n, m \geq 1
$$

where C is the constant in Lemma 2.1. This declares that the sequences $\left\{\log C+a_{n}\right\}$ and $\left\{b_{n}\right\}$ are superadditive and subadditive respectively, from which the existence of the limits follows.

By the definition of upper Lyapunov exponents, we have $L_{M} \subset\left[\alpha_{M}, \beta_{M}\right]$ immediately. Hence, to prove the proposition, it suffices to prove that for any $t \in\left[\alpha_{M}, \beta_{M}\right]$, there exists $y \in \Sigma$ such that $\lambda_{M}(y)=t$.

Now fix a real number $t \in\left[\alpha_{M}, \beta_{M}\right]$. Then there is a number $p \in[0,1]$ such that $t=p \alpha_{M}+(1-p) \beta_{M}$. For convenience, we define a sequence of real numbers $\left\{r_{n}\right\}$ by $r_{2 n}=\alpha_{M}$ and $r_{2 n-1}=\beta_{M}$ for $n \geq 1$. By the continuity of M and the definitions of α_{M} and β_{M}, there exist a sequence of words $\left\{\omega_{n}\right\}\left(\omega_{n} \in \Sigma_{n}\right)$ and a sequence of positive numbers $\left\{\epsilon_{n}\right\}$ which tend to 0 such that

$$
\begin{equation*}
\left|\frac{1}{n} \log \left\|\pi_{n} M(x)\right\|-r_{n}\right|<\epsilon_{n}, \quad \forall x \in\left[\omega_{n}\right] \tag{2.4}
\end{equation*}
$$

Now construct a sequence of positive integers $\left\{N_{n}\right\}$ by

$$
N_{n}= \begin{cases}\llbracket p n+\log n \rrbracket, & \text { if } n \text { is odd } \\ \llbracket(1-p) n+\log n \rrbracket, & \text { otherwise }\end{cases}
$$

where $\llbracket x \rrbracket$ denotes the integral part of x. It can be checked directly that

$$
\lim _{n \rightarrow \infty} N_{n}=\infty, \quad \lim _{n \rightarrow \infty} \frac{n N_{n}}{\sum_{i=1}^{n} i N_{i}}=0, \quad \lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n}(2 i-1) N_{2 i-1}}{\sum_{j=1}^{2 n} j N_{j}}=p
$$

Now define

$$
y=\underbrace{\omega_{1} \ldots \omega_{1}}_{N_{1}} \underbrace{\omega_{2} \ldots \omega_{2}}_{N_{2}} \cdots \underbrace{\omega_{n} \ldots \omega_{n}}_{N_{n}} \cdots
$$

In the following we show that $\lambda(y)=t$. In fact, for each integer $k>N_{1}$, there is an integer $n>0$ such that

$$
\sum_{i=1}^{n} i N_{i} \leq k<\sum_{i=1}^{n+1} i N_{i}
$$

By Lemma 2.1 and (2.4), we have

$$
\begin{aligned}
\left\|\pi_{k} M(y)\right\| & \leq\left\|\pi_{N_{1}+\ldots+n N_{n}-1} M(y)\right\|\left\|\pi_{k-N_{1}-\ldots-n N_{n}} M\left(\sigma^{N_{1}+\ldots+n N_{n}} y\right)\right\| \\
& \leq \exp \left(\sum_{i=1}^{n} i N_{i}\left(r_{i}+\epsilon_{i}\right)\right) \cdot \exp \left(\left(k-\left(N_{1}+\ldots+n N_{n}\right)\right) b_{1}\right)
\end{aligned}
$$

which implies that

$$
\frac{1}{k} \log \left\|\pi_{k} M(y)\right\| \leq \frac{\sum_{i=1}^{n} i N_{i}\left(r_{i}+\epsilon_{i}\right)}{k}+\frac{k-\left(N_{1}+\ldots+n N_{n}\right)}{k} \cdot b_{1}
$$

where b_{1} is defined by (2.3). Letting k tend to the infinity we have

$$
\limsup _{k \rightarrow \infty} \frac{1}{k} \log \left\|\pi_{k} M(y)\right\| \leq t
$$

Now by Lemma 2.1, we have also that

$$
\begin{aligned}
\left\|\pi_{k} M(y)\right\| \geq & C\left\|\pi_{N_{1}+\ldots+n N_{n}-1} M(y)\right\| \exp \left(\left(k-\left(N_{1}+\ldots+n N_{n}\right)\right) a_{1}\right) \\
\geq & C^{N_{1}+N_{2}+\ldots+N_{n+1}} \exp \left(\sum_{i=1}^{n} i N_{i}\left(r_{i}-\epsilon_{i}\right)\right) \\
& \cdot \exp \left(\left(k-\left(N_{1}+\ldots+n N_{n}\right)\right) a_{1}\right)
\end{aligned}
$$

which implies that

$$
\begin{aligned}
\frac{1}{k} \log \left\|\pi_{k} M(y)\right\| \geq & \frac{\sum_{i=1}^{n} i N_{i}\left(r_{i}-\epsilon_{i}\right)}{k}+\frac{N_{1}+\ldots+N_{n+1}}{k} \log C \\
& +\frac{k-\left(N_{1}+\ldots+n N_{n}\right)}{k} \cdot a_{1}
\end{aligned}
$$

By taking the limit we have

$$
\liminf _{k \rightarrow \infty} \frac{1}{k} \log \left\|\pi_{k} M(y)\right\| \geq t
$$

This finishes the proof.
The following proposition gives some relations between L_{M} and the pressure function $P_{M}(q)$.

Proposition 2.3. $P_{M}(q)$ is a convex function of q on \mathbb{R}. Furthermore, let α_{M} and β_{M} be defined as in Proposition 2.2, then we have

$$
\lim _{q \rightarrow-\infty} \frac{P_{M}(q)}{q}=\alpha_{M}, \quad \lim _{q \rightarrow+\infty} \frac{P_{M}(q)}{q}=\beta_{M}
$$

Proof. The convexity of $P_{M}(q)$ follows by a standard argument.
Let the sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$ be defined as in (2.3). Then for each $n \geq 1$,

$$
\begin{cases}\exp \left(b_{n} q\right) \leq \sum_{\omega \in \Sigma_{n}} \sup _{x \in[\omega]}\left\|\pi_{n} M(x)\right\|^{q} \leq m^{n} \exp \left(b_{n} q\right), & \forall q \geq 0 \\ \exp \left(a_{n} q\right) \leq \sum_{\omega \in \Sigma_{n}} \sup _{x \in[\omega]}\left\|\pi_{n} M(x)\right\|^{q} \leq m^{n} \exp \left(a_{n} q\right), & \forall q<0\end{cases}
$$

which implies that

$$
\begin{cases}q \beta_{M} \leq P_{M}(q) \leq \log m+q \beta_{M}, & \forall q \geq 0 \tag{2.5}\\ q \alpha_{M} \leq P_{M}(q) \leq \log m+q \alpha_{M}, & \forall q<0\end{cases}
$$

By taking the limit we obtain the desired result.
Proposition 2.4. Suppose that $N: \Sigma \rightarrow L^{+}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is a continuous map, and there is a real number $\delta>0$ such that

$$
(1+\delta)^{-1} M(x) \leq N(x) \leq(1+\delta) M(x), \quad \forall x \in \Sigma
$$

Let L_{N} denote the set of all possible upper Lyapunov exponents of N, and $P_{N}(q)$ denote the pressure function of N. Then

$$
L_{N} \supset\left[\alpha_{M}+\log (1+\delta), \beta_{M}-\log (1+\delta)\right]
$$

Moreover, we have

$$
\left|P_{N}(q)-P_{M}(q)\right| \leq|q \log (1+\delta)| .
$$

Proof. It follows immediately from Proposition 2.2 and the definitions of L_{N} and $P_{N}(q)$.

Proposition 2.5. Let f be a convex real-valued function on \mathbb{R}. Denote

$$
\begin{equation*}
a=\lim _{x \rightarrow-\infty} \frac{f(x)}{x}, \quad b=\lim _{x \rightarrow \infty} \frac{f(x)}{x} \tag{2.6}
\end{equation*}
$$

(i) Suppose that $\left\{f_{n}\right\}$ is a sequence of differentiable convex functions converging to f pointwisely. Then for any $c \in(a, b)$, there exist $N>0$ and a uniformly bounded sequence of real numbers $\left\{x_{n}\right\}_{n \geq N}$ such that $f_{n}^{\prime}\left(x_{n}\right)=c$.
(ii) Assume $-\infty<a<b<\infty$. Then we have

$$
\varlimsup_{z \uparrow b} \inf _{x \in \mathbb{R}}\{-z x+f(x)\} \geq \inf _{x \in \mathbb{R}}\{-b x+f(x)\}
$$

and

$$
\varlimsup_{z \downarrow a} \inf _{x \in \mathbb{R}}\{-z x+f(x)\} \geq \inf _{x \in \mathbb{R}}\{-a x+f(x)\}
$$

Proof. Since f is convex, $\frac{f(x)-f(0)}{x}$ is an increasing function of x. Thus the limits in (2.6) exist. Take $\epsilon>0$ with $a+\epsilon<c<b-\epsilon$. Pick $t>0$ large enough so that

$$
\frac{f(t)-f(0)}{t} \geq c+\epsilon, \quad \frac{f(-t)-f(0)}{-t} \leq c-\epsilon
$$

Since the sequence $\left\{f_{n}\right\}$ converges to f pointwisely, there exists $N>0$ such that for each $n \geq N$,

$$
\frac{f_{n}(t)-f_{n}(0)}{t} \geq c+\epsilon / 2, \quad \frac{f_{n}(-t)-f_{n}(0)}{-t} \leq c-\epsilon / 2 .
$$

Note that each f_{n} is continuously differentiable since it is differentiable convex (see [36, Theorem 25.3]). By using the Mean Value Theorem and
the Intermediate Value Theorem, we see that for each $n \geq N$, there exists $x_{n} \in(-t, t)$ such that $f_{n}^{\prime}\left(x_{n}\right)=c$. This concludes statement (i).

To prove statement (ii), denote $f^{*}(z)=\inf _{x \in \mathbb{R}}\{-z x+f(x)\}$. It can be checked directly that f^{*} is a concave function on $[a, b]$, and thus it is lower semi-continuous on $[a, b]$ (see [36, Theorem 10.2]), which concludes statement (ii).

The following proposition is needed in the proof of (1.3).
Proposition 2.6. For any $\mu \in \mathcal{M}_{\sigma}(\Sigma)$, there is a sequence of ergodic measures $\left\{\mu_{k}\right\}_{k \geq 1} \subset \mathcal{M}_{\sigma}(\Sigma)$ such that

$$
\mu=w^{*}-\lim _{k \rightarrow \infty} \mu_{k}, \quad h(\mu)=\lim _{k \rightarrow \infty} h\left(\mu_{k}\right) .
$$

Proof. First we assume that μ is fully supported on Σ. For each integer $n \geq 2$, let μ_{n} be the unique equilibrium state (see [6]) of the potential $\phi_{n}: \Sigma \rightarrow \mathbb{R}$ defined by

$$
\phi_{n}(x)=\log \mu\left(\left[x_{1} \ldots x_{n}\right]\right)-\log \mu\left(\left[x_{1} \ldots x_{n-1}\right]\right), \quad \forall x=\left(x_{i}\right)
$$

One may check that μ_{n} has the following property: for any integer $\ell>0$ and $i_{1} \ldots i_{\ell} \in \Sigma_{\ell}$,

$$
\mu_{n}\left(\left[i_{1} \ldots i_{\ell}\right]\right)= \begin{cases}\mu\left(\left[i_{1} \ldots i_{\ell}\right]\right), & \text { if } \ell \leq n \\ \mu\left(\left[i_{1} \ldots i_{n}\right]\right) \prod_{j=2}^{\ell-n+1} \frac{\mu\left(\left[i_{j} \ldots i_{j+n-1}\right]\right)}{\mu\left(\left[i_{j} \ldots i_{j+n-2}\right]\right)}, & \text { otherwise }\end{cases}
$$

This means that μ_{n} converges to μ in the weak-star topology. By the upper-semi continuity of the entropy of μ, we have

$$
\begin{equation*}
h(\mu) \geq \limsup _{n \rightarrow \infty} h\left(\mu_{n}\right) \tag{2.7}
\end{equation*}
$$

Furthermore, by using the Variational Principle for equilibrium states (see [37]), we obtain

$$
\int \phi_{n} d \mu+h(\mu) \leq \int \phi_{n} d \mu_{n}+h\left(\mu_{n}\right)
$$

which yields $h(\mu) \leq h\left(\mu_{n}\right)$. This together with (2.7) yields $h(\mu)=$ $\lim _{n \rightarrow \infty} h\left(\mu_{n}\right)$.

Now assume that μ is not fully supported. Denote by ν a fully supported invariant measure on Σ. Then we can approximate μ by a sequence of fully supported invariant measures $\left\{\frac{n-1}{n} \mu+\frac{1}{n} \nu\right\}$. We can see that these measures converge to μ in the weak-star topology, and their entropies converge to $h(\mu)\left(\right.$ since $\left.h\left(\frac{n-1}{n} \mu+\frac{1}{n} \nu\right)=\frac{n-1}{n} h(\mu)+\frac{1}{n} h(\nu)\right)$. Combining this with the results in the last paragraph, we can obtain the desired result.

3. Homogeneous Moran sets and A formal formula of $\operatorname{dim}_{H} E_{M}(\alpha)$

In this section, we first recall the definition and some dimensional results of homogeneous Moran sets; then by using these results and some
furthermore constructions we give a formal formula of $\operatorname{dim}_{H} E_{M}(\alpha)$. The main results in this section are Proposition 3.2 and Proposition 3.3, in their proof we adopt some ideas from the proof of [12, Theorem 4].

It is helpful to think of Σ as the interval $[0,1]$ and cylinders as subintervals. Let $\left\{n_{k}\right\}_{k \geq 1}$ be a sequence of positive integers and $\left\{c_{k}\right\}_{k \geq 1}$ be a sequence of positive numbers satisfying $n_{k} \geq 2,0<c_{k}<1, n_{1} c_{1} \leq \delta$ and $n_{k} c_{k} \leq 1(k \geq 2)$, where δ is some positive number. Let

$$
D=\bigcup_{k \geq 0} D_{k}
$$

with $D_{0}=\{\emptyset\}$ and $D_{k}=\left\{\left(i_{1}, \ldots, i_{k}\right) ; \quad 1 \leq i_{j} \leq n_{j}, \quad 1 \leq j \leq k\right\}$. Suppose that J is an interval of length δ. A collection $\mathcal{F}=\left\{J_{\sigma}: \sigma \in D\right\}$ of subintervals of J is said to have a homogeneous Moran structure if it satisfies
(1) $J_{\emptyset}=J$;
(2) For any $k \geq 0$ and $\sigma \in D_{k}, J_{\sigma i}\left(i=1, \ldots, n_{k+1}\right)$ are disjoint subintervals of J_{σ} such that

$$
\frac{\left|J_{\sigma i}\right|}{\left|J_{\sigma}\right|}=c_{k+1}, \quad \forall 1 \leq i \leq n_{k+1}
$$

where $|A|$ denotes the length of A.
If \mathcal{F} is such a collection, $E:=\bigcap_{k \geq 1} \bigcup_{\sigma \in D_{k}} J_{\sigma}$ is called a homogeneous Moran set determined by \mathcal{F}. One may refer to [19, 18] for more information about homogeneous Moran sets. For the purpose of the present paper, we only need the following simplified version of a result contained in [19], whose simpler proof was given in [12, Proposition 3].

Proposition 3.1. For the homogeneous Moran set defined above, we have

$$
\operatorname{dim}_{H} E \geq \liminf _{n \rightarrow \infty} \frac{\log n_{1} n_{2} \ldots n_{k}}{-\log c_{1} c_{2} \ldots c_{k+1} n_{k+1}}
$$

For $x=\left(x_{i}\right) \in \Sigma$, denote $I_{n}(x)=\left\{y=\left(y_{i}\right) \in \Sigma: x_{i}=y_{i}, 1 \leq i \leq n\right\}$. We call $I_{n}(x)$ the n-cylinder about x. Write $M(x)=\left(M_{i, j}(x)\right)_{1 \leq i, j \leq d}$. For each $n \in \mathbb{N}$, define

$$
\delta_{n}(M)=\sup _{y \in \Sigma}\left\{\max _{1 \leq i, j \leq d} \frac{M_{i, j}(x)}{M_{i, j}(y)}, x \in I_{n}(y)\right\}
$$

Since $M: \Sigma \rightarrow L^{+}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is continuous, we have $\lim _{n \rightarrow \infty} \delta_{n}(M)=1$.
For any $\alpha \in L_{M}, n \geq 1$ and $\epsilon>0$, we define

$$
\begin{aligned}
& F(\alpha ; n, \epsilon) \\
= & \left\{\omega \in \Sigma_{n}:\left|\frac{1}{n} \log \left\|\pi_{n} M(x)\right\|-\alpha\right|<\epsilon \text { for some } x \in[\omega]\right\}
\end{aligned}
$$

and $f(\alpha ; n, \epsilon)=\# F(\alpha ; n, \epsilon)$.
Proposition 3.2. For $\alpha \in L_{M}$, we have

$$
\lim _{\epsilon \rightarrow 0} \liminf _{n \rightarrow \infty} \frac{\log f(\alpha ; n, \epsilon)}{\log m^{n}}=\lim _{\epsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{\log f(\alpha ; n, \epsilon)}{\log m^{n}} \quad\left(=: \Lambda_{M}(\alpha)\right) .
$$

The function $\Lambda_{M}: L_{M} \rightarrow[0,1]$ is concave and continuous.
Proof. We first show that $\log f(\alpha ; n, \epsilon)$, as a sequence of n, has a kind of subadditivity. More precisely, for any $\epsilon>0$, there is an N such that

$$
[f(\alpha ; n, \epsilon)]^{p} \leq f(\alpha ; n p, 2 \epsilon) \quad(\forall n \geq N, \forall p \geq 1) .
$$

In fact, suppose $\left\{\omega_{1}, \ldots, \omega_{p}\right\} \subset F(\alpha ; n, \epsilon)$. Let $\omega=\omega_{1} \ldots \omega_{p}$. Let $x_{k} \in$ $\left[\omega_{k}\right](1 \leq k \leq p)$ be a point such that

$$
\left|\frac{1}{n} \log \left\|M\left(x_{k}\right) \ldots M\left(\sigma^{n-1} x_{k}\right)\right\|-\alpha\right|<\epsilon .
$$

Let x be a point in $[\omega]$. Note that for any $1 \leq j \leq p$,

$$
\begin{aligned}
\frac{\pi_{n} M\left(x_{j}\right)}{\delta_{1}(M) \ldots \delta_{n}(M)} & \leq \pi_{n} M\left(\sigma^{(j-1) n} x\right) \\
& \leq \delta_{1}(M) \ldots \delta_{n}(M) \pi_{n} M\left(x_{j}\right)
\end{aligned}
$$

We have

$$
\left|\frac{1}{n} \log \left\|\pi_{n} M\left(\sigma^{(j-1) n} x\right)\right\|-\alpha\right|<\epsilon+\frac{1}{n} \log \left(\delta_{1}(M) \ldots \delta_{n}(M)\right)
$$

for all $1 \leq j \leq p$. It follows that

$$
\left|\frac{1}{n p} \log \left\|\pi_{p n} M(x)\right\|-\alpha\right|<\epsilon+\frac{1}{n} \log \left(\delta_{1}(M) \ldots \delta_{n}(M)\right)+\frac{\log C}{n},
$$

where C is the constant in Lemma 2.1. Since $\lim _{n \rightarrow \infty} \delta_{n}(M)=1$, there exists N such that $\frac{1}{n} \log \left(\delta_{1}(M) \ldots \delta_{n}(M)\right)+\frac{\log C}{n}<\epsilon$ for $n \geq N$. It follows that

$$
\left|\frac{1}{n p} \log \left\|\pi_{n p} M(x)\right\|-\alpha\right|<2 \epsilon
$$

for $n \geq N$ and for all $p \geq 1$. Then $[\omega]$, which contains x, is in $F(\alpha ; n p, 2 \epsilon)$. Notice that different choices $\left\{\omega_{1}, \ldots, \omega_{p}\right\}$ give rise to different ω 's. Thus we get the desired subadditivity. By using this subadditivity, it is easy to get

$$
\limsup _{n \rightarrow \infty} \frac{\log f(\alpha ; n, \epsilon)}{\log m^{n}} \leq \liminf _{n \rightarrow \infty} \frac{\log f(\alpha ; n, 2 \epsilon)}{\log m^{n}}
$$

from which the equality of the two limits follows.
It is evident that $0 \leq \Lambda_{M}(\alpha) \leq 1$. Let $\alpha, \beta \in L_{M}$. Let p, q be two positive integers. By subadditivity, for large n we have

$$
[f(\alpha ; n, \epsilon)]^{p}[f(\beta ; n, \epsilon)]^{q} \leq f(\alpha ; n p, 2 \epsilon) f(\beta ; n q, 2 \epsilon) .
$$

Let $u \in F(\alpha ; n p, 2 \epsilon)$ and $v \in F(\beta ; n q, 2 \epsilon)$. Take a point $x \in[u v]$. As above, we can get

$$
\begin{gathered}
\left|\log \left\|\pi_{n p+n q} M(x)\right\|-n p \alpha-n q \beta\right| \\
\leq \quad 2 \epsilon n(p+q)+\log \left(\delta_{1}(M) \ldots \delta_{n p}(M)\right) \\
+\log \left(\delta_{1}(M) \ldots \delta_{n q}(M)\right)+\log C
\end{gathered}
$$

It follows that if n is sufficiently large, $u v \in F\left(\frac{p \alpha+q \beta}{p+q} ; n(p+q), 3 \epsilon\right)$. Consequently, for large n we have

$$
f(\alpha ; n p, 2 \epsilon) f(\beta ; n q, 2 \epsilon) \leq f\left(\frac{p \alpha+q \beta}{p+q} ; n(p+q), 3 \epsilon\right)
$$

By the equality of the two limits that we have already proved, we can get

$$
\frac{p}{p+q} \Lambda_{M}(\alpha)+\frac{q}{p+q} \Lambda_{M}(\beta) \leq \Lambda_{M}\left(\frac{p}{p+q} \alpha+\frac{q}{p+q} \beta\right)
$$

This gives the rational concavity of the (bounded) function Λ_{M}. However, the concavity of Λ_{M} on the interval L_{M} is a consequence of its rational concavity and its upper semi-continuity that we prove below.

Given $\alpha \in L_{M}$. For any $\eta>0$, there is $\epsilon>0$ such that

$$
\liminf _{n \rightarrow \infty} \frac{\log f(\alpha ; n, \epsilon)}{\log m^{n}}<\Lambda_{M}(\alpha)+\eta
$$

As above, it can be proved that for $\beta \in L_{M}$ with $|\beta-\alpha|<\frac{\epsilon}{3}$ we have

$$
F(\beta ; n, \epsilon / 3) \subset F(\alpha ; n, \epsilon)
$$

when n is sufficiently large. It follows that $f(\beta ; n, \epsilon / 3) \leq f(\alpha ; n, \epsilon)$. Therefore

$$
\begin{aligned}
\Lambda_{M}(\beta) & \leq \liminf _{n \rightarrow \infty} \frac{\log f(\beta ; n, \epsilon / 3)}{\log m^{n}} \leq \liminf _{n \rightarrow \infty} \frac{\log f(\alpha ; n, \epsilon)}{\log m^{n}} \\
& \leq \Lambda_{M}(\alpha)+\eta
\end{aligned}
$$

This establishes the upper semi-continuity of Λ_{M} at α.
The continuity of Λ_{M} on the interval L_{M} follows from its concavity and its upper semi-continuity.

Proposition 3.3. For $\alpha \in L_{M}$, we have

$$
\operatorname{dim}_{H} E_{M}(\alpha)=\operatorname{dim}_{P} E_{M}(\alpha)=\Lambda_{M}(\alpha)
$$

Proof. Step 1. For $\alpha \in L_{M}$, we have $\operatorname{dim}_{P} E_{M}(\alpha) \leq \Lambda_{M}(\alpha)$.
Let

$$
G(\alpha ; k, \epsilon)=\bigcap_{n=k}^{\infty}\left\{x \in \Sigma:\left|\frac{1}{n}\left\|\pi_{n} M(x)\right\|-\alpha\right|<\epsilon\right\}
$$

It is clear that for any $\epsilon>0$,

$$
E_{M}(\alpha) \subset \bigcup_{k=1}^{\infty} G(\alpha ; k, \epsilon)
$$

Notice that if $n \geq k, G(\alpha ; k, \epsilon)$ is covered by the union of all cylinders [ω] with $\omega \in F(\alpha ; n, \epsilon)$ whose total number is $f(\alpha ; n, \epsilon)$. Therefore we have the following estimate

$$
\overline{\operatorname{dim}}_{B} G(\alpha ; k, \epsilon) \leq \limsup _{n \rightarrow \infty} \frac{\log f(\alpha ; n, \epsilon)}{\log m^{n}} \quad(\forall \epsilon>0, \forall k \geq 1) .
$$

On the other hand, by using the σ-stability of the packing dimension, we have

$$
\begin{aligned}
\operatorname{dim}_{P} E_{M}(\alpha) & \leq \operatorname{dim}_{P}\left(\bigcup_{k=1}^{\infty} G(\alpha ; k, \epsilon)\right) \leq \sup _{k} \operatorname{dim}_{P} G(\alpha ; k, \epsilon) \\
& \leq \sup _{k} \overline{\operatorname{dim}}_{B} G(\alpha ; k, \epsilon)
\end{aligned}
$$

This, together with the last proposition, leads to the desired result.
Step 2. For $\alpha \in L_{M}$, we have $\operatorname{dim}_{H} E_{M}(\alpha) \geq \Lambda_{M}(\alpha)$.
Given $\delta>0$. By the last proposition, there are $\ell_{j} \uparrow \infty$ and $\epsilon_{j} \downarrow 0$ such that

$$
f\left(\alpha ; \ell_{j}, \epsilon_{j}\right)>m^{\ell_{j}\left(\Lambda_{M}(\alpha)-\frac{\delta}{2}\right)} .
$$

Write simply $F_{\ell_{j}}=F\left(\alpha ; \ell_{j}, \epsilon_{j}\right)$ and $f_{\ell_{j}}=f\left(\alpha ; \ell_{j}, \epsilon_{j}\right)$. Define a new sequence $\left\{\ell_{j}^{*}\right\}$ in the following manner

$$
\underbrace{\ell_{1}, \ldots, \ell_{1}}_{N_{1}} ; \underbrace{\ell_{2}, \ldots, \ell_{2}}_{N_{2}} ; \ldots ; \underbrace{\ell_{j}, \ldots, \ell_{j}}_{N_{j}} ; \ldots
$$

where N_{j} is defined recursively by

$$
N_{j}=2^{\ell_{j+1}+N_{j-1}} \quad(j \geq 2) ; \quad N_{1}=1
$$

Denote $n_{j}=f_{\ell_{j}^{*}}$ and $c_{j}=m^{-\ell_{j}^{*}}$. Define

$$
\Theta^{*}=\prod_{j=1}^{\infty} F_{\ell_{j}^{*}} .
$$

Observe that Θ^{*} is a homogeneous Moran set in Σ. More precisely Θ^{*} is constructed as follows. At level 0 , we have only the initial cylinder Σ. In step j, cut a cylinder of level $j-1$ into $m^{\ell_{j}^{*}}$ cylinders and pick up n_{j} ones. By Proposition 3.1, we have

$$
\begin{aligned}
\operatorname{dim}_{H} \Theta^{*} & \geq \liminf _{k \rightarrow \infty} \frac{\log \left(n_{1} \ldots n_{k}\right)}{-\log \left(c_{1} \ldots c_{k} c_{k+1} n_{k+1}\right)} \\
& \geq \liminf _{k \rightarrow \infty} \frac{\log \left(f_{\ell_{1}^{*}} \ldots f_{\ell_{k}^{*}}\right)}{\log \left(2^{\ell_{1}^{*}+\ldots+\ell_{k}^{*}+\ell_{k+1}^{*}}\right)} \\
& =\liminf _{k \rightarrow \infty} \frac{\log \left(f_{\ell_{1}^{*}} \ldots f_{\ell_{k}^{*}}\right)}{\log \left(2^{\ell_{1}^{*}+\ldots+\ell_{k}^{*}}\right)} \\
& \geq \Lambda_{M}(\alpha)-\delta
\end{aligned}
$$

However by a direct check, Θ^{*} is a set in $E_{M}(\alpha)$. Hence $\operatorname{dim}_{H} E_{M}(\alpha) \geq$ $\Lambda_{M}(\alpha)-\delta$. And thus $\operatorname{dim}_{H} E_{M}(\alpha) \geq \Lambda_{M}(\alpha)$ since δ can be picked small arbitrary.

4. The case that M Depends upon finitely many coordinates

In this section, we always assume that M depends upon finitely many coordinates. That is, there exists an integer $k \geq 1$ such that $M(x)$ depends upon the first k coordinates of x for all $x=\left(x_{i}\right) \in \Sigma$. For simplicity, we write $M(x)=M\left(x_{1} \ldots x_{k}\right)$. We will prove the following proposition by using some multifractal results about quasi-Bernoulli measures.
Proposition 4.1. Suppose that the map $M: \Sigma \rightarrow L^{+}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ depends only upon the first k coordinates. Then $P_{M}(q)$ is a differentiable function of q on \mathbb{R}. Moreover, if $\alpha=P_{M}^{\prime}(t)$ for some $t \in \mathbb{R}$, then
(i) $\operatorname{dim}_{H} E_{M}(\alpha)=\frac{1}{\log m} \inf _{q \in \mathbb{R}}\left\{-\alpha q+P_{M}(q)\right\}=\frac{1}{\log m}\left(-\alpha t+P_{M}(t)\right)$.
(ii) There exists an ergodic measure μ_{t} on Σ such that

$$
M_{*}\left(\mu_{t}\right)=\alpha \quad \text { and } \quad \operatorname{dim}_{H} \mu_{t}=\frac{h\left(\mu_{t}\right)}{\log m}=\frac{1}{\log m}\left(-\alpha t+P_{M}(t)\right)
$$

Before giving the proof of the above proposition, we recall some multifractal results about quasi-Bernoulli measures. Let ν be a Borel probability measure on Σ. We recall that ν is quasi-Bernoulli if there exists a constant $C>1$ such that

$$
\begin{equation*}
\frac{1}{C} \nu([I]) \nu([J]) \leq \nu([I J]) \leq C \nu([I]) \nu([J]), \quad \forall I, J \in \bigcup_{n \geq 1} \Sigma_{n} \tag{4.1}
\end{equation*}
$$

Let μ be a Borel probability measure on Σ. For any $q \in \mathbb{R}$, the L^{q} spectrum of μ is defined by

$$
\tau_{\mu}(q)=\liminf _{n \rightarrow \infty} \frac{1}{n} \log \sum_{I} \mu([I])^{q}
$$

where the summation is taken over all $I \in \Sigma_{n}$ with $\mu([I])>0$.
Brown, Michon \& Peyriere [7] and Heurteaux [23] have considered the multifractal properties of quasi-Bernoulli measures. They proved

Proposition 4.2. Suppose that ν is a quasi-Bernoulli measure. Then the L^{q}-spectrum $\tau_{\nu}(q)$ is differentiable for $q \in \mathbb{R}$. Moreover, if $\alpha=\tau_{\nu}^{\prime}(t)$ for some $t \in \mathbb{R}$, then
(i)

$$
\begin{aligned}
\operatorname{dim}_{H}\left\{x \in \Sigma: \lim _{r \rightarrow \infty} \frac{\log \nu\left(B_{r}(x)\right)}{\log r}=\alpha\right\} & =\inf _{q \in \mathbb{R}}\left\{\alpha q-\tau_{\nu}(q)\right\} \\
& =\alpha t-\tau_{\nu}(t)
\end{aligned}
$$

(ii) there exists an ergodic measure μ_{t} on Σ such that

$$
\mu_{t}\left\{x \in \Sigma: \lim _{r \rightarrow \infty} \frac{\log \nu\left(B_{r}(x)\right)}{\log r}=\alpha\right\}=1
$$

$$
\text { and } \operatorname{dim}_{H} \mu_{t}=\frac{h\left(\mu_{t}\right)}{\log m}=\alpha t-\tau_{\nu}(t)
$$

We remark that statement (ii) is only implicit in [23].
The following lemma plays a crucial role in the proof of Proposition 4.1.
Lemma 4.3. There exist a Borel probability measure μ on Σ and two positive constants ρ, C such that for any $n \geq 1$ and $i_{1} \ldots i_{n+k-1} \in \Sigma_{n+k-1}$,

$$
\begin{aligned}
& C^{-1} \rho^{n}\left\|M\left(i_{1} \ldots i_{k}\right) M\left(i_{2} \ldots i_{k+1}\right) \ldots M\left(i_{n} \ldots i_{n+k-1}\right)\right\| \\
\leq & \mu\left(\left[i_{1} \ldots i_{n+k-1}\right]\right) \\
\leq & C \rho^{n}\left\|M\left(i_{1} \ldots i_{k}\right) M\left(i_{2} \ldots i_{k+1}\right) \ldots M\left(i_{n} \ldots i_{n+k-1}\right)\right\|
\end{aligned}
$$

Proof. At first we declare that, there exist positive numbers ρ_{1}, ρ_{2} and d-dimensional column vectors $\mathbf{u}\left(i_{1} \ldots i_{k}\right), \mathbf{v}\left(i_{1} \ldots i_{k}\right)\left(i_{1} \ldots i_{k} \in \Sigma_{n}\right)$ with positive entries such that for any $i_{1} \ldots i_{k} \in \Sigma_{k}$,

$$
\begin{align*}
\mathbf{u}\left(i_{1} \ldots i_{k}\right)^{\tau} & =\frac{1}{\rho_{1}} \sum_{i} \mathbf{u}\left(i i_{1} \ldots i_{k-1}\right)^{\tau} M\left(i i_{1} \ldots i_{k-1}\right), \tag{4.2}\\
\mathbf{v}\left(i_{1} \ldots i_{k}\right) & =\frac{1}{\rho_{2}} \sum_{i} M\left(i_{2} \ldots i_{k} i\right) \mathbf{v}\left(i_{2} \ldots i_{k} i\right) . \tag{4.3}
\end{align*}
$$

To see it, without loss of generality we assume $m=2$ and $k=2$. We construct a new $4 d \times 4 d$ matrix H by

$$
H=\left[\begin{array}{cccc}
M(11) & \mathbf{0} & M(21) & \mathbf{0} \\
M(11) & \mathbf{0} & M(21) & \mathbf{0} \\
\mathbf{0} & M(12) & \mathbf{0} & M(22) \\
\mathbf{0} & M(12) & \mathbf{0} & M(22)
\end{array}\right]
$$

Since $M(i j)\left(i j \in \Sigma_{2}\right)$ are positive matrices, H are primitive (one checks that H^{2} is positive). Thus by the Perron-Frobenius theorem (see [24]), there exist a positive number ρ_{1} and a $4 d$-dimensional positive column vector \mathbf{s} such that $\mathbf{s}^{\tau}=\frac{1}{\rho_{1}} \mathbf{s}^{\tau} H$. Write \mathbf{s}^{τ} as the form

$$
\mathbf{s}^{\tau}=\left(\mathbf{u}(11)^{\tau}, \mathbf{u}(12)^{\tau}, \mathbf{u}(21)^{\tau}, \mathbf{u}(22)^{\tau}\right)
$$

where $\mathbf{u}(i j)$ are d-dimensional column vectors. Then it is clear that the vectors $\mathbf{u}(i j)$ satisfy (4.2). The proof of (4.3) follows by a similar discussion.

Define two functions η_{1} and η_{2} on $\bigcup_{n \geq k} \Sigma_{n}$ by

$$
\begin{aligned}
\eta_{1}\left(i_{1} i_{2} \ldots i_{n+k-1}\right)= & \rho_{1}^{-n} \mathbf{u}\left(i_{1} \ldots i_{k}\right)^{\tau} M\left(i_{1} \ldots i_{k}\right) M\left(i_{2} \ldots i_{k+1}\right) \\
& \ldots M\left(i_{n} \ldots i_{n+k-1}\right) \mathbf{v}\left(i_{n} \ldots i_{n+k-1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\eta_{2}\left(i_{1} i_{2} \ldots i_{n+k-1}\right)= & \rho_{2}^{-n} \mathbf{u}\left(i_{1} \ldots i_{k}\right)^{\tau} M\left(i_{1} \ldots i_{k}\right) M\left(i_{2} \ldots i_{k+1}\right) \\
& \ldots M\left(i_{n} \ldots i_{n+k-1}\right) \mathbf{v}\left(i_{n} \ldots i_{n+k-1}\right) .
\end{aligned}
$$

By (4.2) and (4.3) we have

$$
\left\{\begin{align*}
\sum_{i} \eta_{1}\left(i i_{1} i_{2} \ldots i_{n+k-1}\right) & =\eta_{1}\left(i_{1} i_{2} \ldots i_{n+k-1}\right), \tag{4.4}\\
\sum_{i} \eta_{2}\left(i_{1} i_{2} \ldots i_{n+k-1} i\right) & =\eta_{2}\left(i_{1} i_{2} \ldots i_{n+k-1}\right),
\end{align*}\right.
$$

which implies that for each $n \geq k$,

$$
\sum_{\omega \in \Sigma_{n}} \eta_{1}(\omega)=\sum_{\omega^{\prime} \in \Sigma_{k}} \eta_{1}\left(\omega^{\prime}\right), \quad \sum_{\omega \in \Sigma_{n}} \eta_{2}(\omega)=\sum_{\omega^{\prime} \in \Sigma_{k}} \eta_{2}\left(\omega^{\prime}\right) .
$$

We deduce from the above equalities that $\rho_{1}=\rho_{2}$ since

$$
\left(\rho_{1} / \rho_{2}\right)^{n}=\sum_{\omega \in \Sigma_{n}} \eta_{1}(\omega) / \sum_{\omega \in \Sigma_{n}} \eta_{2}(\omega)=\sum_{\omega \in \Sigma_{k}} \eta_{1}(\omega) / \sum_{\omega \in \Sigma_{k}} \eta_{2}(\omega) .
$$

And thus $\eta_{1}=\eta_{2}$. Define η on $\bigcup_{n \geq k} \Sigma_{n}$ by

$$
\eta(\omega)=\eta_{1}(\omega) / \sum_{\omega^{\prime} \in \Sigma_{k}} \eta_{1}\left(\omega^{\prime}\right), \quad \forall \omega \in \bigcup_{n \geq k} \Sigma_{n} .
$$

By the Kolmogrov consistence theorem, there is a unique invariant Borel probability measure μ on Σ such that $\mu([\omega])=\eta(\omega)$ for any $\omega \in \bigcup_{n \geq k} \Sigma_{n}$. This completes the proof.
Proof of Proposition 4.1. Let μ be the measure as in Lemma 4.3 and ρ the corresponding constant. By Lemma 4.3 and Lemma 2.1, μ is a quasi-Bernoulli measure. Moreover,

$$
\tau_{\mu}(q)=\frac{q \log \rho-P_{M}(q)}{\log m} \quad(\forall q \in \mathbb{R})
$$

and

$$
E_{M}(\alpha)=\left\{x \in \Sigma: \lim _{r \rightarrow \infty} \frac{\log \mu\left(B_{r}(x)\right)}{\log r}=\frac{\log \rho-\alpha}{\log m}\right\} \quad\left(\forall \alpha \in L_{M}\right) .
$$

Using Proposition 4.2, we obtain the desired result.

5. The Proof of Theorem 1.1

We divide the proof into 4 small steps:
Step 1. $\operatorname{dim}_{P} E_{M}(\alpha) \leq \frac{1}{\log m}\left(-\alpha q+P_{M}(q)\right) \quad\left(\alpha \in L_{M}, q \in \mathbb{R}\right)$.
For any $\alpha \in L_{M}, \epsilon>0$ and $n \in \mathbb{N}$, let $f(\alpha ; n, \epsilon)$ be defined as in Section 3. Then

$$
\sum_{\omega \in \Sigma_{n}} \sup _{x \in[\omega]}\left\|\pi_{n} M(x)\right\|^{q} \geq \begin{cases}f(\alpha ; n, \epsilon) \exp (n q(\alpha-\epsilon)), & \text { if } q \geq 0 \\ f(\alpha ; n, \epsilon) \exp (n q(\alpha+\epsilon)), & \text { if } q<0\end{cases}
$$

which implies that for any $q \in \mathbb{R}$,

$$
P_{M}(q) \geq q \alpha+\lim _{\epsilon \rightarrow \infty} \liminf _{n \rightarrow \infty} \frac{\log f(\alpha ; n, \epsilon)}{n}
$$

Combining it with Propositions 3.2 and 3.3 , we obtain

$$
\operatorname{dim}_{P} E_{M}(\alpha) \leq \frac{1}{\log m}\left(-q \alpha+P_{M}(q)\right)
$$

Step 2. We prove the following inequality:

$$
\begin{equation*}
\operatorname{dim}_{H} E_{M}(\alpha) \geq \frac{1}{\log m} \inf _{q \in \mathbb{R}}\left\{-\alpha q+P_{M}(q)\right\} \quad\left(\alpha \in L_{M}\right) \tag{5.1}
\end{equation*}
$$

At first we consider a trivial case: $\alpha_{M}=\beta_{M}\left(\alpha_{M}\right.$ and β_{M} are defined as in Proposition 2.2). In this case, we have $\lambda_{M}(x)=\alpha_{M}$ for all $x \in \Sigma$. By (2.5), we have

$$
\operatorname{dim}_{H} E_{M}\left(\alpha_{M}\right)=\operatorname{dim}_{H} \Sigma=1 \geq \frac{1}{\log m} \inf _{q \in \mathbb{R}}\left\{-\alpha_{M} q+P_{M}(q)\right\}
$$

From now on we assume that $\alpha_{M} \neq \beta_{M}$.
First we consider $\alpha \in\left(\alpha_{M}, \beta_{M}\right)$. For each $k \in \mathbb{N}$, we define a map $M_{k}: \Sigma \rightarrow L^{+}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that M_{k} depends upon the first k coordinates of x and $M_{k}(x)=M(y)$ for some $y \in I_{n}(x)$. It is clear that M_{k} is continuous. Moreover there is a sequence of real numbers $\left\{\delta_{k}\right\} \downarrow 0$ such that

$$
\begin{equation*}
\left(1+\delta_{k}\right)^{-1} M(x) \leq M_{k}(x) \leq\left(1+\delta_{k}\right) M(x), \quad \forall x \in \Sigma \tag{5.2}
\end{equation*}
$$

Pick $\epsilon>0$ with $\epsilon<\frac{1}{2} \min \left\{\alpha-\alpha_{M}, \beta_{M}-\alpha\right\}$. For each $k, n \in \mathbb{N}$, define

$$
\begin{aligned}
& F_{k}(\alpha ; n, \epsilon / 2) \\
= & \left\{\omega \in \Sigma_{n}:\left|\frac{1}{n} \log \left\|\pi_{n} M_{k}(x)\right\|-\alpha\right|<\frac{\epsilon}{2} \text { for some } x \in[\omega]\right\}
\end{aligned}
$$

and

$$
f_{k}(\alpha ; n, \epsilon / 2)=\# F_{k}(\alpha ; n, \epsilon / 2)
$$

Take a large integer k_{0} such that $\log \left(1+\delta_{k}\right) \leq \epsilon / 2$ for any $k \geq k_{0}$. Then by (5.2) we have $F_{k}(\alpha ; n, \epsilon / 2) \subset F(\alpha ; n, \epsilon)$ and hence

$$
\begin{equation*}
f_{k}(\alpha ; n, \epsilon / 2) \leq f(\alpha ; n, \epsilon) \quad\left(k \geq k_{0}\right) \tag{5.3}
\end{equation*}
$$

By (5.2) and Proposition 2.4, $P_{M_{k}}(q)$ converges to $P_{M}(q)$ uniformly on compact sets. And thus by Proposition 2.5 , there exists $k_{1}>k_{0}$ and a bounded sequence of real numbers $\left\{q_{k}\right\}_{k \geq k_{1}}$ such that $\alpha=P_{M_{k}}^{\prime}\left(q_{k}\right)$. By Proposition 3.2, Proposition 3.3 and Proposition 4.1,

$$
\begin{align*}
\limsup _{n \rightarrow \infty} \frac{\log f_{k}(\alpha ; n, \epsilon / 2)}{n} & \geq \log m \cdot \operatorname{dim}_{H} E_{M_{k}}(\alpha) \\
& =\inf _{q \in \mathbb{R}}\left\{-\alpha q+P_{M_{k}}(q)\right\} \\
& =-\alpha q_{k}+P_{M_{k}}\left(q_{k}\right) . \tag{5.4}
\end{align*}
$$

Since the sequence $\left\{q_{k}\right\}$ is bounded, there is a subsequence $\left\{q_{k_{i}}\right\}$ which converges to a finite point q_{∞}. It follows from Proposition 2.4 that

$$
\begin{aligned}
& \left|P_{M_{k_{i}}}\left(q_{k_{i}}\right)-P_{M}\left(q_{\infty}\right)\right| \\
\leq & \left|P_{M_{k_{i}}}\left(q_{k_{i}}\right)-P_{M}\left(q_{k_{i}}\right)\right|+\left|P_{M}\left(q_{k_{i}}\right)-P_{M}\left(q_{\infty}\right)\right| \\
\leq & \left|q_{k_{i}}\right| \cdot \log \left(1+\delta_{k_{i}}\right)+\left|P_{M}\left(q_{k_{i}}\right)-P_{M}\left(q_{\infty}\right)\right|
\end{aligned}
$$

By the continuity of $P_{M}(q)$, we have $\lim _{i \rightarrow \infty} P_{M_{k_{i}}}\left(q_{k_{i}}\right)=P_{M}\left(q_{\infty}\right)$. Thus by (5.3) and (5.4) we have

$$
\limsup _{n \rightarrow \infty} \frac{\log f(\alpha ; n, \epsilon)}{n} \geq-\alpha q_{\infty}+P_{M}\left(q_{\infty}\right) \geq \inf _{q \in \mathbb{R}}\left\{-\alpha q+P_{M}(q)\right\}
$$

Since ϵ can be picked arbitrary small, by Proposition 3.2 and 3.3 , we obtain (5.1) for $\alpha \in\left(\alpha_{M}, \beta_{M}\right)$.

Now we consider the case $\alpha=\alpha_{M}$ or $\alpha=\beta_{M}$. By Proposition 3.2 and 3.3, we have

$$
\operatorname{dim}_{H} E_{M}\left(\alpha_{M}\right)=\lim _{z \downarrow \alpha_{M}} \operatorname{dim}_{H} E_{M}(z)
$$

and

$$
\operatorname{dim}_{H} E_{M}\left(\beta_{M}\right)=\lim _{z \uparrow \beta_{M}} \operatorname{dim}_{H} E_{M}(z)
$$

Thus

$$
\operatorname{dim}_{H} E_{M}\left(\alpha_{M}\right) \geq \frac{1}{\log m} \lim _{z \downarrow \alpha_{M}} \inf _{q \in \mathbb{R}}\left\{-z q+P_{M}(q)\right\}
$$

and

$$
\operatorname{dim}_{H} E_{M}\left(\beta_{M}\right) \geq \frac{1}{\log m} \lim _{z \uparrow \beta_{M}} \inf _{q \in \mathbb{R}}\left\{-z q+P_{M}(q)\right\}
$$

By Proposition 2.5, we have

$$
\operatorname{dim}_{H} E_{M}\left(\alpha_{M}\right) \geq \frac{1}{\log m} \inf _{q \in \mathbb{R}}\left\{-\alpha_{M} q+P_{M}(q)\right\}
$$

and

$$
\operatorname{dim}_{H} E_{M}\left(\beta_{M}\right) \geq \frac{1}{\log m} \inf _{q \in \mathbb{R}}\left\{-\beta_{M} q+P_{M}(q)\right\}
$$

which finishes the proof of (5.1).
Step 3. $\operatorname{dim} E_{M}(\alpha) \geq \frac{1}{\log m} \max _{\mu}\left\{h(u): M_{*}(\mu)=\alpha\right\} \quad\left(\forall \alpha \in L_{M}\right)$.
To see it, if $\mu \in \mathcal{M}_{\sigma}(\Sigma)$ satisfies $M_{*}(\mu)=\alpha$, then by Proposition 2.6, there exists a sequence of ergodic measures μ_{k} on Σ converging to μ in the weak-star topology, satisfying $\lim _{k \rightarrow \infty} h\left(\mu_{k}\right)=h(\mu)$. Let $\alpha_{k}=M_{*}\left(\mu_{k}\right)$. Then by (2.1), $\lim _{k \rightarrow \infty} \alpha_{k}=\alpha$. By Furstenberg and Kesten's Theorem $[21], \mu_{k}\left(E_{M}\left(\alpha_{k}\right)\right)=1$. By the Shannon-McMillan-Breiman theorem (see
[37]), $\operatorname{dim}_{H} \mu_{k}=\frac{h\left(\mu_{k}\right)}{\log m}$. Hence we have $\operatorname{dim}_{H} E_{M}\left(\alpha_{k}\right) \geq \frac{h\left(\mu_{k}\right)}{\log m}$. Thus, by Proposition 3.2 and 3.3 ,

$$
\operatorname{dim}_{H} E_{M}(\alpha)=\lim _{k \rightarrow \infty} \operatorname{dim}_{H} E_{M}\left(\alpha_{k}\right) \geq \lim _{k \rightarrow \infty} \frac{h\left(\mu_{k}\right)}{\log m}=\frac{h(\mu)}{\log m}
$$

Step 4. $\quad \operatorname{dim} E_{M}(\alpha) \leq \frac{1}{\log m} \max _{\mu}\left\{h(u): \quad M_{*}(\mu)=\alpha\right\} \quad\left(\forall \alpha \in L_{M}\right)$.
For the trivial case $\alpha_{M}=\beta_{M}$, take μ to be the Parry measure on Σ (i.e. $\mu([I])=m^{-n}$ for each $\left.I \in \Sigma_{n}\right)$. Then one can check directly that $M_{*}(\mu)=\alpha_{M}$ and

$$
\operatorname{dim}_{H} E_{M}\left(\alpha_{M}\right) \leq \operatorname{dim}_{H} \Sigma=1=\frac{h(\mu)}{\log m}
$$

In what follows we assume that $\alpha_{M}<\beta_{M}$. First we consider $\alpha \in$ $\left(\alpha_{M}, \beta_{M}\right)$. We define the maps $M_{k}: \Sigma \rightarrow L^{+}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ for $k \in \mathbb{N}$ the same as in Step 2. As we have mentioned, there exists $k_{1}>k_{0}$ and a bounded sequence of real numbers $\left\{q_{k}\right\}_{k \geq k_{1}}$ such that $\alpha=P_{M_{k}}^{\prime}\left(q_{k}\right)$. By Proposition 4.1, there exists a sequence of ergodic measures ν_{k} on Σ such that

$$
\begin{equation*}
\left(M_{k}\right)_{*}\left(\nu_{k}\right)=\alpha \quad \text { and } \quad h\left(\nu_{k}\right)=-\alpha q_{k}+P_{M_{k}}\left(q_{k}\right) . \tag{5.5}
\end{equation*}
$$

Since the sequence $\left\{q_{k}\right\}$ is bounded, there is a subsequence $\left\{q_{k_{i}}\right\}$ which converges to a finite point q_{∞}; in the mean time $\nu_{k_{i}}$ converges to an invariant measure ν in the weak-star topology. By (2.1) and (5.2), we see that $M_{*}(\nu)=\lim _{i \rightarrow \infty} M_{*}\left(\nu_{k_{i}}\right)=\lim _{i \rightarrow \infty}\left(M_{k_{i}}\right)_{*}\left(\nu_{k_{i}}\right)=\alpha$. By the upper semi-continuity of the entropy of invariant measures on Σ and the result proved in Step 1, we have

$$
\begin{aligned}
h(\nu) & \geq \limsup _{i \rightarrow \infty} h\left(\nu_{k_{i}}\right) \\
& =\limsup _{i \rightarrow \infty}\left(-\alpha q_{k_{i}}+P_{M_{k_{i}}}\left(q_{k_{i}}\right)\right)=-\alpha q_{\infty}+P_{M}\left(q_{\infty}\right) \\
& \geq \log m \cdot \operatorname{dim}_{H} E_{M}(\alpha)
\end{aligned}
$$

Now assume $\alpha=\alpha_{M}$ or β_{M}. Pick $\alpha_{n} \in\left(\alpha_{M}, \beta_{M}\right)$ such that

$$
\lim _{n \rightarrow \infty} \alpha_{n}=\alpha
$$

Choose $\nu_{n} \in \mathcal{M}_{\sigma}(\Sigma)$ such that

$$
M_{*}\left(\nu_{n}\right)=\alpha_{n} \quad \text { and } \quad h\left(\nu_{n}\right) / \log m \geq \operatorname{dim}_{H} E_{M}\left(\alpha_{n}\right)
$$

Let ν be a cluster point of $\left\{\nu_{n}\right\}$ in the weak-star topology. Then by (5.2)

$$
M_{*}(\nu)=\lim _{n \rightarrow \infty} M_{*}\left(\nu_{n}\right)=\lim _{n \rightarrow \infty} \alpha_{n}=\alpha
$$

By Proposition 3.2 and 3.3, and the upper semi-continuity of the entropy of invariant measures on Σ,

$$
\operatorname{dim}_{H} E_{M}(\alpha)=\lim _{n \rightarrow \infty} \operatorname{dim}_{H} E_{M}\left(\alpha_{n}\right) \leq \lim _{n \rightarrow \infty} \frac{h\left(\nu_{n}\right)}{\log m} \leq \frac{h(\nu)}{\log m}
$$

which completes the proof.

6. Final Remarks

In this section we give several remarks.
First Theorem 1.1 can be extended from the full shift space (Σ, σ) to a subshift space $\left(\Sigma_{A}, \sigma\right)$ where A is a $m \times m 0-1$ primitive matrix. To attain this, one needs to modify our proof slightly.

The reader may care about how to deal with the points x at which $\lambda_{M}(x)$ does not exist. Actually we can define $\bar{\lambda}_{M}(x)$ and $\underline{\lambda}_{M}(x)$ by taking limsup and liminf in (1.1), respectively. By Proposition 2.2, the ranges of $\bar{\lambda}_{M}(x)$ and $\underline{\lambda}_{M}(x)$ are both equal to L_{M}.

We remark that for any $\alpha \in L_{M}$,

$$
\begin{aligned}
\operatorname{dim}_{H}\left\{x \in \Sigma: \bar{\lambda}_{M}(x)=\alpha\right\} & =\operatorname{dim}_{H}\left\{x \in \Sigma: \underline{\lambda}_{M}(x)=\alpha\right\} \\
& =\Lambda_{M}(\alpha) \\
& =\operatorname{dim}_{H}\left\{x \in \Sigma: \lambda_{M}(x)=\alpha\right\}
\end{aligned}
$$

It is obvious that $\operatorname{dim}_{H}\left\{x \in \Sigma: \bar{\lambda}_{M}(x)=\alpha\right\} \geq \Lambda_{M}(\alpha)$ and $\operatorname{dim}_{H}\{x \in$ $\left.\Sigma: \underline{\lambda}_{M}(x)=\alpha\right\} \geq \Lambda_{M}(\alpha)$. Now we prove the " \leq ". Assume that $\Lambda_{M}(\alpha)<$ t. By Proposition 3.2, there exist $\epsilon>0, \delta>0$ and $N_{0} \in \mathbb{N}$ such that

$$
f(\alpha ; n, \epsilon)<m^{n(t-\delta)}, \quad \forall n \geq N_{0}
$$

Note that for any $\ell>N_{0},\left\{x \in \Sigma: \bar{\lambda}_{M}(x)=\alpha\right\}$ and $\left\{x \in \Sigma: \underline{\lambda}_{M}(x)=\alpha\right\}$ are subsets of

$$
\bigcap_{k=\ell}^{\infty} \bigcup_{n \geq k} F(\alpha ; n, \epsilon)
$$

Therefore, for any $\ell>N_{0}$, the collection

$$
\mathcal{G}_{\ell}=\{[\omega]: \omega \in F(\alpha ; n, \epsilon) \text { for some } n \geq \ell\}
$$

is a cover of the sets $\left\{x \in \Sigma: \bar{\lambda}_{M}(x)=\alpha\right\}$ and $\left\{x \in \Sigma: \underline{\lambda}_{M}(x)=\alpha\right\}$. Since

$$
\begin{aligned}
\sum_{[\omega] \in \mathcal{G}_{\ell}}(\operatorname{diam}[\omega])^{t} & =\sum_{n=\ell}^{\infty} \sum_{[\omega] \in F(\alpha ; n, \epsilon)}(\operatorname{diam}[\omega])^{t} \\
& \leq \sum_{n=\ell}^{\infty} m^{n(t-\delta)} m^{-n t}<\frac{1}{1-m^{-\delta}}
\end{aligned}
$$

for each $\ell>N_{0}$, we have $\operatorname{dim}_{H}\left\{x \in \Sigma: \bar{\lambda}_{M}(x)=\alpha\right\} \leq t$ and $\operatorname{dim}_{H}\{x \in$ $\left.\Sigma: \underline{\lambda}_{M}(x)=\alpha\right\} \leq t$. This finishes the proof.

Using a method similar to that in [13] or [17], one can prove that if $\alpha_{M}<\beta_{M}$, then

$$
\operatorname{dim}_{H}\left\{x \in \Sigma: \underline{\lambda}_{M}(x)<\bar{\lambda}_{M}(x)\right\}=\operatorname{dim}_{H} \Sigma
$$

For related results in the scalar function case, see e.g. $[3,13,17,31]$.

Acknowledgment. The author thanks Prof. Ka-Sing Lau and Dr. Eric Olivier for some useful discussions.

References

[1] L. Barreira, Y. Pesin and J. Schmeling, On a general concept of multifractality: multifractal spectra for dimensions, entropies, and Lyapunov exponents. Multifractal rigidity. Chaos 7 (1997), 27-38.
[2] L. Barreira and B. Saussol, Multifractal analysis of hyperbolic flows. Comm. Math. Phys. 214 (2000), 339-371.
[3] L. Barreira and J. Schmeling, Sets of "non-typical" points have full topological entropy and full Hausdorff dimension. Israel J. Math. 116 (2000), 29-70.
[4] A. S. Besicovitch, On the sum of digits of real numbers represented in the dyadic system. Math. Ann. 110 (1934), 321-330.
[5] P. Billingsley, Ergodic theory and information, New York, Wiley, 1965.
[6] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture notes in mathematics 470, Springer-Verlag, 1975.
[7] G. Brown, G. Michon and J. Peyriere, On the multifractal analysis of measures, J. Stat. Phys., 66 (1992), 775-790.
[8] R. Cawley and R. D. Mauldin, Multifractal decompositions of Moran fractals, Adv. Math., 92 (1992), 196-236.
[9] P. Collet, J. L. Lebowitz and A. Porzio, The dimension spectrum of some dynamical systems, J. Stat. Phys., 47 (1987), 609-644.
[10] H. G. Eggleston. The fractional dimension of a set defined by decimal properties. Q. J. Math. Oxford, 20 (1949), 31-46.
[11] K. J. Falconer, Fractal geometry: Mathematical Foundation and Applications, Wiley, New York, 1990.
[12] A. H. Fan and D. J. Feng, On the distribution of long-term time average on the symbolic space, J. Stat. Phys., 99 (2000), 813-856. See also Analyse multifractale de la récurrence sur l'espace symbolique, C. R. Acad. Sci. Paris, t. 327, série I, (1998), 629-632.
[13] A. H. Fan, D. J. Feng and J. Wu, Recurrence, dimension and entropy, J. Lond. Math. Soc. (2), 64 (2001), 229-244..
[14] A. H. Fan and K. S. Lau, Iterated function systems and Ruelle transfer operator, J. Math. Anal. Appl., 231 (1999), 319-344.
[15] D. J. Feng, The variational principle for products of non-negative matrices. Preprint.
[16] D. J. Feng and K. S. Lau, The pressure function for products of non-negative matrices. Math. Res. Lett. 9 (2002), 363-378.
[17] D. J. Feng, K. S. Lau and J. Wu, Ergodic Limits on the conformal repeller. Adv. Math. 169 (2002), 58-91.
[18] D. J. Feng, H. Rao and J. Wu, The net measure properties of symmetric Cantor sets and their applications, Progress in Natural Science, 7 (1997), no. 2, 172-178.
[19] D. J. Feng, Z. Y. Wen, J. Wu, Some dimensional results for homogeneous Moran sets, Science in China (series A). 40 (1997), no. 2, 475-482
[20] U. Frisch and G. Parisi, Fully developed turbulence and intermittency in turbulence and predictability in geophysical fluid dynamics and climate dynamics, In International School of Physics " Enrico Fermi ", course 88. M. Ghil, Ed. North-Holland, Amsterdam, 1985.
[21] H. Furstenberg and H. Kesten, Products of Random matrices, Ann. Math. Stat., 31 (1960), 457-469.
[22] T. C. Hasley, M. H. Jensen, L. P. Kadanoff, I. Procaccia and B. J. Shraiman, Fractal measures and their singularities: The characterization of strange sets, Phys. Rev. A, 33 (1986), 1141-1151.
[23] Y. Heueteaux, Estimations de la dimension inferieure et de la dimension superieure des mesures, Ann. Inst. Henri Poincare, 34 (1998), 309-338.
[24] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge University Press, 1987.
[25] S. Jaffard and Y. Meyer, Pointwise behavior of functions, Memoirs of A.M.S., 1996.
[26] K. S. Lau and S. M. Ngai, Multifractal measures and a weak separation condition, Adv. Math., 141 (1999), 45-96.
[27] F. Ledrappier and A. Porzio, On the multifractal analysis of Bernoulli convolutions. I. Large deviations results. II. Dimensions. J. Stat. Phys., 82 (1996), no. 1-2, 367420.
[28] P. Mattila, Geometry of sets and measures in Euclidean spaces, Fractals and rectifiability. Cambridge University Press, 1995
[29] E. Olivier, Multifractal analysis in symbolic dynamics and distribution of pointwise dimension for g-measures, Nonlinearity, 12 (1999), no. 6, 1571-1585.
[30] L. Olsen, A multifractal formalism. Adv. Math., 116, 1995, 82-196.
[31] L. Olsen and S. Winter, Normal and non-normal points of self-similar sets and divergence points of self-similar measures. J. London Math. Soc. (2) 67 (2003), 103-122.
[32] Y. Pesin, Dimension theory in dynamical systems. Contemporary views and applications. University of Chicago Press, Chicago, IL, 1997.
[33] Y. Pesin and H. Weiss, A multifractal analysis of Gibbs measures for conformal expanding maps and Markov Moran geometry constructions, J. Stat. Phys., $\mathbf{8 6}$ (1997), 233-275.
[34] M. Pollicott, H. Weiss, Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to Diophantine approximation. Comm. Math. Phys., 207 (1999), no. 1, 145-171.
[35] A. Porzio, On the regularity of the multifractal spectrum of Bernoulli convolutions, J. Stat. Phys., 91 (1998), no. 1-2, 17-29.
[36] R. T. Rockafellar, Convex analysis, Princeton University Press, 1970.
[37] P. Walters, An introduction to ergodic theory, Springer-Verlag, Berlin, Heidelberg, New York, 1982.
[38] H. Weiss, The Lyapunov spectrum for conformal expanding maps and Axiom-A surface diffeomorphisms, J. Stat. Phys., 95 (1999), 615-632.
[39] L. S. Young, Dimension, entropy and Lyapunov exponents, Ergod. Th. \& Dynam. Sys., 2 (1982), 109-124.

Department of Mathematical Sciences, Tsinghua University, Beijing, 100084 and Department of Mathematics, The Chinese University of Hong Kong, Hong Kong

E-mail address: dfeng@math.tsinghua.edu.cn

[^0]: Key words and phrases. Matrix products, Lyapunov exponents, Symbolic dynamics, Hausdorff dimensions, Packing dimensions, Entropies, Pressure functions, Multifractals.

 The author was partially supported by a HK RGC grant in Hong Kong and the Special Funds for Major State Basic Research Projects in China.

