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LYAPUNOV EXPONENTS FOR PRODUCTS OF
MATRICES AND MULTIFRACTAL ANALYSIS.

PART I: POSITIVE MATRICES

DE-JUN FENG

Abstract. Let (Σ, σ) be a full shift space on an alphabet consisting
of m symbols and let M : Σ → L+(Rd, Rd) be a continuous function
taking values in the set of d×d positive matrices. Denote by λM (x) the
upper Lyapunov exponent of M at x. The set of possible Lyapunov
exponents is just an interval. For any possible Lyapunov exponent α,
we prove the following variational formula

dim{x ∈ Σ: λM (x) = α} =
1

log m
inf
q∈R

{−αq + PM (q)}

=
1

log m
max

µ
{h(µ): M∗(µ) = α},

where dim is the Hausdorff dimension or the packing dimension,
PM (q) is the pressure function of M , µ is a σ-invariant Borel proba-
bility measure on Σ, h(µ) is the entropy of µ, and

M∗(µ) = lim
n→∞

1

n

∫
log ‖M(y)M(σy) . . . M(σn−1y)‖dµ(y).

1. Introduction

Let σ be the shift map on Σ = {1, 2, . . . ,m}N (m ≥ 2 an integer). Let M
be a continuous function defined on Σ taking values in L+(Rd, Rd), the set
of d× d matrices with positive entries. We define the upper Lyapunov
exponent λM (x) of M by

(1.1) λM (x) = lim
n→∞

1
n

log ‖M(x)M(σx) . . .M(σn−1x)‖,

when the limit exists. Here ‖ · ‖ denotes the matrix norm defined by
‖A‖ := 1τA1, where 1 is the d-dimensional column vector each coordinate
of which is 1.

Let LM be the set of point α ∈ R such that α = λM (x) for some x ∈ Σ.
By using the specification property of Σ and the continuity of M , we show
that LM is a non-empty closed interval (see Proposition 2.2).
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For any q ∈ R, define

PM (q) = lim
n→∞

1
n

log
∑

ω∈Σn

sup
x∈[ω]

‖M(x)M(σx) . . .M(σn−1x)‖q,

where Σn denotes the set of all words of length n over {1, . . . ,m}; for
ω = ω1 . . . ωn ∈ Σn, [ω] denotes the cylinder set {x = (xi) ∈ Σ: xi =
ωi, 1 ≤ i ≤ n}. An subadditive argument shows that the limit in the
above definition exists. We call PM (q) the pressure function of M .

Let Mσ(Σ) be the set of all σ-invariant Borel probability measures on
Σ. The map M : Σ → L+(Rd, Rd) induces a map M∗: Mσ(Σ) → R given
by

M∗(µ) = lim
n→∞

1
n

∫
log ‖M(y)M(σy) . . .M(σn−1y)‖dµ(y), µ ∈Mσ(Σ).

The limit exists by an subadditive argument. In 1960, Furstenberg and
Kesten [21] considered the products of random matrices and proved that
for each ergodic measure µ on Σ,

λM (x) = M∗(µ), µ a.s. x ∈ Σ.

The above fact follows also by Kingman’s Subadditive Ergodic Theorem
(see [37]).

In this paper, we investigate the sizes of the sets with given Lyapunov
exponents:

EM (α) = {x ∈ Σ: λM (x) = α} (α ∈ LM ).

Recall that Σ is a metric space where a metric is defined by d(x, y) = m−n

for x = (xj)j≥1 and y = (yj)≥1 where n is the largest one such that
xj = yj (1 ≤ j ≤ n). Different notions of dimensions are then defined
on Σ. We shall talk about the Hausdorff dimension dimH , the packing
dimension dimP and the upper box dimension dimB (see [11, 28] for a
general account of dimensions). The sizes of the sets in question will be
described by their dimensions.

In the special case d = 1, M is just a real-valued continuous function;
we would rather write Φ instead of M in this case. The first historical
example of this type is due to Besicovitch [4] and Eggleston [10], they
proved that for 0 ≤ α ≤ 1, the setx = (xn) ∈ {1, 2}N: lim

n→∞

1
n

n∑
j=1

(xj − 1) = α


has Hausdorff dimension −

[
α log2 α + (1 − α) log2(1 − α)

]
. In this case

the corresponding function Φ is given by Φ(x) = 1 if x1 = 1, and Φ(x) = e
if x1 = 2. A slightly more elaborate example was given by Billingsley in
[5]. Some further consideration of the multifractal formalism for Hölder
continuous Φ was given in [12, 14, 33, 38]. The case that Φ is only assumed
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to be continuous, was considered by Fan, Feng and Wu [13], Feng, Lau
and Wu [17] and Olivier [29].

In the case d ≥ 2, M is a matrix-valued continuous function. As we
know, there are few results about this topic. In [27], Ledrappier and Porzio
considered a special kind of product of matrices of order two, and obtained
a local result of multifractal spectrum by using some classical random
matrix products theory and perturbative theory; Porzio [35] strengthened
that result somewhat by a study of Ruelle-Perron-Frobenius operator as-
sociated with random matrix products.

The main result of the present paper is the following theorem.

Theorem 1.1. Suppose M : Σ → L+(Rd, Rd) is a continuous function
taking values in the set of d × d positive matrices. For any α ∈ LM , we
have the following formula

dimH EM (α) = dimP EM (α)

=
1

log m
inf
q∈R

{−αq + PM (q)}(1.2)

=
1

log m
sup{h(µ): µ ∈Mσ(Σ), M∗(µ) = α}.(1.3)

Moreover, dimH EM (α) is a concave and continuous function of α on LM .

We remark that under this setting, the pressure function PM (q) of q
may be not differentiable. Under a stronger condition that M is Hölder
continuous, the formula (1.2) has been proved by Feng and Lau [16], and
in that case PM (q) is a differentiable function of q over R.

What we state in Theorem 1.1 is a kind of multifractal analysis. But
it is a little different from the multifractal analysis of measures to which
the term “ multifractal ” is often attached. Let us mention [1, 2, 7, 9, 8,
14, 20, 22, 23, 26, 30, 32, 34] (it is far from exhaustive). Another kind
of multifractal analysis was engaged in [25] (see more references herein)
where functions rather than measures are studied.

Now we state some ideas in the proof of Theorem 1.1. First we con-
sider a special case that the map M(x) depends only upon finitely many
coordinates of x. In this case, we prove that the corresponding product
of matrices is associated with a measure ν on Σ satisfying the so-called
quasi-Bernoulli property: there is a constant C ≥ 1 such that

1
C

ν([I])ν([J ]) ≤ ν([IJ ]) ≤ Cν([I])ν([J ]), ∀ I, J ∈
⋃
n≥1

Σn.

By using some multifractal results on quasi-Bernoulli measures obtained
by Brown, Michon & Peyriere [7] and Heurteaux [23], we can prove the
desired results for matrix products. To consider the general case, we first
prove a formal formula for dimH EM (α). More precisely, for any α ∈ LM ,
n ≥ 1 and ε > 0, we define

f(α;n, ε) = #F (α;n, ε)
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with
F (α;n, ε)

=
{

ω ∈ Σn:
∣∣∣ 1
n

log ‖M(x) . . .M(σn−1x)‖ − α
∣∣∣ < ε for some x ∈ [ω]

}
.

We prove (Proposition 3.2, Proposition 3.3)
(1.4)

dimH EM (α) = lim
ε→0

lim inf
n→∞

log f(α;n, ε)
log mn

= lim
ε→0

lim sup
n→∞

log f(α;n, ε)
log mn

.

Using the above formula, we can prove the general results by approximat-
ing M by a sequence of maps {Mk} such that Mk depends only upon the
first k coordinates.

We organize the materials in the paper as follows. In Section 2, we give
some properties of the set LM and the pressure function PM (q). In Section
3, we prove (1.4) by using a dimensional result for the homogeneous Moran
sets. In Section 4, we consider the case that M depends upon finitely
many coordinates. In Section 5, we complete the proof of Theorem 1.1.
In Section 6, we give several remarks.

2. Lyapunov exponents and the pressure function

Let M : Σ → L+(Rd, Rd) be a continuous map. In this section, we will
consider the set LM of possible Lyapunov exponents and some relations
between LM and the pressure function PM (q). We also give some ele-
mentary results about convex functions and invariant measures on Σ. For
convenience, we write πnM(x) for the product M(x)M(σx) . . .M(σn−1x)
throughout this paper.

Let us start from a simple lemma.

Lemma 2.1. There exists a constant C > 0 (depending on M) such that
for any x ∈ Σ and n, m ∈ N,

C‖πnM(x)‖ ‖πmM(σnx)‖ ≤ ‖πn+mM(x)‖ ≤ ‖πnM(x)‖ ‖πmM(σnx)‖.

Proof. The second inequality is obvious. We only need to prove the
first one. Since M is continuous, there is a constant C > 0 such that

mini,j Mi,j(x)
maxi,j Mi,j(x)

≥ dC, ∀ x ∈ Σ,

which implies that M(x) ≥ CEM(x) (here and afterwards we write A ≥
B for two matrices A,B if Ai,j ≥ Bi,j for each index (i, j)), here E =
(Ei,j)1≤i,j≤d is the matrix whose entries are all equal to 1. Let 1 be the
d-dimensional column vector each coordinate of which is 1. Then

‖πn+mM(x)‖ ≥ ‖(πnM(x))CE(πmM(σnx))‖
= C‖(πnM(x))1τ1(πmM(σnx))‖
= C‖πnM(x)‖ · ‖πmM(σnx)‖.

�
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Proposition 2.2. Set

αM = lim
n→∞

1
n

inf
x∈Σ

log ‖πnM(x)‖,(2.1)

βM = lim
n→∞

1
n

sup
x∈Σ

log ‖πnM(x)‖.(2.2)

Then LM = [αM , βM ].

Proof. We first show that the limits in (2.1) and (2.2) exist. To see
this, write

(2.3) an = inf
x∈Σ

log ‖πnM(x)‖, bn = sup
x∈Σ

log ‖πnM(x)‖.

By Lemma 2.1, we have

an+m ≥ log C + an + am, bn+m ≤ bn + bm, ∀ n, m ≥ 1,

where C is the constant in Lemma 2.1. This declares that the sequences
{log C+an} and {bn} are superadditive and subadditive respectively, from
which the existence of the limits follows.

By the definition of upper Lyapunov exponents, we have LM ⊂ [αM , βM ]
immediately. Hence, to prove the proposition, it suffices to prove that for
any t ∈ [αM , βM ], there exists y ∈ Σ such that λM (y) = t.

Now fix a real number t ∈ [αM , βM ]. Then there is a number p ∈ [0, 1]
such that t = pαM + (1 − p)βM . For convenience, we define a sequence
of real numbers {rn} by r2n = αM and r2n−1 = βM for n ≥ 1. By the
continuity of M and the definitions of αM and βM , there exist a sequence
of words {ωn} (ωn ∈ Σn) and a sequence of positive numbers {εn} which
tend to 0 such that

(2.4)
∣∣∣∣ 1n log ‖πnM(x)‖ − rn

∣∣∣∣ < εn, ∀x ∈ [ωn].

Now construct a sequence of positive integers {Nn} by

Nn =
{

[[pn + log n]], if n is odd,
[[(1− p)n + log n]], otherwise,

where [[x]] denotes the integral part of x. It can be checked directly that

lim
n→∞

Nn = ∞, lim
n→∞

nNn∑n
i=1 iNi

= 0, lim
n→∞

∑n
i=1(2i− 1)N2i−1∑2n

j=1 jNj

= p.

Now define
y = ω1 . . . ω1︸ ︷︷ ︸

N1

ω2 . . . ω2︸ ︷︷ ︸
N2

. . . ωn . . . ωn︸ ︷︷ ︸
Nn

. . . .

In the following we show that λ(y) = t. In fact, for each integer k > N1,
there is an integer n > 0 such that

n∑
i=1

iNi ≤ k <
n+1∑
i=1

iNi.



6 DE-JUN FENG

By Lemma 2.1 and (2.4), we have

‖πkM(y)‖ ≤ ‖πN1+...+nNn−1M(y)‖ ‖πk−N1−...−nNnM(σN1+...+nNny)‖

≤ exp
( n∑

i=1

iNi(ri + εi)
)
· exp

(
(k − (N1 + . . . + nNn))b1

)
,

which implies that

1
k

log ‖πkM(y)‖ ≤
∑n

i=1 iNi(ri + εi)
k

+
k − (N1 + . . . + nNn)

k
· b1,

where b1 is defined by (2.3). Letting k tend to the infinity we have

lim sup
k→∞

1
k

log ‖πkM(y)‖ ≤ t.

Now by Lemma 2.1, we have also that

‖πkM(y)‖ ≥ C‖πN1+...+nNn−1M(y)‖ exp
(
(k − (N1 + . . . + nNn))a1

)
≥ CN1+N2+...+Nn+1 exp

( n∑
i=1

iNi(ri − εi)
)

· exp
(
(k − (N1 + . . . + nNn))a1

)
,

which implies that

1
k

log ‖πkM(y)‖ ≥
∑n

i=1 iNi(ri − εi)
k

+
N1 + . . . + Nn+1

k
log C

+
k − (N1 + . . . + nNn)

k
· a1.

By taking the limit we have

lim inf
k→∞

1
k

log ‖πkM(y)‖ ≥ t.

This finishes the proof. �

The following proposition gives some relations between LM and the
pressure function PM (q).

Proposition 2.3. PM (q) is a convex function of q on R. Furthermore,
let αM and βM be defined as in Proposition 2.2, then we have

lim
q→−∞

PM (q)
q

= αM , lim
q→+∞

PM (q)
q

= βM .

Proof. The convexity of PM (q) follows by a standard argument.
Let the sequences {an}, {bn} be defined as in (2.3). Then for each n ≥ 1,{

exp(bnq) ≤
∑

ω∈Σn
supx∈[ω] ‖πnM(x)‖q ≤ mn exp(bnq), ∀ q ≥ 0

exp(anq) ≤
∑

ω∈Σn
supx∈[ω] ‖πnM(x)‖q ≤ mn exp(anq), ∀ q < 0
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which implies that

(2.5)
{

qβM ≤ PM (q) ≤ log m + qβM , ∀ q ≥ 0
qαM ≤ PM (q) ≤ log m + qαM , ∀ q < 0

By taking the limit we obtain the desired result. �

Proposition 2.4. Suppose that N : Σ → L+(Rd, Rd) is a continuous map,
and there is a real number δ > 0 such that

(1 + δ)−1M(x) ≤ N(x) ≤ (1 + δ)M(x), ∀ x ∈ Σ.

Let LN denote the set of all possible upper Lyapunov exponents of N , and
PN (q) denote the pressure function of N . Then

LN ⊃ [αM + log(1 + δ), βM − log(1 + δ)].

Moreover, we have

|PN (q)− PM (q)| ≤ |q log(1 + δ)|.

Proof. It follows immediately from Proposition 2.2 and the definitions
of LN and PN (q). �

Proposition 2.5. Let f be a convex real-valued function on R. Denote

(2.6) a = lim
x→−∞

f(x)
x

, b = lim
x→∞

f(x)
x

.

(i) Suppose that {fn} is a sequence of differentiable convex functions
converging to f pointwisely. Then for any c ∈ (a, b), there exist
N > 0 and a uniformly bounded sequence of real numbers {xn}n≥N

such that f ′n(xn) = c.
(ii) Assume −∞ < a < b < ∞. Then we have

lim
z↑b

inf
x∈R

{−zx + f(x)} ≥ inf
x∈R

{−bx + f(x)},

and

lim
z↓a

inf
x∈R

{−zx + f(x)} ≥ inf
x∈R

{−ax + f(x)}.

Proof. Since f is convex,
f(x)− f(0)

x
is an increasing function of x.

Thus the limits in (2.6) exist. Take ε > 0 with a + ε < c < b − ε. Pick
t > 0 large enough so that

f(t)− f(0)
t

≥ c + ε,
f(−t)− f(0)

−t
≤ c− ε.

Since the sequence {fn} converges to f pointwisely, there exists N > 0
such that for each n ≥ N ,

fn(t)− fn(0)
t

≥ c + ε/2,
fn(−t)− fn(0)

−t
≤ c− ε/2.

Note that each fn is continuously differentiable since it is differentiable
convex (see [36, Theorem 25.3]). By using the Mean Value Theorem and
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the Intermediate Value Theorem, we see that for each n ≥ N , there exists
xn ∈ (−t, t) such that f ′n(xn) = c. This concludes statement (i).

To prove statement (ii), denote f∗(z) = infx∈R{−zx + f(x)}. It can
be checked directly that f∗ is a concave function on [a, b], and thus it is
lower semi-continuous on [a, b] (see [36, Theorem 10.2]), which concludes
statement (ii). �

The following proposition is needed in the proof of (1.3).

Proposition 2.6. For any µ ∈ Mσ(Σ), there is a sequence of ergodic
measures {µk}k≥1 ⊂Mσ(Σ) such that

µ = w∗- lim
k→∞

µk, h(µ) = lim
k→∞

h(µk).

Proof. First we assume that µ is fully supported on Σ. For each integer
n ≥ 2, let µn be the unique equilibrium state (see [6]) of the potential
φn: Σ → R defined by

φn(x) = log µ([x1 . . . xn])− log µ([x1 . . . xn−1]), ∀ x = (xi).

One may check that µn has the following property: for any integer ` > 0
and i1 . . . i` ∈ Σ`,

µn([i1 . . . i`]) =


µ([i1 . . . i`]), if ` ≤ n,

µ([i1 . . . in])
∏`−n+1

j=2

µ([ij . . . ij+n−1])
µ([ij . . . ij+n−2])

, otherwise.

This means that µn converges to µ in the weak-star topology. By the
upper-semi continuity of the entropy of µ, we have

(2.7) h(µ) ≥ lim sup
n→∞

h(µn).

Furthermore, by using the Variational Principle for equilibrium states (see
[37]), we obtain ∫

φndµ + h(µ) ≤
∫

φndµn + h(µn),

which yields h(µ) ≤ h(µn). This together with (2.7) yields h(µ) =
limn→∞ h(µn).

Now assume that µ is not fully supported. Denote by ν a fully supported
invariant measure on Σ. Then we can approximate µ by a sequence of
fully supported invariant measures {n−1

n µ + 1
nν}. We can see that these

measures converge to µ in the weak-star topology, and their entropies
converge to h(µ) (since h(n−1

n µ + 1
nν) = n−1

n h(µ) + 1
nh(ν) ). Combining

this with the results in the last paragraph, we can obtain the desired
result. �

3. Homogeneous Moran sets and A formal formula of
dimH EM (α)

In this section, we first recall the definition and some dimensional re-
sults of homogeneous Moran sets; then by using these results and some
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furthermore constructions we give a formal formula of dimH EM (α). The
main results in this section are Proposition 3.2 and Proposition 3.3, in
their proof we adopt some ideas from the proof of [12, Theorem 4].

It is helpful to think of Σ as the interval [0, 1] and cylinders as subin-
tervals. Let {nk}k≥1 be a sequence of positive integers and {ck}k≥1 be a
sequence of positive numbers satisfying nk ≥ 2, 0 < ck < 1, n1c1 ≤ δ and
nkck ≤ 1 (k ≥ 2), where δ is some positive number. Let

D =
⋃
k≥0

Dk

with D0 = {∅} and Dk = {(i1, . . . , ik); 1 ≤ ij ≤ nj , 1 ≤ j ≤ k}.
Suppose that J is an interval of length δ. A collection F = {Jσ: σ ∈ D}
of subintervals of J is said to have a homogeneous Moran structure
if it satisfies

(1) J∅ = J ;
(2) For any k ≥ 0 and σ ∈ Dk, Jσi (i = 1, . . . , nk+1) are disjoint

subintervals of Jσ such that
|Jσi|
|Jσ|

= ck+1, ∀ 1 ≤ i ≤ nk+1,

where |A| denotes the length of A.
If F is such a collection, E :=

⋂
k≥1

⋃
σ∈Dk

Jσ is called a homogeneous

Moran set determined by F . One may refer to [19, 18] for more infor-
mation about homogeneous Moran sets. For the purpose of the present
paper, we only need the following simplified version of a result contained
in [19], whose simpler proof was given in [12, Proposition 3].

Proposition 3.1. For the homogeneous Moran set defined above, we have

dimH E ≥ lim inf
n→∞

log n1n2 . . . nk

− log c1c2 . . . ck+1nk+1
.

For x = (xi) ∈ Σ, denote In(x) = {y = (yi) ∈ Σ: xi = yi, 1 ≤ i ≤ n}.
We call In(x) the n-cylinder about x. Write M(x) =

(
Mi,j(x)

)
1≤i,j≤d

.

For each n ∈ N, define

δn(M) = sup
y∈Σ

{
max

1≤i,j≤d

Mi,j(x)
Mi,j(y)

, x ∈ In(y)
}

.

Since M : Σ → L+(Rd, Rd) is continuous, we have limn→∞ δn(M) = 1.

For any α ∈ LM , n ≥ 1 and ε > 0, we define

F (α;n, ε)

=
{

ω ∈ Σn:
∣∣∣ 1
n

log ‖πnM(x)‖ − α
∣∣∣ < ε for some x ∈ [ω]

}
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and f(α;n, ε) = #F (α;n, ε).

Proposition 3.2. For α ∈ LM , we have

lim
ε→0

lim inf
n→∞

log f(α;n, ε)
log mn

= lim
ε→0

lim sup
n→∞

log f(α;n, ε)
log mn

(=: ΛM (α)).

The function ΛM : LM → [0, 1] is concave and continuous.

Proof. We first show that log f(α;n, ε), as a sequence of n, has a kind
of subadditivity. More precisely, for any ε > 0, there is an N such that

[f(α;n, ε)]p ≤ f(α;np, 2ε) (∀n ≥ N,∀p ≥ 1).

In fact, suppose {ω1, . . . , ωp} ⊂ F (α;n, ε). Let ω = ω1 . . . ωp. Let xk ∈
[ωk] (1 ≤ k ≤ p) be a point such that∣∣∣ 1

n
log ‖M(xk) . . .M(σn−1xk)‖ − α

∣∣∣ < ε.

Let x be a point in [ω]. Note that for any 1 ≤ j ≤ p,

πnM(xj)
δ1(M) . . . δn(M)

≤ πnM(σ(j−1)nx)

≤ δ1(M) . . . δn(M)πnM(xj)

We have∣∣∣ 1
n

log ‖πnM(σ(j−1)nx)‖ − α
∣∣∣ < ε +

1
n

log(δ1(M) . . . δn(M))

for all 1 ≤ j ≤ p. It follows that∣∣∣ 1
np

log ‖πpnM(x)‖ − α
∣∣∣ < ε +

1
n

log(δ1(M) . . . δn(M)) +
log C

n
,

where C is the constant in Lemma 2.1. Since limn→∞ δn(M) = 1, there
exists N such that 1

n log(δ1(M) . . . δn(M))+ log C
n < ε for n ≥ N . It follows

that ∣∣∣ 1
np

log ‖πnpM(x)‖ − α
∣∣∣ < 2ε

for n ≥ N and for all p ≥ 1. Then [ω], which contains x, is in F (α;np, 2ε).
Notice that different choices {ω1, . . . , ωp} give rise to different ω’s. Thus
we get the desired subadditivity. By using this subadditivity, it is easy to
get

lim sup
n→∞

log f(α;n, ε)
log mn

≤ lim inf
n→∞

log f(α;n, 2ε)
log mn

from which the equality of the two limits follows.
It is evident that 0 ≤ ΛM (α) ≤ 1. Let α, β ∈ LM . Let p, q be two

positive integers. By subadditivity, for large n we have

[f(α;n, ε)]p[f(β;n, ε)]q ≤ f(α;np, 2ε)f(β;nq, 2ε).
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Let u ∈ F (α;np, 2ε) and v ∈ F (β;nq, 2ε). Take a point x ∈ [uv]. As
above, we can get

|log ‖πnp+nqM(x)‖ − npα− nqβ|
≤ 2εn(p + q) + log(δ1(M) . . . δnp(M))

+ log(δ1(M) . . . δnq(M)) + log C.

It follows that if n is sufficiently large, uv ∈ F (pα+qβ
p+q ;n(p + q), 3ε). Con-

sequently, for large n we have

f(α;np, 2ε)f(β;nq, 2ε) ≤ f(
pα + qβ

p + q
;n(p + q), 3ε)

By the equality of the two limits that we have already proved, we can get
p

p + q
ΛM (α) +

q

p + q
ΛM (β) ≤ ΛM (

p

p + q
α +

q

p + q
β).

This gives the rational concavity of the (bounded) function ΛM . However,
the concavity of ΛM on the interval LM is a consequence of its rational
concavity and its upper semi-continuity that we prove below.

Given α ∈ LM . For any η > 0, there is ε > 0 such that

lim inf
n→∞

log f(α;n, ε)
log mn

< ΛM (α) + η.

As above, it can be proved that for β ∈ LM with |β − α| < ε
3 we have

F (β;n, ε/3) ⊂ F (α;n, ε)

when n is sufficiently large. It follows that f(β;n, ε/3) ≤ f(α;n, ε). There-
fore

ΛM (β) ≤ lim inf
n→∞

log f(β;n, ε/3)
log mn

≤ lim inf
n→∞

log f(α;n, ε)
log mn

≤ ΛM (α) + η.

This establishes the upper semi-continuity of ΛM at α.
The continuity of ΛM on the interval LM follows from its concavity and

its upper semi-continuity. �

Proposition 3.3. For α ∈ LM , we have

dimH EM (α) = dimP EM (α) = ΛM (α).

Proof. Step 1. For α ∈ LM , we have dimP EM (α) ≤ ΛM (α).
Let

G(α; k, ε) =
∞⋂

n=k

{
x ∈ Σ:

∣∣∣ 1
n
‖πnM(x)‖ − α

∣∣∣ < ε

}
.

It is clear that for any ε > 0,

EM (α) ⊂
∞⋃

k=1

G(α; k, ε).
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Notice that if n ≥ k, G(α; k, ε) is covered by the union of all cylinders [ω]
with ω ∈ F (α;n, ε) whose total number is f(α;n, ε). Therefore we have
the following estimate

dimBG(α; k, ε) ≤ lim sup
n→∞

log f(α;n, ε)
log mn

(∀ε > 0,∀k ≥ 1).

On the other hand, by using the σ-stability of the packing dimension, we
have

dimP EM (α) ≤ dimP

( ∞⋃
k=1

G(α; k, ε)

)
≤ sup

k
dimP G(α; k, ε)

≤ sup
k

dimBG(α; k, ε).

This, together with the last proposition, leads to the desired result.
Step 2. For α ∈ LM , we have dimH EM (α) ≥ ΛM (α).
Given δ > 0. By the last proposition, there are `j ↑ ∞ and εj ↓ 0 such

that
f(α; `j , εj) > m`j(ΛM (α)− δ

2
).

Write simply F`j
= F (α; `j , εj) and f`j

= f(α; `j , εj). Define a new se-
quence {`∗j} in the following manner

`1, . . . , `1︸ ︷︷ ︸
N1

; `2, . . . , `2︸ ︷︷ ︸
N2

; . . . ; `j , . . . , `j︸ ︷︷ ︸
Nj

; . . .

where Nj is defined recursively by

Nj = 2`j+1+Nj−1 (j ≥ 2); N1 = 1.

Denote nj = f`∗j
and cj = m−`∗j . Define

Θ∗ =
∞∏

j=1

F`∗j
.

Observe that Θ∗ is a homogeneous Moran set in Σ. More precisely Θ∗ is
constructed as follows. At level 0, we have only the initial cylinder Σ. In
step j, cut a cylinder of level j−1 into m`∗j cylinders and pick up nj ones.
By Proposition 3.1, we have

dimH Θ∗ ≥ lim inf
k→∞

log(n1 . . . nk)
− log(c1 . . . ckck+1nk+1)

≥ lim inf
k→∞

log(f`∗1
. . . f`∗k

)

log(2`∗1+...+`∗k+`∗k+1)

= lim inf
k→∞

log(f`∗1
. . . f`∗k

)

log(2`∗1+...+`∗k)
≥ ΛM (α)− δ.
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However by a direct check, Θ∗ is a set in EM (α). Hence dimH EM (α) ≥
ΛM (α)− δ. And thus dimH EM (α) ≥ ΛM (α) since δ can be picked small
arbitrary. �

4. The case that M depends upon finitely many coordinates

In this section, we always assume that M depends upon finitely many
coordinates. That is, there exists an integer k ≥ 1 such that M(x) depends
upon the first k coordinates of x for all x = (xi) ∈ Σ. For simplicity, we
write M(x) = M(x1 . . . xk). We will prove the following proposition by
using some multifractal results about quasi-Bernoulli measures.

Proposition 4.1. Suppose that the map M : Σ → L+(Rd, Rd) depends
only upon the first k coordinates. Then PM (q) is a differentiable function
of q on R. Moreover, if α = P ′

M (t) for some t ∈ R, then

(i) dimH EM (α) =
1

log m
inf
q∈R

{−αq+PM (q)} =
1

log m
(−αt + PM (t)) .

(ii) There exists an ergodic measure µt on Σ such that

M∗(µt) = α and dimH µt =
h(µt)
log m

=
1

log m
(−αt + PM (t)) .

Before giving the proof of the above proposition, we recall some multi-
fractal results about quasi-Bernoulli measures. Let ν be a Borel probabil-
ity measure on Σ. We recall that ν is quasi-Bernoulli if there exists a
constant C > 1 such that

(4.1)
1
C

ν([I])ν([J ]) ≤ ν([IJ ]) ≤ Cν([I])ν([J ]), ∀ I, J ∈
⋃
n≥1

Σn.

Let µ be a Borel probability measure on Σ. For any q ∈ R, the Lq-
spectrum of µ is defined by

τµ(q) = lim inf
n→∞

1
n

log
∑

I

µ([I])q,

where the summation is taken over all I ∈ Σn with µ([I]) > 0.
Brown, Michon & Peyriere [7] and Heurteaux [23] have considered the

multifractal properties of quasi-Bernoulli measures. They proved

Proposition 4.2. Suppose that ν is a quasi-Bernoulli measure. Then the
Lq-spectrum τν(q) is differentiable for q ∈ R. Moreover, if α = τ ′ν(t) for
some t ∈ R, then

(i)

dimH

{
x ∈ Σ: lim

r→∞

log ν(Br(x))
log r

= α

}
= inf

q∈R
{αq − τν(q)}

= αt− τν(t);
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(ii) there exists an ergodic measure µt on Σ such that

µt

{
x ∈ Σ: lim

r→∞

log ν(Br(x))
log r

= α

}
= 1

and dimH µt = h(µt)
log m = αt− τν(t).

We remark that statement (ii) is only implicit in [23].

The following lemma plays a crucial role in the proof of Proposition 4.1.

Lemma 4.3. There exist a Borel probability measure µ on Σ and two
positive constants ρ, C such that for any n ≥ 1 and i1 . . . in+k−1 ∈ Σn+k−1,

C−1ρn‖M(i1 . . . ik)M(i2 . . . ik+1) . . .M(in . . . in+k−1)‖
≤ µ([i1 . . . in+k−1])
≤ Cρn‖M(i1 . . . ik)M(i2 . . . ik+1) . . .M(in . . . in+k−1)‖.

Proof. At first we declare that, there exist positive numbers ρ1, ρ2 and
d-dimensional column vectors u(i1 . . . ik), v(i1 . . . ik) (i1 . . . ik ∈ Σn) with
positive entries such that for any i1 . . . ik ∈ Σk,

u(i1 . . . ik)τ =
1
ρ1

∑
i

u(ii1 . . . ik−1)τM(ii1 . . . ik−1),(4.2)

v(i1 . . . ik) =
1
ρ2

∑
i

M(i2 . . . iki)v(i2 . . . iki).(4.3)

To see it, without loss of generality we assume m = 2 and k = 2. We
construct a new 4d× 4d matrix H by

H =


M(11) 0 M(21) 0
M(11) 0 M(21) 0

0 M(12) 0 M(22)
0 M(12) 0 M(22)

 .

Since M(ij) (ij ∈ Σ2) are positive matrices, H are primitive (one checks
that H2 is positive). Thus by the Perron-Frobenius theorem (see [24]),
there exist a positive number ρ1 and a 4d-dimensional positive column

vector s such that sτ =
1
ρ1

sτH. Write sτ as the form

sτ = (u(11)τ ,u(12)τ ,u(21)τ ,u(22)τ ),

where u(ij) are d-dimensional column vectors. Then it is clear that the
vectors u(ij) satisfy (4.2). The proof of (4.3) follows by a similar discus-
sion.

Define two functions η1 and η2 on
⋃

n≥k Σn by

η1(i1i2 . . . in+k−1) = ρ−n
1 u(i1 . . . ik)τM(i1 . . . ik)M(i2 . . . ik+1)
. . .M(in . . . in+k−1)v(in . . . in+k−1)
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and

η2(i1i2 . . . in+k−1) = ρ−n
2 u(i1 . . . ik)τM(i1 . . . ik)M(i2 . . . ik+1)
. . .M(in . . . in+k−1)v(in . . . in+k−1).

By (4.2) and (4.3) we have

(4.4)
{ ∑

i η1(ii1i2 . . . in+k−1) = η1(i1i2 . . . in+k−1),∑
i η2(i1i2 . . . in+k−1i) = η2(i1i2 . . . in+k−1),

which implies that for each n ≥ k,∑
ω∈Σn

η1(ω) =
∑

ω′∈Σk

η1(ω′),
∑

ω∈Σn

η2(ω) =
∑

ω′∈Σk

η2(ω′).

We deduce from the above equalities that ρ1 = ρ2 since

(ρ1/ρ2)n =
∑

ω∈Σn

η1(ω)/
∑

ω∈Σn

η2(ω) =
∑

ω∈Σk

η1(ω)/
∑

ω∈Σk

η2(ω).

And thus η1 = η2. Define η on
⋃

n≥k Σn by

η(ω) = η1(ω)/
∑

ω′∈Σk

η1(ω′), ∀ ω ∈
⋃
n≥k

Σn.

By the Kolmogrov consistence theorem, there is a unique invariant Borel
probability measure µ on Σ such that µ([ω]) = η(ω) for any ω ∈

⋃
n≥k Σn.

This completes the proof. �

Proof of Proposition 4.1. Let µ be the measure as in Lemma 4.3 and
ρ the corresponding constant. By Lemma 4.3 and Lemma 2.1, µ is a
quasi-Bernoulli measure. Moreover,

τµ(q) =
q log ρ− PM (q)

log m
(∀ q ∈ R)

and

EM (α) =
{

x ∈ Σ: lim
r→∞

log µ(Br(x))
log r

=
log ρ− α

log m

}
(∀ α ∈ LM ).

Using Proposition 4.2, we obtain the desired result. �

5. The Proof of Theorem 1.1

We divide the proof into 4 small steps:

Step 1. dimP EM (α) ≤ 1
log m(−αq + PM (q)) (α ∈ LM , q ∈ R).

For any α ∈ LM , ε > 0 and n ∈ N, let f(α;n, ε) be defined as in Section
3. Then∑

ω∈Σn

sup
x∈[ω]

‖πnM(x)‖q ≥
{

f(α;n, ε) exp(nq(α− ε)), if q ≥ 0
f(α;n, ε) exp(nq(α + ε)), if q < 0
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which implies that for any q ∈ R,

PM (q) ≥ qα + lim
ε→∞

lim inf
n→∞

log f(α;n, ε)
n

.

Combining it with Propositions 3.2 and 3.3, we obtain

dimP EM (α) ≤ 1
log m

(−qα + PM (q)).

Step 2. We prove the following inequality:

(5.1) dimH EM (α) ≥ 1
log m

inf
q∈R

{−αq + PM (q)} (α ∈ LM ).

At first we consider a trivial case: αM = βM (αM and βM are defined
as in Proposition 2.2). In this case, we have λM (x) = αM for all x ∈ Σ.
By (2.5), we have

dimH EM (αM ) = dimH Σ = 1 ≥ 1
log m

inf
q∈R

{−αMq + PM (q)}.

From now on we assume that αM 6= βM .
First we consider α ∈ (αM , βM ). For each k ∈ N, we define a map

Mk: Σ → L+(Rd, Rd) such that Mk depends upon the first k coordinates
of x and Mk(x) = M(y) for some y ∈ In(x). It is clear that Mk is
continuous. Moreover there is a sequence of real numbers {δk} ↓ 0 such
that

(5.2) (1 + δk)−1M(x) ≤ Mk(x) ≤ (1 + δk)M(x), ∀ x ∈ Σ.

Pick ε > 0 with ε < 1
2 min{α− αM , βM − α}. For each k, n ∈ N, define

Fk(α;n, ε/2)

=
{

ω ∈ Σn:
∣∣∣ 1
n

log ‖πnMk(x)‖ − α
∣∣∣ < ε

2
for some x ∈ [ω]

}
and

fk(α;n, ε/2) = #Fk(α;n, ε/2).
Take a large integer k0 such that log(1 + δk) ≤ ε/2 for any k ≥ k0. Then
by (5.2) we have Fk(α;n, ε/2) ⊂ F (α;n, ε) and hence

(5.3) fk(α;n, ε/2) ≤ f(α;n, ε) (k ≥ k0).

By (5.2) and Proposition 2.4, PMk
(q) converges to PM (q) uniformly on

compact sets. And thus by Proposition 2.5, there exists k1 > k0 and a
bounded sequence of real numbers {qk}k≥k1 such that α = P ′

Mk
(qk). By

Proposition 3.2, Proposition 3.3 and Proposition 4.1,

lim sup
n→∞

log fk(α;n, ε/2)
n

≥ log m · dimH EMk
(α)

= inf
q∈R

{−αq + PMk
(q)}

= −αqk + PMk
(qk).(5.4)
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Since the sequence {qk} is bounded, there is a subsequence {qki
} which

converges to a finite point q∞. It follows from Proposition 2.4 that

|PMki
(qki

)− PM (q∞)|
≤ |PMki

(qki
)− PM (qki

)|+ |PM (qki
)− PM (q∞)|

≤ |qki
| · log(1 + δki

) + |PM (qki
)− PM (q∞)|.

By the continuity of PM (q), we have limi→∞ PMki
(qki

) = PM (q∞). Thus
by (5.3) and (5.4) we have

lim sup
n→∞

log f(α;n, ε)
n

≥ −αq∞ + PM (q∞) ≥ inf
q∈R

{−αq + PM (q)}.

Since ε can be picked arbitrary small, by Proposition 3.2 and 3.3, we
obtain (5.1) for α ∈ (αM , βM ).

Now we consider the case α = αM or α = βM . By Proposition 3.2 and
3.3, we have

dimH EM (αM ) = lim
z↓αM

dimH EM (z)

and
dimH EM (βM ) = lim

z↑βM

dimH EM (z).

Thus

dimH EM (αM ) ≥ 1
log m

lim
z↓αM

inf
q∈R

{−zq + PM (q)}

and

dimH EM (βM ) ≥ 1
log m

lim
z↑βM

inf
q∈R

{−zq + PM (q)}.

By Proposition 2.5, we have

dimH EM (αM ) ≥ 1
log m

inf
q∈R

{−αMq + PM (q)}

and

dimH EM (βM ) ≥ 1
log m

inf
q∈R

{−βMq + PM (q)},

which finishes the proof of (5.1).

Step 3. dim EM (α) ≥ 1
log m

max
µ
{h(u): M∗(µ) = α} (∀α ∈ LM ).

To see it, if µ ∈ Mσ(Σ) satisfies M∗(µ) = α, then by Proposition 2.6,
there exists a sequence of ergodic measures µk on Σ converging to µ in the
weak-star topology, satisfying limk→∞ h(µk) = h(µ). Let αk = M∗(µk).
Then by (2.1), limk→∞ αk = α. By Furstenberg and Kesten’s Theorem
[21], µk(EM (αk)) = 1. By the Shannon-McMillan-Breiman theorem (see
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[37]), dimH µk =
h(µk)
log m

. Hence we have dimH EM (αk) ≥
h(µk)
log m

. Thus,

by Proposition 3.2 and 3.3,

dimH EM (α) = lim
k→∞

dimH EM (αk) ≥ lim
k→∞

h(µk)
log m

=
h(µ)
log m

.

Step 4. dim EM (α) ≤ 1
log m

max
µ
{h(u): M∗(µ) = α} (∀α ∈ LM ).

For the trivial case αM = βM , take µ to be the Parry measure on Σ
(i.e. µ([I]) = m−n for each I ∈ Σn). Then one can check directly that
M∗(µ) = αM and

dimH EM (αM ) ≤ dimH Σ = 1 =
h(µ)
log m

.

In what follows we assume that αM < βM . First we consider α ∈
(αM , βM ). We define the maps Mk: Σ → L+(Rd, Rd) for k ∈ N the same
as in Step 2. As we have mentioned, there exists k1 > k0 and a bounded
sequence of real numbers {qk}k≥k1 such that α = P ′

Mk
(qk). By Proposition

4.1, there exists a sequence of ergodic measures νk on Σ such that

(5.5) (Mk)∗(νk) = α and h(νk) = −αqk + PMk
(qk).

Since the sequence {qk} is bounded, there is a subsequence {qki
} which

converges to a finite point q∞; in the mean time νki
converges to an

invariant measure ν in the weak-star topology. By (2.1) and (5.2), we see
that M∗(ν) = limi→∞ M∗(νki

) = limi→∞(Mki
)∗(νki

) = α. By the upper
semi-continuity of the entropy of invariant measures on Σ and the result
proved in Step 1, we have

h(ν) ≥ lim sup
i→∞

h(νki
)

= lim sup
i→∞

(−αqki
+ PMki

(qki
)) = −αq∞ + PM (q∞)

≥ log m · dimH EM (α).

Now assume α = αM or βM . Pick αn ∈ (αM , βM ) such that

lim
n→∞

αn = α.

Choose νn ∈Mσ(Σ) such that

M∗(νn) = αn and h(νn)/ log m ≥ dimH EM (αn).

Let ν be a cluster point of {νn} in the weak-star topology. Then by (5.2)

M∗(ν) = lim
n→∞

M∗(νn) = lim
n→∞

αn = α.
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By Proposition 3.2 and 3.3, and the upper semi-continuity of the entropy
of invariant measures on Σ,

dimH EM (α) = lim
n→∞

dimH EM (αn) ≤ lim
n→∞

h(νn)
log m

≤ h(ν)
log m

,

which completes the proof. �

6. Final remarks

In this section we give several remarks.
First Theorem 1.1 can be extended from the full shift space (Σ, σ) to a

subshift space (ΣA, σ) where A is a m×m 0-1 primitive matrix. To attain
this, one needs to modify our proof slightly.

The reader may care about how to deal with the points x at which
λM (x) does not exist. Actually we can define λM (x) and λM (x) by taking
limsup and liminf in (1.1), respectively. By Proposition 2.2, the ranges of
λM (x) and λM (x) are both equal to LM .

We remark that for any α ∈ LM ,

dimH{x ∈ Σ: λM (x) = α} = dimH{x ∈ Σ: λM (x) = α}
= ΛM (α)
= dimH{x ∈ Σ: λM (x) = α}.

It is obvious that dimH{x ∈ Σ: λM (x) = α} ≥ ΛM (α) and dimH{x ∈
Σ: λM (x) = α} ≥ ΛM (α). Now we prove the “≤”. Assume that ΛM (α) <
t. By Proposition 3.2, there exist ε > 0, δ > 0 and N0 ∈ N such that

f(α;n, ε) < mn(t−δ), ∀ n ≥ N0.

Note that for any ` > N0, {x ∈ Σ: λM (x) = α} and {x ∈ Σ: λM (x) = α}
are subsets of

∞⋂
k=`

⋃
n≥k

F (α;n, ε).

Therefore, for any ` > N0, the collection

G` = {[ω]: ω ∈ F (α;n, ε) for some n ≥ `}

is a cover of the sets {x ∈ Σ: λM (x) = α} and {x ∈ Σ: λM (x) = α}. Since∑
[ω]∈G`

(diam[ω])t =
∞∑

n=`

∑
[ω]∈F (α;n,ε)

(diam[ω])t

≤
∞∑

n=`

mn(t−δ)m−nt <
1

1−m−δ

for each ` > N0, we have dimH{x ∈ Σ: λM (x) = α} ≤ t and dimH{x ∈
Σ: λM (x) = α} ≤ t. This finishes the proof.
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Using a method similar to that in [13] or [17], one can prove that if
αM < βM , then

dimH{x ∈ Σ: λM (x) < λM (x)} = dimH Σ.

For related results in the scalar function case, see e.g. [3, 13, 17, 31].
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