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Abstract. Finite tight frames are used widely for many applications. An important
problem is to construct finite frames with prescribed norm for each vector in the tight
frame. In this paper we provide a fast and simple algorithm for such purpose. Our
algorithm employs the Householder transformations. For a finite tight frame consisting
of m vectors in Rn or Cn only O(nm) operations are needed. In addition, we also study
the following question: Given a set of vectors in Rn or Cn, how many additional vectors,
possibly with constraints, does one need to add in order to obtain a tight frame?

1. Introduction

Let H be a Hilbert space. A set of elements {un} in H (counting multiplicity) is called

a frame if there exist two positive constants C∗ and C∗ such that for any v ∈ H we have

(1.1) C∗‖v‖2 ≤
∑
n

|〈v,un〉|2 ≤ C∗‖v‖2.

The constants C∗ and C∗ are called the lower frame bound and the upper frame bound,

respectively. A frame is called a tight frame if C∗ = C∗, and it is called a Parseval frame if

C∗ = C∗ = 1.

Frames were first introduced by Duffin and Schaeffer [6] in a study of nonharmonic Fourier

series. The study of frames has exploded in recent years, partly because of their applications

in digital signal processing. They are an integral part of time-frequency analysis. For more

on frames we refer the readers to Gröchenig [10] and the references therein.

This paper is primarily concerned with finite frames, i.e. frames in a finite dimensional

Hilbert space. There has been a surge in interest in finite tight frames recently, mainly as a
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result of several important applications. They have been used for internet coding, wireless

communication, quantum detection theory, and more. Each new application requires a new

class of tight frames. It is important to construct tight frames to fit particular applications.

One such problem is to find a tight frame with prescribed norms. Casazza, Leon and

Tremain [4] established the existence condition for finite frames in the form of inequalities.

Nevertheless, fast and efficient algorithms are needed to produce “custom” tight frames.

This has remained a challenging problem as stated in [4].

Since we are working in a finite dimensional Hilbert space we may assume, without loss

of generality, that H = Hn where H = R or H = C. Let Mn,m(H) denote the set of all

n×m matrices with entries in H.

Definition 1.1. A matrix A ∈ Mn,m(H) is called a frame matrix (FM) if rank(A) = n. A

is called a tight frame matrix (TFM) if AA∗ = λIn×n for some λ > 0; if additionally all

columns of A have the same norm then A is called an equi-norm TFM.

When A is a frame matrix (resp. TFM) the column vectors of A form a frame (resp.

tight frame) of Hn, and vice versa. Suppose that A = [a1, · · · ,am] is a FM in Mn,m(H)

with columns a1, · · · ,am. It is straighforward to check that for any x ∈ Hn we have

x∗AA∗x =

m∑
j=1

|〈aj ,x〉|2.

Let λmax and λmin be the maximal and minimal eigenvalues of AA∗, respectively. It follows

that for all x ∈ Hn,

(1.2) λmin‖x‖2 ≤
m∑
j=1

|〈aj ,x〉|2 ≤ λmax‖x‖2.

Hence λmax and λmin are upper and lower frame bounds for the frame defined by A. Denote

c(A) =
λmax

λmin

and call it the condition number of A. For most applications it is better to make the

condition number c(A) as small as possible. If c(A) = 1 then A is a TFM. But this is not

always possible. A natural question is: Given vectors a1, . . . ,ap ∈ Hn, how many vectors

ap+1, . . . ,am ∈ Hn do we need to add to them in order to obtain a tight frame? If only a

fixed number m−p of vectors are allowed to be added, how small can we make the condition

number c(A) to be for A = [a1, · · · ,am]? For this question we have the following theorem:
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Theorem 1.1. Let a1, . . . ,ap ∈ Hn and V = [a1, · · · ,ap]. Suppose that λ1 ≥ λ2 ≥ . . . ≥ λn
are all the eigenvalues of V V ∗. Then for any vectors ap+1,ap+2, . . . ,am, the matrix A =

[a1, · · · ,am] satisfies

(1.3) c(A) ≥ λ1
λn−k

,

where k = m − p (if n − k ≤ 0, we define λn−k = λ1). Furthermore the equality in

(1.3) can be attained by some ap+1,ap+2, . . . ,am. In particular, at most n − 1 vectors

ap+1,ap+2, . . . ,ap+n−1 are needed to make A = [a1,a2, · · · ,ap+n−1] a TFM.

Let Sn denote the set of vectors in Hn with norm 1. A similar question for equi-norm tight

frames can be asked. Given vectors a1, . . . ,ap ∈ Sn, how many vectors ap+1, · · · ,am ∈ Sn

do we need to add in order to obtain a equi-norm tight frame? For this question, we have

Theorem 1.2. For any a1, . . . ,ap ∈ Sn let V = [a1, · · · ,ap]. Suppose that λ1 ≥ λ2 ≥ . . . ≥
λn are all the eigenvalues of V V ∗. Denote by d the smallest integer greater than or equal

to λ1 + 1. Then one can find ap+1, . . . ,and ∈ Sn such that the vectors a1, . . . ,and form an

equi-norm tight frame for Hn.

However, the main result in this paper is a very fast and efficient algorithm for gener-

ating TFMs whose columns have prescribed norms. This algorithm employs Householder

transformations, with at most m transformations needed to generate a TFM in Mn,m(H).

For a given sequence a1 ≥ a2 · · · ≥ am > 0, is it possible to find a TFM A = [a1,a2, · · · ,am]

such that ‖aj‖ = aj? If so, how do we construct such a TFM A? The following is proved

in a recent paper [4]:

Theorem 1.3 (Casazza, Leon and Tremain [4]). Let a1 ≥ a2 · · · ≥ am > 0 and n ≤ m.

Then there exists a TFM A = [a1,a2, · · · ,am] such that ‖aj‖ = aj for all 1 ≤ j ≤ m if and

only if

(1.4)

m∑
i=1

a2i ≥ na21.

Condition (1.4) is called the fundamental inequality in [4]. The proof given in [4] for the

sufficiency of (1.4) is an existence proof. In [3] Casazza and Leon provide an algorithm for

the construction of TFMs whose columns have prescribed lengths. However, their algorithm

uses many intermediate parameters and appears to be rather complicated. As pointed out
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in [4], “much more work needs to be done in this direction.” Our alternative algorithm for

constructing TFMs using Householder transformations is direct and simpler.

2. Proof of Theorem 1.1 and Theorem 1.2

We prove the theorems in this section by first establishing several lemmas.

Lemma 2.1. Let A and B be n × n positive semi-definite Hermitian matrices. Let µ1 ≥
. . . ≥ µn ≥ 0 be the eigenvalues of A and λ1 ≥ . . . ≥ λn ≥ 0 be the eigenvalues of B.

Suppose that A−B is positive semi-definite with rank(A−B) ≤ k for some integer k < n.

Then µ1 ≥ λ1 and µn ≤ λn−k.

Proof. Let x0 be any eigenvector of B associated with λ1. Then x∗0Bx0 = λ1‖x0‖2 and

x∗0Ax0 ≤ µ1‖x0‖2. Therefore

0 ≤ x∗0(A−B)x0 ≤ µ1‖x0‖2 − λ1‖x0‖2.

This implies µ1 ≥ λ1. We prove µn ≤ λn−k by contradiction. Assume on the contrary that

µn > λn−k. Then

µn > λn−k ≥ · · · ≥ λn.

Consider the subspace V of Hn given by

V = Eλn−k
+ · · ·+ Eλn ,

where Eλj denotes the eigenspace of B associated with eigenvalue λj . Then dim(V) ≥ k+1.

Observe that V is an invariant subspace of B, and the largest eigenvalue of B on V is λn−k.

Hence for any x ∈ V with x 6= 0, we have

(2.1) x∗(A−B)x = x∗Ax− x∗Bx ≥ µn‖x‖2 − λn−k‖x‖2 > 0.

However, from the fact that rank(A − B) ≤ k we have dim(ker(A − B)) ≥ n − k. This

implies that V∩ ker(A−B) 6= {0}, since dim(V) + dim(ker(A−B)) > n. So there exists a

vector x1 ∈ V ∩ ker(A−B) with x1 6= 0. For x1 we have x∗1(A−B)x1 = 0, contradictiing

(2.1).

Lemma 2.2. Let B be an n× n positive semi-definite Hermitian matrix with rank(B) ≤ k.

Then there exists a matrix W ∈Mn,k(H) such that B = WW ∗.
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Proof. This is well known, see e.g. [12, p. 98].

Proof of Theorem 1.1. Suppose that ap+1, · · · ,am are any given vectors in Hn. To prove

(1.3) we assume k := m − p < n (The case k ≥ n is covered by the case k = n − 1 by

choosing aj = 0 for j ≥ n.) Set

W = [ap+1, · · · ,am] and A = [V,W ].

Then AA∗ = V V ∗ + WW ∗. Note that WW ∗ is positive semi-definite with rank at most

k = m− p. Let µ1 ≥ µ2 ≥ . . . ≥ µn ≥ 0 be the eigenvalues of AA∗. By Lemma 2.1, µ1 ≥ λ1
and µn ≤ λn−k. Hence c(A) = µ1

µn
≥ λ1

λn−k
.

To prove the existence of ap+1, . . . ,am such that c(A) = λ1
λn−k

, choose a unitary matrix U

such that UV V ∗U∗ is the diagonal matrix diag(λ1, . . . , λn). For each n−k+1 ≤ i ≤ n, define

αi = λn−k−λi. Now setQ = diag(0, . . . , 0︸ ︷︷ ︸
n−k

, αn−k+1, . . . , αn). It is clear that UQU∗ is positive

semi-definite with rank at most k. By Lemma 2.2, there exists a matrix W ∈ Mn×k(H)

such that U∗QU = WW ∗. Take ap+1, · · · ,am to be the column vectors of W . Then one

can check that

UAA∗U∗ = diag(λ1, . . . , λn−k, . . . , λn−k),

and thus c(A) = λ1
λn−k

.

We now focus on Theorem 1.2, which is much more difficult.

Lemma 2.3. Let a, b be two real numbers with a ≥ b ≥ 0 and let r > 0. Set d :=

max{a, b + r}. Then for any θ ∈ [d, a + r] there exist x, y ∈ R with x2 + y2 = r such that

the eigenvalues of the matrix

(2.2)

[
a+ x2 xy
xy b+ y2

]
are exactly θ and a+ b+ r − θ.

Proof. For any [x, y]∗ ∈ R2 with x2 + y2 = r, the eigenvalues of the matrix (2.2) are

1

2

[
(a+ b+ r)±

√
(a+ b+ r)2 − 4ab− 4ay2 − 4bx2

]
.

Note that when (x, y) varies over the circle x2+y2 = r the range of the function 4ay2+4bx2

is [4br, 4ar]. Therefore the range of√
(a+ b+ r)2 − 4ab− 4ay2 − 4bx2
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is [|a− b− r|, a− b+ r], which implies the required result. In fact for the given θ ∈ [d, a+ r]

we may take

x =

√
ar + ab− θ(a+ b+ r − θ)

a− b
and y =

√
θ(a+ b+ r − θ)− br − ab

a− b
.

Lemma 2.4. Let A be an n × n positive semi-definite Hermitian matrix with eigenvalues

µ1 ≥ · · · ≥ µn. Let r > 0 and k ∈ N with 1 ≤ k ≤ n − 1. Then for any θ ∈ [max{µk+1 +

r, µk}, µk + r], one may construct a v ∈ Hn with ‖v‖ =
√
r such that the eigenvalues of the

matrix A+ vv∗ are exactly

(2.3) µ1, . . . µk−1, θ, µk + µk+1 + r − θ, µk+2, . . . , µn.

Proof. Construct a unitary matrix P such that P ∗AP = diag(µ1, µ2, . . . , µn). Since

θ ∈ [max{µk+1 + r, µk}, µk + r],

it follows from Lemma 2.3 that one may construct a vector v = [x, y]∗ ∈ R2 with ‖v‖2 = c

such that the eigenvalues of diag(µk, µk+1)+vv∗ are exactly θ and µk+µk+1+r−θ. Define

u ∈ Hn so that the k-th and (k+1)-th entries of u are x, y respectively and all other entries

are 0. Then the eigenvalues of P ∗AP + uu∗ (as well as A+ Puu∗P−1) are given by (2.3).

Take v = Pu, then v is what we desired. This completes the proof of the lemma.

Proof of Theorem 1.2. We will construct ap+1, . . . ,and ∈ Sn recursively by the following

steps.

Step 1. Pick an integer k1 and construct ap+1, . . . ,ap+k1 ∈ Sn such that the eigenvalues

of [a1, . . . ,ap+k1 ][a1, . . . ,ap+k1 ]∗ are exactly d, λ̂2, λ3, . . . , λn, where λ̂2 := λ1 + λ2 + k2 − d
satisfies λ2 ≤ λ̂2 < d.

To do this we first choose a unitary matrix P1 such that P ∗1 V V
∗P1 = diag(λ1, . . . , λn).

By the definition of d we know that d − 2 ≤ λ1 < d − 1. Take k1 = 2. If λ1 = d − 2,

we take ap+1 = ap+2 = P1[1, 0, · · · , 0]∗. If λ1 > d − 2, we take ap+1 = P1[1, 0, · · · , 0]∗

and ap+2 = P1[x, y, 0, . . . , 0]∗, where x, y are constructed so that |x|2 + |y|2 = 1 and the

eigenvalues of

diag(λ1 + 1, λ2) + [x, y]∗[x, y]

are d and λ1 + λ2 + 2− d.
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Step 2. Pick an integer k2 and construct ap+k1+1, . . . ,ap+k1+k2 ∈ Sn such that the eigen-

values of [a1, . . . ,ap+k1+k2 ][a1, . . . ,ap+k1+k2 ]∗ are exactly d, d, λ̂3, λ4, . . . , λn, where λ̂3 :=

λ1 + λ2 + λ3 + k1 + k2 − 2d satisfies λ3 ≤ λ̂3 < d.

To realize this constuction, we adopt a method similar to what we have used in Step 1.

First we construct a unitary matrix P2 such that

P ∗2 [a1, . . . ,ap+k1 ][a1, . . . ,ap+k1 ]∗P2 = diag(d, λ̂2, λ3, . . . , λn).

Assume that d − ` − 1 ≤ λ̂2 < d − ` for some integer `. We take k2 = ` + 1. If λ̂2 =

d− `− 1, we let ap+k1+1 = · · · = ap+k1+k2 = P2[0, 1, 0, · · · , 0]∗. Otherwise we let ap+k1+1 =

· · · = ap+k1+k2−1 = P2[0, 1, 0, · · · , 0]∗ and let ap+k1+k2 = P2[0, x, y, 0, . . . , 0]∗, where x, y are

constructed so that |x|2 + |y|2 = 1 and the eigenvalues of diag(λ̂2 + `, λ3) + [x, y]∗[x, y] are

d and λ̂2 + `+ λ3 + 1− d.

Continuing the above procedure, we can construct ap+1, . . . ,and ∈ Sn so that the eigen-

values of [a1, . . . ,and][a1, . . . ,and]
∗ are exacly d, . . . , d. Thus by setting A = [a1, . . . ,and]

we have AA∗ = dIn×n. This completes the proof of the theorem.

The result of Theorem 1.2 is not sharp. Nevertheless there is a clear lower bound on how

many columns from Sn we must add to V to get a TFM. Note that by adding columns from

Sn to V to form the matrix A we have ρ(AA∗) ≥ ρ(V V ∗), and the trace of the new matrix

AA∗ is m, where m is the number of columns of A. If A is a TFM then AA∗ = λIn, so

λ = m
n . Thus m

n ≥ λ1, and m ≥ dnλ1e. There is a gap between our result and the lower

bound. At this time we do not even have a reasonable conjecture as to what is a true lower

bound. It appears to be a very difficult problem. We do know, however, that dnλ1e is not

a sharp lower bound. The following is an example.

Example 2.1. Take a1 = [1, 0]∗ and a2 = [sin θ, cos θ]∗. Then the eigenvalues of V = [a1,a2]

are 1 + sin θ and 1 − sin θ. Take θ > 0 sufficiently small. Then the lower bound predicted

by m ≥ nλ1 is m = 3. However, it is impossible to add one vector to V to make it a TFM.

At least two vectors in Sn are needed to make it a TFM.

3. Algorithm For Generating TFM Using Householder Transformations

In this section, we will develop an algorithm to produce TFMs whose columns have

prescribed norms. More precisely, for m ≥ n and positive numbers a1 ≥ a2 ≥ · · · ≥ am > 0,
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we give an O(nm) algorithm to construct an n×m matrix A = [a1, . . . ,am] such that A is

a TFM and ‖ai‖ = ai for all 1 ≤ i ≤ m. Without loss of generality we may normalize {aj}
so that

∑m
i=1 a

2
i = n; in this case AA∗ = In×n. The fundamental inequality states that such

an A exists if and only if |a1| ≤ 1.

Definition 3.1. A Householder matrix is a matrix of the form H = In×n − 2xx∗, where

x ∈ Hn and ‖x‖ = 1.

It is well known that any Householder matrix is unitary. For any TFM A and any unitary

matrix P , the matrix AP is again a TFM. We have

Lemma 3.1. For any TFM A ∈Mn,m(H) there exist Householder matrices H0, H1, . . . ,Hm−2

and a diagonal matrix D = diag (c1, . . . , cn) with cj ∈ H and |cj | = 1 for all 1 ≤ j ≤ n such

that

(3.1) A = λD[In, 0n×(m−n)]H0H1 · · ·Hm−2 = λ[D, 0n×(m−n)]H0H1 · · ·Hm−2.

Conversely, any A of the form (3.1) is a TFM.

Proof. Suppose that A is a TFM then AA∗ = cIn. Let λ =
√
c. Then the rows of λ−1A

are orthonormal. Therefore we may augment it to a unitary m ×m matrix P by adding

m − n rows to A. This forces AP ∗ = λ[In, 0], which yields A = λ[In, 0]P . But it is well

known that any unitary m×m matrix P can be expressed as

P = diag (c1, c2, . . . , cm)H0H1 · · ·Hm−2

where the Hj are Householder matrices and cj ∈ H with |cj | = 1 for all j, cf. Householder

[11, page 7]. (3.1) is now proved by setting D = diag (c1, . . . , cn).

The converse of the lemma is clearly true.

The above lemma is not constructive. The objective of this section is to devise a way to

find these Householder matrices {Hj} so that A = λ[In, 0n×(m−n)]H0H1 · · ·Hm−2, which is

a TFM, has the desired norm for each of its columns. We develop two additional lemmas,

which will be needed for our algorithm.

Lemma 3.2. Let a,b ∈ Hn and a = ‖a‖, b = ‖b‖, a ≤ b. Then for any c with a ≤ c ≤ b,

we may find x, y ∈ R (hence x, y ∈ H) such that x2 + y2 = 1 and ‖xa + yb‖ = c.
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Proof. The existence is rather obvious. We omit the derivation. Instead we will give the ex-

plicit formula for the required x, y. One can easily check it. Set u =
√

1
4(b2 − a2)2 + (a · b)2.

Then the required x, y are given by

x =

√
αγ + β

√
1− γ2 + 1

2
,

y =
α
√

1− γ2 + γβ√
2(αγ + β

√
1− γ2 + 1)

,

where α = u−1( b
2−a2
2 ), β = u−1(a · b) and γ = u−1(c2 − a2+b2

2 ).

Lemma 3.3. Let a1, . . . ,am ∈ Hn and V = [a1, . . . ,am]. For any 1 ≤ i < j ≤ m and any

θ between ‖ai‖ and ‖aj‖, i.e.

min (‖ai‖, ‖aj‖) ≤ θ ≤ max (‖ai‖, ‖aj‖),

we may construct a Householder matrix H such that the column vectors b1, . . . ,bm of the

matrix V H satisfy

‖bi‖ = θ, ‖bj‖ =
√
‖ai‖2 + ‖aj‖2 − θ2,

and bk = ak for all k 6= i, j.

Proof. Let i, j and θ be given. By Lemma 3.2 we may construct x, y in R such that

x2 + y2 = 1 and ‖xai + yaj‖ = θ. Now set

u =
√

(1− x)/2, and v =

{ −y√
2(1−x)

, if x 6= 1,

1, if x = 1.

One can check that u2 + v2 = 1 and 1− 2u2 = x, −2uv = y. Define x ∈ Sn to be the vector

whose i-th and j-th entries are u, v, respectively, and all other entries 0. Let H = Im−2xx∗.

Then V H = [b1, . . . ,bm] such that

bi = (1− 2u2)ai − 2uvaj = xai + yaj , bj = −2uvai + (1− 2v2)aj ,

and bk = ak for all k 6= i, j. Observe that ‖bi‖ = θ. One may check directly that

‖bi‖2 + ‖bj‖2 = ‖ai‖2 + ‖aj‖2, and it follows that ‖bj‖ =
√
‖ai‖2 + ‖aj‖2 − θ2. This

completes the proof.

Algorithm for Constructing TFMs with Presicribed Column Norms.
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For a given sequence a1 ≥ a2 ≥ · · · am ≥ 0 satisfying the fundamental inequality a1 ≤ 1

and
∑m

j=1 a
2
j = n we construct a TFM A = [a1, . . . ,am] such that AA∗ = In and ‖aj‖ = aj

for all j.

Staring with A0 = [In, 0n×(m−n)], we accomplish the above task by constructing a se-

quence of m − 1 Householder matrices {Hj : 0 ≤ j ≤ m − 2} such that the matrices

Ak = Ãk−1Hk−1, where Ãk−1 is simply Ak−1 with possibly some columns interchanged and

1 ≤ k ≤ m− 1, have the following properties:

(i) AkA
∗
k = In×n.

(ii) If we denoteAk = [bk,1,bk,2, . . . ,bk,m] then ‖bk,i‖ = ai for i ≤ k, and
∑m

i=k+1 ‖bk,i‖2 =∑m
i=k+1 a

2
i . Furthermore for any j ≥ k + 2, either ‖bk,j‖ ≥ ak+1 or bk,j = 0.

Clearly in the end, the matrix Am−1 is what we are looking for.

First, we construct A1. Note that A0 = [e1, . . . , en,0, . . . ,0]. If n = m then all aj = 1,

and we are done. So we may without loss of generality assume that m > n. By a proper per-

mutation of the column vectors of A0 we obtain an n×m matrix Ã0 = (d0,1,d0,2, · · · ,d0,m)

such that d0,1 = e1 and d0,2 = 0. Clearly, Ã0Ã
∗
0 = In×n. Note that 0 = ‖d0,2‖ ≤ a1 ≤

‖d0,1‖ = 1. By Lemma 3.3, we can find a Householder matrix H0 such that the column

vectors of Ã0H0, denoted by b1,1,b1,2, · · · ,b1,m, satisfy ‖b1,1‖ = a1, ‖b1,2‖ =
√

1− a21 and

b1,j = d0,j for j ≥ 3. Set A1 := Ã0H0. It is clear that A1 satisfies the conditions (i) and

(ii).

Now assume that Ak = [bk,1,bk,2, . . . ,bk,m] satisfying the conditions (i) and (ii) has been

constructed for some 1 ≤ k ≤ m− 2. We will construct Ak+1 for three possible senarios for

‖bk,k+1‖:

(a) ‖bk,k+1‖ = ak+1; (b) ‖bk,k+1‖ < ak+1; (c) ‖bk,k+1‖ > ak+1.

For scenario (a), we simply do nothing by taking Ak+1 = Ak.

For scenario (b), we claim that there exists a j0 ≥ k + 2 such that ‖bk,j0‖ ≥ ak+1.

Assume this is not true. Then according to (ii), bk,j = 0 for all j ≥ k + 2. Thus∑m
i=k+1 ‖bk,i‖2 = ‖bk,k+1‖2 < a2k+1 ≤

∑m
i=k+1 a

2
i , a contradiction. Pick such a j0. Making

a proper permutation of the column vectors of Ak, we obtain the matrix

Ãk = [dk,1,dk,2, . . . ,dk,m]
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such that dk,i = bk,i for i ≤ k + 1 and dk,k+2 = bk,j0 . It is clear that ÃkÃ
∗
k = In.

Since ‖dk,k+1‖ < ak+1 and ‖dk,k+2‖ ≥ ak+1, it follows from Lemma 3.3 that we may

construct a Householder matrix Hk such that the column vectors of ÃkHk, denoted as

bk+1,1, . . . ,bk+1,m, satisfy bk+1,j = bk,j for j 6= k+ 1, k+ 2, and ‖bk+1,k+1‖ = ak+1. Define

Ak+1 := ÃkHk. It is easily checked that Ak+1 satisfies the conditions (i) and (ii).

For scenario (c), we claim that there exists a j0 ≥ k + 2 such that either ‖bk,j0‖ =

ak+1 or bk,j0 = 0. Assume this is false. Then ‖bk,j‖ > ak+1 for all j ≥ k + 2. Thus∑m
i=k+1 ‖bk,i‖2 >

∑m
i=k+1 a

2
k+1 ≥

∑m
i=k+1 a

2
i , a contradiction. The rest of the construction

process for Ak+1 is the same as that for scenario (b).

Hence we have constructed Ak+1 satisfying the conditions (i) and (ii). By continuing this

process we reach in m − 1 steps Am−1. Set A = Am−1 then it has the desired property.

And this completes our construction.

Remark. Although we obtain a single TFM A with the desired norms for the columns, our

algorithm offers also some flexibilities. It is rather easy to see that the algorithm works if

one starts with A0 = [Q, 0] for any n × n unitary matrix Q. The algorithm can easily be

adapted also to allow some flexibility in intermediate steps, but the process will be more

complicated. The advantage of the current algorithm is that it is very fast and easy to

implement. Only O(nm) operations are needed to complete the process. The following is a

pseudo-code for the algorithm (in the form of C++).

Pseudo-code of the Algorithm.

Let m,n be two integers with m ≥ n. Let a1, . . . , am be m many non-negative numbers

in the decreasing order such that s ≥ na21, where s =
∑m

k=1 a
2
k.

(1) Recale each ak by multiplying it by
√
n
s .

(2) Set a two dimensional array b[0 : n− 1][0 : m− 1] as (In, 0n×(m−n)).

(3) Swap the second column b[ ][1] with (n+ 1)-th column b[ ][n].

(4) Call a function defined in step (6) to calculate x0 and update b[ ][ ].

(5) Repeat the following for k = 1 to m− 2:

(5a) Calculate the norm of the k-th column of b[ ][ ]. Denote it by norm(k).

(5b) Compare norm(k) with ak.
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∗ If norm(k) < ak, then search for a column b[ ][j] (j ≥ k + 1) with norm

greater than or equal to ak, and call the function defined in step (6) to

calculate xk and update b[ ][ ].

∗ If norm(k) = ak, then skip.

∗ If norm(k) > ak, then search for a column b[ ][j] (j ≥ k + 1) with equal

to ak or 0. If the norm of b[ ][j] is equal to ak, then swap the k-th column

with the j-th column of b[ ][ ], else swap the (k + 1)-th column with the

j-th column of b[ ][ ] and call the function defined in step (6) to calculate

xk and update b[ ][ ].

(6) A function to calculate xk and update b[ ][ ].

Input:

– A two-dimensional array b[0 : 8][0 : 12],

– two integers i, j which specify two different columns of b[ ][ ],

– three non-negative numbers a, b, c, satisfying a < c < b, where a is the norm of

i-th column and b is the norm of j-th column.

Output:

– An updated two-dimensional array b[0 : 8][0 : 12].

– Two numbers v and w which will determine xk.

(6a) Set u =
√

1
4(b2 − a2)2 + (b[ ][i] · b[ ][j])2.

(6b) Set

x =

√
αγ + β

√
1− γ2 + 1

2
,

y =
α
√

1− γ2 + γβ√
2(αγ + β

√
1− γ2 + 1)

,

where α = u−1( b
2−a2
2 ), β = u−1(b[ ][i] · b[ ][j]) and γ = u−1(c2 − a2+b2

2 ).

(6c) Set

v =
√

(1− x)/2, and w =

{ −y√
2(1−x)

, if x 6= 1,

1, if x = 1.

(6d) Update b[0 : 8][0 : 12] by seting

b[ ][i] = xb[ ][i] + yb[ ][j], b[ ][j] = yb[ ][i] + xb[ ][j],

(6e) Set xk with v in the k-th entry, w in the (k+1)-th entry, and 0 in other entries.
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(7) The updated two-dimensional array b[0 : 8][0 : 12] from step (5) will be the result

desired.

Example 3.1. We wish to construct a TFM A ∈M4,6(R) whose columns have prescribed

norms 2, 2, 2,
√

3,
√

2, 1. These norms satsify the fundamental inequality (1.4), so a TFM

whose columns have these norms exists. Our algorithm yields the following Householder

matrices Hj = I6 − 2xjx
∗
j , j = 0, 1, . . . , 4, in steps:

x0 = [0.169102,−0.985599, 0, 0, 0, 0]∗,

x1 = [0, 0.179702,−0.983721, 0, 0, 0]∗,

x2 = [0, 0, 0.192588,−0.98128, 0, 0]∗,

x3 = [0, 0, 0, 0.382683,−0.92388, 0]∗

x4 = [0, 0, 0, 0, 0.302905,−0.953021]∗.

The TFM A in the end is

A = [I4, 0]H0H1H2H3H4

=


2 0.25 −0.25 0.433013 −0.353553 −0.25
0 0 0 1.5 1.22474 0.866025
0 1.98431 0.283473 −0.49099 0.400892 0.283473
0 0 1.96396 0.566947 −0.46291 −0.327327


The resulting AA∗ is within 2×10−16 of the theoretical result 4.5I4 (we used double floating

point for all values, but only list six digits after the decimal point here for conciseness).

Example 3.2. The following is a TFM A ∈M8,12(R) whose columns have prescribed norms
8, 8, 8, 8, 8, 6, 6, 6, 6, 6, 4, 1:

8 0 0 0 0 0 0 0
0.078125 0 7.99962 0 0 0 0 0
−0.078125 0 0.0788917 7.99923 0 0 0 0
0.078125 0 −0.0788917 0.0796736 7.99883 0 0 0
−0.078125 0 0.0788917 −0.0796736 0.0804712 7.99843 0 0
0.528716 0 −0.533905 0.539197 −0.544594 0.550101 5.87754 0
−0.528716 0 0.533905 −0.539197 0.544594 −0.550101 5.11711 2.89043
0.157314 0 −0.158858 0.160432 −0.162038 0.163677 −1.52272 5.79246
0.109164 4.3203 −0.110235 0.111327 −0.112442 0.113579 −1.05665 4.01952

−0.0573344 5.58732 0.057897 −0.0584709 0.0590562 −0.0596533 0.554968 −2.11111
−0.0382229 3.72488 0.038598 −0.0389806 0.0393708 −0.0397689 0.369978 −1.40741
−0.00955573 0.93122 0.00964951 −0.00974514 0.0098427 −0.00994222 0.0924946 −0.351852



∗
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The resulting AA∗ is within 4 × 10−15 of the theoretical result 64.625I8 (again we usde

double floating point for all values, but only list six digits after the decimal point here for

conciseness)..
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