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1. Introduction

For any 0 < λ < 1 let νλ denote the distribution of
∑∞

n=0 εnλn where the coefficients εn

are either 0 or 1, chosen independently with probability 1
2 for each.1 It is the infinite con-

volution product of the distributions 1
2(δ0 + δλn), giving rise to the term “infinite Bernoulli

convolution” or simply “Bernoulli convolution.” The Bernoulli convolution can be expressed

as a self-similar measure νλ satisfying the equation

(1.1) νλ =
1
2
νλ ◦ φ−1

0 +
1
2
νλ ◦ φ−1

1 ,

where φ0(x) = λx and φ1(x) = λx + 1. This measure has surprising connections with

a number of areas in mathematics, such as harmonic analysis, fractal geometry, number

theory, dynamical systems, and others, see [10].

One of the fundamental questions is for which values λ is the Bernoulli convolution νλ

singular. The study of this questions goes back to the 1930’s. It is not hard to show

that for 0 < λ < 1
2 the measure is not absolutely continuous (Kershner and Wintner [7]),

since the support of νλ is a Cantor set of Lebesgue measure 0. Jessen and Wintner [5]

showed that νλ must be of pure type, i.e. it is either singular or absolutely continuous. The

problem becomes much more interesting if 1
2 ≤ λ < 1. Erdös [2] proved that if λ−1 < 2

is a Pisot number, i.e. an algebraic integer whose algebraic conjugates are all inside the

unit disk, then νλ is singular. This was done by showing that ν̂λ(ξ) 9 0 as ξ→∞. Such a
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1In most papers the coefficients εn are 1 or −1 instead of 0 and 1. But it is well known and easily shown

that the two definitions are equivalent, with the resulting measures differ only by a suitable translation. We
use 0 and 1 for simplicity.
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technique is unable to produce other singular Bernoulli convolutions, as Salem [13] proved

that ν̂λ(ξ)−→0 as ξ−→∞ for all other 1
2 ≤ λ < 1.

In the opposite direction the first important result was due to Erdös [3], who proved that

there exists an a < 1 such that for almost all λ ∈ (a, 1) the Bernoulli convolution νλ is

absolutely continuous. Later Kahane [6] (see also [10]) indicated that the argument of [3]

actually implies that the Hausdorff dimension of the set of exceptional λ’s in (a, 1) tends to

0 as a−→1. In 1995 Solomyak [14] proved the following fundamental theorem:

Theorem. (Solomyak 1995) For almost all λ ∈ (1
2 , 1) the Bernoulli convolution νλ is

absolutely continuous, with the density function dνλ
d x ∈ L2(R).

A simpler proof of this theorem was later given in Peres and Solomyak [11]. Peres and

Schlag [9] showed as a corollary of a more general result that the Hausdorff dimension of

the exceptional λ’s in [a, 1) is strictly smaller than 1 for any a > 1
2 (see also [10]). Another

important work was due to Garsia [4], who proved that νλ is absolutely continuous with

bounded density function if λ−1 is an algebraic integer whose algebraic conjugates are all

outside the unit disk and whose minimal polynomial has constant term ±2.

The reciprocal of Pisot numbers remain today the only known class of λ’s in (1
2 , 1) for

which νλ is singular. It raises the following fundamental question:

Open Question: Is it true that if λ ∈ (1
2 , 1) and νλ is singular then λ−1 is a Pisot number?

This question is far from being answered. Since νλ has its density function in L2(R) for

almost all λ ∈ (1
2 , 1), one may ask a weaker question: Are there any λ ∈ (1

2 , 1) such that νλ

doesn’t have an L2 density and λ−1 is not Pisot? Even this weaker question had not been

answered. In fact, to our knowledge there had not been a published example of a non-Pisot

type Bernoulli convolution νλ whose density is unbounded.

This paper addresses these questions. There appears to be a general belief that the best

candidates for counter-examples — singular or non-L2 density νλ — are the reciprocals of

Salem numbers. A number ρ is a Salem number if it is an algebraic integer whose algebraic

conjugates all have modulus no greater than 1, with at least one of which on the unit circle.

In this paper, however, we construct Bernoulli convolutions νλ with density not in L2(R)
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for a class of λ’s, whose reciprocals are neither Pisot nor Salem. We also study Bernoulli

convolutions with unbounded density. The main theorem of ours is:

Theorem 1.1. Let λn,k denote the reciprocal of the largest real root of the polynomial

Pn,k(x) = xn − xn−1 − · · · − xk − 1. For any k ≥ 3 there exists an N(k) > 0 such that for

all n ≥ N(k) the density of the Bernoulli convolution νλn,k
, if it exists, is not in L2(R).

Particularly if k = 3 then the density of νλn,3, if it exists, is not in L2(R) for all n ≥ 17.

It is possible that νλn,k
is singular, but our technique is unable to settle this question.

Theorem 1.1 actually holds for all k ≥ 1. However, for k = 1 or k = 2 the largest real

roots of Pn,k(x) are Pisot numbers. For k ≥ 3 and large n the polynomial Pn,k(x) has

approximately ckn roots that are outside the unit disk, where ck is the proportion of the

unit circle {x ∈ C : |x| = 1} on which |xk−x+1
2−x | > 1. This implies that for k = 3

approximately n
6 roots of Pn,k(x) are outside the unit disk. We shall prove this fact in the

appendix, as well as the following theorem:

Theorem 1.2. For each k ≥ 3 the largest real root λ−1
n,k of Pn,k(x) is neither Pisot nor

Salem for all sufficently large n. In particular, λ−1
n,3 is neither Pisot nor Salem for n ≥ 14.

A well known class of Salem numbers are the largest real roots of the polynomials Qn(x) =

xn − xn−1 − · · · − x + 1, where n ≥ 4 (see, e.g., [1, Theorem 5.3]). The reciprocals of these

Salem numbers have been thought of as potential candidates for producing non-Pisot type

singular Bernoulli convolutions. Our technique yields:

Theorem 1.3. Let λn denote the reciprocal of the largest real root of the polynomial

Qn,k(x) = xn − xn−1 − · · · − x + 1. For any α > 3 the density of the Bernoulli convo-

lution νλn, if it exists, is not in Lα(R) for all sufficiently large n.

Our next theorem concerns Bernoulli convolutions with unbounded densities. It is actu-

ally a corollary of a more general theorem in §3, and it presents a general construction for

such Bernoulli convolutions.

Theorem 1.4. Let 1
2 < λ < 1 be a real root of a {0, 1,−1}-polynomial of degree n (namely

all its coefficients are 0, 1 or −1). Suppose that λ < 2−
n

n+1 . Then the density of the

Bernoulli convolution νλ, if it exists, is unbounded.
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We point out that there are many numbers satisfying the condition of the assumption

of the above theorem. For example, the largest real root of polynomial xn − xn−1 − · · · −
xp +P (x) satisfies the condition for every {0, 1,−1}-polynomial P (x) with degree less than

p and every sufficient large n.

While the fundamental question whether all singular Bernoulli convolutions νλ for λ ∈
(1
2 , 1) come from the reciprocals of Pisot numbers remain unresolved, our results may have

hinted that perhaps there are other algebraic numbers among roots of {0, 1,−1}-polynomials

that also give rise to singular Bernoulli convolutions. Another evidence comes from biased

Bernoulli convolutions. A Bernoulli convolution is biased if the coefficients εn ∈ {0, 1} in∑∞
n=0 εn λn are not chosen with equal probabilty 1

2 . Let νλ,p denote the biased Bernoulli

convolution that is the distribution of
∑∞

n=0 εnλn, where εn = 0 and εn = 1 are chosen

independently with probability p and 1 − p, respectively. Peres and Solomyak [12] proved

the following theorem:

Theorem (Peres and Solomyak 1998) The biased Bernoulli convolution νλ,p is singular

if λ < pp(1 − p)1−p. For any 1
3 ≤ p ≤ 2

3 , νλ,p is absolutely continuous for almost all

pp(1− p)1−p < λ < 1.

The proof of the following theorem is essentially trivial. However, it provides a different

angle for examining biased Bernoulli convolutions.

Theorem 1.5. Let 1
2 < λ < 1 be any real root of a {0, 1,−1}-polynomial. Then there exists

an interval I ⊂ (0, 1) such that for any p ∈ I we have λ > pp(1− p)1−p and νλ,p is singular.

We prove these theorems in §3. Along the way we establish other related results. In the

appendix we study the roots of certain type of polynomials.

The first author is indebted to the generous support by the School of Mathematics,

Georgia Institute of Technology, where he is currently a visitor. We also wish to thank

Ka-Sing Lau for helpful discussions.

2. Some General Results

In this section we introduce some general results on self-similar measures. These results

are used later on to prove the main theorems in the paper. We first consider general self-

similar measures in R, for which Bernoulli convolutions are an example. Let {φj(x) := λx+
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bj}m
j=1 be an iterated functions system (IFS), where |λ| < 1 and m > 1. Let p1, . . . , pm > 0

with
∑m

j=1 pj = 1. Then there is a unique compactly supported measure µ satisfying the

equation

(2.1) µ =
m∑

j=1

pjµ ◦ φ−1
j .

The measure µ is called the self-similar measure assciated with the IFS {φj(x)} and proba-

bility weights {pj}.

Lemma 2.1. Let µ be the self-similar measure given by (2.1).

(a) Suppose that |λ| <
∏m

j=1 p
pj

j . Then µ is singular.

(b) For any α > 1 suppose that |λ| <
(∑m

j=1 pα
j

) 1
α−1 . Then the density of µ, if it exists,

is not in Lα(R).

(c) Suppose that pj0 > |λ| for some 1 ≤ j0 ≤ m. Then the density of µ, if it exists, is

not in Lα(R) for sufficiently large α. In particular, the density of µ, if it exists, is

unbounded.

Proof. (a) and (b) are given in Peres and Solomyak [12], Theorem 1.3. To prove (c), simply

observe that (
∑m

j=1 pα
j )

1
α−1 tends to maxj pj as α→∞.

Going back to the Bernoulli convolutions, let φ0(x) = λx and φ1(x) = λx + 1, where

0 < λ < 1. Then the Bernoulli convolution νλ is the self-similar measure satisfying

(2.2) νλ =
1
2
νλ ◦ φ−1

0 +
1
2
νλ ◦ φ−1

1 .

We introduce some notations in symbolic space. Let A = {0, 1} be the alphabet. We

use An to denote the set of words in A of length n, n ≥ 0, and A∗ :=
⋃

n≥0An. For

j = j0j1 · · · jn−1 ∈ An we denote |j| = n and j(k) = jk. Using these notations we iterate

(2.2) n times to yield

(2.3) νλ =
∑
j∈An

1
2n

νλ ◦ φ−1
j ,

where φj := φj0 ◦ φj1 ◦ · · · ◦ φjn−1 for any j = j0j1 · · · jn−1 ∈ An. We define an equivalence

relation ∼λ on A∗: For any i, j ∈ A∗ we denote i ∼λ j if and only if φi = φj. Let Πλ(j) be

the projection from A∗ to R given by

Πλ(j) = j0 + j1λ + · · ·+ jn−1λ
n−1
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for j = j0j1 · · · jn−1 ∈ An.

Lemma 2.2. Let i, j ∈ A∗. Then i ∼λ j if and only if |i| = |j| and Πλ(i) = Πλ(j).

Proof. The lemma follows immediately from the fact

φi(x) = λ|i|x + Πλ(i), φj(x) = λ|j|x + Πλ(j).

Suppose now the ∼λ equivalent classes in An are {An,k : 1 ≤ k ≤ L}. Then (2.3) can be

re-written as

(2.4) νλ =
L∑

k=1

|An,k|
2n

νλ ◦ φ−1
jk

where jk is any element in An,k. This leads to the following corollary of Lemma 2.1.

Lemma 2.3. Let 0 < λ < 1 and νλ be the Bernoulli convolution.

(a) Suppose that

n(log2 λ + 1) <
1
2n

L∑
k=1

|An,k| log2(|An,k|)

for some n ≥ 1. Then νλ is singular.

(b) For any α > 1 suppose that

(2λ)(α−1)n <
1
2n

L∑
k=1

|An,k|α

for some n ≥ 1. Then the density of νλ, if it exists, is not in Lα(R).

(c) Suppose that max1≤k≤L |An,k| > (2λ)n for some n ≥ 1. Then the density of νλ, if it

exists, is not in Lα(R) for sufficiently large α. In particular, the density of νλ, if it

exists, is unbounded.

Proof. For (a), apply Lemma 2.1 to (2.4) we see that νλ is singular if

λn <

L∏
k=1

( |An,k|
2n

) |An,k|
2n

.

Taking base 2 logarithm and (a) follows immediately by observing that
∑l

k=1 |An,k| = 2n.

Part (b) of this lemma comes directly from part (b) of Lemma 2.1, as does part (c).
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Lemma 2.4. Let {Bn,k : 1 ≤ k ≤ M} be a partition of An such that for any k the elements

in Bn,k are ∼λ equivalent.

(a) Suppose that

n(log2 λ + 1) <
1
2n

L∑
k=1

|Bn,k| log2(|Bn,k|)

for some n ≥ 1. Then νλ is singular.

(b) For any α > 1 suppose that

(2λ)(α−1)n <
1
2n

L∑
k=1

|Bn,k|α

for some n ≥ 1. Then the density of νλ, if it exists, is not in Lα(R).

(c) Suppose that max1≤k≤L |Bn,k| > (2λ)n for some n ≥ 1. Then the density of νλ, if it

exists, is not in Lα(R) for sufficiently large α. In particular, the density of νλ, if it

exists, is unbounded.

Proof. We only need to show that

M∑
k=1

|Bn,k| log2(|Bn,k|) ≤
L∑

k=1

|An,k| log2(|An,k|)

and for any α > 1,
M∑

k=1

|Bn,k|α ≤
L∑

k=1

|An,k|α.

First we note that each Bn,k is contained in some An,l, so each An,l is the disjoint union of

some Bn,k’s. Suppose that An,l is the union of Bn,k1 , . . . ,Bn,km . We have

m∑
j=1

|Bn,kj
| log2(|Bn,kj

|) ≤
m∑

j=1

|Bn,kj
| log2(|An,kj

|) = |An,l| log2(|An,l|).

This proves the first inequality. The second inequality follows from

m∑
j=1

|Bn,kj
|α ≤ |An,l|α.
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3. Proof of Theorems

We first establish Theorem 1.3. Let ρn be the largest real root of the polynomial Qn(x) =

xn − xn−1 − · · · − x + 1, which is known to be a Salem number for n ≥ 4. Let λn = ρ−1
n .

We show that for any α > 3 the density of νλn , if it exists, is not in Lα(R) for sufficiently

large n. Note that λn is also a root of Qn(x). Consider the two words un and vn in An+1

given by

(3.1) un = 100 · · · 01, vn = 011 · · · 10.

Observe that un ∼λn vn since Πλn(un) = 1 + λn
n = λn + · · ·+ λn−1

n = Πλn(vn).

Lemma 3.1. We have ρn = 2− 3
2n + O( n

22n ) and λn = 1
2 + 3

2n+2 + O( n
22n ).

Proof. Multiplying x− 1 by Qn(x) yields

(x− 1)Qn(x) = xn+1 − 2xn + 2x− 1.

Hence (2 − ρn)ρn
n = 2ρn − 1. It is easy to check that ρn > 1.5 for n ≥ 4. This shows

immediately that ρn−→2 as n−→∞, and 2 − ρn = 2ρn−1
ρn

n
< 3 × 1.5−n. Let 2 − ρn = εn.

Then εn(2− εn)n = 2(2− εn)− 1 = 3− 2εn. Now by the Mean Value Theorem, (2− εn)n =

2n − nεn ξn−1
n ≥ 2n − n 2n−1εn. Hence

εn ≤ 3− 2εn

2n − n 2n−1εn

=
3− 2εn

2n

(
1 +

n εn

2
+ O(

(n εn)2

22
)
)

=
3
2n

+ εn ·
3n− 4
2n+1

+
1
2n

·O(n εn)2(3.2)

=
3
2n

+ o(
1
2n

).

Substituting εn on the right side of (3.2) with 3
2n +o( 1

2n ) yields the estimate εn ≤ 3
2n +O( n

22n ).

Using the fact εn2n > εn(2 − εn)n = 3 − 2εn we obtain εn ≥ 3
2n+2 = 3

2n − O( 1
22n ). These

two inequalities give our estimate for ρn. The estimate for λn comes directly by taking the

reciprocal of ρn.

We say that w ∈ Am contains p times the subword un or vn if the two words combine

to appear in w exactly p times nonoverlappingly. This means, for example, the sequence

100 · · · 0100 · · · 01 where in both places there are (n − 1) 0’s counts only one appearance

since the two un’s overlap. The same goes for 10 · · · 011 · · · 10.
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Lemma 3.2. Let Hm,p be the number of elements in Am that contain exact p times the

subword un or vn. Then Hm,0 ≥ 2m

(
1− m− n

2n

)
and

(3.3) 2m−np

(
m− pn

p

)(
1− m− (n + 1)p

2n−2

)
≤ Hm,p ≤ 2m−np

(
m− pn

p

)
for p ≥ 1.

Proof. Denote by Gm be the number of elements in Am that contain at least one of

the subwords un and vn. If an element in Am contains un or vn at position j, then

0 ≤ j ≤ m − n − 1. For each such j, the numbers of elements in Am containing un or vn

at position j is no more than 2 · 2m−n−1 = 2m−n. Since there are only m− n choices for j

we conclude that Gm ≤ 2m−n(m− n). Thus

Hm,0 = 2m −Gm ≥ 2m

(
1− m− n

2n

)
.

Now let p ≥ 1. For any w ∈ Am that contains p times the subword un or vn, we may

mark the positions where these subwords appear by integers 0 ≤ k1 < k2 < · · · < kp < m.

To guarantee that the above marking is unique, we ask k1 to be the first position in w

for which un or vn appears. And suppose the positions k1, · · · , ki−1 have been marked,

then ki is the smallest position for which un or vn appears and ki − ki−1 ≥ n + 1. Clearly

m − kp ≥ n + 1 (recall that the indices begin with 0). Set x0 = k1, xp = m − kp and

xi = ki+1 − ki for 1 ≤ i < p. Then
∑p

i=0 xi = m with x0 ≥ 0 and xi ≥ n + 1 for i ≥ 1.

Hence the number of ways to choose the positions k1 < k2 < · · · < kp equals the number of

solutions to the above equation. This number is identical to the number of solutions for

(3.4) y0 + y1 + · · · yp = m− (n + 1)p, yi ≥ 0,

after making a substitution y0 = x0 and yi = xi−(n+1) for i ≥ 1. For (3.4) it is well-known

that the number of solutions is
(
m−np

p

)
.

For each chosen positions k1 < k2 < · · · < kp for the subwords un and vn there are at

most 2m−(n+1)p ways to choose the positions not occupied by these subwords. Since at each

position ki we may have either a un or a vn, we obtain

Hm,p ≤ 2m−(n+1)p 2p

(
m− pn

p

)
= 2m−np

(
m− pn

p

)
.

On the other hand, for each chosen positions k1 < k2 < · · · < kp for the subwords un and

vn we may estimate the number of words in Am such that there is another subword un or
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vn at some position j such that j < k1 or j > kp +n or ki−1 < j < ki−n for some i between

2 and p. In such situation, if this subword has some overlaps with other subwords at ki’s,

then the number of ovelapped letters does not exceeding 2. Therefore the freedom to choose

the rest of the positions not occupied by these subwords is no more than 2m−(n+1)(p+1)+2.

Since there are at most m− (n + 1)p ways to choose the index j, we have

Hm,p ≥ 2m−np

(
m− pn

p

)
− (m− (n + 1)p) 2m−(n+1)(p+1)+2 2p+1

(
m− pn

p

)
= 2m−np

(
m− pn

p

)(
1− m− (n + 1)p + 2

2n−2

)
.

Proof of Theorem 1.3. We partition Am into subsets {Bp,j}, where each Bp,j is obtained

as follows: There exist positions k1 < k2 < · · · < kp < m such that all elements in Bp,j

contain exactly p times the subword un or vn, and they are at the positions ki’s; furthermore

they all have identical letters in the remaining positions not occupied by the p subwords of

un or vn. Clearly |Bp,j | = 2p and since Πλn(un) = Πλn(vn), all elements in Bp,j are ∼λn

equivalent. For each fixed p ≥ 0 there are exactly 2−pHm,p subsets Bp,j ’s, where Hm,p is

defined in Lemma 3.2.

We apply Lemma 2.4 to prove the theorem. Set m = n2. We show that for any α > 3 we

have (2λn)(α−1)m < 1
2m

∑
p,j |Bp,j |α for sufficiently large n. It follows from Lemma 3.2 that

1
2m

∑
p,j

|Bp,j |α =
1

2m

∑
p≥0

2−p Hm,p |Bp,j |α

≥ 1
2m

1∑
p=0

2−p Hm,p |Bp,j |α

=
1

2m
Hm,0 +

1
2m

2α−1Hm,1

≥
(
1− m− n

2n

)
+

(m− n) 2α−1

2n

(
1− m− (n + 1)

2n−2

)
= 1 +

(m− n) 2α − 2m + 2n

2n+1
+ O

( n2

22n

)
.

On the other hand, 2λn = 1 + 3
2n+1 + O( n

22n ) by Lemma 3.1. This yields

(2λn)(α−1)m =
(
1 +

3
2n+1

+ O(
n

22n
)
)(α−1)m

= 1 +
3(α− 1)m

2n+1
+ O(

n3

22n
).
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Since α > 3, we have 2α − 2 > 3(α− 1) and as n−→∞,

(m− n) 2α − 2m + 2n

2n+1
+ O

( n2

22n

)
>

3(α− 1)m
2n+1

+ O(
n3

22n
).

The theorem follows from Lemma 2.4.

The proof of Theorem 1.1 is along the same lines as the proof of Theorem 1.3. Let ρn,k be

the largest real root of the polynomial Pn,k(x) = xn − xn−1 − · · · − xk − 1, and λn,k = ρ−1
n,k.

Clearly, λn,k is a real root of 1− x− · · · − xn−k − xn.

Lemma 3.3. For any fixed k ≥ 1 we have ρn,k = 2 − 2k−1
2n + O( n

22n ). For k = 3 we have

0 < 2− ρn,3 ≤ 7
2n + 60n

22n for n ≥ 12.

Proof. Multiplying x− 1 by Pn,k(x) yields

(x− 1)Pn,k(x) = xn+1 − 2xn + xk − x + 1.

Hence

(2− ρn,k) =
ρk

n,k − ρn,k + 1
ρn

n,k

.

It is easy to check that 2 > ρn,k > 1.5 for n ≥ k +2. This shows immediately that ρn,k−→2

as n−→∞, and 2 − ρn,k =
ρk

n,k−ρn,k+1

ρn
n,k

tends to 0 exponentially. Set 2 − ρn,k = εn,k. Then

εn,k = f(2 − εn,k) where f(x) := xk−x+1
xn . It follows from the Mean Value Theorem that

f(2− εn,k) = f(2)− f ′(ξn,k)εn,k for some 2− εn,k < ξn,k < 2. So we have

εn,k = f(2)− f ′(ξn,k)εn,k

=
2k − 1

2n
−

(n− k) ξk−1
n,k − n + (n + 1) ξ−1

n,k

ξn
n,k

εn,k

≤ 2k − 1
2n

−
C n εn,k

ξn
n,k

(3.5)

where C ≤ ξk−1
n,k < 2k−1. Iterating (3.5) by substituting εn,k on the right side with

2k−1
2n + o( 1

2n ) yields immediately ρn,k = 2− 2k−1
2n + O( n

22n ).

For k = 3 we make a more delicate estimate. Clearly Pn,3(2) > 0. Let xn = 2− 7
2n − 60 n

22n .

We show that Pn,3(xn) < 0 for n ≥ 12. Set εn = 2− xn. By Taylor expansions,

xn
n ≥ 2n − n 2n−1 εn, x3

n − xn + 1 ≤ 7− 11εn + 6ε2
n.
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Recall that (x− 1)Pn,3(x) = (x− 2)xn + x3 − x + 1. Hence

(xn − 1)Pn,3(xn) ≤ −εn (2n − n 2n−1 εn) + 7− 11εn + 6ε2
n

= 7− εn (2n − 11) + (n 2n−1 + 6) ε2
n

≤ 7− εn (2n − 11) + (n 2n) ε2
n

= 7−
(

7 +
60 n

2n
− 77

2n
− 660

22n

)
+
(

49 n

2n
+

840 n2

22 n
+

3600 n3

23 n

)
= −11 n

2n
+

77
2n

+
840 n2 + 660 n

22 n
+

3600 n3

23 n

< 0

for n ≥ 12. Therefore xn < ρn,3 < 2 for n ≥ 12, proving the lemma.

We shall introduce the term pattern as a generalization of word. Basically a pattern is

a word with possibly nonconsecutive indices. To rigorously define it, a pattern is a map

τ : S−→{0, 1} where S is a finite set of nonnegative integers. For each pattern τ : S−→{0, 1}
we may define

Πλ(τ) =
∑
j∈S

τ(j)λj .

Associated with λn,k are two patterns τn,k and τ̄n,k defined on Sn,k = {0, 1, . . . , n − k, n}
by τn,k(0) = 1 and τn,k(j) = 0 for all other j ∈ Sn,k, and τ̄n,k(0) = 0 and τ̄n,k(j) = 1 for all

other j ∈ Sn,k. It is easy to check that Πλn,k
(τn,k) = Πλn,k

(τ̄n,k).

Let τ : S−→{0, 1} be a pattern. We say w ∈ Am contains the pattern τ at position k if

w(k + j) = τ(j) for all j ∈ S.

Lemma 3.4. Let Fm be the number of elements in Am that contains no pattern τn,k or

τ̄n,k, and Gm be the number of elements in Am that contains the pattern τn,k or τ̄n,k. Then

Fm ≥ 2m
(
1− m− n

2n−k+1

)
,

Gm ≥ 2m−n+k−1 (m− n)
(
1− m− n + k

2n−k

)
.

Proof. If an element in Am contains the pattern τn,k or τ̄n,k at position j, then 0 ≤ j ≤
m − n − 1. For each such j, the number of elements in Am containing the pattern τn,k or

τ̄n,k at position j is no more than 2 · 2m−(n−k+2) = 2m−n+k−1. Since there are only m− n

choices for j, we conclude that Gm ≤ 2m−n+k−1(m− n). Hence

(3.6) Fm = 2m −Gm ≥ 2m
(
1− m− n

2n−k+1

)
.



BERNOULLI CONVOLUTIONS ASSOCIATED WITH CERTAIN NON-PISOT NUMBERS 13

To find a lower bound for Gm we count the number of elements in Am that contain a

pattern τn,k or τ̄n,k at position j but nowhere else. If an element w in Am contains τn,k or

τ̄n,k at position j and at another position i, then the set (j + Sn,k) ∩ (i + Sn,k) contains at

most one element. This means that for any j, there are no more than m− (n− k) choices

for i; and the freedom to choose the rest of the positions other than (j + Sn,k) ∪ (i + Sn,k)

are at most m− 2n + 2k− 3. The argument for (3.6) now applies to show that the number

of elements in Am containing the pattern τn,k or τ̄n,k at position j is at least 2
(
2m−n+k−2−

(m− n + k)2 · 2m−2n+2k−3
)
. Since there are only n−m choices for j, we obtain

Gm ≥ 2m−n+k−1 (m− n)
(
1− m− n + k

2n−k

)
.

Lemma 3.5. Let a, b be two real numbers such that 0 < a < 1 and 0 < ab < 1. Then

(1 + a)b < 1 + ab + (e− 2)a2b2.

Proof. Since 0 < a < 1, we have log(1 + a) < a. This combines with 0 < ab < 1 to yield

(1 + a)b = eb log(1+a) ≤ eab = 1 + ab +
∞∑

k=2

(ab)k

k!

≤ 1 + ab + a2b2

( ∞∑
k=2

1
k!

)
= 1 + ab + (e− 2)a2b2.

Proof of Theorem 1.1. We partition Am into subsets {Bj} and {Cj} such that each Cj

contains a single element while each Bj contains two elements. The two elements in each Bj

have the property that at some position i one contains the pattern τn,k at i while the other

contains the pattern τ̄n,k at i; furthermore, they are identical in positions not reached by

these two patterns. We may make the partition so that there are at least 1
2Gm subsets Bj ’s,

and there are at least Fm subsets Cj ’s. Since Πλn,k
(τn,k) = Πλn,k

(τ̄n,k), the two elements in

each Bj are ∼λn,k
equivalent.

Set m = n2. For any α > 0,

1
2m

(
∑

j

|Cj |α +
∑

j

|Bj |α) ≥ 1
2m

(Fm +
1
2
Gm · 2α).
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It follows from Lemma 3.4 that

1
2m

Fm ≥ 1− m− n

2n−k+1
,

1
2m

Gm ≥ m− n

2n−k+1
+ O(

n4

22(n−k+1)
).

Hence

1
2m

(∑
j

|Cj |α +
∑

j

|Bj |α
)

≥ 1 +
(2α−1 − 1)(m− n)

2n−k+1
+ O

( n4

22(n−k+1)

)
= 1 +

(2α−1 − 1) 2k (m− n)
2n+1

+ O
( n4

22(n−k+1)

)
.

On the other hand,

(2λn,k)(α−1)m = 1 + (α− 1)m · 2k − 1
2n+1

+ O
( n3

22n

)
.

Suppose that α = 2. Then (2α−1 − 1) 2k > (α− 1)(2k − 1). Hence

1
2m

(∑
j

|Cj |α +
∑

j

|Bj |α
)

> (2λn,k)(α−1)m

for sufficiently large n. Hence the density of νλn,k
, if it exists, is not in L2(R) for sufficiently

large n.

We now focus on the case k = 3. Taking m = n2 and α = 2, we have

1
2m

Fm ≥ 1− n2 − n

2n−2
,

1
2m

Gm ≥ m− n

2n−2

[
1− n2 − n + 3

2n−3

]
.

Thus
1

2m
(Fm +

1
2
Gm · 22) ≥ 1 +

n2 − n

2n−2
− 2(n2 − n)(n2 − n + 3)

22n−5
.

Assume that n ≥ 12. Then

(2λn,3)n2 ≤

(
2

2− 7
2n − 60

22n

)n2

=

(
1

1− 7
2n+1 − 30

22n

)n2

.

A direct check yields (1− 7
2n+1 − 30

22n )(1 + 7
2n+1 + 45

22n ) ≥ 1. Hence

(2λn,3)n2 ≤
(

1 +
7

2n+1
+

45
22n

)n2

≤ 1 + n2

(
7

2n+1
+

45
22n

)
+ (e− 2)n4

(
7

2n+1
+

45
22n

)2

.

Another direct check shows that

n2 − n

2n−2
− 2(n2 − n)(n2 − n + 3)

22n−5
≥ n2

(
7

2n+1
+

45
22n

)
+ (e− 2)n4

(
7

2n+1
+

45
22n

)2
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for n ≥ 17. This implies
1

2m

(∑
j

|Cj |2 +
∑

j

|Bj |2
)

> (2λn,3)m

for n ≥ 17. Therefore the density of νλn,3 , if it exists, is not in L2(R) for n ≥ 17.

Remark. For k = 3, by a more delicate estimate of Gn2 and an approximation of (2λn,3)n2

by Matlab, we are able to show that the density of νλn,3, if it exists, is not in L2(R) for

n = 15 and 16.

We prove Theorem 1.4 by setting up a more general theorem concerning Bernoulli con-

volutions with unbounded densities. Let P (x) =
∑n

k=0 εkx
k be a {0, 1,−1}-polynomial of

degree n. Denote

SP = {0 ≤ k ≤ n : εk 6= 0}.

Then SP is a non-empty set of non-negative integers with 0, n ∈ SP . Denote by dP the

packing density of SP in N, i.e.,

dP = lim sup
`→∞

u`

`
,

where u` is the largest cardinality of the possible sets B such that {SP + i}i∈B is a family of

disjoint subsets of {0, 1, . . . , `− 1}. For convenience, we call also dP the packing density of

P . It is clear dP ≥ 1
n+1 . Hence Theorem 1.4 is a direct corollary of the following Theorem.

Theorem 3.6. Suppose ρ > 1 is any root of a {0, 1,−1}-polynomial P (x) of degree n and

packing density dP . Suppose that ρ > 21−dP . Then for λ = ρ−1 the density of the Bernoulli

convolution νλ, if it exists, is unbounded.

Proof. Set Q(x) = xnP (x−1) and write Q(x) =
∑n

k=0 εkx
k. Then λ is a root of Q. Observe

that SQ = n − SP . This means P and Q have the same packing density, dQ = dP . Define

two patterns τ, τ : SQ −→ {0, 1} respectively by

τ(k) = max{εk, 0}, τ(k) = max{−εk, 0}

for all k ∈ SQ. Then we have Πλ(τ) = Πλ(τ), since τ(k)− τ(k) = εk for all k ∈ SQ.

Since ρ > 21−dQ , by the definition of dQ, we can find a large number ` and a set B ⊂
N∪{0} of cardinality u` such that ρ > 21−u`

` and {SQ + i}i∈B is a family of disjoint subsets

of {0, 1, . . . , `− 1}.
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We construct a subset B of words in A` = {0, 1}`, such that w ∈ B if and only if w

contains the pattern τ or τ at each position i ∈ B , and w(k) = 0 for all k ∈ {0, 1, . . . , `−
1} \

⋃
i∈B (SQ + i). In this setting we have Πλ(w) = Πλ(v) for all w,v ∈ B. Note that the

cardinality of B is just |B| = 2|B| = 2u` . But ρ > 21−u`
` . This yields

(2/ρ)` = (2λ)` < 2u` = |B|.

Therefore by part (c) of Lemma 2.4, the density of νλ, if it exists, is not in Lα(R) for

sufficient large α.

We finally turn our attention to biased Bernoulli convolutions by proving Theorem 1.5.

Let 1/2 < λ < 1 be any root of a {0, 1,−1}-polynomial P (x) =
∑n

k=0 εk xk. Define two

words u = i0i1 · · · in,v = j0j1 · · · jn ∈ An+1 by

ik = max{εk, 0}, jk = max{−εk, 0}

for all 0 ≤ k ≤ n. Then we have ik − jk = εk for all 0 ≤ k ≤ n, and thus Πλ(u) = Πλ(v).

Now let p be any real number in (0, 1). Suppose νλ,p is the biased Bernoulli convolution

associated with λ and p. That is, νλ,p is the distribution of
∑∞

n=0 δnλn, where δn = 0 and

δn = 1 are chosen independently with probability p and 1−p, respectively. It is well known

that νλ,p is the self-similar measure satisfying the equation

(3.7) νλ,p =
1∑

i=0

pi νλ,p ◦ φ−1
i ,

where φ0(x) = λ x, φ1(x) = λ x + 1, p0 = p and p1 = 1− p.

Iterating (3.7) n + 1 times we obtain

(3.8) νλ,p =
∑

j∈An+1

pj νλ,p ◦ φ−1
j ,

where pj = pj0pj1 · · · pjn and φj(x) = φj0 ◦ φj1 ◦ · · · ◦ φjn for any j = j0j1 · · · jn. Since

Πλ(u) = Πλ(v), we have φu = φv. Thus we can rewrite (3.8) as

νλ,p = (pu + pv)νλ,p ◦ φ−1
u +

∑
j∈An+1\{u,v}

pj νλ,p ◦ φ−1
j .

By part (a) of Lemma 2.1, if

(3.9)
(pu + pv)pu+pv

ppu
u ppv

v

∏
j∈An+1

p
pj

j > λn+1
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then νλ,p is singular. Note that

log
( ∏

j∈An+1

p
pj

j

)
=

∑
j0j1···jn∈An+1

pj0pj1 · · · pjn (log pj0 + log pj1 + · · ·+ log pjn)

= (n + 1)(p log p + (1− p) log(1− p)),

the condition (3.9) is equivalent to

(3.10) p log p + (1− p) log(1− p)− log λ + g(p) > 0,

where g(p) := 1
n+1 [(pu + pv) log(pu + pv)− pu log pu − pv log pv].

Proof of Theorem 1.5. Note that the function g(p) in (3.10) is a positive continuous

function of p on (0, 1). Since λ ∈ (1/2, 1), we can always find an interval I ⊂ (0, 1) such

that for any p ∈ I,

p log p + (1− p) log(1− p)− log λ < 0,

and in the mean time the inequality (3.10) holds, that is, νλ,p is singular.

4. Appendix

We have mentioned in §1 that the polynomial Pn,3(x) given in Theorem 1.1 has about

n/6 roots outside the unit circle for sufficiently large n. In this appendix we prove a general

result that will imply the claim.

Proposition 4.1. Let f(z) is a rational function in C such that f has neither zero nor

pole on the unit circle {z ∈ C : |z| = 1}. Assume that |f(z)| 6≡ 1 on the unit circle. Let

a(n), b(n) denote the number of zeros (counting multiplicity) of zn−f(z) outside and inside

the unit circle, respectively. Then we have

lim
n→∞

a(n)
n

= L{θ ∈ [0, 1) : |f(e2πiθ)| > 1}, lim
n→∞

b(n)
n

= L{θ ∈ [0, 1) : |f(e2πiθ)| < 1},

where L denotes the Lebesgue measure.

Before proving the proposition we prove the following lemma.

Lemma 4.2. Let f(z) be analytic and |f(z)| > 1 (resp. 0 < |f(z)| < 1) on a neighborhood

U of z0, where z0 ∈ C and |z0| = 1. Then there exists an a > 0 such that

(4.1) lim
n→∞

Cn

n
≥ L

{
θ ∈ [0, 1) : |e2πiθ − z0| < a

}
,
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where Cn is the number of roots (counting multiplicity) of zn − f(z) = 0 in {z ∈ C : |z| >
1, |z − z0| < a} ⊂ U (resp. {z ∈ C : |z| < 1, |z − z0| < a} ⊂ U).

Proof. Write z0 = e2πiθ0 . Pick a δ > 0 such that the region

Ω =
{

z = re2πiθ : 1 < r < δ + 1, |θ − θ0| < δ
}

is contained in U and on which |f(z)− f(z0)| < |f(z0)| − 1.

Let a = |e2πiδ − 1| and select 0 < δ′ < δ, 0 < η < δ′ such that the region

{z = re2πiθ : 1 < r < 1 + η, |θ − θ0| < δ′}

is contained in {z ∈ C : |z| > 1, |z − z0| < a}.

Let n be a large integer such that (1 + η)n > 2|f(z0)|. Choose θ1, θ2 such that

θ0 − δ′ < θ1 < θ0 − δ′ +
2
n

, θ0 + δ′ − 2
n

< θ2 < θ0 + δ′

and

e2πinθ1 = e2πinθ2 = − f(z0)
|f(z0)|

.

Then it can be checked directly that |f(z) − f(z0)| < |f(z0)| − 1 ≤ |zn − f(z0)| on the

boundary of the region

D′ =
{

z = re2πiθ : 1 < r < 1 + η, θ1 < θ < θ2

}
.

It follows from Rouche’s Theorem that zn − f(z) has the same number of zeros in D′ as

does zn − f(z0); and this number equals n(θ2 − θ1) − 1 exactly. Therefore the number of

zeros of zn − f(z) in {z ∈ C : |z| > 1, |z − z0| < a} is at least n(θ2 − θ1) − 1, and thus no

less than 2nδ′ − 5. The inequality (4.1) now follows by letting δ′ → δ.

Proof of Proposition 4.1. Since |f(e2πiθ)| is real analytic in θ and |f(e2πiθ)| 6≡ 1 on the

unit circle, the set {θ ∈ [0, 1) : |f(e2πiθ)| = 1} is a finite set. Thus to prove Proposition 4.1

it suffices to prove

lim
n→∞

a(n)
n

≥ L{θ ∈ [0, 1) : |f(e2πiθ)| > 1}, lim
n→∞

b(n)
n

≥ L{θ ∈ [0, 1) : |f(e2πiθ)| < 1}.

We prove the first inequality here; the second one follows from an essentially identical

argument.

Let U = {θ ∈ [0, 1) : |f(e2πiθ)| > 1}. U is an open set. By Lemma 4.2, for each z0 =

e2πiθ0 ∈ U and each ε > 0 there exists an 0 < δ < ε such that {θ ∈ [0, 1) : |θ−θ0| < δ} ⊂ U ,
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and in the region {z ∈ C : |z| > 1, |z − e2πiθ0 | < |1 − e2πiδ|} the number of zeros C(n) of

zn − f(z) satisfies

lim
n→∞

C(n)
n

≥ 2δ = L{θ ∈ [0, 1) : |θ − θ0| < δ}.

By the Vitali Covering Theorem, for each η > 0 there exist finitely many disjoint intervals

Ii = [θi − δi, θi + δi] ⊂ U such that
∑

i L(Ii) > L(U)− η, and the number of zeros Ci(n) of

zn − f(z) in the region {z ∈ C : |z| > 1, |z− e2πiθi | < |1− e2πiδi |} satisfies limn→∞
Ci(n)

n ≥
L(Ii). Now let C∗(n) denote the number of zeros of zn − f(z) in the disjoint union

⋃
i{z ∈

C : |z| > 1, |z − e2πiθi | < |1− e2πiδi |} satisfies

lim
n→∞

C∗(n)
n

= lim
n→∞

∑
i

Ci(n)
n

≥
∑

i

L(Ii) = L(U)− η.

The inequality follows by letting η −→ 0.

Lemma 4.3. Let k ≥ 3 and fk(x) = xk−x+1
x−2 . Then

L
{

θ ∈ [0, 1) : |fk(e2πiθ)| > 1
}

> 0.

Proof. Notice that |fk(eiθ)| = 3−2 cos θ−2 cos((k−1)θ)+2 cos(kθ)
5−4 cos θ . Set

hk(θ) =
(
3− 2 cos θ − 2 cos((k − 1)θ) + 2 cos(kθ)

)
−
(
5− 4 cos θ

)
.

For θj = jπ
k−1 where j is odd we have hk(θj) = 0 (and hence |fk(eiθj )| = 1). However, it is

easy to check that h′k(θj) 6= 0. Therefore |fk(eiθ)| > 1 in a neighborhood on one side of θj ,

proving the lemma.

We remark that the above proof shows that for k ≥ 4 we may find Ik ⊂ [0, 1) with

|fk(eiθ)| > 1 for θ ∈ Ik and Re (eiθ) < 0 by taking a suitable odd j. For θ ∈ Ik we have

|2− eiθ| ≥
√

5.

Lemma 4.4. For each k ≥ 3 the polynomial Pn,k(x) = xn−xn−1− · · · −xk − 1 has exactly

one root in the region <(x) > 1.

Proof. We use the equality (x−1)Pn,k(x) = Fn,k(x) where Fn,k(x) = (x−2)xn−xk +x−1.

Set Qn(x) = (x − 2)xn. We show that Fn,k has one root in the region <(x) > a for any

1 < a < 1.5 and sufficiently large n (independent of a) by Rouche’s Theorem. Note that

|Fn,k(x)−Qn(x)| = |xk − x + 1|. On the boundary <(x) = a write x = a + iy with y ∈ R,
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and one can check that |xk − x + 1|2 = (ak − a + 1)2 + y2gk(y) where gk is a polynomial.

On the other hand it is a easy calculation that

|Qn(x)|2 ≥ (2− a)2a2n + n(2− a)2y2 + na2n−2y2n+2.

Comparing the derivatives we see that (2 − a)2a2n > (ak − a + 1)2 for 1 < a < 1.5 and

sufficenly large n. Also clear is that

n(2− a)2y2 + na2n−2y2n+2 ≥ y2gk(y)

for sufficently large n (independent of a). Finally |Qn(x)| > |xk − x + 1| as |x| tends to ∞
whenever n ≥ k. Therefore Rouche’s Theorem applies to show that Fn,k(x) and Qn(x) have

the same number of roots in <(x) > a for sufficently large n independent of a. It follows

that they have the same number of roots in <(x) > 1 by letting a→1. Since Qn has the

only root x = 2 in the region and Fn,k(x) = (x− 2)Pn,k we conclude that Pn,k has exactly

one root in <(x) > 1.

Note that for k = 3 we have checked that |Qn(x)| > |x3 − x + 1| on <(x) = a whenever

n > 10 for 1 < a < 1.5 (we omit the tedious details). So Pn,3(x) has one root in <(x) > 1

for n > 10.

Lemma 4.5. Pn,3(x) has at least two roots in the region Ω = {x = reiθ : r > 1, π/2 ≤ θ <

π} for n ≥ 13.

Proof. We prove that Pn,3(x) has at least two roots in Ω for a n ≥ 100, and check the

rest with Matlab. The proof for n ≥ 100 only uses rather crude estimates, at times with

computations performed by Matlab.

Note that x−1
2−xPn,3(x) = xn − x3−x+1

2−x . We prove that xn − x3−x+1
2−x has at least two roots

in Ω. Set F (x) = x3−x+1
2−x . Then for θ0 = 1.8 and x0 = eiθ0 we may check that F (x0) = c0

with |c0| > 1.05. We now construct the small sector neighborhood Rn of x0, given as

Rn := {x = reiθ : 1− εn < r < 1 + εn, θ1 ≤ θ < θ2}

where εn = 2
n and θ1, θ2 satisfy enθ1 = enθ2 = ic0 with θ2−θ1 = 4π

n and θ1 < θ0 < θ2. These

choices ensure that the polynomial Gn(x) = xn − c0 has two roots in Rn. Furthermore, we

will apply Rouche’s theorem to show that xn − F (x) and Gn(x) have the same number of

roots in Rn.
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To see Rouche’s theorem applies, we have |xn−F (x)−Gn(x)| = |F (x)−c0|. Let n ≥ 100.

We only need to prove that |F (x)− c0| < |Gn(x)| on ∂Rn. A rough estimate with the aide

of Matlab yields |F ′(x)| = |2x + 2 − 7
(2−x)2

| < 3.8 on Rn. Another simple estimate yields

diam (Rn) < 13.2
n . So

|F (x)− c0| < 3.8 |x− x0| < 3.8 diam (Rn) <
51
n

.

We will estimate Gn(x) on ∂Rn. On the two straight edges of ∂Rn we have x = reiθ with

either θ = θ1 pr θ = θ2. Hence xn = rneinθ = irnc0. Therefore |Gn(x)| = |irnc0 − c0| >

|c0| > 1. On the outer arc r = 1 + εn with εn = 2
n we also have

|Gn(x)| > |x|n − |c0| = (1 + εn)n − |c0| > 1.

Finally on the inner arc r = 1− εn we have

|Gn(x)| > |c0| − |x|n = |c0| − (1− εn)n > 0.8.

It follows that |Gn(x)| > |F (x) − c0| on ∂Rn for n ≥ 100 (in fact n ≥ 64), and Rouche’s

theorem now applies to show that xn − F (x) and Gn(x) have the same number of roots in

Rn. Clearly, Gn(x) has exactly two roots in Rn, and so does xn − F (x). But it is easily

checked by Matlab that |F (x)| > 1 on Rn for n ≥ 100. Hence the roots of xn − F (x) in Rn

cannot be inside or on the unit circle. Therefore the two roots of xn − F (x) in Rn must be

outside the unit circle. This proves the lemma for n ≥ 100.

For 13 ≤ n < 100 the lemma is checked using Matlab. We omit the computational details

here.

Proof of Theorem 1.2. Assume that λn,k is Pisot. Then Pn,k(x) = fn,k(x)gn,k(x) where

both fn,k and gn,k are monic polynomials in Zx with fn,k being the minimal polynomial of

λn,k. Thus all roots of Pn,k that are outside the unit circle are roots of gn,k. We derive a

contradiction for any k and sufficiently large n.

Note that Pn,k(2) = fn,k(2)gn,k(2) = 2k − 1. Therefore |gn,k(2)| ≤ 2k − 1. We consider

|gn,k(2)| = |
∏

j(2 − rj)| where rj are the roots of gn,k. By Lemma 4.4 all rj are in the

region Re(x) < 1, making |2− rj | > 1. On the other hand, it follows from Lemmas 4.2 and

4.3 that for any k gn,k has at least 3k roots in the region {x ∈ C : |x| > 1,<(x) < 0} for

sufficiently large n. With these roots we have |2− rj | >
√

5. Hence |gn,k(2)| > (
√

5)3k > 2k.
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This is a contradiction. It follows that for each k and sufficiently large n (depending on k)

λn,k is not Pisot.

For k = 3 and n ≥ 13 assume that λn,3 is Pisot. We prove that |gn,3(2)| ≤ 23 − 1 is

impossible. We have already established in Lemma 4.5 that gn,3 has at least two roots in

the region {x = reiθ : r > 1, θ ∈ [π/2, π)}. The congugates of these roots yield two or

more roots in {x = reiθ : r > 1, θ ∈ [π, 3π/2)}. So gn,3 has at least 4 roots in the region

{x ∈ C : |x| > 1,<(x) < 0}. It follows that |gn,3(2)| > (
√

5)4 > 7, a contradiction.
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