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Let J be the repeller of an expanding, C1þd-conformal topological mixing map g:
Let F : J ! Rd be a continuous function and let aðxÞ ¼ limn!1

1
n

Pn�1
j¼0 Fðg

jxÞ (when

the limit exists) be the ergodic limit. It is known that the possible aðxÞ are just the

values
R
F dm for all g-invariant measures m: For any a in the range of the ergodic

limits, we prove the following variational formula:

dimfx 2 J : aðxÞ ¼ ag ¼ max
m

hgðmÞR
log jjDxgjjdmðxÞ

:

Z
F dm ¼ a

� �
;

where m is a g-invariant Borel probability measure on J ; hgðmÞ is the entropy of m;
jjDxgjj is the operator norm of the differential Dxg; and dim is the Hausdorff

dimension or the packing dimension. This result gives a substantial extension of the

well-known case that F is H .oolder continuous. We also prove that unless the same

1The first and third authors were partially supported by the Zheng Ge Ru Foundation in

Hong Kong and the Special Funds for Major State Basic Research Projects in China. The

second author was supported by an HK RGC grant.
2To whom correspondence should be addressed.
58
0001-8708/02 $35.00
# 2002 Elsevier Science (USA)

All rights reserved.



ERGODIC LIMITS ON CONFORMAL REPELLERS 59
ergodic limit exists everywhere, the set of points whose ergodic limit does not exist

has the same Hausdorff dimension as the whole space J : # 2002 Elsevier Science (USA)
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1. INTRODUCTION

Let M be a smooth Riemannian manifold and g : M ! M a C1þd-
conformal map. Consider a g-invariant compact subset J of M : We say that
g is expanding on J if there exist C > 1 such that jjðDxgÞujj5Cjjujj for all x 2 J ;
u 2 T xM : We say that J is a repeller of the expanding g if:

(a) J ¼
T

n50 g
�nV for some open neighborhood V of J ; and

(b) g is topologically mixing on J ; i.e., when U ;W are nonempty
(relative) open sets in J ; gnðU Þ \ W=| for n sufficiently large.

A finite closed cover fR0; . . . ;Rm�1g of J is called a Markov partition of J
(with respect to g) if:

(i) int Ri ¼ Ri for each i ¼ 0; . . . ;m� 1;
(ii) int Ri \ int Rj ¼ | for i=j; and
(iii) each gðRiÞ is the union of a subfamily of fRjgm�1

j¼0 :

It is well known that any repeller J of a continuously differentiable
expanding map g has Markov partition of arbitrary small diameter (see [25,
p. 146]) and ðJ ; gÞ is semi-conjugated to ðSA; sÞ; a subshift space of finite
type. In what follows, we always assume that J is a repeller of an expanding,
C1þd-conformal, topologically mixing map g:

Let F be a continuous function defined on J with values in Rd : For any
x 2 J ; we define the ergodic limit, when it exists, as

aðxÞ ¼ lim
n!1

1

n

Xn�1

j¼0

FðgjxÞ:

The quantity aðxÞ is regarded as the recurrence of x relative to F (the term
‘‘recurrence’’ gets its usual sense when F ¼ ð1B1

; . . . ; 1Bd Þ where 1B denotes
the characteristic function of a set B). Let

LF ¼ fa : a ¼ aðxÞ for some x 2 Jg:

Let MgðJ Þ be the set of all g-invariant Borel probability measures
concentrated on J : The function F : J ! Rd induces a map Fn : MgðJ Þ !
Rd given by

FnðmÞ ¼
Z
J
F dm; m 2 MgðJ Þ:



FENG, LAU AND WU60
As a consequence of the Birkhoff ergodic theorem, we see that if m is ergodic,
then aðxÞ ¼ FnðmÞ for m-a.a. x 2 J : It can be proved that LF ¼ FnðMgðJ ÞÞ and
hence LF is a nonempty compact convex set. For a 2 LF; we let

EðaÞ ¼ fx 2 J : aðxÞ ¼ ag

and

FFðaÞ ¼ fm 2 MgðJ Þ : FnðmÞ ¼ ag:

In this paper, we will investigate the size of the set EðaÞ as well as the size of
the set of points such that the limits defining aðxÞ do not exist. Recall that J
is a metric space induced by the Riemannian metric and there are various
notions of dimension on J : We will consider the Hausdorff dimension dimH

and the packing dimension dimP (see, e.g., [11, 12, 19, 21]). The sizes of the
sets in question will be described by these dimensions.

The first historical example of this type is due to Besicovitch [1] and
Eggleston [10]; they proved that for a 2 I ¼ ½0; 1�;

EðaÞ ¼ x ¼
X1
n¼1

en
2n

2 I : lim
n!1

1

n

Xn
j¼1

ej ¼ a; en ¼ 0 or 1

( )

has Hausdorff dimension �ða log2 aþ ð1� aÞlog2ð1� aÞÞ: In this case the
corresponding maps are g : I ! I such that gðxÞ ¼ 2x ðmod 1Þ and
FðxÞ ¼ w

½1
2
;1�

(they are not continuous). A slightly more elaborate example

was given by Billingsley [2]. Fan and Lau [15] studied the asymptotic
behavior at infinity of multiperiodic functions F ðxÞ ¼

Q1
n¼1 f ð

x
2n
Þ where f is

a positive H .oolder continuous periodic function with period 1 (e.g., F ðxÞ ¼
j #ffðxÞjq where #ffðxÞ is the Fourier transform of the scaling functions in the
wavelet theory). By using the Ruelle–Perron–Frobenius operator with the
H .oolder continuous potential log f and the standard ‘‘multifractal for-
malism’’ argument, they showed that (F ¼ log f ; and gðxÞ ¼ 2x ðmod 1Þ as
above) the Hausdorff dimension of

EðaÞ ¼ x 2 ½0; 1� : lim
n!1

1

n

Xn�1

j¼0

Fð2jxÞ ¼ a

( )

is hgðmÞ=log 2 where hgðmÞ is the entropy of the Gibbs measure m with respect
to g [15, Theorem 6]. Some further consideration of the ergodic limit and the
multifractal formalism for H .oolder continuous F was given by Pesin and
Weiss [23]; a special case FðxÞ ¼ jjDxgjj was considered by Weiss [27].

If the function F has no regularity like H .oolder continuity or summable
variation, the question is more subtle because the multifractal formalism will
not work as there is a lack of differentiability on the pressure function and a
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lack of Gibbs property on the invariant measures. Fan et al. [14] had
considered the setting on ðSA;sÞ; a subshift space of finite type. They showed
that for a continuous F : SA ! Rd ;

dimH EðaÞ ¼
1

logm
maxfhsðmÞ : m 2 FFðaÞg:

Another consideration using pressures was given by Olivier [20]. Our main
results here are the following.

Theorem 1.1. Let J be a repeller of an expanding, C1þd-conformal

topological mixing map g: Let F : J ! Rd be a continuous function. Then for

any a 2 LF; we have the variational formula

dimH EðaÞ ¼ dimP EðaÞ ¼ max
m2FFðaÞ

hgðmÞR
log jjDxgjj dmðxÞ

;

where jjDxgjj is the operator norm of the differential Dxg; hgðmÞ is the entropy

of m with respect to g: Moreover, dimH EðaÞ is an upper semi-continuous

function of a:

Theorem 1.2. Under the hypotheses of Theorem 1.1, either

(i) all points x 2 J have the same ergodic limit; or

(ii) the set of points x such that the limit defining aðxÞ does not exist is of

the same Hausdorff dimension as that of J :

A first thought of proving these theorems is to lift the dynamical
system ðJ ; gÞ to ðSA; sÞ and apply the results in [14]. However, this will
meet some difficulties. Firstly, in contrast to the H .oolder continuous case,
it is possible that for some a 2 LF; there exists no ergodic measure m
supported on EðaÞ; we cannot compare the dimensions of EðaÞ and its
lift by using the measure m in the usual way (see, e.g., [16, pp. 341,342]).
Secondly, the lifting map is not one-to-one on the boundary of the
Markov partition and we cannot make use of the ergodic measure to
take care of the boundary (by ignoring a measure zero set). Hence instead
of using directly the results in the symbolic space, we will adopt the
approach by modifying the well-known topological pressure and Bowen’s
formula (see [21]). We introduce the following expressions (Section 4): For
each real number s; we define

f ða; s; n; eÞ ¼
X

½o�2F ða;n;eÞ

diamðRoÞ
s
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with

F ða; n; eÞ ¼ ½o� : o 2 SA;n;
1

n

Xn�1

j¼0

FðgjxÞ � a

�����
�����5e for some x 2 Ro

( )
:

Here SA;n is the n-tuple in SA and Ro ¼ pð½o�Þ with p : SA ! J denoting the
coding map. We prove (Proposition 4.3 and Theorem 5.1)

Theorem 1.3. For a 2 LF and s 2 R; we have

lim
e!0

lim inf
n!1

log f ða; s; n; eÞ
n

¼ lim
e!0

lim sup
n!1

log f ða; s; n; eÞ
n

:¼ P ða; sÞ:

Moreover P ða; sÞ satisfies the following variational principle:

P ða; sÞ ¼ maxfhgðmÞ � s
Z

log jjDxgjj dmðxÞ : m 2 FFðaÞg:

For each a 2 LF; if we define LðaÞ such that P ða;LðaÞÞ ¼ 0; then we can
prove Theorem 1.1 by showing that

dimH EðaÞ ¼ dimP EðaÞ ¼ LðaÞ ð1:1Þ

and

LðaÞ ¼ max
m2FFðaÞ

hgðmÞR
log jjDxgjj dmðxÞ

: ð1:2Þ

The invariant set considered in Theorem 1.2 is called the divergence set of
F: The Birkhoff ergodic theorem says that the divergence set is of null
measure with respect to any invariant measure. Theorem 1.2 states that it is
either empty or large in the sense that it has the same Hausdorff dimension
as that of the whole space. The result of full Hausdorff dimension for H .oolder
continuous F was obtained by Barreira and Schmeling [4] (see also [5, 7,
22]). In our proof we first make use of Bowen’s formula (see, e.g., [21, p.
203]) to choose an a such that dimH J ¼ dimH EðaÞ; then use the symbolic
expression to adjust the x 2 EðaÞ to form a new set F of the same dimension,
but each y 2 F does not have an ergodic limit.

We organize this paper as follows. In Section 2, we set up the necessary
materials for the subshift space of finite type and the Markov measure
of order ‘: In Section 3, we prove a dimensional result for the
‘‘nonhomogeneous’’ Moran sets. This together with the mass distribution
principle are used in Section 4 to prove (1.1). The variational principle of the
pressure function P ða; sÞ in Theorem 1.3 is proved in Section 5 and the
Markov measures of order ‘; ‘51; are used to approximate the measure
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that attains the maximum in (1.2). By using the results in the
previous sections, we complete the proofs of Theorems 1.1 and 1.2 in
Section 6.

2. PRELIMINARIES

Most of the materials in this section are known. We recall them here both
for our convenience and that of the reader.

For an m� m matrix A with entries 0 or 1; we let ðSA; sÞ denote the
subshift space of finite type [6]. SA is a metric space with dðx; yÞ ¼ m�n for
x ¼ ðxjÞj51 and y ¼ ðyjÞj51; where n is the largest integer such that xj ¼
yj; 14j4n: We shall always assume that A is primitive. This means the
dynamical system ðSA;sÞ is topologically mixing.

For k51; SA;k denotes the set of finite sequences o ¼ ði1; . . . ; ikÞ such that
aij;ijþ1

¼ 1 for all 14j4k � 1: These sequences o are called ðadmissibleÞ
words; the length of the word is denoted by joj ð¼ kÞ: For o ¼ ði1; . . . ; ikÞ 2
SA;k ; the k-cylinder ½o� is defined by fx 2 SA : x1 ¼ i1; . . . ; xk ¼ ikg: It is clear
that there is a one-to-one correspondence between SA;k and the set of k-
cylinders. Without confusion we just use SA;k to denote the set of all
k-cylinders.

Let xn be the partition consisting of all n-cylinders ½o� 2 SA;n: The
entropy hsðmÞ of a s-invariant measure m on SA (i.e., m 2 MsðSAÞ) can be
expressed as

hðmÞ ¼ lim
n!1

H xn ðmÞ
n

where H xn ðmÞ ¼ �
X
A2xn

mðAÞlog mðAÞ:

The nth conditional entropy of m is defined by hðnÞðmÞ ¼ H xn jxn�1
ðmÞ; n > 1:

Using elementary properties of the conditional entropy [26, p. 80], we can
prove

Proposition 2.1. For each m 2 MsðSAÞ; we have

hðnÞðmÞ ¼ Hxn ðmÞ � Hxn�1
ðmÞ 8n > 1

and

hðmÞ ¼ lim
n!1

hðnÞðmÞ ¼ inf
n

hðnÞðmÞ:

The entropy hðmÞ is an upper semi-continuous functional defined on MsðSAÞ
with respect to the weak* topology.
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A Borel probability measure m on SA is uniquely determined by its values
on the cylinders withX

o2SA;n

mð½o�Þ ¼ 1;
X
i

mð½o; i�Þ ¼ mð½o�Þ: ð2:1Þ

It is invariant with respect to the shift s if and only ifX
i

mð½i;o�Þ ¼ mð½o�Þ 8n51 and o 2 SA;n: ð2:2Þ

These three conditions may be referred to as normalization condition,
consistence condition and invariance condition. We call a measure m 2
MsðSAÞ a Markov measure of order ‘ (or simply ‘-Markov measure), ‘51; if
it satisfies the following Markov property: for n51;

mð½i1; . . . ; inþ‘�Þ ¼ mð½i1; . . . ; inþ‘�1�Þ
mð½in; . . . ; inþ‘�Þ
mð½in; . . . ; inþ‘�1�Þ 

¼ mð½i1; . . . ; i‘þ1�Þ
Yn
j¼2

mð½ij; . . . ; ijþ‘�Þ
mð½ij; . . . ; ijþ‘�1�Þ

!
:

Note that the standard Markov measure is when ‘ ¼ 1: We will see
from Corollary 2.4 that the set of all ‘-Markov measures, ‘51; is dense in
MsðSAÞ:

Proposition 2.2. Suppose m 2 MsðSAÞ is an ‘-Markov measure. The

entropy of m is

hðmÞ ¼ �
X

i1;...;i‘þ1

mð½i1; . . . ; i‘þ1�Þlog
mð½i1; . . . ; i‘þ1�Þ
mð½i1; . . . ; i‘�Þ

:

Moreover, hðnÞðmÞ ¼ hðmÞ for n5‘ þ 1:

Proof. We need only use the definition of Markov measure and
the expression of hðnÞðmÞ in Proposition 2.1 to check that hðnÞðmÞ ¼ hðn�1ÞðmÞ
for n5‘ þ 1: ]

In view of (2.1) and (2.2) we let Dk denote the set of all
nonnegative functions p defined on SA;k satisfying the following two
relations: X

i1;i2;...;ik

pði1; i2; . . . ; ikÞ ¼ 1;

X
i

pði; i1; . . . ; ik�1Þ ¼
X
i

pði1; . . . ; ik�1; iÞ:
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Proposition 2.3. Let p 2 Dk; define m on SA by

mð½i1; . . . ; in�Þ ¼ pði1; . . . ; ikÞ
Yn�kþ1

j¼2

pðij; . . . ; ijþk�1ÞP
ipðij; . . . ; ijþk�2; iÞ

:

Then m is a ðk � 1Þ-Markov measure. If furthermore p is positive, then m is

the Gibbs measures associated with the potential

cðxÞ ¼ log pðx1; . . . ; xkÞ � log
X
i

pðx1; . . . ; xk�1; iÞ:

The reader can refer to [6] for the definition and property of a Gibbs
measure. As a corollary, we have

Corollary 2.4. Given m 2 MsðSAÞ; let fpkg in Dk be defined by

pkði1; . . . ; ikÞ ¼ mð½i1; . . . ; ik�Þ:

Let mk be the associated ðk � 1Þ-Markov measure in Proposition 2.3. Then

m ¼ wn- lim
k!1

mk ; hðmÞ ¼ lim
k!1

hðmkÞ:

If further the support of m is the whole space SA; then the fmkg are ergodic

and are Gibbs measures.

We call mk the kth Markov approximation of m:

Corollary 2.5. For any m 2 MsðSAÞ; there exists a sequence of ergodic

measures fnkgk51 � MsðSAÞ such that

m ¼ wn- lim
k!1

nk ; hðmÞ ¼ lim
k!1

hðnkÞ:

Proof. In view of Corollary 2.4, we only need to consider the case that the
support of m is not the whole space SA: In such a case we select a x 2 MsðSAÞ
supporting the whole space SA: Take mðnÞ ¼ ð1� 1

nÞmþ 1
nx: Then mðnÞ supports

the whole space SA: Since m ¼ wn-limn!1 mðnÞ and hðmÞ ¼ limn!1 hðmðnÞÞ;
combining it with Corollary 2.4 we get the desired result. ]

Let X be a compact metric space and let T : X ! X be a continuous map.
We let MT ðX Þ denote the space of all T -invariant Borel probability measures
on X :

Proposition 2.6. Let X i; i ¼ 1; 2 be compact metric spaces and let T i :
X i ! X i be continuous. Suppose p : X 1 ! X 2 is a continuous surjection such



FENG, LAU AND WU66
that the following diagram commutes:

X 1 �!
T1 X 1

p# #p

X 2 �!
T2 X 2

Then pn : MT 1
ðX 1Þ ! MT 2

ðX 2Þ (defined by m/m 8 p
�1) is surjective. If,

furthermore, there is an integer m > 0 so that p�1ðyÞ has at most m elements

for each y 2 X 2; then

hT 1
ðmÞ ¼ hT 2

ðm 8 p
�1Þ

for each m 2 MT 1
ðX 1Þ:

Proof. The first part of the result is the same as [18, Chap. IV, Lemma
8.3]. The second part follows from the Abramov–Rokhlin formula (see
[3]). ]

From Corollary 2.5 and Proposition 2.6, we have the following corollary
immediately.

Corollary 2.7. For any m 2 MgðJ Þ; there exists a sequence of ergodic

measures fmkgk51 � MgðJ Þ such that

m ¼ wn- lim
k!1

mk ; hðmÞ ¼ lim
k!1

hðmkÞ:

3. NONHOMOGENEOUS MORAN SET

In our proof of (1.1) we need to use a class of Cantor sets from a very
general Moran construction. Let X � Rd be a compact set with nonempty
interior. Let fnkgk51 be a sequence of positive integers. Let D ¼

S
k50 Dk

with D0 ¼ f|g and Dk ¼ fo ¼ ðj1j2 . . . jkÞ : 14ji4ni; 14i4kg: Let D1 ¼
fðj1j2 . . .Þ : 14ji4ni; i51g: Suppose that G ¼ fXo : o 2 Dg is a collection
of subsets of Rd : We say that G fulfills the Moran structure provided it
satisfies the following conditions:

(1) X | ¼ X ; Xoj � Xo for any o 2 Dk�1; 14j4nk; the interiors of Xo

and Xo0 are disjoint 8o=o0; o;o0 2 Dm:
(2) There exist two positive constants C1 and C2; closed balls

%
Bo; %BBo

and ro 2 Rþ for each o 2 D; such that
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(i)
%
Bo � Xo � %BBo;

(ii)
%
Bo and %BBo have radii C1ro and C2ro;

(iii) limk!1 maxo2Dk ro ¼ 0;
(iv) there exist positive constants C3 and C4 such that

C3
roZ
ro

4
ro0Z

ro0
4C4

roZ
ro

ð3:1Þ

for all oZ=o0Z; o;o0 2 Dm; oZ;o0Z 2 Dn;m4n:

If G fulfills the above Moran structure, we call the set

E ¼
\
n>0

[
o2Dn

Xo

a nonhomogeneous Moran set associated with G: The nonhomogeneity
refers to the nonconstant number nk of descendents in the kth level for
each predecessor in the ðk � 1Þth level. This class of sets was considered in
[17, 24] for the case that each Xo;o 2 Dk has equal size. For the
homogeneous Moran set (i.e., nk is a constant) the reader can refer to [8,
9, 21] for details.

Let

rk ¼ min
ði1���ikÞ2Dk

ri1���ik
ri1���ik�1

; Mk ¼ max
ði1���ikÞ2Dk

ri1���ik :

They are the minimal contraction ratio and the maximal size (up to a fixed
constant multiple) of the set Xo in the kth generation.

Proposition 3.1. For the Moran set E defined as above, suppose

furthermore

lim
k!1

log rk
logMk

¼ 0: ð3:2Þ

Then we have

dimH E ¼ lim inf
k!1

sk ; dimP E ¼ lim sup
k!1

sk ;

where sk satisfies the equation
P

o2Dk r
sk
o ¼ 1:

Proof. We first prove dimH E ¼ lim infk!1 sk : The inequality dimH E
4 lim infk!1 sk is straightforward. We need only prove the reverse
inequality.
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Let Bn be the s-algebra generated by the cylinders ½o�; o 2 Dn: For any
n51 and a50; we define a measure mn (depends on a) on Bn by

mnð½o�Þ ¼
raoP

o02Dnr
a
o0

: ð3:3Þ

For any m5n and for o 2 Dm; we have

mnð½o�Þ ¼
X
oZ2Dn

mnð½oZ�Þ

¼
X
oZ2Dn

raoZ

 !, X
o0Z2Dn

rao0Z

 !

¼
X
oZ2Dn

ðraoZr�a
o Þrao

� �, X
o0Z2Dn

ðrao0Zr�a
o0 Þrao0

� �
� mmð½o�Þ ðby ð3:1ÞÞ:

That is, there exists C > 0 such that for m5n;

C�15
mnð½o�Þ
mmð½o�Þ

5C; 8o 2 Dm:

By the compactness of D1; there is a subsequence fmnkgk51 that converges in
the weakn topology. Denote by m the limit. Then

C�14
mð½o�Þ
mmð½o�Þ

4C 8m > 0 and o 2 Dm: ð3:4Þ

Let n be the probability measure on E such that n ¼ m 8 p
�1 where

p : D1 ! E is defined by ði1i2 � � �Þ !
T

n>0 X i1���in : We claim that for each
a5lim infk!1 sk ; there exists C0 > 0 such that

nðXoÞ4C0rao 8o 2 Dk with large k:

To prove the claim, we observe that for any a5b5 lim infk!1 sk ; there
exists N0 such that for any k5N0;X

Z2Dk

rbZ > 1: ð3:5Þ

For o 2 Dn; let

A ¼ fZ 2 D : rZ5ro4rZn ; X Z \ Xo=|g;

where Z ¼ ðj1 . . . jmÞ 2 D and Zn ¼ ðj1 � � � jm�1Þ: By Assumption 2(ii) of
the Moran construction and a simple geometric argument, there exists
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C5 such that X
Z2A

rdjZj4
X
Z2A

rdZ
rdZn

4
X
Z2A

rdZ
rdo
4C5: ð3:6Þ

Hence for n large enough,

nðXoÞ4
X
Z2A

mð½Z�Þ

4C
X
Z2A

raZP
ðj1...jjZjÞ2DjZjr

a
j1...jjZj

ðby ð3:4ÞÞ

4C
X
Z2A

raZM
b�a
jZjP

ðj1...jjZjÞ2DjZjr
b
j1...jjZj

ðby ð3:2ÞÞ

4Crao
X
Z2A

Mb�a
jZj ðby ð3:5ÞÞ

4Crao
X
Z2A

rdjZj ðby ð3:2ÞÞ

4CC5rao ðby ð3:6ÞÞ:

This completes the proof of the claim.
Now let a05a: By (3.2), there exists k0 such that

rai1���ik�1
4ra

0

i1���ik ; 8k5k0; ði1 � � � ikÞ 2 Dk : ð3:7Þ

Let B be a ball of radius r such that r4 info2Dk0þ1
ro: Set

B ¼ o 2 D : Xo \ B=|; ro5r > roj; 14j4njojþ1

� �
:

Then by assumption (2), there exists L > 0 (not depending on r) such that
#B5L: It follows from (3.7) that

nðBÞ4
X
o2B

nðXoÞ4LCC5rao4LCC5ra
0
:

The mass distribution principle will imply that a04dimH E: Since a05a is
arbitrary, we have a4dimH E: Thus we obtain that dimH E5lim infk!1 sk :

We now prove that dimP E ¼ lim supk!1 sk : Denote s ¼ lim supk!1 sk :
We first show that dimP E4s: Let e > 0; it suffices to show that dimP E4sþ
2e: Take k1 2 N such that log rk

log Mk
4 e

sþ2e for any k5k1: Let on ¼ ði1 � � � ik�1) if
o ¼ ði1 � � � ikÞ; the definitions of rk and Mk imply that

ron4ðroÞ
ðsþeÞ=ðsþ2eÞ 8k5k1; o 2 Dk :
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Take k2 > k1 such that sk5sþ e for each k5k2: Let mn (depends on sþ e) be
the measure defined as in (3.3) with sþ e replacing a and let m be a wn-limit
point of fmng: Then by (3.4), for each n5k2 and o 2 Dn;

mð½o�Þ5C�1mnð½o�Þ ¼ C�1 rsþe
oP

o02Dnr
sþe
o0

> C�1rsþe
o 5C�1rsþ2e

on :

Now pick d > 0 such that d5 info2Dk2
jXoj and suppose that fBig is a family

of disjoint balls with centers in E and diameters less than d: For each i; pick
oi 2 D such that the center of Bi is contained in Xoi ; and Xoi � Bi and
Xon

i
6� Bi: It is clear that oi 2

S
k5k2Dk and

P
i mð½oi�Þ41: Since jXon

i
j > 1

2
jBij

for each i; we haveX
i

jBijsþ2e 4
X
i

ð2jXon
i
jÞsþ2e4ð2C2Þ

sþ2e
X
i

rsþ2e
on

i

4Cð2C2Þ
sþ2e

X
i

mð½oi�Þ4Cð2C2Þ
sþ2e:

Hence by using the standard notations of packing dimension [11], we have

Psþ2e
d ðEÞ5C�1ð2C2Þ

sþ2e

and Psþ2eðEÞ4Psþ2e
0 ðEÞ4Psþ2e

d ðEÞ51; which implies that dimP E4sþ 2e:
To show that dimP E5s; we consider the upper box dimension of Xo0

\ E
for any fixed k0 2 N and o0 2 Dk0 : We need only show that dimBðXo0

\
EÞ5s: It follows that dimBðV \ EÞ5s for each open set V with V \ E=|:
This implies dimPðEÞ5s since E is compact [11].

Indeed for any e; d > 0; take k such that maxo0Z2Dk ro0Z5minf1
2
; eg and

sk5s� d: Then by (3.1),

14
X

o02Dk0 ; o0Z2Dk

rs�d
o0Z4

X
o02Dk0 ; o0Z2Dk

C4
ro0

ro0

ro0Z

� �s�d

4
C4maxo02Dk0

ro0

ro0

� �s�d

#Dk0

X
o0Z2Dk

rs�d
o0Z

¼C6

X
o0Z2Dk

rs�d
o0Z:

Let An ¼ o0Z 2 Dk : 2�n�14ro0Z52�n
� �

: Then

C�1
6 4

X
o0Z2Dk

rs�d
o0Z4

X1
n¼0

#An2
�nðs�dÞ;



ERGODIC LIMITS ON CONFORMAL REPELLERS 71
which implies that there exists m such that

#Am5C�1
6

1

1� 2�d2
mðs�2dÞ:

By conditions (1) and (2), there is a constant C7 2 N (depending only upon
C1; C2 and d) such that each closed ball with radius 2�m intersects at most
C7 elements of fXo0Z : o0Z 2 Amg: Thus if we denote by N2�m ðXo0

\ EÞ the
least number of closed balls with radii 2�m needed to cover E; then

N 2�m ðXo0
\ EÞ5C�1

7 #Am5C�1
6 C�1

7

1

1� 2d�s 2
�mðs�2dÞ:

Since e can be taken arbitrarily small, the number m in the above inequality
can be picked arbitrarily large. Therefore dimBðXo0

\ EÞ5s� 2d: Since
d > 0 is arbitrary, dimBðXo0

\ EÞ5s for any k0 2 N and o0 2 Dk0 : This
completes the proof of the claim and hence the proposition. ]

4. PRESSURE FUNCTION AND DIMENSION OF EðaÞ

Let R ¼ fR0; . . . ;Rm�1g be a Markov partition of the repeller J with
respect to an expanding, C1þd-conformal, topological mixing map g: It is
well known that this dynamical system induces a subshift space of finite type
ðSA;sÞ; where A ¼ ðaijÞ is the transfer matrix of the Markov partition,
namely, aij ¼ 1 if int Ri \ g�1ðint RjÞ=| and aij ¼ 0 otherwise [25]. The
matrix A is primitive, i.e., there is a positive integer M so that AM > 0: This
gives the coding map p : SA ! J such that

pðoÞ ¼
\
n51

g�ðn�1ÞðRinÞ; 8o ¼ ði1i2 � � �Þ

and the following diagram

SA �!
s

SA

p# #p

J �!
g

J

commutes. The coding map p is a H .oolder continuous surjection. Moreover,
there is a positive integer q so that p�1ðxÞ has at most q elements for each
x 2 J (see [25, p. 147]). For each cylinder ½o�; the set pð½o�Þ is called a basic

set and is denoted by Ro. It follows from [21, Proposition 20.2] that
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Proposition 4.1.

(i) For any integer k > 0; the interiors of distinct Ro;o 2 Dk are disjoint.
(ii) Each Ro contains a ball of radius

%
ro and is contained in a ball of

radius %rro:
(iii) There exist positive constants K151 and K2 > 1 such that for

every Ro;

K1

Yn�1

j¼0

jjDgjðxÞgjj
�14

%
ro4%rro4K2

Yn�1

j¼0

jjDgjðxÞgjj
�1; 8x 2 Ro: ð4:1Þ

Note that the second part makes use of jjDxgnjj ¼
Qn�1

j¼0 jjDgjðxÞgjj;
a consequence of the chain rule and the property of the determinant.

Since AM > 0; for any o 2 SA;n and any 04z4m� 1; there are
04y1; . . . ; yM4m� 1 such that

ðo; y1; . . . ; yM ; zÞ 2 SA;nþMþ1:

We call %oo ¼ ðo; y1; . . . ; yM Þ an extension of o to join z:
For a fixed continuous F : J ! Rd ; and for any a 2 Rd ; n51 and e > 0;

we define

F ða; n; eÞ ¼ ½o� : o 2 SA;n;
1

n

Xn�1

j¼0

FðgjxÞ � a

�����
�����5e for some x 2 Ro

( )

and

f ða; s; n; eÞ ¼
X

½o�2F ða;n;eÞ

diamðRoÞ
s

for any s 2 R:

Lemma 4.2. For any e > 0; there exists N ¼ N ðeÞ such that for any p51
if n5N ;

f ða; s; n; eÞp4Cpsf ða; s; ðnþMÞp; 2eÞ

for some C > 0; independent of p and e.

Proof. Without loss of generality, we can assume that jFðxÞj41 for all
x 2 J (j � j denotes the Euclidean norm).

For o1; . . . ;op 2 F ða; n; eÞ; let o ¼ %oo1 � � � %oop 2
P

A;pðnþMÞ where %ook 2
SA;nþM is an extension of ok joining the leading letter of okþ1 (with the
convention that opþ1 ¼ o1). By definition we can choose xk 2 Rok ; 14k4p;
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such that

1

n

Xn�1

j¼0

FðgjxkÞ � a

�����
�����5e:

Let x be a point in Ro; then x ¼ pð %oo1 � � � %oop � � �Þ: Let zk ¼ pð %ook � � � %oop � � �Þ;
14k4p: It follows from the conjugation of g and s that gðnþMÞðk�1ÞþjðxÞ ¼
gjðzkÞ and hence

XðnþMÞp�1

j¼0

FðgjxÞ ¼
Xp
k¼1

XnþM�1

j¼0

FðgjzkÞ:

Therefore,

1

ðnþMÞp

XðnþMÞp�1

j¼0

FðgjxÞ � a

�����
�����

¼
1

ðnþMÞp

Xp
k¼1

XnþM�1

j¼0

FðgjzkÞ � a

�����
�����

4
1

ðnþMÞp

Xp
k¼1

XnþM�1

j¼0

ðFðgjxkÞ � aÞ

�����
�����þ XnþM�1

j¼0

FðgjzkÞ � FðgjxkÞ
�� �� !

4
1

nþM
ðneþ 2MÞ þ

Xn�1

j¼0

jjFjjj þ 2M

 ! !
;

where jjFjji ¼ supfjFðxÞ � FðyÞj : x; y 2 Ro for some o 2 SA;ig: Since F is
continuous, n�1

P n�1
j¼0 jjFjjj tends to zero as n ! 1: We have

1

ðnþMÞp

XðnþMÞp�1

j¼0

FðgjxÞ � a

�����
�����42e

for n5N and for all p51: This implies that the ½o�; which contains x; is in
F ða; ðnþMÞp; 2eÞ: Let lmax ¼ maxx2J jjDxgjj and lmin ¼ minx2J jjDxgjj: By
(4.1), we have

diamðR %oo1 %oo2��� %oop Þ

5K1

YðnþMÞp�1

j¼0

jjDgjðxÞgjj
�1
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¼ K1

Yp�1

k¼0

Yn�1

j¼0

jjDgðnþM ÞkþjðxÞgjj
�1

 ! Yp�1

k¼0

YnþM�1

j¼n

jjDgðnþMÞkþjðxÞgjj
�1

 !

5K1

Yp�1

k¼0

1

2K2
diamðRokþ1

Þ

 !
ðlmaxÞ

�Mp

5
K1

2K2lMmax

� �pYp
k¼1

diamðRok Þ;

and similarly

diamðR %oo1 %oo2��� %oop Þ4
2K2

K1lMmin

� �pYp
k¼1

diamðRok Þ:

It follows that

X
½o�2F ða;n;eÞ

diamðRoÞ
s

 !p

4Cps
X

½oi�2F ða;n;eÞ

diamðR %oo1��� %oop Þ
s

4Cps
X

½Z�2F ða;pðnþMÞ;2eÞ

diamðRZÞ
s;

where

C ¼
K�1

1 ð2K2lMmaxÞ for s50

ð2K2Þ
�1ðK1lMminÞ for s50

(

and the lemma follows. ]

By using the above lemma, we have

Proposition 4.3. For a 2 LF and s 2 R;

lim
e!0

lim inf
n!1

log f ða; s; n; eÞ
n

¼ lim
e!0

lim sup
n!1

log f ða; s; n; eÞ
n

¼: P ða; sÞ: ð4:2Þ

The function P ða; sÞ is upper semi-continuous on the variable a: Moreover,

C2ðt � sÞ4P ða; sÞ � P ða; tÞ4C1ðt � sÞ ð4:3Þ

for any s; t 2 R with s5t; where C1 ¼ maxx2J log jjDxgjj and

C2 ¼ minx2J log jjDxgjj:
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Proof. The equality of the limits follows from the subadditivity in the
lemma and a standard argument. We will include a proof for completeness.
First, note that the two limits in (4.2) exist since f ða; s; n; eÞ is an increasing
function on the variable e: Denote by b the left-hand-side limit. Then for any
d > 0; there exists e0 > 0 such that

lim inf
n!1

log f ða; s; n; e0Þ
n

5bþ d:

Fix d; e0 > 0: To show the equality in (4.2), we only need to show that

lim sup
n!1

log f ða; s; n; e0=4Þ
n

5bþ 2d:

Fix n 2 N with n5N ðe0=4Þ where N ðe0=4Þ is defined as in Lemma 4.2. Take a
sequence of integers nk " 1 such that

f ða; s; nk ; e0Þ5enk ðbþdÞ; 8k 2 N:

For each k; write nk ¼ ðnþMÞpk � ‘k with 04‘k5nþM : By Lemma 4.2,

f ða; s; n; e0=4Þ
pk4Cpksf ða; s; ðnþMÞpk ; e0=2Þ:

Take k0 such that ðpk0 � 1Þðe0=2Þ > jjFjj þ jaj þ ðe0=2Þ; and let k > k0: If ½o� ¼
½i1 � � � iðnþMÞpk � 2 F ða; ðnþMÞpk ; e0=2Þ; then there exists x 2 ½o� such that

XðnþMÞpk�1

j¼0

FðgjxÞ � ðnþMÞpka

�����
�����4ðnþMÞpke0

2
:

This implies that

Xnk�1

j¼0

FðgjxÞ � nka

�����
�����4ðnþMÞpke0

2
þ ðnþMÞðjjFjj þ jajÞ4nke0;

hence ½i1 � � � ink � 2 F ða; nk ; e0Þ and

f ða; s; ðnþMÞpk ; e0=2Þ4mðnþMÞf ða; s; nk ; e0Þ:

It follows that

m�ðnþMÞC�pksf ða; s; n; e0=4Þ
pk4f ða; s; nk ; e0Þ4enk ðbþdÞ:

Therefore

f ða; s; n; e0=4Þ4eðnkÞ=ðpk ÞðbþdÞCsmðnþMÞ=ðpk Þ:
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Letting k ! 1; we have

f ða; s; n; e0=4Þ4eðnþMÞðbþ2dÞCs:

Letting n ! 1; we have

lim sup
n!1

log f ða; s; n; e0=4Þ
n

4bþ 2d

as desired. Thus we have proved the equality in (4.2).
We will show below the upper semi-continuity of P ð�; sÞ: Given a 2 LF; for

any Z > 0; there is e > 0 such that

lim inf
n!1

log f ða; s; n; eÞ
n

5P ða; sÞ þ Z:

Let b 2 LF with jb� aj5e
3: For each ½o� 2 F ðb; n; e=3Þ; there exists x 2 Ro

such that j
P n�1

j¼0Fðg
jxÞ � nbj4ne

3
: Hence

Xn�1

j¼0

FðgjxÞ � na

�����
�����4n jb� aj þ

e
3

� �
5ne

and ½o� 2 F ða; n; eÞ: This proves that F ðb; n; e=3Þ � F ða; n; eÞ: It follows that
f ðb; s; n; e=3Þ4f ða; s; n; eÞ; therefore

P ðb; sÞ4 lim inf
n!1

log f ðb; s; n; e=3Þ
n

4 lim inf
n!1

log f ða; s; n; eÞ
n

4P ða; sÞ þ Z:

This establishes the upper semi-continuity of P ð�; sÞ at a:
The assertion on the Lipschitz property follows from the following

inequality, which can be deduced from (4.1):

K1ðmax
x2J

jjDxgjjÞ
�n4diamðRoÞ4K2ðmin

x2J
jjDxgjjÞ

�n: ]

For a 2 LF; we define LðaÞ to be the unique number s such that P ða; sÞ ¼ 0:
Since P ða; sÞ is upper semi-continuous on a and strictly decreasing on s (by
(4.3)), we have immediately

Corollary 4.4. LðaÞ50 and is an upper semi-continuous function on LF:

Proposition 4.5. For a 2 LF; we have

dimH EðaÞ ¼ dimP EðaÞ ¼ LðaÞ:
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Proof. We first show that for a 2 LF; dimP EðaÞ4LðaÞ: Let LðaÞ5t; then
P ða; tÞ50; it follows that there exist e > 0 and d > 0 such that

lim sup
n!1

log f ða; t; n; eÞ
n

5� d:

Therefore there is a number N ¼ N ðe; dÞ such that for n > N ; f ða; t; n; eÞ4
e�dn: Let

Gða; k; eÞ ¼
\1
n¼k

x 2 J :
1

n

Xn�1

i¼0

FðgixÞ � a

�����
�����5e

( )
:

It is clear that for any e > 0;

EðaÞ �
[1
k¼1

Gða; k; eÞ:

We show below that dimP Gða; k; eÞ4t for each k: Let F be a collection of
disjoint cylinders ½o�; o 2 SA;n; n5maxfk;Ng; such that the basic set Ro has
nonempty intersection with Gða; k; eÞ: Thus each ½o� in F is contained in
F ða; n; eÞ for some n5N : It follows thatX

½o�2F

ðdiam RoÞ
t4

X
n5N

X
½o�2F ða;n;eÞ

ðdiam RoÞ
t

¼
X
n5N

f ða; t; n; eÞ4
e�d

1� e�d51:

Since the family of ½o� 2 F are disjoint, this implies that dimP Gða; k; eÞ4t:
By the s-stability of packing dimension, we have dimP EðaÞ4t as desired.

We now prove dimH EðaÞ5LðaÞ for a 2 LF: Let LðaÞ > t: By Proposition
4.3, there are ‘j % 1 and ej # 0 such that f ða; t; ‘j; ejÞ > 1: Write simply
F ‘j ¼ F ða; ‘j; ejÞ and define a new sequence in the following manner:

f‘1; . . . ; ‘1|fflfflfflfflffl{zfflfflfflfflffl}
N1

; ‘2; . . . ; ‘2|fflfflfflfflffl{zfflfflfflfflffl}
N2

; . . . ; ‘j; . . . ; ‘j|fflfflfflfflffl{zfflfflfflfflffl}
Nj

; . . .g;

where Nj; j51 diverge to 1 fast and will be determined in the sequel. We
relabel the sequence as f‘ni g: Define

G ¼ fR %oo1��� %ook : k 2 N; ½oi� 2 F ‘ni
for 14i4kg

and

Yn ¼
\
k51

[
½oi�2F ‘n

i
;14i4k

R %oo1��� %ook ;
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where %ooi is an extension of oi joining the leading letter of oiþ1 (with
convention okþ1 ¼ o1). In view of Proposition 4.1, the collection G has
the Moran structure and Yn is a Moran set in J : More precisely, Yn

is constructed as follows. At level 0; we have the initial set
Sm

i¼1 Ri:
In step k51; we have the basic sets R %oo1��� %ook ; oj 2 F ‘nj

for 14j4k: By
(4.1), the maximal diameter Mk of the basic set R %oo1��� %ook is less than
K2ðlminÞ

�‘n
1
�����‘nk ; the minimal contraction ratio rk of the adjacent

level is greater than K1

2K2
ðlmaxÞ

�‘nk�M ; where lmax ¼ maxx2J jjDxgjj;
lmin ¼ minx2J jjDxgjj: It follows that

log rk
logMk

4
ð‘nk þMÞlog lmax � log K1 þ log ð2K2Þ

ð‘n1 þ � � � þ ‘nk Þlog lmin � log K2
:

In order for it to tend to zero (in view of Proposition 3.1), we can
take N1 ¼ 1 and Nj ¼ 2ljþ1þNj�1 for j > 1: Hence we conclude from
Proposition 3.1 that

dimH Yn ¼ lim inf
k!1

sk ;

where sk satisfies the equationX
½oi�2F ‘n

i
;14i4k

diamðR %oo1 %oo2��� %ook Þ
sk ¼ 1: ð4:4Þ

Recall that we have proved in Lemma 4.2 that

K1

2K2lMmax

� �kYk
i¼1

diamðRoiÞ4diamðRo1���ok Þ:

Making use of limi!1 ‘ni ¼ 1 and diamðRoiÞ4K2l
�‘ni
min ; we see that for any

d > 0; there exists k0 such that for k > k0;

Yk
i¼1

diamðRoiÞ

 !1þd

4diamðRo1���ok Þ:

Hence for k > k0;

Yk
i¼1

f ða; skð1þ dÞ; ‘ni ; e
n

i Þ ¼
Yk
i¼1

X
½oi�2F ‘n

i

ðdiamðRoiÞÞ
sk ð1þdÞ

4
X

½oi�2F ‘n
i
; 14i4k

ðdiamðRo1���ok ÞÞ
sk ¼ 1:
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Therefore f ða; skð1þ dÞ; ‘ni ; e
n
i Þ41 for some 14i4k: This implies that

skð1þ dÞ5t since f ða; t; ‘ni ; e
n
i Þ51: Therefore lim infk!1 sk5t:

Now we prove that Yn � EðaÞ: Fix x 2 Yn: For a given large integer n; let
k be the unique integer satisfying

Xk�1

i¼1

ð‘ni þMÞ4n5
Xk
i¼1

ð‘ni þMÞ:

By the definition of Yn; there exist ½oi� 2 F ‘ni
; i ¼ 1; . . . ; k; such that

x 2 Ro1���ok : For 14i4k; pick xi 2 Roi such that

X‘ni �1

j¼0

FðgixiÞ � ‘ni a

�����
�����5eni ‘

n

i :

Then

Xn�1

j¼0

FðgjxÞ � na

�����
�����

4
Xk�1

i¼1

X‘ni �1

j¼0

ðFðg‘
n

1
þ���þ‘ni�1

þði�1ÞMþjðxÞÞ � aÞ

�����
�����þ ðkM þ ‘nk Þð2jjFjjÞ

4
Xk�1

i¼1

X‘ni �1

j¼0

ðFðg‘
n

1
þ���þ‘ni�1

þði�1ÞMþjðxÞÞ � FðgjxiÞÞ

�����
�����

þ
Xk�1

i¼1

X‘ni �1

j¼0

ðFðgjxiÞ � aÞ

�����
�����þ ðkM þ ‘nk Þð2jjFjjÞ

4
Xk�1

i¼1

X‘ni �1

j¼1

jjFjjj

 !
þ
Xk�1

i¼1

ðeni ‘
n

i Þ þ ðkM þ ‘nk Þð2jjFjjÞ:

Therefore

1

n

Xn�1

j¼0

FðgjxÞ � na

�����
�����4
P k�1

i¼1 ð
P‘ni �1

j¼1 jjFjjjÞ þ
Pk�1

i¼1 ðe
n
i ‘

n
i Þ þ ðkM þ ‘nk Þð2jjFjjÞP

k�1
i¼1 ‘

n
i

:

Since limi!1 ‘ni ¼ 1 and limk!1
‘nkPk�1
i¼1 ‘ni

¼ 0 (by the definition of Nj),
we have

lim
n!1

1

n

Xn�1

j¼0

FðgjxÞ � na

�����
����� ¼ 0:
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This proves that x 2 EðaÞ: Thus we have proved that Yn � EðaÞ; from which
dimEðaÞ5t follows. ]

5. A VARIATIONAL PRINCIPLE

In this section, we will prove the following variational principle. Let
P ða; sÞ be defined as in the last section.

Theorem 5.1. For any a 2 LF and s 2 R; we have

P ða; sÞ ¼ max
m2FFðaÞ

hgðmÞ � s
Z

log jjDxgjj dmðxÞ
� �

:

Proof. Part I. Let m be a g-invariant measure in FFðaÞ; i.e., a ¼
R
F dm:

We show that

P ða; sÞ5hgðmÞ � s
Z

logjjDxgjj dmðxÞ:

By Proposition 2.6, there exists n 2 MsðSAÞ such that m ¼ n 8 p
�1 and

hgðnÞ ¼ hgðmÞ: Let us assume at first that n is ergodic. Fix e > 0: For any
n 2 N ; let F n ð� F ða; n; eÞÞ be the collection of all the n-cylinders ½o� in
SA such that there exists y 2 Ro satisfying

1

n

Xn�1

i¼0

FðgiyÞ � a

�����
�����5e ð5:1Þ

and

1

n

Xn�1

i¼0

logjjDgiðyÞgjj �
Z

logjjDxgjj dmðxÞ

�����
�����5e: ð5:2Þ

We claim that the sequence fF ng satisfies

lim inf
n!1

log #F n

n
5hgðmÞ:

Indeed let Ej ¼
S
f½o� : ½o� 2 F jg: By (5.1) and (5.2) and Birkhoff’s ergodic

theorem,

n
[
n50

\
j5n

Ej

 !
¼ 1:
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Hence there exists an integer N such that nð
T

j5N EjÞ > 0; which implies that
dimBð

T
j5N EjÞ5dimH n ¼ hsðnÞ

log m; and by the definition of box dimension,

lim inf
n!1

log #F n

n
5ðlogmÞ dimB

\
j5N

Ej

 !
5hsðnÞ ¼ hgðmÞ

and the claim follows.
By (4.1) and (5.2), it is easy to see that for n large enough and any

o 2 F n;

log diamðRoÞ þ
Z

log jjDxgjj dmðxÞ
����

����52e: ð5:3Þ

Recall that P ða; sÞ ¼ lime!0 lim infn!1 log f ða; s; n; eÞ=n with f ða; s; n; eÞ ¼P
½o�2F ða;n;eÞ diamðRoÞ

s: By applying the claim and (5.3), we have the desired
inequality for P ða; sÞ:

To complete the proof, we consider now n without assuming the
ergodicity. By Corollary 2.5, there exists a sequence of ergodic
measures fnng which converges to n in the weakn topology and satisfies
limn!1 hsðnnÞ ¼ hsðnÞ: Let mn ¼ nn 8 p

�1 and an ¼
R
F dmn; then

P ðan; sÞ5hgðmnÞ � s
Z

log jjDxgjj dmnðxÞ:

Letting n ! 1; then an ! a; and by the upper semi-continuity of
P ð�; sÞ; we have the desired inequality again.

Part II. In what follows, we show that for any a 2 LF and s 2 R; there
exists *mm 2 FFðaÞ such that

P ða; sÞ4hgð *mmÞ � s
Z

log jjDxgjj d *mmðxÞ: ð5:4Þ

For each integer k > 0; we define two functions on SA by

CkðlÞ ¼ max
y2pðIk ðlÞÞ

FðyÞ; xkðlÞ ¼ max
y2pðIk ðlÞÞ

log jjDygjj;

where IkðlÞ denotes the k-cylinder which contains l: It is clear that CkðlÞ;
xkðlÞ depend only on the first k coordinates of l: Since g is C1þd; log jjDxgjj is
H .oolder continuous. Since p : SA ! J is also H .oolder continuous there exists
C > 0 and 05r51 such that

jxkðlÞ � log jjDpðlÞgjj j5Crk :

To prove (5.4), we first observe that given any e > 0; if k51 is sufficiently
large,

jCkðlÞ � FðpðlÞÞj5
e
2

8l 2 SA:
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Similarly to the definitions of F ða; n; eÞ and f ða; s; n; eÞ for F; we define

F kða; n; eÞ ¼ ½o� : o 2 SA;n;
1

n

Xn�1

j¼0

CkðsjðlÞÞ � a

�����
�����5e for some l 2 ½o�

( )

and

f kða; s; n; eÞ ¼
X

½o�2F k ða;n;eÞ

diamðRoÞ
s:

It is clear that for any s 2 R and sufficiently large k;

F ða; n; e=2Þ � F kða; n; eÞ and f ða; s; n; e=2Þ4f kða; s; n; eÞ:

For o 2 SA;nþk�1 and l 2 ½o�; by the definition of Ck ; we have Ckðsj�1lÞ ¼
Ckðij � � � ijþk�1Þ if o ¼ i1 � � � ij � � � ijþk � � � inþk�1: We define an integer valued
function fo : SA;k ! Zþ by

foðtÞ ¼ #fk-segments ij � � � ijþk�1 of o that equals tg; t 2 SA;k :

It is clear that
P

tfoðtÞ ¼ n: Let Pk ¼ ffo : o 2 SA;nþk�1; ½ojn� 2
F kða; s; n; eÞg: Since foðtÞ4n for each o 2 SA;nþk�1 and t 2 SA;k ; #Pk4n#SA;k

4nm
k
: For each f 2 Pk ; we let TðfÞ denote the collection of all the

o 2 SA;nþk�1 such that f ¼ fo: Then for fo ¼ f and l 2 ½o�;

1

n

Xn�1

j¼0

CkðsjlÞ ¼
1

n

X
t2SA;k

fðtÞCkðtÞ: ð5:5Þ

The same is true if we replace Ck by xk : Also

f kða; s; n; eÞ4
X
f2Pk

max
o;fo¼f

diamðRojnÞ
s

� �
#TðfÞ

4 nm
k
max
f2Pk

max
o;fo¼f

diamðRojnÞ
s

� �
#TðfÞ:

It follows that

log f kða; s; n; eÞ
n

4 max
f2Pk

log #TðfÞ
n

þ
s
n

max
o;fo¼f

log diamðRojnÞ
� �

þ O
log n
n

� �
: ð5:6Þ
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(The constant in ‘O’ depends upon k:) For a fixed f 2 Pk ; ffðtÞ=n: t 2 SA;kg
defines a probability vector. For the corresponding o 2 SA;nþk�1; if we let
n ! 1; the sequence of vectors ffð�Þ=ng has a weakn-accumulation point.
By Lemma 3 in [13], this weakn-accumulation point belongs to Dk ; and
moreover for any Z > 0; there is N ¼ N ðZÞ such that when n > N ; there exists
a positive p 2 Dk such that

fðtÞ
n

� pðtÞ
����

����5Z; pðtÞ >
Z

mkþ1
; t 2 SA;k :

Consider the ðk � 1Þ-Markov measure np defined by p (Proposition 2.3), for
any cylinder ½o� 2 TðfÞ with o ¼ ðxiÞnþk�1

i¼1 ; fo ¼ f; we have

npð½o�Þ ¼
pðojkÞ
tðojkÞ

Y
t2SA;k

tðtÞfðtÞ5
Z

mkþ1

Y
t2SA;k

tðtÞfðtÞ :¼ a;

where

tðtÞ ¼
pði1; . . . ; ikÞP

epði1; . . . ; ik�1; eÞ

for t ¼ i1 � � � ik : Then a#TðfÞ4npð
S

½o�2TðfÞ½o�Þ41 and hence

log #TðfÞ
n

4 �
X
t

fðtÞ
n

log tðtÞ þ O
jlog Zj
n

� �

4 �
X
t

pðtÞlog tðtÞ þ O
jlog Zj
n

þ Z jlog Zj
� �

¼ hsðnpÞ þ O
jlog Zj
n

þ Z jlog Zj
� �

:

(The last equality follows by Proposition 2.2.)
For the second expression in (5.6), we have by (4.1),

log diamðRojnÞ4logð2K2Þ �
Xn�1

i¼0

log jjDgiðxÞgjj
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for any x 2 Ro: Hence for any l 2 ½o�;

1

n
log diamðRojnÞ4

1

n
logð2K2Þ �

1

n

Xn�1

i¼0

xkðsiðlÞÞ þ Crk

4
1

n
logð2K2Þ þ Crk �

1

n

X
t2SA;k

foðtÞxkðtÞ ðby ð5:5ÞÞ

4
1

n
logð2K2Þ þ Crk �

Z
xkðyÞ dnpðyÞ þ mkZjjxk jj

4
1

n
logð2K2Þ þ 2Crk þ mkZjjxk jj �

Z
log jjDpðyÞgjj dnpðyÞ:

Let FnðnpÞ :¼
R
F 8 p dnp; then

jFnðnpÞ � aj4
Z

Ck dnp � a
����

����þ e

¼
X
t

pðtÞCkðtÞ � a

�����
�����þ e

4
X
t

fðtÞ
n

CkðtÞ � a

�����
�����þ mkZjjCk jj þ e

¼
1

n

Xn�1

j¼0

CkðsjðlÞÞ � a

�����
�����þ mkZjjCk jj þ e ðby ð5:5ÞÞ

4mkZjjCk jj þ 2e:

We conclude from (5.6) that

log f ða; s; n; e=2Þ
n

4
log f kða; s; n; eÞ

n

4 sup hsðnÞ � s
Z

log jjDpðyÞgjj dnðyÞ
� �

þ O
jlog Zj þ log n

n
þ Z jlog Zj

� �
þ 2Crk ;

where the supremum is taken over n 2 Dk and satisfies jFnðnÞ � aj5
mkZjjFjjk þ 2e: Let n ! 1 and then Z ! 0; we get

lim sup
n!1

log f kða; s; n; eÞ
n

4 sup
jFnðnÞ�aj43e

hsðnÞ � s
Z

log jjDpðyÞgjj dnðyÞ
� �

þ 2Crk :
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Note that the set of invariant measures n on SA such that jFnðnÞ � aj43e is
compact; by using the upper semi-continuity of hsðnÞ and letting e ! 0; then
k ! 1; we can find *nn such that

R
F 8 p d *nn ¼ a and

P ða; sÞ ¼ lim
e!0

lim sup
n!1

log f ða; s; n; eÞ
n

4hsð*nnÞ � s
Z

log jjDpðyÞgjj d *nnðyÞ:

Take *mm ¼ *nn 8 p
�1; then *mm 2 FFðaÞ and by Proposition 2.6,

P ða; sÞ4hgð *mmÞ � s
Z

log jjDxgjj d *mmðxÞ:

This completes the proof. ]

6. PROOF OF THE MAIN THEOREMS

From the results in the previous sections, we can conclude our first main
theorem easily.

Theorem 6.1. Let J be a repeller of an expanding, C1þd-conformal

topological mixing map g: Let F : J ! Rd be a continuous function. Then for

any a 2 LF;

dimH EðaÞ ¼ dimP EðaÞ ¼ max
m2FFðaÞ

hgðmÞR
log jjDxgjj dmðxÞ

Moreover dimH EðaÞ is an upper semi-continuous function of a:

Proof. It follows from Proposition 4.5 that

dimH EðaÞ ¼ dimP EðaÞ ¼ LðaÞ;

where LðaÞ ¼ s is the unique solution that satisfies P ða; sÞ ¼ 0: Thus by
Theorem 5.1,

0 ¼ max
m2FFðaÞ

fhgðmÞ � LðaÞ
Z

log jjDxgjj dmðxÞg:

It implies that

LðaÞ ¼ max
m2FFðaÞ

hgðmÞR
log jjDxgjj dmðxÞ

as is desired. The upper semi-continuity of dimH EðaÞ follows from Corollary
4.4. ]

We call a point x 2 J a divergent point if the limit aðxÞ ¼ limn!1

n�1
P n�1

j¼0Fðg
jxÞ does not exist. In the following, we shall prove that the set
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of divergent points is of full dimension if it is not an empty set. Without loss
of generality, assume that F takes real value (instead of the vector value); we
let

%
aðxÞ and %aaðxÞ be the lim inf and lim sup of n�1

P n�1
j¼0Fðg

jxÞ: For any b5a;
set

*EEðaÞ ¼ x 2 J : lim
k!1

1

nk

Xnk�1

j¼0

FðgjxÞ ¼ a for some fnkg1k¼1 " 1

( )
;

%EEðaÞ ¼ fx 2 J : %aaðxÞ ¼ ag;

%
EðaÞ ¼ fx 2 J :

%
aðxÞ ¼ ag;

*EEða;bÞ ¼ fx 2 J : %aaðxÞ ¼ a;
%
aðxÞ ¼ bg:

Lemma 6.2. For any a 2 LF; dimH
*EEðaÞ4LðaÞ:

Proof. Assume that LðaÞ5t; we will show that dimH
*EEðaÞ4t: By the

strict decreasing property of P ða; �Þ; we have P ða; tÞ50: Hence there exists
e > 0 and d > 0 such that

lim sup
n!1

log f ða; t; n; eÞ
n

5� d:

This implies f ða; t; n; eÞ5expð�ndÞ for n5N0: Since

*EEðaÞ �
\1
k¼0

[
n5k

x 2 J :
1

n

Xn�1

j¼0

FðgjxÞ � a

�����
�����5e

( )

�
\1
k¼N0

[
n5k

x 2 J :
1

n

Xn�1

j¼0

FðgjxÞ � a

�����
�����5e

( )
;

for each k > N0; the collection

G‘ ¼ Ro : ½o� 2 F ða; n; eÞ for some n5‘f g

is a cover of *EEðaÞ: Note thatX
Ro2G‘

ðdiam RoÞ
t ¼

X
n5‘

X
½o�2F ða;n;eÞ

ðdiam RoÞ
t

¼
X
n5‘

f ða; t; n; eÞ4
expð�dÞ

1� expð�dÞ
51
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for each ‘; and we have

Htð *EEðaÞÞ4
expð�dÞ

1� expð�dÞ
51:

It follows that dimH
*EEðaÞ4t: ]

From Theorem 6.1 and Lemma 6.2, we have the following immediately.

Proposition 6.3. For any a 2 LF;

dimH
%EEðaÞ ¼ dimH

%
EðaÞ ¼ dimH

*EEðaÞ ¼ LðaÞ:

Remark. We point out that by modifying Lemma 6.2, we can prove
dimP

T
a2LF

*EEðaÞ ¼ dimH J : For simplicity we omit the proof since we do not
use this result here.

Proposition 6.4. For any a 2 LF and b 2 LF satisfying b5a;

dimH
*EEða;bÞ ¼ minðLðaÞ;LðbÞÞ:

Proof. By Lemma 6.2, dimH
*EEða;bÞ4minðLðaÞ;LðbÞÞ is obvious. For

the reverse inequality, we use the similar idea in the proof of the lower
bound in Proposition 4.5; we will only give a sketch here.

For any t5minðLðaÞ;LðbÞÞ; by Proposition 4.3, there are ‘j " 1 and ej # 0
such that f ða; t; ‘2j�1; e2j�1Þ > 1; f ðb; t; ‘2j; e2jÞ > 1; j ¼ 1; 2; . . . : Write simply
F ‘2j�1

¼ F ða; ‘2j�1; e2j�1Þ; F ‘2j ¼ F ðb; ‘2j; e2jÞ; j ¼ 1; 2; . . . ; and define a new
sequence f‘njg in the following manner:

‘1; . . . ; ‘1|fflfflfflfflffl{zfflfflfflfflffl}
N1

; ‘2; . . . ; ‘2|fflfflfflfflffl{zfflfflfflfflffl}
N2

; . . . ; ‘j; . . . ; ‘j|fflfflfflfflffl{zfflfflfflfflffl}
Nj

; . . . ;

where Nj; j51 diverge to 1 fast. By the same proof as in Proposition 4.5,
we can show that the corresponding Moran set Yn is contained in *EEða;bÞ
and dimH

*EEða; bÞ5dimH Yn ¼ lim infsk5t: ]

Lemma 6.5. If limk!1
1
nk

Pnk�1
j¼0 FðgjxÞ ¼ a for some x 2 J and

fnkg1k¼1 % 1; then a 2 LF:

Proof. For each k 2 N; let ek ¼ j 1nk
P nk�1

j¼0 FðgjxÞ � aj and pick
ok 2 SA;nk such that x 2 Rok : We define a new sequence in the
following manner:

fo1; . . . ;o1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
N1

;o2; . . . ;o2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
N2

; . . . ;oj; . . . ;oj|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Nj

; . . .g;

where N1 ¼ 1 and Nj ¼ 2njþ1þNj�1 ; j52: We relabel this sequence as fon
i g;

and define f‘ni g as the length sequence of fon
i g: Take y 2

T1
k¼1 Ron

1
���on

k
; we
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show below that

lim
n!1

1

n

Xn�1

j¼0

FðgjyÞ ¼ a;

which implies a 2 LF:
For a large integer n; there is one unique integer k satisfying

Xk�1

i¼1

ð‘ni þMÞ4n5
Xk
i¼1

ð‘ni þMÞ:

Then

Xn�1

j¼0

FðgjyÞ � na

�����
�����

4
Xk�1

i¼1

X‘ni �1

j¼0

ðFðg‘
n

1
þ���þ‘ni�1

þði�1ÞMþjðyÞÞ � aÞ

�����
�����þ ðkM þ ‘nk Þð2jjFjjÞ

4
Xk�1

i¼1

X‘ni �1

j¼0

ðFðg‘
n

1
þ���þ‘ni�1

þði�1ÞMþjðyÞÞ � FðgjxÞÞ

�����
�����

þ
Xk�1

i¼1

X‘ni �1

j¼0

ðFðgjxÞ � aÞ

�����
�����þ ðkM þ ‘nk Þð2jjFjjÞ

4
Xk�1

i¼1

X‘ni �1

j¼1

jjFjjj

 !
þ
Xk�1

i¼1

ðeni ‘
n

i Þ þ ðkM þ ‘nk Þð2jjFjjÞ:

Since limi!1 ‘ni ¼ 1 and limk!1
‘kP
k�1
i¼1 ‘

n
i
¼ 0 (by the definition of Nj), we

have

lim
n!1

1

n

Xn�1

j¼0

FðgjyÞ � na

�����
����� ¼ 0;

which implies a 2 LF: ]

Theorem 6.6. Let J be a repeller of an expanding, C1þd-conformal

topological mixing map g: Let F : J ! Rd be a continuous function. Then

either

(i) all points x 2 J have the same ergodic limit; or

(ii) the set of points x such that the limit defining aðxÞ does not exist is of

the same Hausdorff dimension as that of J .
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Proof. We can assume, without loss of generality, that F takes real
value. Let PJ ðfÞ be the standard topological pressure with respect to g where
the potential f is a continuous function on J [21, Chap. 4]. If we consider
fðxÞ ¼ s log jjDxgjj; s 2 R; then Bowen’s equation states that there exists a
unique t such that

PJ ð�t log jjDxgjjÞ ¼ 0

(see [21, Appendix II]). Since g : M ! M is a C1þd-conformal expanding
map, there is a unique equilibrium measure m1 corresponding to the H .oolder
continuous potential function �t log jjDxgjj and

dimH J ¼ dimH m1 ¼
hgðm1ÞR

log jjDxgjj dm1ðxÞ
ð6:1Þ

[21, Theorem 20.1]. Set a ¼
R
FðxÞ dm1ðxÞ: If (i) of the theorem does not hold,

we can assume, without loss of generality, that there exists x 2 J ; b5a such
that

%
aðxÞ ¼ b: By Lemma 6.5, b 2 LF: Thus by Proposition 6.3, there exists

m2 2 MgðJ Þ with
R
FðxÞ dm2ðxÞ ¼ b and

dimH
*EEðbÞ ¼

hgðm2ÞR
log jjDxgjj dm2ðxÞ

: ð6:2Þ

For any d > 0; consider *EEða; ð1� dÞaþ dbÞ: It is clear that

*EEða; ð1� dÞaþ dbÞ � fx 2 J :
%
aðxÞ5%aaðxÞg:

Let us denote the second set by F : By Proposition 6.4, dimH
*EEða; ð1� dÞaþ

dbÞ ¼ minfLðaÞ; Lðð1� dÞaþ dbÞg and by Proposition 4.5 and
Theorem 6.1,

Lðð1� dÞaþ dbÞ5
hgðð1� dÞm1 þ dm2ÞR

log jjDxgjj dðð1� dÞm1ðxÞ þ dm2ðxÞÞ

¼
ð1� dÞhgðm1Þ þ dhgðm2ÞR

log jjDxgjj dðð1� dÞm1ðxÞ þ dm2ðxÞÞ
:

Let d ! 0; we have dimH F5dimHðm1Þ ¼ dimHðJ Þ: This completes the proof
of Theorem 6.6. ]
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