
A CLASS OF SELF-AFFINE SETS AND SELF-AFFINE MEASURES

DE-JUN FENG AND YANG WANG

1. Introduction

Let I = {φj}mj=1 be an iterated function system (IFS) consisting of a family of contractive

affine maps on Rd. Hutchinson [13] proved that there exists a unique compact setK = K(I),

called the attractor of the IFS I, such that K =
⋃m
j=1 φj(K). Moreover, for any given

probability vector p = (p1, . . . , pm), i.e. pj > 0 for all j and
∑m

j=1 pj = 1, there exists a

unique compactly supported probability measure ν = νI,p such that

(1.1) ν =

m∑
j=1

pj ν ◦ φ−1
j .

This paper is devoted to the study of fundamental properties of a class of self-affine sets and

measures, such as the Lq spectrum, the Hausdorff dimension and the entropy dimension.

It is well known that problems concerning self-affine sets and measures are typically

difficult. Questions that may be trivial in the self-similar setting are often intractable in

the self-affine setting. A telling example is calculating the Hausdorff and box dimensions of

the attractor of an IFS I = {φj}mj=1. If all φj are similitudes and I satisfies the so-called

open set condition (OSC) the Haudorff dimension and the box dimension of the attractor

K(I) agree, and they are easily computable by the formula
m∑
j=1

ρ
dimH(K)
j = 1

where ρi denotes the contraction ratio of φj , see e.g. Falconer [5]. Even without the open set

condition the dimension of K(I) can often be computed if I belongs to a more general class

called the finite type IFS, see e.g. Lalley [16] and Ngai and Wang [23] and the references

therein. However this is no longer the case when φi are affine maps. Even under the open
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set condition we know how to compute the Hausdorff dimension of K(I) only for very

special I’s, and for which the solutions are quite nontrivial. McMullen [21] and Bedford

[1] independently computed the Hausdorff and box dimensions of K(I) for I = {φj}mj=1 in

which all φj have the form

(1.2) φj(x) =

[
n−1 0

0 k−1

]
x+

[
aj/n
bj/k

]
where all aj , bj are integers, 0 ≤ aj < n and 0 ≤ bj < m. They found that the Hausdorff

dimension and the box dimension are not the same in general. Lalley and Gatzouras [17],

in a highly technical paper along the same spirit of [21], computed the Hausdorff and box

dimensions for a broader class of IFS I = {φj}mj=1, in which φj map the unit square (0, 1)2

into disjoint rectangles having certain geometric arrangement inside the unit square. More

precisely, in the Lalley-Gatzouras class all rectangles φj((0, 1)2) are parallel to the axes and

have longer sides parallel to the x-axis. Furthermore once projected onto the x-axis these

rectangles are either identical or disjoint. Aside from a few other special cases such as the

graph-directed McMullen class studied by Kenyon and Peres [14], the Lalley-Gatzouras class

(which includes the McMullen class) remains the only deterministic class of self-affine sets

whose Hausdorff dimension are known. In [10] Hu obtained the box dimension of a class of

nonlinear self-affine sets in terms of the topological pressure. More precisely, he considered

expanding maps on R2 which leaves invariant a “strong unstable foliation” and obtained a

formula for the box-dimension of its closed invariants sets involving topological pressures.

Along another direction, Falconer, in a celebrated paper [4], gave a variational formula for

the Hausdorff and box dimensions for “almost all” self-affine sets under some assumptions.

Later, Hueter and Lalley [12] and Solomyak [27] proved that Falconer’s formula remains

true under some weaker conditions.

We focus on the Lq spectrum and the Hausdorff and entropy dimensions of a self-affine

measure in this paper. These quantities are important basic ingredients in the study of

fractal geometry, particularly in the study of multifractal phenomena. As a by-product we

also obtain results on dimensions of self-affine sets. Let ν be a compactly supported measure

in Rd and q ∈ R. For each n ≥ 1 let Dn be the set of cubes {[0, 2−n)d + α : α ∈ 2−nZd}.
The Lq spectrum of ν is defined as

(1.3) τ(ν, q) = lim
n→∞

log τn(ν, q)

−n log 2
, where τn(ν, q) =

∑
Q∈Dn

(ν(Q))q,
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if the limit exists. Related to τ(ν, q) are the Lq dimension D(ν, q) and the entropy dimension

h(ν) of ν, defined respectively by

(1.4) D(ν, q) :=
τ(ν, q)

q − 1

and

(1.5) h(ν) := lim
n→∞

∑
Q∈Dn

ν(Q) log(1/ν(Q))

n log 2

if the limit exists. For a similarity IFS I = {φj}mj=1 with the open set condition and any

probability vector p = (p1, . . . , pm) the Lq spectrum of ν = νI,p is known to be analytic in

q ∈ R, given by the equation

(1.6)
m∑
j=1

pqj ρ
−τ(ν,q)
j = 1,

where ρj denotes the contraction ratio of φj , see Cawley and Mauldin [2] and Olsen [24].

Moreover, the Legendre transform τ∗(ν, α) of τ(ν, q) given by

(1.7) τ∗(ν, α) := inf
{
qα− τ(ν, q) : q ∈ R

}
equals the Hausdorff dimension of the set

K(α) :=
{
x ∈ supp (ν) : lim

r→0+

log ν
(
Br(x)

)
log r

= α
}
.

For a self-similar measure without the open set condition, however, the Lq spectrum is

generally difficult to obtain and is calculated for only a few special cases, see [18, 7, 8, 19].

One important such special case is the class of finite type IFS’s ([23]), a substantially larger

class than the class with the OSC. For a finite type IFS in R, Feng [9] expressed τ(ν, q)

via products of certain nonnegative matrices, and proved that τ(ν, q) is differentiable for

q ∈ (0,∞).

As one would expect, even less is known about the Lq spectrum and the Hausdorff and

entropy dimensions of a self-affine measure. King [15] calculated τ(ν, q) for ν = νI,p where

the IFS I is in the McMullen class (1.2). He gave a detailed multifractal analysis for such

measures. Olsen [25] generalized King’s results to dimensions d ≥ 3. Peres and Solomyak

[26] proved the existence of τ(ν, q) and h(ν) for the class of self-conformal measures, and

asked whether they also exist for all self-affine measures. In [6], Falconer gave a varia-

tional formula for the Lq-spectrum (1 < q < 2) for ”almost all” self-affine sets under some

assumptions.
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In this paper we calculate the Lq spectrum and the entropy dimension for a class of

self-affine measures in R2. This class of self-affine measures νI,p requires only that the

underlying IFS’s I = {φj}mj=1 satisfy the rectangular open set condition (ROSC). It is a

much larger class than the McMullen class studied in [15] and the Lalley-Gatzouras class.

Simply speaking, I = {φj}mj=1 in R2 satisfies the ROSC if there is an open rectangle T

such that the maps φi map T into disjoint rectangles parallel to the axes inside T . As an

application we obtain the formula for the box dimension of K(I) under the ROSC as well

as the Hausdorff dimension of νI,p under some additional assumptions. Our results on the

box dimension can be viewed as an extension of the box dimension results by Lalley and

Gatzouras [17] and Hu [10].

2. Statement of Main Results

We first introduce some definitions and notations. The ambient dimension in the rest

of the paper will be set to d = 2, although most of the definitions extend easily to higher

dimensions. Let I = {φj}mj=1 be an affine IFS in R2. Throughout this paper we shall always

assume that φj(x, y) = (ajx+ cj , bjy+ dj) with 0 < aj , bj < 1 for all j. Thus each φj maps

any rectangle (0, R1)× (0, R2) + v to a rectangle parallel to the axes.

Definition 2.1. We say that I = {φj}mj=1 satisfies the rectangular open set condition

(ROSC) if there exists an open rectangle T = (0, R1) × (0, R2) + v such that {φj(T )}mj=1

are disjoint subsets of T .

For a self-affine measure ν = νI,p associated with I and probability vector p we shall

define the projections νx and νy of ν onto the x- and y-axes, which we rely on heavily in

this paper. Let Ix := {πx ◦ φj ◦ π−1
x = ajx + cj} and Iy := {πy ◦ φj ◦ π−1

y = bjy + dj}
be the projections of I, where πx and πy are the canonical projections of R2 onto the x-

and y-axes, respectively. We define νx = νIx,p and νy = νIy ,p. It is easy to check that

νx = ν ◦ π−1
x and νy = ν ◦ π−1

y . For any d = (d1, d2, . . . , dm) we use Γ(d) to denote

(2.1) Γ(d) :=
{

t = (t1, t2, . . . , tm) : tj ≥ 0,
∑m

j=1 tj = 1,
∑m

j=1 djtj ≥ 0
}
.

We also use log d to denote (log d1, log d2, . . . , log dm) (if all dj > 0). Our main theorem

concerning the Lq spectrum of ν is:
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Theorem 2.1. Let I = {φj}mj=1 be an affine IFS in R2 satisfying the ROSC, with φj(x, y) =

(ajx + cj , bjy + dj) and 0 < aj , bj < 1 for all j. Let a = (a1, a2, . . . , am) and b =

(b1, b2, . . . , bm). Suppose that p = (p1, p2, . . . , pm) is any probability vector. Then for q > 0

the Lq spectrum of ν = νI,p is τ(ν, q) = min(θa, θb), where

θa = inf
t∈Γ(logb−log a)

t ·
(
− log t− τ(νy, q)(log b− log a) + q log p

)
t · log a

θb = inf
t∈Γ(log a−logb)

t ·
(
− log t− τ(νx, q)(log a− log b) + q log p

)
t · log b

.

We point out that if aj < bj for all j then the set Γ(eb) is empty, and if so we have

τ(ν, q) = θa. In fact we prove:

Theorem 2.2. Under the hypotheses of Theorem 2.1, assume furthermore that aj ≤ bj for

all j. Then τ(ν, q) satisfies

(2.2)
m∑
j=1

a
τ(νy ,q)−τ(ν,q)
j b

−τ(νy ,q)
j pqj = 1.

Theorem 2.2 allows us to easily calculate the Lq spectrum if τ(νy, q) is known, which is

the case if I is in the McMullen or Lalley-Gatzouras class. Moreoever, Theorem 2.1 allows

us to calculate τ(ν, q), at least in theory, if the projections of I onto the two axes are of

finite type by the result of Feng [9], making the Lq spectrum computable for a considerably

larger class of IFS’s than the Lalley-Gatzouras class.

One of the applications of the above two theorems is a formula for the box dimension

of K = K(I). It is easy to see that K = supp (ν) and by definition dimB(K) is simply

−τ(ν, 0). Therefore we also obtain as a by-product of Theorems 2.1 and 2.2 a formula for

dimB(K):

Corollary 2.3. Under the hypotheses of Theorem 2.1, we have dimB(K) = max(ua, ub),

where

ua = sup
t∈Γ(logb−log a)

t ·
(
log t− dimB(πy(K))(log b− log a))

t · log a

ub = sup
t∈Γ(log a−logb)

t ·
(

log t− dimB(πx(K))(log a− log b))

t · log b
.
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If assume furthermore that aj ≤ bj for all j, then dimB(K) satisfies

(2.3)
m∑
j=1

a
dimB(K)−dimB(πy(K))
j b

dimB(πy(K))
j = 1.

In particular, if dimB(πy(K)) = 1 furthermore, then

(2.4)

m∑
j=1

a
dimB(K)−1
j bj = 1.

The computable cases in the above corollary for dimB(K) clearly include the Lalley-

Gatzouras class, in which aj ≤ bj and Iy satisfies the OSC. In [10] Hu obtained a formula

for the box-dimension dimB(K) in terms of topological pressures when aj ≤ bj uniformly. In

a personal communication, Hu informed us that (2.3) can be also derived from his formula

after some nontrivial calculations.

Another application of the theorems is computing the Hausdorff dimension of a self-affine

measure. Let ν be a finite Borel measure in Rd. It is said to be exactly dimensional if there

exists a constant c such that

lim
r→0

log ν(Br(x))

log r
= c ν − a.e. x ∈ Rd.

Ngai [22] proved that if τ(ν, q) is differentiable at q = 1 then ν is exactly dimensional, and

dimH(ν) = c = d
dq τ(ν, 1). As a corollary of Theorem 2.2 we obtain a Ledrappier-Young

type formula (see [20]) for dimH(ν):

Theorem 2.4. Under the hypotheses of Theorem 2.2, if τ(νy, q) is differentiable at q = 1

then so is τ(ν, q), and

dimH(ν) =
p ·
(
log p + dimH(νy)(log a− log b)

)
p · log a

.

In particular if furthermore aj = a and bj = b for all j and a ≤ b then

dimH(ν) =
p · log p + dimH(νy) log(a/b)

log a
.

Our technique can also be used to study the entropy dimension, which for a Borel measure

ν is defined in (1.5). It is known [26] that the entropy dimension exists for all self-similar

(in fact self-conformal) measures. We determine the entropy dimension for the self-affine

measures with ROSC:
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Theorem 2.5. Under the hypotheses of Theorem 2.1,

h(ν) =


−h(νy)p · (log b− log a) + p · log p

p · log a
if p · (log b− log a) ≥ 0,

−h(νx)p · (log a− log b) + p · log p

p · log b
otherwise.

3. Some Combinatorial Results

We establish two combinatorial results that will be needed to prove our main theorems

in this paper.

First let us introduce some notations on symbolic spaces. These notations are mostly

standard. We use Σ = Σ(m) to denote the alphabet {1, 2, . . . ,m}. Whenever there is no

ambiguity we shall use Σ rather than Σ(m), as m is usually fixed in this paper. The set of

all words in Σ of length n is denoted by Σn, with Σ∗ :=
⋃
n≥0 Σn and ΣN being the set of

all one-sided infinite words. Here we adopt the convention that Σ0 contains only the empty

word ∅. Associated with Σ∗ are two actions: The left shift action σ and and the right shift

action δ, defined respectively by σ(∅) = δ(∅) = ∅ and

σ(i1i2 · · · ik) = i2 · · · ik, δ(i1i2 · · · ik) = i1 · · · ik−1

for each i1i2 · · · ik ∈ Σ∗ with k ≥ 1.

We shall use boldface letters i, j, l to denote elements in Σ∗ or ΣN. For each sequence

a = (aj)
m
j=1 we may extend it to a function fa : Σ∗ −→ R by fa(∅) = 1 and fa(i) = ai1 · · · aik

for i = i1 · · · ik. Most of the time, because there is no ambiguity, we shall use the simplified

notation ai in place of fa(i).

The above are general purpose notations. Now we introduce some that are specific to

this paper. Suppose that a = (aj)
m
j=1 and b = (bj)

m
j=1 are two sequences with 0 < aj , bj < 1

for all j. For any 0 < r < 1 let

Ar := Ar(a,b) =
{

i ∈ Σ∗ : aδ(i) ≥ r, bδ(i) ≥ r, min (ai, bi) < r
}

and

Aar := {i ∈ Ar : ai ≤ bi}, Abr := {i ∈ Ar : ai > bi}.
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Suppose that c = (cj)
m
j=1 is another sequence of positive real numbers. The objective of

this section is to evaluate several limits. Set

Θa = Θa(c) := lim
r→0+

log
(∑

i∈Aar ci
)

log r
, and

Θb = Θb(c) := lim
r→0+

log
(∑

i∈Abr ci
)

log r
.

Similarly, for any probability vector p = (p1, p2, . . . , pm) set

Ωa = Ωa(c,p) := lim
r→0+

∑
i∈Aar pi log ci

log r
, and

Ωb = Ωa(c,p) := lim
r→0+

∑
i∈Abr pi log ci

log r
.

We prove the following results:

Proposition 3.1. Given sequences a = (aj)
m
j=1 and b = (bj)

m
j=1 with all aj , bj in (0, 1) let

ea = log b− log a and eb = log a− log b.

(i) If aj ≤ bj for some 1 ≤ j ≤ m then Θa(c) exists, and

Θa(c) = inf
t∈Γ(logb−log a)

t ·
(
− log t + log c

)
t · log a

,

where for any vector d Γ(d) is defined in (2.1).

(ii) If aj > bj for some 1 ≤ j ≤ m then Θb(c) exists, and

Θb(c) = inf
t∈Γ(log a−logb)

t ·
(
− log t + log c

)
t · log b

.

(iii) Θa(c) (resp. Θb(c)) is continuous with respect to c if it exists.

Proposition 3.2. Under the assumptions of Proposition 3.1, and let p be a probability

vector.

(i) If p · (log b− log a) > 0 then

Ωa(c,p) =
p · log c

p · log a
, and Ωb(c,p) = 0.

(ii) If p · (log b− log a) < 0 then

Ωb(c,p) =
p · log c

p · log b
, and Ωa(c,p) = 0.

(iii) If p · (log b− log a) = 0 then

lim
r→0+

∑
i∈Aar pi log(bi/ai)

log r
= lim

r→0+

∑
i∈Abr pi log(ai/bi)

log r
= 0,
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and

lim
r→0+

∑
i∈Ar pi log ci

log r
=

p · log c

p · log a
,

We need to first prove some lemmas. For any i = i1i2 · · · in ∈ Σ∗ let [i] ⊂ ΣN denote the

i-cylinder

[i] := {j1j2j3 · · · ∈ ΣN : jk = ik for 1 ≤ k ≤ n}.

Lemma 3.3. For any 0 < r < 1, {[i] : i ∈ Ar} is a partition of ΣN.

Proof. It is clear that {[i] : i ∈ Ar} are distinct subsets in ΣN. Furthermore, for any

j = j1j2j3 · · · ∈ ΣN there exists a smallest n such that min(aj1 · · · ajn , bj1 · · · bjn) < r.

Therefore j ∈ [j1 · · · jn] and [j1 · · · jn] ∈ Ar. This proves the lemma.

Lemma 3.4. Let n = n1 + n2 + · · ·+ nm with each nj ∈ N. Then

1

n
log
( n!

n1!n2! · · ·nm!

)
= −

m∑
j=1

tj log tj +O
( log n

n

)
,

where tj =
nj
n .

Proof. We apply Stirling’s formula log(q!) = q log q − q + 1
2 log q + O(1). Thus log(n!) =

n log n− n+O(log n). Since m is fixed in our setting,

log(

m∏
j=1

nj !) =

m∑
j=1

(nj log nj − nj +O(log nj)) =

m∑
j=1

nj log nj − n+O(log n).

Now log nj = log(tjn) = log tj + log n. It follows that

1

n
log
( n!

n1!n2! · · ·nm!

)
= log n−

m∑
j=1

nj log nj
n

+O
( log n

n

)
= −

m∑
j=1

tj log tj +O
( log n

n

)
.

For each i = i1i2 · · · in ∈ Σ∗ we use |i| = n to denote the length of i and |i|j = #{k : ik =

j} to denote the number of occurences of the letter j in i.

Lemma 3.5. There exists a constant C > 1 such that C−1 log r−1 ≤ |i| ≤ C log r−1 for any

0 < r < 1
2 and i ∈ Ar.
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Proof. Let s+ = max {aj , bj : 1 ≤ j ≤ m} and s− = min {aj , bj : 1 ≤ j ≤ m}.
Then we have s

|i|
− ≤ ai, bi ≤ s

|i|
+ for any i ∈ Σ∗. The lemma follows by setting C =

max (| log s−|, | log s+|−1 + | log 2|−1). Note that the condition 0 < r < 1
2 can be replaced

with 0 < r < r0 for any fixed r0 < 1.

Proof of Proposition 3.1. We shall prove part (i) of the proposition only, as part (ii)

follows from an identical argument and part (iii) is rather obvious. To prove (i) we estimate

the sum
∑

i∈Aar ci.

For any i = i1i2 · · · in ∈ Aar we observe that i′ = jin is also in Aa, where j is any

permutation of δ(i) = i1 · · · in−1, which gives ci = ci′ . The number of distinct such i′ is

precisely (n− 1)!/
∏m
j=1 nj ! where nj := |δ(i)|j . Let

T (i) :=
(n− 1)!∏m
j=1 nj !

m∏
j=1

c
nj
j =

1

cin

∑
i′=jin

ci′

where j runs through all permutations of δ(i). We prove that for sufficiently small r we

have

(3.1) min {cj} sup
i∈Aar

T (i) ≤
∑
i∈Aar

ci ≤ O(logm r−1) sup
i∈Aar

T (i).

The left inequality is clear. To see the right inequality we have from Lemma 3.5 that

|i| ≤ C log r−1 for any i ∈ Aar . When i runs through Aar the number of distinct vectors

(|δ(i)|1, |δ(i)|2, · · · , |δ(i)|m) is bounded by (C log r−1)m = O(logm r−1). Also there are at

most m choices for the last letter of i. The right inequality in (3.1) then follows.

Now for any i = i1 · · · inin+1 ∈ Aar set tj =
nj
n where nj = |δ(i)|j and n = |δ(i)|. By

Lemma 3.4,

log T (i)

n
=

m∑
j=1

(
−tj log tj + tj log cj

)
+O

( log n

n

)
.

On the other hand we have ai =
∏m
j=1 a

nj
j ain+1 < r ≤

∏m
j=1 a

nj
j . Hence

− log r

n
= −

m∑
j=1

tj log aj +O
( log n

n

)
.

Combining the two estimates yields

(3.2)
log T (i)

log r
=

∑m
j=1

(
−tj log tj + tj log cj

)∑m
j=1 tj log aj

+O
( log n

n

)
.



A CLASS OF SELF-AFFINE SETS AND SELF-AFFINE MEASURES 11

The condition ai ≤ bi is equivalent to

(3.3)
m∑
j=1

tj log bj +
bin+1

n
≥

m∑
j=1

tj log aj +
ain+1

n
.

The proposition follows from (3.2) and (3.3), by letting n tends to ∞.

We now prove Proposition 3.2. We will need to invoke the following Large Deviation

Principle:

Lemma 3.6 (Large Deviation Principle). Let p = (p1, . . . , pm) be a probability vector. For

any ε > 0 there exists an ω = ω(ε) > 0 such that
∑

i∈Bn(ε) pi < e−nω for all sufficiently

large n, where

(3.4) Bn(ε) :=
{

i ∈ Σn :
m∑
j=1

∣∣∣ |i|j
n
− pj

∣∣∣ > ε
}

with Σ = Σ(m).

Proof. Standard. The reader may see [3, Theorem 2.1.10] for a proof.

Proof of Proposition 3.2. As with Proposition 3.1, we prove (i) only. The others are

proved using identical arguments.

Assume that p · (log b − log a) =
∑m

j=1 pj(log bj − log aj) = δ0 > 0. For any η > 0 let

ε = ε(η) = η/M where

M = 2m
m∑
j=1

(| log cj |+ | log aj |+ | log bj |).

Then it is easily verified that for any i ∈ Σn \ Bn(ε) we have∣∣∣ 1
n

log ci −
m∑
j=1

pj log cj

∣∣∣ < η,

as well as ∣∣∣ 1
n

log ai −
m∑
j=1

pj log aj

∣∣∣ < η,
∣∣∣ 1
n

log bi −
m∑
j=1

pj log bj

∣∣∣ < η.

Therefore

(3.5)
log ci
log ai

=

∑m
j=1 pj log cj∑m
j=1 pj log aj

+O(η).

Note that for this ε > 0 there is an ω = ω(ε) > 0 such that
∑

i∈Bn(ε) pi < e−nω for all

n ≥ n0.



12 DE-JUN FENG AND YANG WANG

By Lemma 3.4, for any i ∈ Ar we have C−1 log r−1 ≤ |i| ≤ C log r−1. Let r > 0 be

sufficiently small so that C−1 log r−1 ≥ n0. We now decompose Ar into Ar,1 and Ar,2 with

Ar,1 = Ar \ Ar,2, and Ar,2 = Ar ∩
(⋃
n≥1

Bn(ε)
)
.

By observing that log ci
− log r ≤ C0 := C max1≤j≤m{| log cj |} we obtain∣∣∣ ∑

i∈Ar,2

pi log ci
− log r

∣∣∣ ≤ C0

∑
i∈Ar,2

pi ≤ C0

∑
C−1 log r−1≤k≤C log r−1

e−kω.

Hence |
∑

i∈Ar,2
pi log ci
− log r | tends to 0 as r−→0+. On the other hand, because ai < r ≤ aδ(i) we

have log r = log ai +O(1). If i ∈ Ar,1 then by (3.5)∑
i∈Ar,1

pi log ci
− log r

= −
∑

i∈Ar,1

pi

( p · logc

p · log a
+O(η)

)
= − p · logc

p · log a

∑
i∈Ar,1

pi +O(η).

Since
∑

i∈Ar pi = 1 because {[i] : i ∈ Ar} is a partition of ΣN and∑
i∈Ar,2

pi ≤
∑

C−1 log r−1≤k≤C log r−1

e−kN(ε) −→0

as r−→0, we must have limr→0
∑

i∈Ar,1 pi = 1. Now because
∑m

j=1 pj(log bj− log aj) = δ0 >

0, Ar,1 ⊆ Aar whenever η (and hence ε) is sufficiently small. It follows that

(3.6)
∑

i∈Ar,1

pi log ci
− log r

≤
∑
i∈Aar

pi log ci
− log r

≤
∑
i∈Ar

pi log ci
− log r

.

Taking limit r−→0 yields Ωa = p·logc
p·log a . To see that Ωb = 0 we only need to observe that by

(3.6),

Ωa + Ωb = lim
r→0

∑
i∈Ar

pi log ci
log r

= Ωa.

4. Proof of Theorem 2.1.

We adopt the following definition from [26]:

Definition 4.1. Let K be a compact set in Rd. Fix M, ε > 0 and N ∈ N. A covering

{Gi}ni=1 of K by Borel sets is said to be (M, ε,N)–good if diam (Gi) ≤Mε for all i, and any

ε-cube in Rd intersects at most N elements in the covering.
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Lemma 4.1. Let M, q > 0 and N, d ∈ N. There exists a constant C1 = C1(M,N, d, q) such

that for any compactly supported probability measure ν on Rd and any (M, 2−n, N)-good

Borel covering {Gi} of supp (ν) we have

C−1
1 τn(ν, q) ≤

∑
i

(ν(Gi))
q ≤ C1τn(ν, q)

where τn(ν, q) is defined in (1.3).

Proof. See [26], Lemma 2.2.

Let {φj}mj=1 be an IFS in Rd. For any i = i1i2 · · · in ∈ Σn, Σ = {1, 2, . . . ,m} we let φi

denote φi1 ◦ φi2 ◦ · · · ◦ φin .

Lemma 4.2. Let I = {φj}mj=1 be an IFS in Rd and p = (p1, p2, . . . , pm) be a probability

vector. Then for any compact set F we have

νI,p(F ) = lim
n→∞

∑
i∈Bn

pi

where Bn = {i ∈ Σn : φi(K) ∩ F 6= ∅} and K = K(I).

Proof. Standard.

Lemma 4.3. Under the assumptions of Theorem 2.1, for any i ∈ Σn we have ν(φi(K)) = pi,

where ν := νI,p and K = K(I).

Proof. Let T be the open rectangle for the ROSC, so {φj(T )}mj=1 are disjoint open rectangles

in T . First we consider the case in which φj(T ) ⊂ T for some 1 ≤ j ≤ m. Without loss of

generality we assume that φ1(T ) ⊂ T .

Let l ∈ Σn. By Lemma 4.2 we have

Bk =
{

i ∈ Σk : φi(K) ∩ φl(K) 6= ∅
}
⊇ {l} × Σk−n.

Hence ν(φl(K)) = limk→∞
∑

i∈Bk pi ≥ pl. We prove the converse. In fact we prove

ν(φl(T )) ≤ pl. Let

Ck = {i ∈ Σk : φi(K) ∩ φl(T ) 6= ∅}

and set

C1
k = {i ∈ Ck : φi(K) ⊆ φl(T )}, C2

k = Ck \ C1
k .
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Note that C1
k = {l} × Σk−n. Hence limk→∞

∑
i∈C1k

pi = pl. On the other hand,

C2
k ⊆

{
i = i1i2 · · · ik : i1i2 · · · in 6= l, ij 6= 1 for j > n

}
.

Hence
∑

i∈C2k
pi < (1− p1)k−n−→0 as k−→∞. Thus limk→∞

∑
i∈Ck pi = pl. It follows that

(4.1) ν(φl(K)) ≤ ν(φl(T )) = pl.

By considering the iterations of the IFS I it is clear that the above proof extends to the

case in which there exists an i ∈ Σ∗ such that φi(T ) ⊂ T .

It remains to prove the lemma when φi(T )∩∂T 6= ∅ for all nonempty i ∈ Σ∗. In this case

it is clear that K is contained in a line parallel to one of the axes, say, the horizontal axis.

Then ν is identical to its projection νx onto the x-axis up to a translation. Furthermore

the projection IFS Ix must satisfy the OSC (and it is self-similar). Therefore the lemma

still holds.

Proposition 4.4. Let ν be a self-similar probability measure in R with supp (ν) ⊆ [c, d].

For any q, δ > 0 there exist constants C1, C2 > 0 depending on ν, q, δ such that for any

n > 0 we have

C1n
−τ(ν,q)−δ ≤

n∑
i=1

(ν(Ii))
q ≤ C2n

−τ(ν,q)+δ.

where Ii = [c+ (i−1)(d−c)
n , c+ i(d−c)

n ].

Proof. It is known that for a self-similar measure the Lq spectrum exists, see Peres and

Solomyak [26]. Set ∆n = d−c
n , which is the length of each interval Ii. By definition and

Lemma 4.1 we have

lim
n→∞

log
∑n

i=0(ν(Ii))
q

log ∆n
= τ(ν, q).

Thus for any δ > 0 there exists an n0 such that for all n > n0 we have

∆−τ(ν,q)−δ
n ≤

n∑
i=0

(ν(Ii))
q ≤ ∆−τ(ν,q)+δ

n .

Now for 1 ≤ n ≤ n0 we simply choose C1 and C2 to satisfy the inequalities of the proposition.

Proof of Theorem 2.1. Let r > 0 be sufficiently small. We construct a covering {Gi} of

supp (ν) as follows: Let T be the open rectangle associated with the ROSC for the IFS I.

Without loss of generality we may assume that T is a unit square. For a = (aj)
m
j=1 and
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b = (bj)
m
j=1 define the subsets of Ar, Aar and Abr of Σ∗ with Σ = {1, 2, . . . ,m} as in Section

3. For any i ∈ Aar by definition bi ≥ ai, and we set wa(i) := [bi/ai]. Note that φi(T ) is

a closed rectangle of width ai and height bi; so wa(i) is the aspect ratio of the rectangle

rounded off to an integer. We now cut φi(T ) horizontally into wa(i) equal rectangles of

width ai and height bi/wa(i). Call these smaller rectangles {Rai,k}
wa(i)
k=1 . Similarly for any

i ∈ Abr by definition ai > bi, and we set wb(i) := [ai/bi]. φi(T ) is a closed rectangle of width

ai and height bi. We now cut φi(T ) vertically into wb(i) equal rectangles of width ai/wb(i)

and height bi. Call these smaller rectangles {Rbi,k}
wb(i)
k=1 .

Observe that if s− = min{aj , bj} and s+ = max{aj , bj} then each Rai,k and Rbi,k has width

and height between s−r and r/s+. Furthermore

Cr =
{
Rai,k : i ∈ Aar , 1 ≤ k ≤ wa(i)

}
∪
{
Rbi,k : i ∈ Abr, 1 ≤ k ≤ wb(i)

}
is a covering of supp (ν). It follows that Cr is an (M, r,N)-good covering of supp (ν) with

M = s−/2 and N = 4.

The key is to estimate
∑wa(i)

k=1 (ν(Rai,k))
q for i ∈ Aar and

∑wb(i)
k=1 (ν(Rbi,k))

q for i ∈ Abr. We

make the following claim:

Claim: For any δ > 0 there exist constants C1 and C2 independent of i and r such that

(4.2) C1 p
q
i (wa(i))

−τ(νy ,q)−δ ≤
wa(i)∑
k=1

(ν(Rai,k))
q ≤ C2 p

q
i (wa(i))

−τ(νy ,q)+δ.

Proof of Claim: The combination of Lemma 4.2 and Lemma 4.3 implies that

ν(Rai,k) = lim
n→∞

{
pj : j ∈ Σn, φj(K) ⊆ φi(T ), φj(K) ∩Rai,k 6= ∅

}
= lim

n→∞

{
pj : j ∈ {i} × Σn−|i|, φj(K) ∩Rai,k 6= ∅

}
= pi lim

n→∞

{
pj : j ∈ Σn, φi ◦ φj(K) ∩Rai,k 6= ∅

}
.

But observe that the set {j ∈ Σn : φi ◦ φj(K) ∩Rai,k 6= ∅} is precisely the set

(4.3)
{

j ∈ Σn : φyj (Ky) ∩ Ii,k 6= ∅
}
,

where φyj := πy◦φj◦π−1
y , Ky = πy(K) and Ii,k := [ c+(k−1)(d−c)

wa(i) , c+k(d−c)
wa(i) ] with [c, d] = πy(T ).

(So by assumption actually d− c = 1.) Proposition 4.4 now asserts that

C1p
q
i (wa(i))

−τ(νy ,q)−δ ≤
wa(i)∑
k=1

(ν(Rai,k))
q ≤ C2p

q
i (wa(i))

−τ(νy ,q)+δ
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for some constants C1 and C2, proving the claim.

By an identical argument we also have constants C ′1 and C ′2 such that

(4.4) C ′1p
q
i (wb(i))

−τ(νx,q)−δ ≤
wb(i)∑
k=1

(ν(Rbi,k))
q ≤ C ′2p

q
i (wb(i))

−τ(νx,q)+δ

for any i ∈ Abr.

To complete the proof of our theorem,

∑
D∈Cr

(ν(D))q =
∑
i∈Aar

wa(i)∑
k=1

(ν(Rai,k))
q +

∑
i∈Abr

wb(i)∑
k=1

(ν(Rbi,k))
q.

It follows from (4.2) and (4.4) that

C1

∑
i∈Aar

pqi (wa(i))
−τ(νy ,q)−δ ≤

∑
i∈Aar

wa(i)∑
k=1

(ν(Rai,k))
q ≤

∑
i∈Aar

C2p
q
i (wa(i))

−τ(νy ,q)+δ,

and similarly

C ′1
∑
i∈Abr

pqi (wb(i))
−τ(νx,q)−δ ≤

∑
i∈Abr

wb(i)∑
k=1

(ν(Rbi,k))
q ≤

∑
i∈Abr

C ′2p
q
i (wb(i))

−τ(νx,q)+δ.

Note that bi
2ai
≤ wa(i) ≤ bi

ai
. Applying Proposition 3.1 twice with c = {cj}mj=1 set to be

cj = pqj(
bj
aj

)−τ(νy ,q)−δ and cj = pqj(
bj
aj

)−τ(νy ,q)+δ respectively, and with δ−→0, yields

lim
r→0

log
(∑

i∈Aar
∑wa(i)

k=1 (ν(Rai,k))
q
)

log r
= inf

t∈Γ(ea)

t ·
(
− log t− τ(νy, q)ea + q log p

)
t · log a

,

where ea := log b− log a. Similarly

lim
r→0

log
∑

i∈Abr
∑wb(i)

k=1 (ν(Rbi,k))
q

log r
= inf

t∈Γ(eb)

t ·
(
− log t− τ(νx, q)eb + q log p

)
t · log b

,

where eb := log a− log b. The proof is finally complete by observing that for any A ≥ B > 0

we have

logA < log(A+B) ≤ logA+ log 2.

Proof of Theorem 2.2. It is clear from the proof of Theorem 2.1 that if all aj ≤ bj then

τ(ν, q) = θa where θa is given in Theorem 2.1. In this case Γ0 := Γ(log b − log b) = {t =
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(t1, . . . , tm) : tj ≥ 0 and
∑m

j=1 tj = 1}. Hence

(4.5) τ(ν, q) = τ(νy, q) + inf
t∈Γ0

∑m
j=1 tj

(
− log tj − τ(νy, q) log bj + q log pj

)
∑m

j=1 tj log aj
.

We first simplify the notation. Set Aj = 1/aj and Bj = pqjb
−τ(νy ,q)
j . Then (4.5) becomes

(4.6) τ(νy, q)− τ(ν, q) = sup
t∈Γ0

∑m
j=1 tj log

Bj
tj∑m

j=1 tj logAj
.

Let θ be the unique real root of the equation
∑m

j=1A
−θ
j Bj = 1 (the existence of θ follows

from the fact that Aj > 1 and Bj > 0 for all j). Then∑m
j=1 tj log

Bj
tj∑m

j=1 tj logAj
− θ =

∑m
j=1 tj log

A−θj Bj
tj∑m

j=1 tj logAj
.

Note that f(x) = − log x is convex. By Jensen’s Inequality,

m∑
j=1

tj log
A−θj Bj

tj
≤ log

( m∑
j=1

tj
A−θj Bj

tj

)
≤ log

( m∑
j=1

A−θj Bj

)
= 0.

The “=” in the first inequality is achieved when tj = A−θj Bj for 1 ≤ j ≤ m. It follows

τ(νy, q)− τ(ν, q) = θ. This proves the theorem.

5. Proof of Theorem 2.5

Let ν be a compactly supported probability measure in Rd. For any ε > 0 and N ∈ N
a family of Borel sets {Gi} is called an (ε,N)-good partition covering of supp (ν) if the

following conditions are met:

(i)
⋃
iGi ⊇ supp (ν) and ν(Gi ∩Gj) = 0 for all i 6= j.

(ii) Any cube of side ε intersects at most N elements of {Gi} and diam (Gi) < ε.

Set f(x) = x log(1/x) = −x log x and define hn(ν) =
∑

Q∈Dn
f(ν(Q)), where Dn is the

standard partition of Rd by cubes of sides 2−n defined in Section 1. We have

Lemma 5.1. Let {Gi} be a (2−n, N)-good partition covering of supp (ν) where ν is any

compactly supported probability measure in Rd. Then∣∣∣∑
i

f(ν(Gi))− hn(ν)
∣∣∣ ≤ C

where C = max (logN, log 2d).
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Proof. It is easy to check that for all x1, . . . , xk ≥ 0 we have

(5.1) f(
∑k

i=1 xi) ≤
∑k

i=1 f(xi) ≤ f(
∑k

i=1 xi) + (
∑k

i=1 xi) log k.

Write Dn = {Qj} and consider the refinement G∗ = {Gi ∩ Qj} of the (2−n, N)-good

partition covering {Gi}. Note that diam (Gi) < 2−n implies that Gi intersects at most 2d

cubes in Dn. It follows from (5.1) that

(5.2) f(ν(Gi)) ≤
∑
j

f(ν(Gi ∩Qj)) ≤ f(ν(Gi)) + log(2d) ν(Gi).

Conversely, also by (5.1) we have

(5.3) f(ν(Qj)) ≤
∑
i

f(ν(Gi ∩Qj)) ≤ f(ν(Qj)) + log(N) ν(Qj).

Summing up (5.2) over i yields

(5.4)
∑
i

f(ν(Gi)) ≤
∑
i,j

f(ν(Gi ∩Qj)) ≤
∑
i

f(ν(Gi)) + log(2d),

and summing up (5.3) over j yields

(5.5) hn(ν) ≤
∑
i,j

f(ν(Gi ∩Qj)) ≤ hn(ν) + logN.

The lemma now follows by combining (5.4) and (5.5).

Proposition 5.2. Let ν be a self-similar probability measure in R with supp (ν) ⊆ [c, d].

For any δ > 0 there exist constants C1, C2 > 0 depending on ν and δ such that for any

n > 0 we have

(h(ν)− δ) log n+ C1 ≤
n∑
i=1

f(Ii) ≤ (h(ν) + δ) log n+ C2,

where Ii = [c+ (i−1)(d−c)
n , c+ i(d−c)

n ).

Proof. The proposition can be proved by using Lemma 5.1 and an argument identical to

that of Proposition 4.4.

Proof of Theorem 2.5. For ν = νI,p we may assume without loss of generality that

ν(L) = 0 for any line L in R2, for otherwise ν is in essence a self-similar measure in the one

dimension, leaving us with nothing to prove.
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We adopt the same notations from the proof of Theorem 2.1. For any r > 0 sufficinetly

small let Cr be the covering of supp (ν) given by

Cr =
{
Rai,k : i ∈ Aar , 1 ≤ k ≤ wa(i)

}
∪
{
Rbi,k : i ∈ Abr, 1 ≤ k ≤ wb(i)

}
as in the proof of Theorem 2.1. It follows that Cr is a (r,N)-good partition covering of

K = supp (ν) for some suitable N independent of r. We estimate
∑

Q∈Cr f(ν(Q)) for

f(x) = x log(1/x) = −x log x.

We first estimate
∑wa(i)

k=1 f(ν(Rai,k)) for any i ∈ Aar . By (4.3) we have

ν(Rai,k) = pi lim
n→∞

∑ {
j ∈ Σn : φyj (Ky) ∩ Ii,k 6= ∅

}
= piν

y(Ii,k)

where Ky and Ii,k are as in the proof of Theorem 2.1. Thus

wa(i)∑
k=1

f(ν(Rai,k)) = pi

wa(i)∑
k=1

f(νy(Ii,k))− pi log pi.

It now follows from Proposition 5.2 that for any δ > 0 there are C1 and C2 independent of

r such that

(5.6)

pi(h(νy)−δ) logwa(i)−pi log pi+C1pi ≤
wa(i)∑
k=1

f(ν(Rai,k)) ≤ pi(h(νy)+δ) logwa(i)−pi log pi+C2pi.

Similarly for any i ∈ Abr there exist C ′1 and C ′2 independent of r such that

(5.7)

pi(h(νx)−δ) logwb(i)−pi log pi+C
′
1pi ≤

wb(i)∑
k=1

f(ν(Rbi,k)) ≤ pi(h(νx)+δ) logwb(i)−pi log pi+C
′
2pi.

Now, observe that bi
2ai
≤ wa(i) ≤ bi

ai
. So log(bi/ai) − log 2 ≤ logwa(i) ≤ log(bi/ai).

This means we may replace wa(i) in (5.6) with bi/ai, with only the constants C1 and C2

modified. Now for (5.6) we apply Proposition 3.2 twice, with cj = p−1
j (bj/aj)

h(νy)−δ and

cj = p−1
j (bj/aj)

h(νy)+δ respectively, and set δ−→0. Set ea := log b − log a and ea :=

log a− log b. It follows that

(5.8) lim
r→0

∑
i∈Aar

∑wa(i)
k=1 f(ν(Rai,k))

log r
=
h(νy)p · ea − p · log p

p · log a
,
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if
∑m

j=1 pj(log bj − log aj) > 0, and 0 if
∑m

j=1 pj(log aj − log bj) > 0. Similarly,

(5.9) lim
r→0

∑
i∈Abr

∑wb(i)
k=1 f(ν(Rbi,k))

log r
=
h(νx)p · eb − p · log p

p · log b
,

if
∑m

j=1 pj(log aj − log bj) > 0, and 0 if
∑m

j=1 pj(log bj − log aj) > 0. Combining (5.8) and

(5.9) yields

(5.10) lim
r→0

∑
G∈Cr f(ν(G))

log r
=


h(νy)p · ea − p · log p

p · log a
, if p · ea > 0,

h(νx)p · eb − p · log p

p · log b
, if p · eb > 0.

To estimate the left-hand side of the above equation when
∑m

j=1 pj(log aj − log bj) = 0, by

summing (5.6) over i ∈ Aar and (5.7) over i ∈ Abr we have

Wr,1 ≤
∑
G∈Cr

f(ν(G)) ≤Wr,2

with

Wr,1 := C3 +
∑
i∈Aar

pi(h(νy)− δ) log(bi/ai) +
∑
i∈Abr

pi(h(νx)− δ) log(ai/bi)−
∑
i∈Ar

pi log pi

and

W2,r := C4 +
∑
i∈Aar

pi(h(νy) + δ) log(bi/ai) +
∑
i∈Abr

pi(h(νx) + δ) log(ai/bi)−
∑
i∈Ar

pi log pi,

where C3 and C4 are constants independent of r. Applying Proposition 3.2 (iii) we have

(5.11) lim
r→0

∑
G∈Cr f(ν(G))

log r
=
−p · log p

p · log a

whenever p · ea = 0. Note that Cr is a (r,N)-good partition covering of supp (ν) for some

constant N independent of r. Taking r = 2−n and applying Lemma 5.1 we have

h(ν) = lim
n→∞

hn(ν)

n log 2
= lim

n→∞

∑
G∈C2−n

f(ν(G))

n log 2
= lim

r→0

∑
G∈Cr f(ν(G)

− log r
.

The theorem now follows by combining (5.10) and (5.11).
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