GROWTH RATE FOR BETA-EXPANSIONS

DE-JUN FENG AND NIKITA SIDOROV

Abstract. Let $\beta>1$ and let $m>\beta$ be an integer. Each $x \in I_{\beta}:=\left[0, \frac{m-1}{\beta-1}\right]$ can be represented in the form

$$
x=\sum_{k=1}^{\infty} \varepsilon_{k} \beta^{-k},
$$

where $\varepsilon_{k} \in\{0,1, \ldots, m-1\}$ for all k (a β-expansion of x). It is known that a.e. $x \in I_{\beta}$ has a continuum of distinct β-expansions. In this paper we prove that if β is a Pisot number, then for a.e. x this continuum has one and the same growth rate. We also link this rate to the Lebesgue-generic local dimension for the Bernoulli convolution parametrized by β.

When $\beta<\frac{1+\sqrt{5}}{2}$, we show that the set of β-expansions grows exponentially for every internal x.

1. Introduction

Let $\beta>1$ and let $m>\beta$ be an integer. Put $I_{\beta}=[0,(m-1) /(\beta-1)]$. As is well known, each $x \in I_{\beta}$ can be represented as a β-expansion

$$
x=\sum_{n=1}^{\infty} \varepsilon_{n} \beta^{-n}, \quad \varepsilon_{n} \in\{0,1, \ldots, m-1\}
$$

Since we do not impose any extra restrictions on the "digits" ε_{n}, one might expect a typical x to have multiple β-expansions. Indeed, it was shown that a.e. $x \in I_{\beta}$ has $2^{\aleph_{0}}$ such expansions - see [17, 2, 18].

The main purpose of this paper is to study the rate of growth of the set of β expansions for a generic x when β is a Pisot number (see below). We also show

Date: December 23, 2009.
2000 Mathematics Subject Classification. 11A63; 28D05; 42A85.
Key words and phrases. Beta-expansion, Bernoulli convolution, Pisot number, matrix product, local dimension.
that if β is smaller than the golden ratio, then every x, except the endpoints, has a continuum of β-expansions with an exponential growth.

Now we are ready to state main results of this paper. Put

$$
\begin{aligned}
& \mathcal{E}_{n}(x ; \beta)=\left\{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in\{0,1, \ldots, m-1\}^{n} \mid \exists\left(\varepsilon_{n+1}, \varepsilon_{n+2}, \ldots\right) \in\{0,1, \ldots, m-1\}^{\mathbb{N}}:\right. \\
&\left.x=\sum_{k=1}^{\infty} \varepsilon_{k} \beta^{-k}\right\}
\end{aligned}
$$

and

$$
\mathcal{N}_{n}(x ; \beta)=\# \mathcal{E}_{n}(x ; \beta)
$$

(We will write simply $\mathcal{N}_{n}(x)$ if it is clear what β is under consideration.) In other words, $\mathcal{N}_{n}(x)$ counts the number of words of length n in the alphabet $\{0,1, \ldots, m-1\}$ which can serve as prefixes of β-expansions of x. We will be interested in the rate of growth of the function $x \mapsto \mathcal{N}_{n}(x)$.

Let $\beta>1$ be a Pisot number (an algebraic integer whose conjugates are less than 1 in modulus). Our central result is the following

Theorem 1.1. There exists a constant $\gamma=\gamma(\beta, m)>0$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log \mathcal{N}_{n}(x ; \beta)}{n}=\gamma \quad \text { for } \mathcal{L} \text {-a.e. } x \in I_{\beta} \tag{1.1}
\end{equation*}
$$

where \mathcal{L} denotes the Lebesgue measure.
Let $\mu=\mu_{\beta, m}$ denote the probability measure on \mathbb{R} defined as follows:

$$
\mu(E)=\mathbb{P}\left\{\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right) \in\{0,1, \ldots, m-1\}^{\mathbb{N}}: \sum_{k=1}^{\infty} \varepsilon_{k} \beta^{-k} \in E\right\}
$$

where $\mathbb{P}=\prod_{1}^{\infty}\{1 / m, \ldots, 1 / m\}$, and E is an arbitrary Borel subset of \mathbb{R}.
Recall that a Borel probability measure ν on \mathbb{R} is called self-similar if $\nu=\sum_{i=1}^{r} p_{i} \nu \circ$ T_{i}^{-1}, where T_{1}, \ldots, T_{r} are linear contractions on $\mathbb{R}, p_{i} \geq 0$ with $\sum_{i=1}^{r} p_{i}=1$. The measure μ is known to be a self-similar measure supported on I_{β} with $r=m, T_{i} x=$ $(x+i) / \beta(i=0,1, \ldots, m-1)$ and $p_{i} \equiv 1 / m([13])$. When $m=2, \mu$ is the socalled Bernoulli convolution associated with β - see, e.g., [20]. For $x \in I_{\beta}$, the local dimension of μ at x is defined by

$$
\begin{equation*}
d(\mu, x)=\lim _{r \rightarrow 0} \frac{\log \mu([x-r, x+r])}{\log r} \tag{1.2}
\end{equation*}
$$

provided that the limit exists. As an application of Theorem 1.1, we obtain
Corollary 1.2. For \mathcal{L}-a.e. $x \in I_{\beta}, d\left(\mu_{\beta, m}, x\right) \equiv(\log m-\gamma) / \log \beta$.

Theorem 1.3. If β is an integer such that β divides m, then $\gamma=\log (m / \beta)$. Otherwise we have $\gamma<\log (m / \beta)$.

Theorem 1.1, Corollary 1.2 and Theorem 1.3 together yield

Proposition 1.4. We have $d\left(\mu_{\beta, m}, x\right) \equiv D_{\beta, m}$ for Lebesgue-a.e. $x \in I_{\beta}$ with $1 \leq$ $D_{\beta, m}<\log _{\beta} m$. Moreover, $D_{\beta, m}>1$ unless β is an integer dividing m.

In addition to the above results for Pisot β, we also obtain a general result for all small β which holds for all internal x. Recall that if $\beta \in\left(1, \frac{1+\sqrt{5}}{2}\right)$ and $m=2$, then any $x \in\left(0, \frac{1}{\beta-1}\right)$ has a continuum of distinct β-expansions (see [4, Theorem 3]). We prove a quantitative version of this claim for an arbitrary $m \geq 2$:

Theorem 1.5. Let β be an arbitrary number in $\left(1, \frac{1+\sqrt{5}}{2}\right)$. Then there exists $\kappa=$ $\kappa(\beta)>0$ such that

$$
\begin{equation*}
\underline{\lim }_{n \rightarrow \infty} \frac{\log _{2} \mathcal{N}_{n}(x ; \beta)}{n} \geq \kappa \quad \text { for any } x \in\left(0, \frac{m-1}{\beta-1}\right) . \tag{1.3}
\end{equation*}
$$

Corollary 1.6. For any $\beta \in\left(1, \frac{1+\sqrt{5}}{2}\right)$ and $m=2$, we have

$$
\bar{d}(\mu, x) \leq(1-\kappa) \log _{\beta} 2
$$

for all $x \in\left(0, \frac{1}{\beta-1}\right)$, where

$$
\bar{d}(\mu, x)=\varlimsup_{r \rightarrow 0} \frac{\log \mu([x-r, x+r])}{\log r}
$$

The content of the paper is the following. In Section 2, we prove Theorem 1.1 and Corollary 1.2. Section 3 is devoted to the proof of Theorem 1.3. In Section 4, we consider an important class of examples, namely, the case when β is a multinacci number. In Section 5, we prove Theorem 1.5 and give an explicit lower bound for κ.

2. Proof of Theorem 1.1 and Corollary 1.2

First we reformulate our problem in the language of iterated function systems (IFS). Note that

$$
\begin{equation*}
\mathcal{E}_{n}(x ; \beta)=\left\{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in\{0,1, \ldots, m-1\}^{n} \left\lvert\, 0 \leq x-\sum_{k=1}^{n} \varepsilon_{k} \beta^{-k} \leq \frac{(m-1) \beta^{-n}}{\beta-1}\right.\right\} \tag{2.1}
\end{equation*}
$$

(see, e.g., [12]). Consider now the following IFS $\Phi=\left\{S_{i}\right\}_{i=1}^{m}$ on \mathbb{R} :

$$
\begin{equation*}
S_{i}(x)=\rho x+(i-1)(1-\rho) /(m-1), \quad i=1, \ldots, m \tag{2.2}
\end{equation*}
$$

where $\rho=1 / \beta \in(0,1)$. Since $m>\beta$, it is clear that $[0,1]$ is the attractor of Φ (note that $\left.S_{m}(1)=1\right)$, i.e., $[0,1]=\bigcup_{i=1}^{m} S_{i}([0,1])$.

Let \mathcal{A} denote the alphabet $\{1, \ldots, m\}$ and \mathcal{A}_{n} the collection of all words of length n over $\mathcal{A}, n \in \mathbb{N}$. For $z \in I_{\beta}$ it is clear that

$$
\begin{equation*}
\mathcal{N}_{n}\left(\frac{(m-1) z}{\beta-1}\right)=\#\left\{J=j_{1} \cdots j_{n} \in \mathcal{A}_{n}: z \in S_{J}([0,1])\right\} \tag{2.3}
\end{equation*}
$$

where $S_{J}:=S_{j_{1}} \circ S_{j_{2}} \circ \cdots \circ S_{j_{n}}$. This is because

$$
S_{J}(z)=\frac{1-\rho}{m-1} \sum_{k=1}^{n}\left(j_{k}-1\right) \rho^{k-1}+\rho^{n} z
$$

and thus, $S_{J}([0,1])=\left[\frac{1-\rho}{m-1} \sum_{k=1}^{n}\left(j_{k}-1\right) \rho^{k-1}, \frac{1-\rho}{m-1} \sum_{k=1}^{n}\left(j_{k}-1\right) \rho^{k-1}+\rho^{n}\right]$, which is none other than a rescaled version of (2.1).

We sketch here the proof of Theorem 1.1: first we encode the interval $[0,1]$ as a cylinder in a subshift space of finite type, and show that $\mathcal{N}_{n}\left(\frac{m-1}{\beta-1} z\right)$ corresponds to the norm of a matrix product which depends on the coding of z and n. Next, we construct an irreducible branch of the subshift in question and assign an invariant Markov measure such that its projection under the coding map is equivalent to the Lebesgue measure on a subinterval of $[0,1]$. Then by the subadditive ergodic theorem, $\lim _{n \rightarrow \infty} \frac{\log \mathcal{N}_{n}\left(\frac{m-1}{\beta-1} z\right)}{n}$ equals a non-negative constant \mathcal{L}-a.e. on this subinterval; in the end we extend the result to the whole interval $[0,1]$.

Finally, we apply the theory of random β-expansions to show that this constant γ is strictly positive.
2.1. Coding of $[0,1]$ and matrix products. In this part, we will encode $[0,1]$ via a subshift and show that $\mathcal{N}_{n}\left(\frac{m-1}{\beta-1} x\right)$ can be expressed in terms of matrix products. This approach mainly follows [6].

For $n \in \mathbb{N}$, define

$$
P_{n}=\left\{S_{J}(0): J \in \mathcal{A}_{n}\right\} \cup\left\{S_{J}(1): J \in \mathcal{A}_{n}\right\} .
$$

The points in P_{n}, written as $h_{1}, \cdots, h_{s_{n}}$ (ranked in the increasing order), partition $[0,1]$ into non-overlapping closed intervals which are called n-th net intervals. Let \mathcal{F}_{n} denote the collection of n-th net intervals, that is,

$$
\mathcal{F}_{n}=\left\{\left[h_{j}, h_{j+1}\right]: j=1, \ldots, s_{n}-1\right\} .
$$

For convenience we write $\mathcal{F}_{0}=\{[0,1]\}$. Since $P_{n} \subset P_{n+1}$, we obtain the following net properties:
(i) $\bigcup_{\Delta \in \mathcal{F}_{n}} \Delta=[0,1]$ for any $n \geq 0$;
(ii) For any $\Delta_{1}, \Delta_{2} \in \mathcal{F}_{n}$ with $\Delta_{1} \neq \Delta_{2}$, $\operatorname{int}\left(\Delta_{1}\right) \cap \operatorname{int}\left(\Delta_{2}\right)=\emptyset$;
(iii) For any $\Delta \in \mathcal{F}_{n}(n \geq 1)$, there is a unique element $\widehat{\Delta} \in \mathcal{F}_{n-1}$ such that $\widehat{\Delta} \supset \Delta$.

For $\Delta=[a, b] \in \mathcal{F}_{n}$, we define

$$
\begin{align*}
\mathcal{N}_{n}(\Delta) & =\#\left\{J \in \mathcal{A}_{n}: S_{J}((0,1)) \cap \Delta \neq \emptyset\right\} \\
& =\#\left\{J \in \mathcal{A}_{n}: S_{J}([0,1]) \supset \Delta\right\} \tag{2.4}
\end{align*}
$$

It is easy to see that

$$
\begin{equation*}
\mathcal{N}_{n}\left(\frac{m-1}{\beta-1} z\right)=\mathcal{N}_{n}(\Delta) \quad \text { for any } \Delta \in \mathcal{F}_{n} \text { and each } z \in \operatorname{int}(\Delta) \tag{2.5}
\end{equation*}
$$

where $\mathcal{N}_{n}(z)$ is defined as in (2.3).
As shown in [6], the interval $[0,1]$ can be coded via a subshift of finite type, and for each $n \geq 1$ and $\Delta \in \mathcal{F}_{n}, \mathcal{N}_{n}(\Delta)$ corresponds to the norm of certain matrix product which depends on the coding of Δ. More precisely, the following results (C1)-(C4) were obtained in [6, Section 2]:
(C1) There exist a finite alphabet $\Omega=\{1, \ldots, r\}$ with $r \geq 2$ and an $r \times r$ matrix $A=\left(A_{i j}\right)$ with 0-1 entries such that for each $n \geq 0$, there is a one-to-one surjective map $\phi_{n}: \mathcal{F}_{n} \rightarrow \Omega_{A, n+1}^{(1)}$, where

$$
\Omega_{A, n+1}^{(1)}=\left\{x_{1} \ldots x_{n+1} \in \Omega^{n+1}: x_{1}=1, A_{x_{i} x_{i+1}}=1 \text { for } 1 \leq i \leq n\right\} .
$$

The map ϕ_{n} is called the n-th coding map and for $\Delta \in \mathcal{F}_{n}, \phi_{n}(\Delta)$ is called the n-th coding of Δ.
(C2) The coding maps ϕ_{n} preserve the net structure in the sense that for any $x_{1} \ldots x_{n+2} \in \Omega_{A, n+2}^{(1)}$,

$$
\phi_{n+1}^{-1}\left(x_{1} \ldots x_{n+2}\right) \subseteq \phi_{n}^{-1}\left(x_{1} \ldots x_{n+1}\right)
$$

(C3) There is a family of positive numbers $\ell_{i}, 1 \leq i \leq r$, such that for each $\Delta \in \mathcal{F}_{n}$ with $\phi_{n}(\Delta)=x_{1} \ldots x_{n+1}$,

$$
|\Delta|=\ell_{x_{n+1}} \rho^{n}
$$

where $|\Delta|$ denotes the length of Δ.
(C4) There are a family of positive integers $v_{i}, 1 \leq i \leq r$, with $v_{1}=1$, and a family of non-negative matrices

$$
\left\{T(i, j): 1 \leq i, j \leq r, A_{i j}=1\right\}
$$

with $T(i, j)$ being a $v_{i} \times v_{j}$ matrix, such that for each $n \geq 1$ and $\Delta \in \mathcal{F}_{n}$,

$$
\mathcal{N}_{n}(\Delta)=\left\|T\left(x_{1}, x_{2}\right) \ldots T\left(x_{n}, x_{n+1}\right)\right\|
$$

where $x_{1} \ldots x_{n+1}=\phi_{n}(\Delta),\|M\|$ denotes the sum of the absolute values of entries of M. Furthermore, the product $T\left(x_{1}, x_{2}\right) \ldots T\left(x_{n}, x_{n+1}\right)$ is a strictly positive $v_{x_{n+1}}$-dimensional row vector.

To prove Theorem 1.1, we still need the following property of Ω, which was proved in [7, Lemma 6.4]):
(C5) There is a non-empty subset $\widehat{\Omega}$ of Ω satisfying the following properties:
(i) $\left\{j \in \Omega: A_{i j}=1\right\} \subseteq \widehat{\Omega}$ for any $i \in \widehat{\Omega}$.
(ii) For any $i, j \in \widehat{\Omega}$, there exist $x_{1}, \ldots, x_{n} \in \widehat{\Omega}$ such that $x_{1}=i, x_{n}=j$ and $A_{x_{k} x_{k+1}}=1$ for $1 \leq k \leq n-1$.
(iii) For any $i \in \Omega$ and $j \in \widehat{\Omega}$, there exist $x_{1}, \ldots, x_{n} \in \Omega$ such that $x_{1}=i$, $x_{n}=j$ and $A_{x_{k} x_{k+1}}=1$ for $1 \leq k \leq n-1$.

Remark 2.1. Since \mathcal{F}_{n} has the net structure, we have for each $\Delta \in \mathcal{F}_{n}$,

$$
|\Delta|=\sum_{\Delta^{\prime} \in F_{n+1}, \Delta^{\prime} \subseteq \Delta}\left|\Delta^{\prime}\right|
$$

which together with (C1)-(C3) yields

$$
\begin{equation*}
\ell_{i}=\rho \sum_{j \in \Omega, A_{i j}=1} \ell_{j} \quad \text { for all } i \in \Omega . \tag{2.7}
\end{equation*}
$$

By part (i) of (C5), we have also

$$
\begin{equation*}
\ell_{i}=\rho \sum_{j \in \widehat{\Omega}, A_{i j}=1} \ell_{j} \quad \text { for all } i \in \widehat{\Omega} . \tag{2.8}
\end{equation*}
$$

2.2. Proof of Theorem 1.1. In this part we prove the following

Theorem 2.2. There exists a constant $\gamma \geq 0$ such that for $\Delta \in \mathcal{F}_{k}$, if the k-th coding $y_{1} \ldots y_{k+1}=\phi_{k}(\Delta)$ of Δ satisfies $y_{k+1} \in \widehat{\Omega}$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log \mathcal{N}_{n}\left(\frac{m-1}{\beta-1} x\right)}{n}=\gamma \text { for } \mathcal{L} \text {-a.e. } x \in \Delta . \tag{2.9}
\end{equation*}
$$

Let us first show that Theorem 2.2 implies Theorem 1.1. To see it, we say a net interval Δ is good if it satisfies the condition of Theorem 2.2. According to part (iii) of (C5), there is an positive integer N such that for any net interval $\Delta \in \mathcal{F}_{n}$, there is $k \leq N$ and an $(n+k)$-th net interval which is contained in Δ and is good. Hence by Theorem 2.2 and (C2)-(C3), there is a constant $c>0$ such that for any net interval Δ, (2.9) holds for a sub-net-interval of Δ with Lebesgue measure greater than $c|\Delta|$. A recursive argument then shows that (2.9) holds for $[0,1]$.

Proof of Theorem 2.2. Consider the one-sided subshift of finite type $\left(\widehat{\Omega}_{A}^{\mathbb{N}}, \sigma\right)$, where

$$
\widehat{\Omega}_{A}^{\mathbb{N}}=\left\{\left(x_{i}\right)_{i=1}^{\infty}: x_{i} \in \widehat{\Omega}, A_{x_{i} x_{i+1}}=1 \text { for } i \geq 1\right\}
$$

and σ is the left shift defined by $\left(x_{i}\right)_{i=1}^{\infty} \mapsto\left(x_{i+1}\right)_{i=1}^{\infty}$. By parts (i)-(ii) of (C5), ($\left.\widehat{\Omega}_{A}^{\mathbb{N}}, \sigma\right)$ is topologically transitive. Define a matrix $P=\left(P_{i j}\right)_{i, j \in \widehat{\Omega}}$ by

$$
P_{i j}= \begin{cases}\rho \ell_{j} / \ell_{i} & \text { if } A_{i j}=1 \tag{2.10}\\ 0 & \text { otherwise }\end{cases}
$$

By (2.8) and part (ii) of (C5), P is an irreducible transition matrix. Hence there is a unique $\#(\widehat{\Omega})$-dimensional positive probability vector $\mathbf{p}=\left(p_{i}\right)_{i \in \widehat{\Omega}}$ so that $\mathbf{p} P=\mathbf{p}$. Let η be the (\mathbf{p}, P)-Markov measure on $\widehat{\Omega}_{A}^{\mathbb{N}}$, i.e.,

$$
\eta\left(\left[x_{1} \ldots x_{n}\right]\right)=p_{x_{1}} P_{x_{1} x_{2}} \ldots P_{x_{n-1} x_{n}}
$$

for any cylinder set $\left[x_{1} \ldots x_{n}\right]$ in $\widehat{\Omega}_{A}^{\mathbb{N}}$. Since P is irreducible, η is ergodic ${ }^{1}$. By the definition of P, we can check that

$$
\begin{equation*}
\eta\left(\left[x_{1} \ldots x_{n}\right]\right)=p_{x_{1}} \ell_{x_{n}} \rho^{n-1} \tag{2.11}
\end{equation*}
$$

for any cylinder set $\left[x_{1} \ldots x_{n}\right]$ in $\widehat{\Omega}_{A}^{\mathbb{N}}$.
Consider the family of matrices $\left\{T(i, j): i, j \in \widehat{\Omega}, A_{i, j}=1\right\}$. Observe that for any $x_{1} \ldots x_{n+m} \in \widehat{\Omega}_{A, n+m}$,

$$
\begin{aligned}
& \left\|T\left(x_{1}, x_{2}\right) \ldots T\left(x_{n+m-1}, x_{n+m}\right)\right\| \\
& \quad=\mathbf{e}_{v_{x_{1}}} T\left(x_{1}, x_{2}\right) \ldots T\left(x_{n+m-1}, x_{n+m}\right) \mathbf{e}_{v_{x_{n+m}}}^{t} \\
& \quad \leq \mathbf{e}_{v_{x_{1}}} T\left(x_{1}, x_{2}\right) \ldots T\left(x_{n-1}, x_{n}\right) \mathbf{e}_{v_{x_{n}}}^{t} \mathbf{e}_{v_{x_{n}}} T\left(x_{n}, x_{n+1}\right) \ldots T\left(x_{n+m-1}, x_{n+m}\right) \mathbf{e}_{v_{x_{n+m}}}^{t} \\
& \quad=\left\|T\left(x_{1}, x_{2}\right) \ldots T\left(x_{n-1}, x_{n}\right)\right\| \cdot\left\|T\left(x_{n}, x_{n+1}\right) \ldots T\left(x_{n+m-1}, x_{n+m}\right)\right\|,
\end{aligned}
$$

where \mathbf{e}_{k} denotes the k-dimensional row vector $(1,1, \ldots, 1)$, and \mathbf{e}_{k}^{t} denotes the transpose of \mathbf{e}_{k}. By the Kingman subadditive ergodic theorem, there exists a constant $\gamma \geq 0$ such that
(2.12) $\quad \lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|T\left(x_{1}, x_{2}\right) \ldots T\left(x_{n-1}, x_{n}\right)\right\|=\gamma \quad$ for η-a.e. $x=\left(x_{i}\right)_{i=1}^{\infty} \in \widehat{\Omega}_{A}^{\mathbb{N}}$.

Now assume that Δ is a k-th net interval with the coding $\phi_{k}(\Delta)=y_{1} \ldots y_{k+1}$ such that $y_{k+1} \in \widehat{\Omega}$. Define the projection map $\pi:\left[y_{k+1}\right] \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\{\pi(x)\}=\bigcap_{n=1}^{\infty} \phi_{n+k}^{-1}\left(y_{1} \ldots y_{k} x_{1} \ldots x_{n+1}\right), \quad x=\left(x_{i}\right)_{i=1}^{\infty} \in \widehat{\Omega} \text { with } x_{1}=y_{k+1} . \tag{2.13}
\end{equation*}
$$

Since the coding maps preserve the net structure (see (C2)), the projection π is well defined and is one-to-one, except for a countable set on which it is is two-to-one. Let $\nu=\left.\eta\right|_{\left[y_{k+1}\right]}$ be the restriction of η on the cylinder $\left[y_{k+1}\right]$. Let $\nu \circ \pi^{-1}$ be the projection of ν under π.

We claim that $\nu \circ \pi^{-1}$ is equivalent to $\left.\mathcal{L}\right|_{\Delta}$, the Lebesgue measure restricted on Δ, in the sense that there exists a constant $C \geq 1$ such that $\left.C^{-1} \mathcal{L}\right|_{\Delta} \leq \nu \circ \pi^{-1} \leq\left. C \mathcal{L}\right|_{\Delta}$. The claim just follows from the fact that for each sub net interval Δ^{\prime} with coding $y_{1} \ldots y_{k} x_{1} \ldots x_{n+1}$,

$$
\nu \circ \pi^{-1}\left(\Delta^{\prime}\right)=\eta\left(\left[x_{1} \ldots x_{n+1}\right]\right)=p_{x_{1}} \ell_{x_{n+1}} \rho^{n}=p_{y_{k+1}} \rho^{-k}\left|\Delta^{\prime}\right|,
$$

[^0]where we use (2.11) and (C3). Since the collection of sub net intervals of Δ generates the Borel sigma-algebra on $\Delta, \nu \circ \pi^{-1}$ only differs from $\left.\mathcal{L}\right|_{\Delta}$ by a constant. The claim thus follows.

Now assume that $x=\left(x_{i}\right)_{i=1}^{\infty} \in\left[y_{k+1}\right]$ such that $z=\pi(x) \notin \bigcup_{n \geq 0} P_{n}$. Then by (2.5),

$$
\begin{aligned}
\mathcal{N}_{n+k}\left(\frac{m-1}{\beta-1} z\right) & =\left\|T\left(y_{1}, y_{2}\right) \ldots T\left(y_{k}, y_{k+1}\right) T\left(x_{1}, x_{2}\right) \ldots T\left(x_{n}, x_{n+1}\right)\right\| \\
& \asymp\left\|T\left(x_{1}, x_{2}\right) \ldots T\left(x_{n}, x_{n+1}\right)\right\|
\end{aligned}
$$

where we use the fact that $T\left(y_{1}, y_{2}\right) \ldots T\left(y_{k}, y_{k+1}\right)$ is a strictly positive vector (see (C4)), and the notation $a_{n} \asymp b_{n}$ means that $C^{-1} b_{n} \leq a_{n} \leq C b_{n}$ for a positive constant $C \geq 1$ independent of n. This together with (2.12) yields

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathcal{N}_{n}\left(\frac{m-1}{\beta-1} \pi(x)\right)=\gamma \quad \text { for } \eta \text {-a.e. } x \in\left[y_{k+1}\right]
$$

and hence

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathcal{N}_{n}(z)=\gamma \quad \text { for } \nu \circ \pi^{-1} \text {-a.e. } z \in \mathbb{R} .
$$

Since $\nu \circ \pi^{-1}$ is equivalent to $\left.\mathcal{L}\right|_{\Delta}$, we obtain Theorem 2.2 (and thus, Theorem 1.1) with $\gamma \geq 0$.
2.3. Proof that $\gamma>0$. Let us consider first the case of non-integer β. It is clearly sufficient to prove $\gamma>0$ for $m=\lfloor\beta\rfloor+1$. Following [2], we introduce the random β-transformation K_{β}. Namely, put

$$
\begin{equation*}
S_{k}=\left[\frac{k}{\beta}, \frac{\lfloor\beta\rfloor}{\beta(\beta-1)}+\frac{k-1}{\beta}\right] \tag{2.14}
\end{equation*}
$$

(the switch regions) and

$$
E_{k}=\left(\frac{\lfloor\beta\rfloor}{\beta(\beta-1)}+\frac{k-1}{\beta}, \frac{k+1}{\beta}\right), \quad k=1, \ldots,\lfloor\beta\rfloor-1,
$$

with

$$
E_{0}=\left[0, \frac{1}{\beta}\right), \quad E_{\lfloor\beta\rfloor}=\left(\frac{\lfloor\beta\rfloor}{\beta(\beta-1)}+\frac{\lfloor\beta\rfloor-1}{\beta}, \frac{\lfloor\beta\rfloor}{\beta-1}\right]
$$

(the equality regions). Put now $\Omega=\{0,1\}^{\mathbb{N}}$ and the map $K_{\beta}: \Omega \times I_{\beta} \rightarrow \Omega \times I_{\beta}$ defined as

$$
K_{\beta}(\omega, x)= \begin{cases}(\omega, \beta x-k), & x \in E_{k}, k=0,1, \ldots,\lfloor\beta\rfloor, \\ (\sigma(\omega), \beta x-k), & x \in S_{k} \text { and } \omega_{1}=1, k=1, \ldots,\lfloor\beta\rfloor, \\ (\sigma(\omega), \beta x-k+1), & x \in S_{k} \text { and } \omega_{1}=0, k=1, \ldots,\lfloor\beta\rfloor\end{cases}
$$

where $\sigma\left(\omega_{1}, \omega_{2}, \omega_{3}, \ldots\right)=\left(\omega_{2}, \omega_{3}, \ldots\right)$. The map K_{β} generates all β-expansions of x by acting as a shift - see [2, p. 159] for more details. More precisely, if $x \in E_{k}$, then the first digit of its β-expansion must be k; if $x \in S_{k}$, it can be either k or $k-1$.

It was shown in [2] that there exists a unique probability measure m_{β} on I_{β} such that m_{β} is equivalent to the Lebesgue measure and $\mathbb{P} \otimes m_{\beta}$ is invariant and ergodic under K_{β}, where $\mathbb{P}=\prod_{1}^{\infty}\left\{\frac{1}{2}, \frac{1}{2}\right\} .{ }^{2}$

The famous Garsia separation lemma ([8, Lemma 1.51]) states that there exists a constant $C=C(\beta, m)>0$ such that if $\sum_{j=1}^{n} \varepsilon_{j} \beta^{-j} \neq \sum_{j=1}^{n} \varepsilon_{j}^{\prime} \beta^{-j}$ for some $\varepsilon_{j}, \varepsilon_{j}^{\prime} \in$ $\{0,1, \ldots, m-1\}$, then $\left|\sum_{j=1}^{n}\left(\varepsilon_{j}-\varepsilon_{j}^{\prime}\right) \beta^{-j}\right| \geq C \beta^{-n}$. Hence

$$
\begin{equation*}
\#\left\{\sum_{j=1}^{n} \varepsilon_{j} \beta^{-j} \mid \varepsilon_{j} \in\{0,1, \ldots, m-1\}\right\}=O\left(\beta^{n}\right) \tag{2.15}
\end{equation*}
$$

In particular, there exist $k \geq 2$ and two words $a_{1} \ldots a_{k}$ and $b_{1} \ldots b_{k}$ with $a_{j}, b_{j} \in$ $\{0,1, \ldots,\lfloor\beta\rfloor\}$ such that $\sum_{j=1}^{k} a_{j} \beta^{-j}=\sum_{j=1}^{k} b_{j} \beta^{-j}$.

Let $J_{a_{1} \ldots a_{k}}$ denote the interval of x which can have $a_{1} \ldots a_{k}$ as a prefix of their β expansions. (It is obvious that $J_{a_{1} \ldots a_{k}}=\left[\sum_{1}^{k} a_{j} \beta^{-j}, \sum_{1}^{k} a_{j} \beta^{-j}+\frac{\lfloor\beta\rfloor}{\beta-1} \beta^{-k}\right]$.) It follows from the ergodicity of K_{β} and [2, Lemma 8] that for $\mathbb{P} \otimes \mathcal{L}$-a.e. $(\omega, x) \in \Omega \times I_{\beta}$ the block $a_{1} \ldots a_{k}$ appears in the β-expansion of x (specified by ω) with a limiting frequency $\widetilde{\gamma}>0$.

In particular, for \mathcal{L}-a.e. x there exists a β-expansion $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right)$ which contains the block $a_{1} \ldots a_{k}$ with the positive limiting frequency $\widetilde{\gamma}$, i.e.,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \#\left\{j: \varepsilon_{j} \ldots \varepsilon_{j+k-1}=a_{1} \ldots a_{k}\right\}=\widetilde{\gamma}
$$

[^1]Since any such block can be replaced with $b_{1} \ldots b_{k}$, and the resulting sequence remains a β-expansion of x, we conclude, in view of (1.1), that $\gamma / \log 2 \geq \widetilde{\gamma}>0$.

Let now $\beta \in \mathbb{N}$, so $m \geq \beta+1$. In a β-expansion with digits $\{0,1, \ldots, m-1\}$ one can replace the block 10 with 0β without altering the rest of the expansion. Since for \mathcal{L}-a.e. x its β-ary expansion (with digits $0,1, \ldots, \beta-1$) contains the block 01 with the limiting frequency $\beta^{-2}>0$, we conclude that $\gamma / \log 2 \geq \beta^{-2}>0$.

The proof of Theorem 1.1 is complete.
The same argument as above proves
Proposition 2.3. If β satisfies an algebraic equation with integer coefficients bounded by m in modulus, then there exists $C=C(\beta, m)>0$ such that

$$
\begin{equation*}
\varliminf_{n \rightarrow \infty} \frac{\log \mathcal{N}_{n}(x ; \beta)}{n} \geq C \text { for } \mathcal{L} \text {-a.e. } x \in I_{\beta} . \tag{2.16}
\end{equation*}
$$

It is an intriguing open question whether (2.16) holds for all $\beta>1$. (See also Section 5.)
2.4. Proof of Corollary 1.2. Note first that (2.1) can be rewritten as follows:

$$
\mathcal{E}_{n}(x ; \beta)=\left\{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in\{0,1, \ldots, m-1\}^{n}: x-\frac{(m-1) \beta^{-n}}{\beta-1} \leq \sum_{k=1}^{n} \varepsilon_{k} \beta^{-k} \leq x\right\} .
$$

Thus, if $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in \mathcal{E}_{n}(x ; \beta)$, then for any $\left(\varepsilon_{n+1}, \varepsilon_{n+2}, \ldots\right) \in\{0,1, \ldots, m-1\}^{\mathbb{N}}$ we have

$$
x-\frac{(m-1) \beta^{-n}}{\beta-1} \leq \sum_{k=1}^{\infty} \varepsilon_{k} \beta^{-k} \leq x+\frac{(m-1) \beta^{-n}}{\beta-1}
$$

Hence by definition,

$$
\begin{equation*}
\mu\left(x-\frac{(m-1) \beta^{-n}}{\beta-1}, x+\frac{(m-1) \beta^{-n}}{\beta-1}\right) \geq m^{-n} \mathcal{N}_{n}(x ; \beta) . \tag{2.17}
\end{equation*}
$$

Put now

$$
\begin{aligned}
\mathcal{E}_{n}^{\prime}(x ; \beta)=\{ & \left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in\{0,1, \ldots, m-1\}^{n}: \\
& \left.x-\frac{(m-1) \beta^{-n}}{\beta-1}-\frac{\beta^{-n}}{n^{2}} \leq \sum_{k=1}^{n} \varepsilon_{k} \beta^{-k} \leq x+\frac{\beta^{-n}}{n^{2}}\right\} .
\end{aligned}
$$

We are going to need the following

Lemma 2.4. For \mathcal{L}-a.e. $x \in I_{\beta}$ we have $\mathcal{E}_{n}^{\prime}(x ; \beta)=\mathcal{E}_{n}(x ; \beta)$ for all n, except, possibly, a finite number (depending on x).

Proof. We have

$$
\begin{aligned}
\mathcal{E}_{n}^{\prime}(x ; \beta) \backslash \mathcal{E}_{n}(x ; \beta) & =\left\{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right): 0<x-\frac{(m-1) \beta^{-n}}{\beta-1}-\sum_{k=1}^{n} \varepsilon_{k} \beta^{-k} \leq \frac{\beta^{-n}}{n^{2}}\right\} \\
& \cup\left\{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right): 0<\sum_{k=1}^{n} \varepsilon_{k} \beta^{-k}-x \leq \frac{\beta^{-n}}{n^{2}}\right\}
\end{aligned}
$$

Hence, in view of (2.15),

$$
\mathcal{L}\left\{x: \mathcal{E}_{n}^{\prime}(x ; \beta) \backslash \mathcal{E}_{n}(x ; \beta) \neq \emptyset\right\}=O\left(\frac{1}{n^{2}}\right)
$$

whence by the Borel-Cantelli lemma,

$$
\mathcal{L}\left\{x: \mathcal{E}_{n}^{\prime}(x ; \beta) \backslash \mathcal{E}_{n}(x ; \beta) \neq \emptyset \text { for an infinite set of } n\right\}=0
$$

Return to the proof of the corollary. Put

$$
\mathcal{D}_{n}^{\prime}(x ; \beta)=\left\{\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right): x-\frac{\beta^{-n}}{n^{2}} \leq \sum_{k=1}^{\infty} \varepsilon_{k} \beta^{-k} \leq x+\frac{\beta^{-n}}{n^{2}}\right\}
$$

Note that if $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right) \in \mathcal{D}_{n}^{\prime}(x ; \beta)$, then $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in \mathcal{E}_{n}^{\prime}(x ; \beta)$, since $\sum_{1}^{n} \varepsilon_{k} \beta^{-k} \geq$ $\sum_{1}^{\infty} \varepsilon_{k} \beta^{-k}-\frac{(m-1) \beta^{-n}}{\beta-1}$. Thus, by Lemma 2.4, for \mathcal{L}-a.e. x and all sufficiently large n,

$$
\mu\left(x-\frac{\beta^{-n}}{n^{2}}, x+\frac{\beta^{-n}}{n^{2}}\right) \leq m^{-n} \mathcal{N}_{n}(x ; \beta) .
$$

Together with (2.17), we obtain for \mathcal{L}-a.e. x,

$$
\mu\left(x-\frac{\beta^{-n}}{n^{2}}, x+\frac{\beta^{-n}}{n^{2}}\right) \leq m^{-n} \mathcal{N}_{n}(x ; \beta) \leq \mu\left(x-\frac{(m-1) \beta^{-n}}{\beta-1}, x+\frac{(m-1) \beta^{-n}}{\beta-1}\right)
$$

Taking logs, dividing by n and passing to the limit as $n \rightarrow \infty$ yields the claim of Corollary 1.2 . 3

[^2]
3. Proof of Theorem 1.3

We first introduce some notation. For $q \in \mathbb{R}$, we use $\tau(q)$ to denote the L^{q} spectrum of μ, which is defined by

$$
\tau(q)=\lim _{r \rightarrow 0+} \frac{\log \left(\sup \sum_{i} \mu\left(\left[x_{i}-r, x_{i}+r\right]\right)^{q}\right)}{\log r}
$$

where the supremum is taken over all the disjoint families $\left\{\left[x_{i}-r, x_{i}+r\right]\right\}_{i}$ of closed intervals with $x_{i} \in[0,1]$. It is easily checked that $\tau(q)$ is a concave function of q over $\mathbb{R}, \tau(1)=0$ and $\tau(0)=-1$. For $\alpha \geq 0$, let

$$
E(\alpha)=\{x \in[0,1]: d(\mu, x)=\alpha\}
$$

where $d(\mu, x)$ is defined as in (1.2). The following lemma is a basic fact in multifractal analysis (see, e.g., [15, Theorem 4.1] for a proof).

Lemma 3.1. Let $\alpha \geq 0$. If $E(\alpha) \neq \emptyset$, then

$$
\begin{equation*}
\operatorname{dim}_{H} E(\alpha) \leq \alpha q-\tau(q), \quad \forall q \in \mathbb{R} \tag{3.1}
\end{equation*}
$$

Proof of Theorem 1.3. Set $t=(\log m-\gamma) / \log \beta$. By Corollary 1.2, we have $d(\mu, x)=$ t for \mathcal{L}-a.e. $x \in[0,1]$. It was proved in [3, Proposition 5.3] that μ is absolutely continuous if and only if β is an integer so that $\beta \mid m$. When μ is absolutely continuous, $d(\mu, x)=1$ for \mathcal{L}-a.e. $x \in[0,1]$ and hence $t=1$, which implies that $\gamma=\log (m / \beta)$.

In the following we assume that μ is singular. It was proved in [16] that $\operatorname{dim}_{H} \mu<1$. Since $d(\mu, x)=t$ for \mathcal{L}-a.e. $x \in[0,1]$, we have $\mathcal{L}(E(t))=1$ and hence $\operatorname{dim}_{H} E(t)=1$. By (3.1), we have

$$
\begin{equation*}
1 \leq t q-\tau(q), \quad \forall q \in \mathbb{R} \tag{3.2}
\end{equation*}
$$

Taking $q=1$ in (3.2) and using the fact $\tau(1)=0$, we have $t \geq 1$. It was proved in [5] that $\tau(q)$ is differentiable for $q>0$ and $\operatorname{dim}_{H} \mu=\tau^{\prime}(1)$. Since τ is also concave, τ^{\prime} is continuous on $(0,+\infty)$. By (3.2) and the fact $\tau(0)=-1$, we have $\tau(q)-\tau(0) \leq t q$ for all $q \in \mathbb{R}$, which implies

$$
\begin{equation*}
\tau^{\prime}(0+) \leq t \leq \tau^{\prime}(0-) \tag{3.3}
\end{equation*}
$$

Since τ is concave, it is absolutely continuous on $[0,1]$ and hence

$$
\begin{equation*}
1=\tau(1)-\tau(0)=\int_{[0,1]} \tau^{\prime}(x) d x \tag{3.4}
\end{equation*}
$$

Since $\tau^{\prime}(1)=\operatorname{dim}_{H} \mu<1$, and τ^{\prime} is non-increasing on $(0,1)$, by (3.4) we must have $\tau^{\prime}(0+)=\lim _{q \rightarrow 0+} \tau^{\prime}(q)>1$. This together with (3.3) yields $t>1$. Hence we have $\gamma<\log (m / \beta)$.

Remark 3.2. (1) It is interesting to compare Proposition 1.4 with a similar result for a Bernoulli-generic x. Let, for simplicity, $m=2$; then it is known that $d\left(\mu_{\beta, 2}\right) \equiv H_{\beta}<1$ for μ_{β}-a.e. x. - see [14]. Here H_{β} is Garsia's entropy introduced in [9] (see also [12] for some lower bounds for H_{β}).
(2) It was proved in [5] that the set of local dimensions of μ contains the set $\left\{\tau^{\prime}(q): q>0\right\}$. In the case that μ is singular, this set contains a neighborhood of 1 . To see it, just note that $\tau^{\prime}(1)=\operatorname{dim}_{H} \mu<1<\tau^{\prime}(0+)$.
(3) We do not know whether the set of local dimensions of μ,

$$
\{\alpha \geq 0: E(\alpha) \neq \emptyset\}
$$

is always a closed interval. Nevertheless, it was proved in [7] that for each Pisot number β and positive integer m, there exists an interval I with $\mu(I)>0$ such that the set of local dimensions of $\left.\mu\right|_{I}$ is always a closed interval, where $\left.\mu\right|_{I}$ denotes the restriction of μ on I.
(4) We conjecture that $\tau^{\prime}(0)$ exists. If this is true, by (3.3) we have $t=\tau^{\prime}(0)$.
(5) The following result can be proved in a way similar to the proof of Theorem 1.3: assume that η is a compactly supported Borel probability measure on \mathbb{R}^{d} so that $d(\eta, x)=t$ on a set of Hausdorff dimension d. Then $t>d$ if $\tau^{\prime}(1-)<d$. The reader is referred to [5] for the definitions of $d(\eta, x)$ and $\tau(q)$ for a measure on \mathbb{R}^{d}.

4. Examples

As we have seen from the proof of Theorem 1.1, the exponent γ in (1.1) corresponds to the Lyapunov exponent of certain family of non-negative matrices. In the case when this family contains a rank-one matrix (for instance, this occurs when $v_{i}=1$ for some $i \in \widehat{\Omega}$), the corresponding matrix product is degenerate and one may obtain an explicit theoretic formula (via series expansion) for γ. Let us consider an important family of examples.

Example 4.1. Fix an integer $n \geq 2$. Let β_{n} be the positive root of $x^{n}=x^{n-1}+\ldots+$ $x+1$ (often called the n 'th multinacci number). Let $m=2$. The following formula
for $\gamma_{n}=\gamma\left(\beta_{n}\right)$ was obtained in [6, Theorem 1.2]:

$$
\begin{equation*}
\gamma_{n}=\frac{\beta^{-n}\left(1-2 \beta^{-n}\right)^{2}}{2-(n+1) \beta^{-n}} \sum_{k=0}^{\infty}\left(\beta^{-n k} \sum_{J \in \mathcal{A}_{k}} \log \left\|M_{J}\right\|\right) \tag{4.5}
\end{equation*}
$$

where $\mathcal{A}_{0}=\{\emptyset\}$ and $\mathcal{A}_{k}=\{1,2\}^{k}$ for $k \geq 1$. M_{\emptyset} denotes the 2×2 identity matrix, and M_{1}, M_{2} are two 2×2 matrices given by

$$
M_{1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad M_{2}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] .
$$

For $J=j_{1} \ldots j_{k} \in \mathcal{A}_{k}, M_{J}$ denotes $M_{j_{1}} M_{j_{2}} \ldots M_{j_{n}}$. For any 2×2 non-negative matrix $B,\|B\|=(1,1) B(1,1)^{t}$.

The numerical estimations in Table 1 were given in [6] for $\gamma_{n} / \log 2, n=2, \ldots, 10$. We also include in the table the approximate values for $D_{\beta}=D_{\beta, 2}$ (see Corollary 1.2 and Proposition 1.4) and for Garsia's entropy H_{β} for comparison (taken from [11]).

n	β_{n}	$\gamma_{n} / \log 2$	$D_{\beta_{n}}$	$H_{\beta_{n}}$
2	1.618034	0.302 ± 0.001	1.0054 ± 0.0015	0.995713
3	1.839287	0.102500	1.028876	0.980409
4	1.927562	0.041560	1.012318	0.986926
5	1.965948	0.018426	1.006510	0.992585
6	1.983583	0.008590	1.003341	0.996033
7	1.991964	0.004123	1.001695	0.997937
8	1.996031	0.002014	1.000854	0.998945
9	1.998029	0.000993	1.000429	0.999465
10	1.999019	0.000493	1.000215	0.999731

Table 1. Approximate values of γ, D_{β} and H_{β} for the multinacci family

5. Proof of Theorem 1.5 and Corollary 1.6

Let us first observe that without loss of generality we may confine ourselves to the case $m=2$. Indeed, if $m \geq 3$ and $x \in\left(0, \frac{1}{\beta-1}\right)$, then we can use digits 0,1 and apply Theorem 1.5 for $m=2$. If $x \in\left(\frac{j}{\beta-1}, \frac{j+1}{\beta-1}\right)$ for $1 \leq j \leq m-2$, then we put $y=x-\frac{j}{\beta-1}$ and apply Theorem 1.5 for $m=2$ to y. For the original x the claim will then follow with $\varepsilon_{n} \in\{j, j+1\}$.

Figure 1. Branching and "bifurcations"
If $x=\frac{j}{\beta-1}$ with $1 \leq j \leq m-2$, then we set $\varepsilon_{1}=j-1$ so

$$
\beta\left(x-\frac{\varepsilon_{1}}{\beta}\right)=\frac{\beta+j-1}{\beta-1}=\frac{\varepsilon_{2}}{\beta}+\frac{\varepsilon_{3}}{\beta^{2}}+\cdots
$$

It suffices to observe that $\frac{j}{\beta-1}<\frac{\beta+j-1}{\beta-1}<\frac{j+1}{\beta-1}$ and apply the above argument to $\left(\varepsilon_{2}, \varepsilon_{3}, \ldots\right)$.

So, let $m=2$ and let $x \in I_{\beta}$ have at least two β-expansions; then there exists the smallest $n \geq 0$ such that $x \sim\left(\varepsilon_{1}, \ldots, \varepsilon_{n}, \varepsilon_{n+1}, \ldots\right)_{\beta}$ and $x \sim\left(\varepsilon_{1}, \ldots, \varepsilon_{n}, \varepsilon_{n+1}^{\prime}, \ldots\right)_{\beta}$ with $\varepsilon_{n+1} \neq \varepsilon_{n+1}^{\prime}$. We may depict this "bifurcation" as is shown in Figure 1.

If $\left(\varepsilon_{n+1}, \varepsilon_{n+2}, \ldots\right)$ is not a unique expansion, then there exists $n_{2}>n$ with the same property, etc. As a result, we obtain a subtree of the binary tree which corresponds to the set of all β-expansions of x, which we call the branching tree of x and denote by $\mathcal{T}(x ; \beta)$.

The following claim is straightforward:
Lemma 5.1. Suppose $K \in \mathbb{N}$ is such that the length of each branch is at most K. Then

$$
\mathcal{N}_{n}(x ; \beta) \geq 2^{n / K-1}
$$

Proof. It is obvious that $\mathcal{N}_{K n}(x ; \beta) \geq 2^{n}$, which yields the claim.

Theorem 5.2. Suppose $1<\beta<\frac{1+\sqrt{5}}{2}$ and put

$$
\kappa=\left\{\begin{array}{ll}
\frac{1}{2}\left(\left\lfloor\log _{\beta} \frac{\beta^{2}-1}{1+\beta-\beta^{2}}\right\rfloor+1\right)^{-1}, & \beta>\sqrt{2} \tag{5.6}\\
\frac{1}{2}\left(\left\lfloor\log _{\beta} \frac{1}{\beta-1}\right\rfloor+1\right)^{-1}, & \beta \leq \sqrt{2} .
\end{array} .\right.
$$

Then for any $x \in\left[\frac{1}{\beta}, \frac{1}{\beta(\beta-1)}\right]$ we have

$$
\begin{equation*}
\mathcal{N}_{n}(x ; \beta) \geq 2^{\kappa n-1} \tag{5.7}
\end{equation*}
$$

Proof. In view of Lemma 5.1, it suffices to construct a subtree of $\mathcal{T}(x ; \beta)$ such that the length of its every branch is at most $1 / \kappa$. Put $\Delta_{\beta}=\left[\frac{1}{\beta}, \frac{1}{\beta(\beta-1)}\right]$; it is easy to check that one can choose different ε_{1} for x if and only if $x \in \Delta_{\beta}{ }^{4}$.

Put

$$
\delta=\min \left(\frac{1+\beta-\beta^{2}}{\beta^{2}-1}, \beta-1\right)= \begin{cases}\frac{1+\beta-\beta^{2}}{\beta^{2}-1} & \text { if } \beta>\sqrt{2} \tag{5.8}\\ \beta-1 & \text { if } \beta \leq \sqrt{2}\end{cases}
$$

Note that $\delta>0$, in view of $1<\beta<\frac{1+\sqrt{5}}{2}$. Put $L_{\beta}(x)=\beta x, R_{\beta}(x)=\beta x-1$. The maps L_{β} and R_{β} act as shifts on the β-expansions of x, namely, $L_{\beta}(x)$ shifts a β-expansion of x if $\varepsilon_{1}=0$ and R_{β} - if $\varepsilon_{1}=1$. Thus, by applying all possible compositions of the two maps we obtain all β-expansions of x. (See subsection 2.3 for more detail.)

Assume first that $x \in \Delta_{\beta}$. We have two cases.
Case 1. $x \in\left[\frac{1+\delta}{\beta}, \frac{1}{\beta(\beta-1)}-\frac{\delta}{\beta}\right]$. It is easy to check, using (5.8), that this is an interval of positive length. Here $L_{\beta}(x) \in\left[1+\delta, \frac{1}{\beta-1}-\delta\right]$ and $R_{\beta}(x) \in\left[\delta, \frac{1}{\beta-1}-\delta-1\right]$. In either case, the image is at a distance at least δ from either endpoint of I_{β}.

It suffices to estimate the number of iterations one needs to reach the switch region Δ_{β}. In view of symmetry, we can deal with $y \in[\delta, 1 / \beta)$; here $L_{\beta}^{k}(y) \in \Delta_{\beta}$ for some $1 \leq k \leq\left\lfloor\log _{\beta} \frac{1}{\delta}\right\rfloor+1$.

Case 2. $x \in\left(\frac{1}{\beta}, \frac{1+\delta}{\beta}\right)$ or the mirror-symmetric case (which is analogous). Here $R_{\beta}(x)$ can be very close to 0 , so we have no control over its further iterations. Consequently, we remove this branch from $\mathcal{T}(x ; \beta)$ and concentrate on the subtree which grows from $L_{\beta}(x)$.

[^3]

Figure 2. Branching for Case 2

We have $L_{\beta}(x)=\beta x \in(1,1+\delta)$. Clearly, it lies in Δ_{β} provided $1+\delta \leq \frac{1}{\beta(\beta-1)}-$ which is equivalent to $\delta \leq \frac{1+\beta-\beta^{2}}{\beta(\beta-1)}$, and this is true for $\beta>\sqrt{2}$, in view of (5.8); for $\beta \leq \sqrt{2}$ we have $\delta-1=\beta \leq \frac{1}{\beta(\beta-1)}$. Furthermore,

$$
\begin{aligned}
& L_{\beta} L_{\beta}(x)=\beta^{2} x \in(\beta,(1+\delta) \beta) \\
& R_{\beta} L_{\beta}(x)=\beta^{2} x-1 \in(\beta-1,(1+\delta) \beta-1)
\end{aligned}
$$

Notice that $\beta^{2} x \leq \frac{1}{\beta-1}-\delta$, because for $\beta>\sqrt{2}$ we have $\beta(1+\delta)=\frac{1}{\beta-1}-\delta$, and for $\beta \leq \sqrt{2}$ we have $\beta^{2} \leq \frac{1}{\beta-1}-\beta+1$, which is in fact equivalent to $\beta \leq \sqrt{2}$. As for $R_{\beta} L_{\beta}(x)$, it is clear that it lies in $\left(\delta, \frac{1}{\beta-1}-\delta\right)$ in either case, since $\delta \leq \beta-1$.

We see that the length of each branch of the new tree does not exceed $2\left(\left\lfloor\log _{\beta} \frac{1}{\delta}\right\rfloor+1\right)$ (the factor two appears in the estimate because it may happen that we will have to discard $L_{\beta} L_{\beta} L_{\beta} / R_{\beta} L_{\beta} L_{\beta}$ or $L_{\beta} R_{\beta} L_{\beta} / R_{\beta} R_{\beta} L_{\beta}$), and it suffices to apply Lemma 5.1.

If $0<x<1 / \beta$, then there exists a unique $\ell \geq 1$ such that $L_{\beta}^{\ell-1}(x)<1 / \beta$ but $L_{\beta}^{\ell}(x) \geq 1 / \beta$. In view of $1<\frac{1}{\beta(\beta-1)}$, this implies $L_{\beta}^{\ell}(x) \in \Delta_{\beta}$. Similarly, if $\frac{1}{\beta(\beta-1)}<x<\frac{1}{\beta-1}$, then $R_{\beta}^{\ell}(x) \in \Delta_{\beta}$ for some ℓ. Thus, it takes only a finite number of iterations for any $x \in\left(0, \frac{1}{\beta-1}\right)$ to reach Δ_{β}. Hence follows Theorem 1.5.

Remark 5.3. It would be interesting to determine the sharp analog of the golden ratio in Theorem 1.5 for the case $\beta \in(m-1, m)$ with $m \geq 3$.

To prove Corollary 1.6, we apply the inequalities (2.17) and (5.7), whence

$$
\mu\left(x-\frac{\beta^{-n}}{\beta-1}, x+\frac{\beta^{-n}}{\beta-1}\right) \geq \frac{1}{2} \cdot 2^{(1-\kappa) n}
$$

and

$$
\varlimsup_{n \rightarrow \infty}-\frac{1}{n} \log _{\beta} \mu\left(x-\frac{\beta^{-n}}{\beta-1}, x+\frac{\beta^{-n}}{\beta-1}\right) \leq(1-\kappa) \log _{\beta} 2 .
$$

Hence follows the claim of Corollary 1.6.
We define the minimal growth exponent as follows:

$$
\mathfrak{m}_{\beta}=\inf _{x \in(0,1 /(\beta-1))} \underline{\lim _{n \rightarrow \infty}} \sqrt[n]{\mathcal{N}_{n}(x ; \beta)} .
$$

Corollary 5.4. For $\beta<\frac{1+\sqrt{5}}{2}$ we have $\mathfrak{m}_{\beta} \geq 2^{\kappa}>1$, where κ is given by (5.6).

The golden ratio in Theorem 5.2 and Corollary 5.4 is a sharp constant in a boring sense, since for $\beta>\frac{1+\sqrt{5}}{2}$ there are always x with a unique β-expansion (see [10]) and for $\beta=\frac{1+\sqrt{5}}{2}$ there are x with a linear growth of $\mathcal{N}_{n}(x)$ (see, e.g., [19]). Hence $\mathfrak{m}_{\beta}=1$ for $\beta \geq \frac{1+\sqrt{5}}{2}$.

However, it is also a sharp bound in a more interesting sense; let us call the set of β-expansions of a given x sparse if $\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathcal{N}_{n}(x ; \beta)=0$.

Proposition 5.5. For $\beta=\frac{1+\sqrt{5}}{2}$ there exists a continuum of points x, each of which has a sparse continuum of β-expansions.

Proof. Suppose $\left(m_{k}\right)_{k=1}^{\infty}$ is a strictly increasing sequence of natural numbers. Let x be the number whose β-expansion is $10^{2 m_{1}} 10^{2 m_{2}} 10^{2 m_{3}} \ldots$ We claim that such an x has a required property.

Indeed, as was shown in [19], the set of all β-expansions in this case is the Cartesian product $\mathfrak{X}_{m_{1}} \times \mathfrak{X}_{m_{2}} \times \ldots$, where

$$
\mathfrak{X}_{m_{k}}=\left\{\left(\varepsilon_{1}, \ldots, \varepsilon_{2 m_{k}+1}\right): \sum_{j=1}^{2 m_{k}+1} \varepsilon_{j} \beta^{-j}=\frac{1}{\beta}\right\} .
$$

It follows from [19, Lemma 2.1] that $\# \mathfrak{X}_{m_{k}}=m_{k}$, whence by [19, Lemma 2.2],

$$
\# \mathcal{D}_{\beta}\left(10^{2 m_{1}} \ldots 10^{2 m_{k}}\right)=\prod_{j=1}^{k} m_{j}
$$

where $\mathcal{D}_{\beta}(\cdot)$ is given by

$$
\mathcal{D}_{\beta}\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)=\left\{\left(\varepsilon_{1}^{\prime}, \ldots, \varepsilon_{n}^{\prime}\right) \in\{0,1\}^{n}: \sum_{k=1}^{n} \varepsilon_{k} \beta^{-k}=\sum_{k=1}^{n} \varepsilon_{k}^{\prime} \beta^{-k}\right\}
$$

Hence for $n=\sum_{1}^{k}\left(2 m_{j}+1\right)$,

$$
\frac{\log \mathcal{N}_{n}(x ; \beta)}{n} \sim \frac{\sum_{j=1}^{k} \log m_{j}}{2 \sum_{1}^{k} m_{j}+1} \rightarrow 0, \quad k \rightarrow+\infty
$$

since $m_{k} \nearrow+\infty$. Therefore, $\lim _{n} \sqrt[n]{\mathcal{N}_{n}(x ; \beta)}=1$. It suffices to observe that there exists a continuum strictly increasing sequences of natural numbers - for instance, one can always choose $m_{k} \in\{2 k-1,2 k\}$.

A similar proof works for the multinacci β. It is an open question whether given $\beta>\frac{1+\sqrt{5}}{2}$, it is always possible to find x with a sparse continuum of β-expansions.

Acknowledgement. The first author was partially supported by RGC grants (projects 400706 and 401008) in CUHK. The authors are indebted to Kevin Hare for his useful remarks regarding Section 5.

References

[1] K. Dajani and M. de Vries, Measures of maximal entropy for random β-expansions, J. Eur. Math. Soc. (JEMS) 7 (2005), 51-68.
[2] K. Dajani and M. de Vries, Invariant densities for random β-expansions, J. Eur. Math. Soc. 9 (2007), 157-176.
[3] J. M. Dumont, N. Sidorov and A. Thomas, Number of representations related to a linear recurrent basis, Acta Arith. 88 (1999), 371-396.
[4] P. Erdős, I. Joó, and V. Komornik, Characterization of the unique expansions $1=\sum_{i=1}^{\infty} q^{-n_{i}}$ and related problems, Bull. Soc. Math. Fr. 118 (1990), 377-390.
[5] D. J. Feng, Smoothness of the L^{q}-spectrum of self-similar measures with overlaps, J. London Math. Soc. (2) 68 (2003), 102-118.
[6] D. J. Feng, The limited Rademacher functions and Bernoulli convolutions associated with Pisot numbers, Adv. Math. 195 (2005), 24-101.
[7] D. J. Feng, Lyapunov exponent for products of matrices and multifractal analysis. Part II: General matrices, Israel J. Math. 170 (2009), 355-394.
[8] A. Garsia, Arithmetic properties of Bernoulli convolutions, Trans. Amer. Math. Soc. 102 (1962), 409-432.
[9] A. Garsia, Entropy and singularity of infinite convolutions, Pac. J. Math. 13 (1963), 1159-1169.
[10] P. Glendinning and N. Sidorov, Unique representations of real numbers in non-integer bases, Math. Res. Lett. 8 (2001), 535-543.
[11] P. Grabner, P. Kirschenhofer and T. Tichy, Combinatorial and arithmetical properties of linear numeration systems, Combinatorica 22 (2002), 245-267.
[12] K. Hare and N. Sidorov, A lower bound for Garsia's entropy for certain Bernoulli convolutions, preprint, see http://arxiv.org/abs/0811.3009.
[13] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747.
[14] S. Lalley, Random series in powers of algebraic integers: Hausdorff dimension of the limit distribution, J. London Math. Soc. 57 (1998), 629-654.
[15] K. S. Lau and S. M. Ngai, Multifractal measures and a weak separation condition, Adv. Math. 141 (1999), 45-96.
[16] F. Przytycki and M. Urbański, On the Hausdorff dimension of some fractal sets, Studia Math. 93 (1989), 155-186.
[17] N. Sidorov, Almost every number has a continuum of β-expansions, Amer. Math. Monthly 110 (2003), 838-842.
[18] N. Sidorov, Combinatorics of linear iterated function systems with overlaps, Nonlinearity 20 (2007), 1299-1312.
[19] N. Sidorov and A. Vershik, Ergodic properties of Erdös measure, the entropy of the goldenshift, and related problems, Monatsh. Math. 126 (1998), 215-261.
[20] B. Solomyak, Notes on Bernoulli convolutions, Proc. Symp. in Pure Math. 72 (2004), 207-230, American Mathematical Society.
[21] P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, New York, 1982.

Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong, P. R. China

E-mail address: djfeng@math.cuhk.edu.hk

School of Mathematics, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom

E-mail address: sidorov@manchester.ac.uk

[^0]: ${ }^{1}$ The reader may actually check that η is the unique invariant measure of maximal entropy, the so-called Parry measure on $\widehat{\Omega}_{A}^{\mathbb{N}}-$ see, e.g., [21] for the definition.

[^1]: ${ }^{2}$ It should also be noted that K_{β} has a unique ergodic measure of maximal entropy which is singular with respect to $\mathbb{P} \otimes m_{\beta}$ and whose projection onto the second coordinate is precisely $\mu_{\beta, m}$ - see [1] for more detail.

[^2]: ${ }^{3}$ It is easy to see that $d(\mu, x)$ exists if the limit in (1.2) exists along some exponentially decreasing subsequence of r.

[^3]: ${ }^{4}$ Notice that Δ_{β} is none other than S_{1} given by (2.14) for $m=2$ and $\lfloor\beta\rfloor=1$.

