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Abstract. Let E be the attractor of an iterated function system {φi(x) = ρRix+
ai}Ni=1 on Rd, where 0 < ρ < 1, ai ∈ Rd and Ri are orthogonal transformations
on Rd. Suppose that {φi}Ni=1 satisfies the open set condition, but not the strong
separation condition. We show that E can not be generated by any iterated
function system of similitudes satisfying the strong separation condition. This
gives a partial answer to a folklore question about the separation conditions on
the generating iterated function systems of self-similar sets.

1. Introduction

In this paper, we investigate the separation conditions on iterated function systems
of similitudes.

By an iterated function system (IFS) on Rd we mean a finite family Φ = {φi}Ni=1

of uniformly contracting mappings on Rd with N > 1. It is well known [10] that for
each IFS Φ = {φi}Ni=1 on Rd, there is a unique non-empty compact set E ⊂ Rd such
that

E =
N⋃
i=1

φi(E).

We call E the attractor of Φ. If each map φi in Φ is a similitude, i.e., φi is of the
form

φi(x) = ρiRix+ ai,

where 0 < ρi < 1, ai ∈ Rd and Ri is an orthogonal transformation on Rd, we say
that E is a self-similar set generated by Φ. The study of IFSs and their attractors
is an important subject in fractal geometry, dynamical systems and probability (see
e.g. [3, 4, 8, 10]).

One of the most fundamental conditions on IFSs of similitudes is the open set
condition (OSC), under which the dimensions of the self-similar sets and the mul-
tifractal structure of the self-similar measures are well understood ([8, 10, 11, 12]).
Recall that an IFS Φ = {φi}Ni=1 of similitudes on Rd is said to satisfy the open set
condition if there is a non-empty open set U ⊂ Rd such that φi(U), i = 1, . . . , N ,
are disjoint subsets of U . Another commonly used separation condition on IFSs is
the so-called strong separation condition (SSC). Recall that Φ = {φi}Ni=1 is said to
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satisfy the strong separation condition if φi(E), i = 1, . . . , N , are disjoint, where E
is the attractor of Φ.

It is easy to see that the SSC implies the OSC. Indeed if E is the attractor of an
IFS Φ = {φi}Ni=1 on Rd satisfying the SSC, letting

Vε(E) = {x ∈ Rd : |x− y| < ε for some y ∈ E}
denote the ε-neighborhood of E, then one can check that φi(Vε(E)) (i = 1, . . . , N)
are disjoint subset of Vε(E) for all

0 < ε < min
i 6=j

dist(φi(E), φj(E)),

so Φ satisfies the OSC. Meanwhile there are many examples of IFSs which satisfy
the OSC but not the SSC, such as the IFS {x/5, (x+ 3)/5, (x+ 4)/5} on R. There
are some equivalent conditions for the OSC [2, 13], but usually it is difficult to check
whether these conditions hold for a given IFS. We emphasize that a self-similar set
can be generated by many different IFSs of similitudes, and under mild assumptions
these IFSs have a rigid algebraic structure (see, e.g., [9, 7, 5, 6, 1]).

In this paper, we consider the following folklore question about the separation
conditions on the generating IFSs of self-similar sets.

Question 1.1. Are there two IFSs Φ and Ψ of similitudes on Rd which generate the
same self-similar set, such that Φ satisfies the OSC but not the SSC, and Ψ satisfies
the SSC?

This question was first brought to us by Ka-Sing Lau and Jun Jason Luo around
10 years ago. As they informed us, this question was also asked by Mariusz Urbański
in a private communication. We remark that Question 1.1 is closely related to an
open question raised by Elekes, Keleti and Máthé [7]; see Section 4.

In this paper, we are able to provide the following partially negative answer to
Question 1.1, stating that there is no such pair (Φ,Ψ) with Φ being homogeneous.
Recall that an IFS {φi}Ni=1 of similitudes is said to be homogeneous if all the maps
φi have the same contraction ratio.

Theorem 1.2. Let E be the attractor of an IFS Φ = {φi(x) = ρRix+ai}Ni=1 on Rd,
where 0 < ρ < 1, Ri are orthogonal transformations on Rd and ai ∈ Rd. Suppose
that Φ satisfies the OSC, but not the SSC. Then E can not be generated by any IFS
of similitudes on Rd satisfying the SSC.

The proof of the above theorem is a little bit delicate. For the convenience of
the readers, we illustrate some rough ideas. Suppose on the contrary that E is
also generated by another IFS Ψ = {ψi}Mj=1 of similitudes satisfying the SSC. We
may assume that rj < ρ for all j, where rj is the contraction ratio of ψj. For
simplicity we assume that E is not contained in any hyperplane of Rd. Choose a
sufficiently small ε > 0 and let I denote the collection of all homogeneous generating
IFSs (of similitudes on Rd) of E with contraction ratios lying in the interval [ρε, ε).
Applying a result of Elekes et al. [7] we see that I is finite (see Lemma 3.1). For
each Θ = {θi}i∈A ∈ I, we can construct M homogeneous generating IFSs Γ1, . . . ,
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ΓM of E by Γj = {ψ−1
j ◦ θi : i ∈ Aj}, where Aj := {i ∈ A : θi(E) ⊂ ψj(E)}. For

each j we can show that there exists a positive integer kj such that Φkj ◦ Γj ∈ I,
where Φkj denotes the kj-th iteration of Φ. To derive a contradiction, we assign an
infinite dimensional probability vector γ(Φ′) (with finitely many non-zero entries)
to each generating IFS Φ′ of E satisfying the OSC; see Section 2.1. The term γ(Φ′),
which is called the characteristic vector of Φ′, gives a quantitative description of
the intersections between the images of E under the mappings in Φ′. Moreover we
can introduce a total order relation � on the collection of all such vectors. A key
observation is that

(1.1) γ(Φ′) ≺ γ(Φ ◦ Φ′)

for each generating IFS Φ′ of E satisfying the OSC (see Lemma 2.6). Now return
back to the aforementioned IFSs Θ and Γj (j = 1, . . . ,M). From the definition of

characteristic vector, we obtain an identity γ(Θ) =
∑M

j=1 r
s
jγ(Γj), where s is the

Hausdorff dimension of E which satisfies
∑M

j=1 r
s
j = 1. As I is finite, we may choose

Θ ∈ I so that γ(Θ) is the largest in the sense that γ(Θ′) � γ(Θ) for all Θ′ ∈ I.
Then by (1.1),

γ(Θ) =
M∑
j=1

rsjγ(Γj) ≺
M∑
j=1

rsjγ(Φkj ◦ Γj) �
M∑
j=1

rsjγ(Θ) = γ(Θ),

leading to a contradiction γ(Θ) ≺ γ(Θ).

The paper is organized as follows. In Section 2 we introduce the definition of
characteristic vector for each IFS of similitudes, and prove Lemma 2.6. In Section
3 we prove Theorem 1.2. In Section 4 we give a final remark.

2. Characteristic vectors of IFSs and a key property

2.1. Characteristic vectors of IFSs of similitudes. In this subsection, we will
assign an infinite-dimensional probability vector to each IFS of similitudes on Rd.

To begin with, let Φ = {φi(x) = ρiRix + ai}Ni=1 be an IFS of similitudes on Rd

and let E = EΦ be the attractor of Φ. We introduce a binary relation ∼Φ on the
set V := VΦ = {1, . . . , N} by

i ∼Φ j if φi(E) ∩ φj(E) 6= ∅.
We say that i is adjacent to j if i ∼Φ j. Moreover, we say that i is connected to j, if
there exist x1, . . . , xn ∈ {1, . . . , N} with x1 = i and xn = j such that xk is adjacent
to xk+1 for k = 1, . . . , n − 1. A subset V ′ of V is said to be connected if each two
elements of V ′ are connected to each other.

Clearly, V can be written as the union of a number of disjoint maximal connected
subsets, each of them is called a connected component of V . Moreover a connected
component of V with cardinality n is called an n-component of V .

It is direct to check that Λ ⊂ V is an n-component of V if and only if the following
two properties hold:
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(i) CΛ ∩ CV \Λ = ∅, where CΛ :=
⋃
i∈Λ φi(E).

(ii) CΛ′ ∩ CV \Λ′ 6= ∅ for every nonempty proper subset Λ′ of Λ.

Let s denote the similarity dimension of Φ, i.e., s is the unique number so that∑N
i=1 ρ

s
i = 1. We define an infinite dimensional vector γ(Φ) = (γΦ

n )∞n=1 by

γΦ
n =

∑
Λ: Λ is a n-component of V

∑
i∈Λ

ρsi ,

where we adopt the convention that γΦ
n = 0 if V has no any n-component. Clearly

γΦ
n = 0 for all n > N and

∑∞
n=1 γ

Φ
n = 1.

Definition 2.1. We call γ(Φ) = (γΦ
n )∞n=1 the characteristic vector of Φ.

Below we give some simple examples to illustrate the characteristic vector γ(Φ)
of Φ.

Example 2.2. If Φ satisfies the SSC, then γ(Φ) = (1, 0, . . .).

Example 2.3. Suppose that the attractor E = EΦ of Φ = {φi}Ni=1 is connected, then
γΦ
N = 1 and γΦ

n = 0 for all n 6= N .

Example 2.4. Let Φ = {φi}3
i=1 be an IFS on R defined by

φ1(x) =
x

5
, φ2(x) =

x+ 3

5
, φ3 =

x+ 4

5
.

Then γ(Φ) = (1/3, 2/3, 0, . . .).

2.2. A key property of characteristic vectors. In order to compare two char-
acteristic vectors of IFSs, we write

Ω =
{

(xn)∞n=1 ∈ RN : xn 6= 0 for at most finitely many n
}
.

Clearly, Ω is a vector space over R and γ(Φ) ∈ Ω for each IFS Φ of similitudes on
Rd. Now we introduce a relation ≺ on Ω by

x ≺ y if there exists m ≥ 1 such that xm < ym and xn = yn for all n > m,

where x = (xn)∞n=1 and y = (yn)∞n=1. We write x � y if x ≺ y or x = y. Clearly Ω
is totally ordered in the sense that for any x, y ∈ Ω, we have either x = y, or x ≺ y,
or y ≺ x. Moreover, if x � y then ax � ay for all a > 0; and if x � y, u � v then
x+ u � y + v.

For two IFSs Φ = {φi}Ni=1 and Ψ = {ψj}Mj=1 on Rd, the composition of Φ and Ψ is

a new IFS on Rd given by

Φ ◦Ψ = {φi ◦ ψj : 1 ≤ i ≤ N, 1 ≤ j ∈M}.
We begin with a simple lemma.

Lemma 2.5. Let Φ = {φi}Ni=1 and Ψ = {ψj}Mj=1 be two IFSs of similitudes on Rd

satisfying the OSC. Suppose that Φ and Ψ generate the same self-similar set E, i.e.,
EΦ = EΨ = E. Then Φ ◦Ψ is also a generating IFS of E satisfying the OSC.

4



Proof. Since EΦ = EΨ = E, we have E =
⋃N
i=1 φi(E) =

⋃M
j=1 ψi(E). It follows that

N⋃
i=1

M⋃
j=1

φi(ψj(E)) =
N⋃
i=1

φi

(
M⋃
j=1

ψj(E)

)
=

N⋃
i=1

φi(E) = E,

which implies EΦ◦Ψ = E.

To see that Φ◦Ψ satisfies the OSC, let s be the Hausdorff dimension of E. Clearly,
Φ and Ψ have the same similarity dimension s and Hs(E) > 0, where Hs stands for
the s-dimensional Hausdorff measure; see [8, 10]. It follows that Φ ◦Ψ also has the
similarity dimension s. Since Hs(E) > 0, by [13, Theorem 2.1] Φ ◦ Ψ satisfies the
OSC. �

The following lemma plays a key role in the proof of Theorem 1.2.

Lemma 2.6. Let Φ = {φi}Ni=1 and Ψ = {ψj}Mj=1 be two IFSs of similitudes on Rd

satisfying the OSC. Suppose that Φ and Ψ generate the same self-similar set E.
Moreover, suppose that Φ does not satisfy the SSC. Then γ(Ψ) ≺ γ(Φ ◦Ψ).

Proof. By Lemma 2.5, Φ ◦Ψ is a generating IFS of E satisfying the OSC. Write

VΨ = {1, . . . ,M} and VΦ◦Ψ = {(i, j) : i = 1, . . . , N, j = 1, . . . ,M}.

Define the binary relations ∼Ψ and ∼Φ◦Ψ on VΨ and VΦ◦Ψ respectively as in Section
2.1. For n ≥ 1, let Cn denote the collection of n-components of VΨ with respect to
∼Ψ, and Dn the collection of n-components of VΦ◦Ψ with respect to ∼Φ◦Ψ; see Section
2.1 for the relevant definitions.

Let us first give a simple observation. Suppose that two elements j, k ∈ VΨ are
connected to each other, i.e., there exist j1, . . . , js ∈ VΨ, with j1 = j and js = k, such
that ψj`(E) ∩ ψj`+1

(E) 6= ∅ for all ` = 1, . . . , s− 1. Clearly for each i ∈ {1, . . . , N},
φi ◦ ψj`(E) ∩ φi ◦ ψj`+1

(E) 6= ∅ for all ` = 1, . . . , s − 1; therefore the elements (i, j)
and (i, k) in VΦ◦Ψ are connected to each other.

According to the above observation, for every n-component Λ of VΨ and i ∈
{1, . . . , N}, the set {i} × Λ is connected with respect to ∼Φ◦Ψ, hence it is either
an n-component of VΦ◦Ψ or a proper subset of an n1-component of VΦ◦Ψ for some
n1 > n.

We claim that for some n ∈ N, there are an n-component Λ of VΨ and i ∈
{1, . . . , N} such that the set {i} × Λ is not an n-component of VΦ◦Ψ. To prove this
claim we use contradiction. Suppose on the contrary that the claim is false. Then
for each i ∈ {1, . . . , N}, n ∈ N and Λ ∈ Cn, we have {i} × Λ ∈ Dn, which implies
that for each 1 ≤ i′ ≤ N with i′ 6= i,

φi

(⋃
j∈Λ

ψj(E)

)
∩ φi′(E) = φi

(⋃
j∈Λ

ψj(E)

)
∩ φi′

(
M⋃
k=1

ψk(E)

)
= ∅.
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Taking the union over all connected components of VΨ yields that for i, i′ ∈ {1, . . . , N}
with i 6= i′,

φi(E) ∩ φi′(E) = φi

 ⋃
Λ∈

⋃
n≥1 Cn

⋃
j∈Λ

ψj(E)

 ∩ φi′(E) = ∅,

which contradicts the assumption that Φ = {φi}Ni=1 does not satisfy the SSC. This
completes the proof of the claim.

Let n0 be the largest integer such that there exist an n0-component Λ0 of VΨ and
i0 ∈ {1, . . . N} such that the set {i0} × Λ0 is not an n0-component of VΦ◦Ψ. Then
as we pointed out above, {i0} × Λ0 is a proper subset of an n1-component D0 of
VΦ◦Ψ for some n1 > n0. Clearly D0 is not of the form {i} × Λ with 1 ≤ i ≤ N and
Λ ∈ Cn1 .

Now for i ∈ {1, . . . , N} and j ∈ {1, . . . ,M}, let ρi and rj denote the contraction
ratios of φi and ψj, respectively. Let s denote the Hausdorff dimension of E. Then
for each n ≥ n1 and Λ ∈ Cn, {i} × Λ ∈ Dn for each 1 ≤ i ≤ N . It follows that for
n ≥ n1,

(2.1) γΦ◦Ψ
n =

∑
D∈Dn

∑
(i,j)∈D

(ρirj)
s ≥

N∑
i=1

∑
Λ∈Cn

∑
j∈Λ

(ρirj)
s =

∑
Λ∈Cn

∑
j∈Λ

rsj = γΨ
n .

Recall that Dn1 contains an element D0 which is not of the form {i} × Λ with
1 ≤ i ≤ N and Λ ∈ Cn1 . Hence

γΦ◦Ψ
n1

=
∑

D∈Dn1

∑
(i,j)∈D

(ρirj)
s

≥
∑

(i′,j′)∈D0

(ρi′rj′)
s +

N∑
i=1

∑
Λ∈Cn1

∑
j∈Λ

(ρirj)
s

=
∑

(i′,j′)∈D0

(ρi′rj′)
s + γΨ

n1

> γΨ
n1
.

(2.2)

Combining (2.1) and (2.2) yields that γ(Ψ) ≺ γ(Φ ◦Ψ). �

3. The proof of Theorem 1.2

In this section we prove Theorem 1.2. For a compact set E ⊂ Rd, let IE denote
the collection of all homogeneous IFSs of similitudes on Rd that generate E and
satisfy the OSC. Write

(3.1) IE,a,b = {Φ ∈ IE : a ≤ ρΦ < b}

for 0 < a < b < 1, where ρΦ denotes the common contraction ratio of the maps in
Φ.
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Lemma 3.1. Let E be the attractor of an IFS of similitudes on Rd satisfying the
SSC. Suppose that E is not contained in any hyperplane of Rd. Then for any 0 <
a < b < 1, IE,a,b is a finite set.

Proof. Let Sim(d) denote the collection of all similarity maps of Rd. Notice that
each element φ in Sim(d) is an affine map on Rd which is of the form φ(x) = Ax+a,

where A is a d × d matrix and a ∈ Rd, hence φ can be viewed as a point in Rd2+d.
Therefore Sim(d) can be viewed as a metric subspace of Rd2+d, where we endow

Rd2+d with the usual Euclidean metric.

For δ > 0, write

SE,δ = {φ ∈ Sim(d) : φ(E) ⊃ E and ρφ ≤ δ} ,

where ρφ denotes the similarity ratio of φ. To prove the conclusion of the lemma, it
suffices to show that SE,δ is finite for every δ > 0.

Since E is a compact subset of Rd, it follows that SE,δ is a compact subset of
Sim(d) for each δ > 0. Meanwhile by [7, Proposition 4.3(i)], under the assumptions
of the lemma on E, {φ ∈ Sim(d) : φ(E) ⊃ E} is a discrete subset of Sim(d). Hence
SE,δ is both discrete and compact, so it is finite. �

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. We first assume that E is not contained in a hyperplane of
Rd. To prove the theorem we use contradiction. Suppose on the contrary that E
can be generated by an IFS Ψ = {ψj}Mj=1 of similitudes on Rd which satisfies the
SSC. Below we derive a contradiction.

Replacing Ψ by its n-th iteration Ψn := Ψ ◦ · · · ◦Ψ︸ ︷︷ ︸
n

for a large n if necessary, we

may assume that rj < ρ for all 1 ≤ j ≤ M , where rj denotes the contraction ratio
of ψj. Set

(3.2) δ := min
j 6=j′

dist (ψj(E), ψj′(E)) .

Since Ψ satisfies the SSC, we have δ > 0. Clearly δ < diam(E).

Pick a large positive integer ` so that ρ` < min1≤j≤M rj. Then fix a small ε > 0
such that

(3.3) ε ≤ ρ`δ

diam(E)
.

Clearly ε < ρ` since δ < diam(E). Let I := IE,ρε,ε denote the collection of homo-
geneous generating IFSs Φ′ on Rd of E satisfying the OSC and ρε ≤ ρΦ′ < ε. By
Lemma 3.1, I is a finite set. Let k be the unique integer so that ρε ≤ ρk < ε.
Then k > ` ≥ 1 and Φk ∈ I, so I is non-empty. Since I is a nonempty finite set,
there exists Θ ∈ I whose characteristic vector γ(Θ) is the largest in the sense that
γ(Φ′) � γ(Θ) for all Φ′ ∈ I.

7



Keep in mind that ρΘ ∈ [ρε, ε) since Θ ∈ I. Write Θ = {θi}i∈A. By (3.3),

(3.4) diam(θi(E)) = ρΘdiam(E) < εdiam(E) ≤ ρ`δ < δ,

and

(3.5) ρΘ < ε < ρ` < min
1≤j≤M

rj.

Since
⋃
i∈A θi(E) = E =

⋃M
j=1 ψj(E), by (3.2) and (3.4) we see that if θi(E)∩ψj(E) 6=

∅ then θi(E) ⊂ ψj(E). Due to this, we can partition A into M disjoint subsets
A1,. . . , AM by setting

Aj := {i ∈ A : θi(E) ⊂ ψj(E)}, j = 1, . . . ,M,

and moreover,

(3.6)
⋃
i∈Aj

θi(E) = ψj(E), j = 1, . . . ,M.

For j = 1, . . . ,M , let

Γj =
{
ψ−1
j ◦ θi : i ∈ Aj

}
.

By (3.6) and (3.5), for each 1 ≤ j ≤ M , Γj is a homogeneous generating IFS of E
satisfying the OSC, and its contraction ratio ρΓj

satisfies

(3.7) ρΓj
= r−1

j ρΘ ≥ r−1
j ρε > ε,

where we have used ρΘ ≥ ρε and rj < ρ in the last two inequalities. For each
1 ≤ j ≤M , let kj be the unique integer such that

ρkjρΓj
∈ [ρε, ε),

then kj ≥ 1 by (3.7), and Φkj ◦ Γj ∈ I, where Φkj denotes the kj-th iteration of Φ.

Next we compare the characteristic vectors of the IFSs Θ and Γj (j = 1, . . . ,M).
Since Ψ satisfies the SSC, by (3.6) we see that θi(E) ∩ θi′(E) = ∅ if i ∈ Aj and
i′ ∈ Aj′ for some j 6= j′. It follows that for n ∈ N, every n-component of A (with
respect to ∼Θ) is totally contained in Aj for some j. Hence for each n ∈ N,

γΘ
n =

∑
Λ: Λ is an n-component of A

∑
i∈Λ

ρsΘ

=
M∑
j=1

∑
Λ: Λ is an n-component of Aj

∑
i∈Λ

ρsΘ.

(3.8)

Meanwhile by (3.6), it is easy to see that each n-component of Aj with respect to
∼Θ is an n-component of Aj with respect to ∼Γj

, and vice versa. It follows that for
j = 1, . . . ,M ,

(3.9) γΓj
n =

∑
Λ: Λ is an n-component of Aj

∑
i∈Λ

(r−1
j ρΘ)s.
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Combining (3.8) with (3.9) yields that γΘ
n =

∑M
j=1 r

s
jγ

Γj
n for each n ∈ N. Hence

(3.10) γ(Θ) =
M∑
j=1

rsjγ(Γj).

Recall that for each 1 ≤ j ≤M , there exists kj ∈ N such that Φkj ◦ Γj ∈ I. This
implies that γ(Φkj ◦ Γj) � γ(Θ). Since Φ satisfies the OSC but not the SSC, by
Lemma 2.6 we have

γ(Γj) ≺ γ(Φ ◦ Γj) ≺ · · · ≺ γ(Φkj ◦ Γj) � γ(Θ)

for j = 1, . . . ,M . Combining this with (3.10) yields that

γ(Θ) ≺
M∑
j=1

rsjγ(Θ) = γ(Θ),

which leads to a contradiction. This proves the theorem under the assumption that
E is not contained in a hyperplane of Rd.

Finally we consider the general case when E may be contained in a hyperplane
of Rd. Suppose on the contrary that E can be generated by an IFS Ψ = {ψj}Mj=1

of similitudes on Rd which satisfies the SSC. Let H be the affine hull of E, i.e., H
is the affine subspace of Rd with the smallest dimension that covers E. Then it is
direct to check that the following properties hold:

(i) E is not contained in a proper affine subspace of H;
(ii) φi(H) = H, ψj(H) = H for all 1 ≤ i ≤ N and 1 ≤ j ≤M ;

(iii) Let φ̂i, ψ̂j denote the restrictions of φi and ψj on H. Then Φ̂ = {φ̂i}Ni=1 and

Ψ̂ = {ψ̂j}Mj=1 are IFSs of similitudes on H that generate E, and moreover, Φ̂

is a homogeneous IFS satisfying the OSC, and Ψ̂ satisfies the SSC.

Then we can derive a contradiction by following the previous argument (in which

Φ, Ψ and Rd are replaced by Φ̂, Ψ̂ and H, respectively). This completes the proof
of the theorem. �

4. A final remark

We remark that Question 1.1 is closely related to the following question raised by
Elekes, Keleti and Máthé.

Question 4.1 ([7, Question 9.3]). Let E ⊂ Rd be a self-similar set generated by an
IFS Ψ = {ψj}Mj=1 satisfying the SSC and let f be a similitude such that f(E) ⊂ E.
Does this imply that f(E) is a relative open set in E (or in other words f(E) is a
finite union of elementary pieces of E)?

Here an elementary piece of E means a set of the form ψj1 ◦ · · · ◦ ψjm(E), where
j1, . . . , jm ∈ {1, . . . ,M}. To our best knowledge, so far Question 4.1 still remains
open. We remark that an affirmative answer to Question 4.1 would yield a negative
answer to Question 1.1. To see this, suppose that E is the attractor of an IFS
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Ψ = {ψj}Mj=1 of similitudes satisfying the SSC, and that the answer to Question 4.1
is affirmative. Notice that the collection of elementary pieces of E (with respect to
the IFS Ψ) has the following net structure: for any two given elementary pieces E1

and E2, one has either E1 ∩ E2 = ∅, or E1 ⊂ E2, or E1 ⊃ E2. Hence if f(E) ⊂ E
for a similitude f , then f(E) is a finite union of disjoint elementary pieces of E. As
a consequence, if f1 and f2 are two similitudes mapping E into itself, then either
f1(E)∩f2(E) = ∅, or f1(E)∩f2(E) contains an elementary piece of E which implies
that Hs(f1(E)∩ f2(E)) > 0, where s denotes the Hausdorff dimension of E. Now if
Φ = {φi}Ni=1 is another generating IFS (of similitudes) of E satisfying the OSC, then
Hs(φi(E) ∩ φj(E)) = 0 for all i 6= j (see [10]) which forces that φi(E) ∩ φj(E) = ∅
for all i 6= j, that is, Φ satisfies the SSC. Therefore there is no generating IFS (of
similitudes) of E which satisfies the OSC but not the SSC.

Acknowledgements. Feng was partially supported by the General Research Funds
(CUHK14301017, CUHK14303021) from the Hong Kong Research Grant Coun-
cil. Ruan was partially by NSFC grant 11771391, ZJNSF grant LY22A010023
and the Fundamental Research Funds for the Central Universities of China (grant
2021FZZX001-01). Xiong was partially supported by NSFC grant 11871227, and
Guangdong Basic and Applied Basic Research Foundation (project 2021A1515010056).

References

[1] Amir Algom. Affine embeddings of Cantor sets in the plane. J. Anal. Math., 140(2):695–757,
2020. 2

[2] Christoph Bandt and Siegfried Graf. Self-similar sets. VII. A characterization of self-similar
fractals with positive Hausdorff measure. Proc. Amer. Math. Soc., 114(4):995–1001, 1992. 2
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