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Abstract. Let MMM , NNN and KKK be d-dimensional Riemann manifolds. Assume
that A := (An)n∈N is a sequence of Lebesgue measurable subsets of MMM satisfying
a necessary density condition and x := (xn)n∈N is a sequence of independent
random variables which are distributed on KKK according to a measure which is
not purely singular with respect to the Riemann volume. We give a formula
for the almost sure value of the Hausdorff dimension of random covering sets
E(x,A) := lim supn→∞ An(xn) ⊂NNN . Here An(xn) is a diffeomorphic image of An

depending on xn. We also verify that the packing dimensions of E(x,A) equal d
almost surely.

1. Introduction and main theorem

Limsup sets, defined as upper limits of various sequences of sets, play an important

role in different areas of mathematics. One of their earliest occurrences originates

from the study of random placement of circular arcs in the unit circle by Borel

[7] in the late 1890’s. He stated that a given point belongs to infinitely many

arcs provided that the placement of arcs is random and the sum of their lengths

is infinite. This statement is the origin of what is nowadays known as the Borel-

Cantelli lemma. We refer to [37] for more details and references on the historical

development. Related to geometric measure theory and fractals, limsup sets appear

implicitly already in the investigation of the Besicovitch-Eggleston sets concerning

the k-adic expansions of real numbers [5, 16]. They play also a central role in

Diophantine approximation. For instance, the classical theorems of Khintchine and

Jarnik provide size estimates in terms of Lebesgue and Hausdorff measure for limsup

sets consisting of well-approximable numbers (cf. [26]).

In the modern language, random covering sets are a class of limsup sets defined

by means of a family of randomly distributed subsets of the d-dimensional torus
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Td := Rd/Zd. Supposing that A := (An)n∈N is a deterministic sequence of non-

empty subsets of Td and x := (xn)n∈N is a sequence of independent random variables

which are uniformly distributed on Td, define a random covering set E(x,A) by

E(x,A) := lim sup
n→∞

(xn + An) =
∞⋂
n=1

∞⋃
k=n

(xk + Ak),

where x + A := {x + y : y ∈ A}. We denote the Lebesgue measure on Td by L.

It is easy to see that L(E(x,A)) = 0 for all x if the series
∑∞

k=1 L(Ak) converges.

On the other hand, it follows from Borel-Cantelli lemma and Fubini’s theorem that

L(E(x,A)) = 1 almost surely provided the sets An are Lebesgue measurable and

the series
∑∞

k=1 L(Ak) diverges. Note that this result is essentially the higher di-

mensional analogue of Borel’s original idea concerning the covering of the circle by

random arcs which we discussed in the beginning of this section.

The case of full Lebesgue measure has been extensively studied. In 1956 Dvoret-

zky [15] posed a problem of finding conditions which guarantee that the whole torus

Td is covered almost surely. Even in the simplest case when d = 1 and the gener-

ating sets are intervals of length (ln)n∈N, this problem, known in literature as the

Dvoretzky covering problem, turned out to be rather long-standing. After substan-

tial contributions of many authors, including Billard [6], Erdős [19], Kahane [34] and

Mandelbrot [43], the full answer was given in this context by Shepp [50] in 1972. He

verified that E(x,A) = T1 almost surely if and only if

∞∑
n=1

1

n2
exp(l1 + · · ·+ ln) =∞,

where the lengths (ln)n∈N are in decreasing order. In full generality, the Dvoretzky

covering problem is still unsolved. The higher dimensional case has been studied by

El Hélou [18] and Kahane [36] among others. In [36], a complete solution is provided

in the case when generating sets are similar simplexes.

For various other aspects of random covering sets, we refer to [1, 18, 22, 23, 27,

29, 30, 35, 36, 37, 41, 44, 51]. Recent contributions to the topic include various types

of dynamical models, see [24, 31, 42], and projectional properties [11].

Further motivation to study limsup sets stems from Diophantine approximation.

Recall that, for φ : N →]0,∞[, the set of φ well-approximable numbers consists of

those x ∈ R for which there exist infinitely many q ∈ N such that∣∣∣∣x− p

q

∣∣∣∣ < φ(q)
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for some p ∈ Z. Given φ, the determination of the size of these limsup sets and

various variants is an important theme in Diophantine approximation and there is

a vastly growing literature on this branch of metric number theory, see [2, 3] and

the references therein.

In the circle T1, the study of φ well-approximable numbers may be regarded as

a variant of the shrinking target problem or dynamical Diophantine approximation

formulated in the following manner: assuming that X is a metric space, T : X → X

is a dynamical system, (rn)n∈N is a sequence of positive real numbers and x0 ∈ X,

determine the size of the set

lim sup
n→∞

T−n(B(x0, rn)) = {x ∈ X : T n(x) ∈ B(x0, rn) for infinitely many n ∈ N},

where B(x, r) is the open ball with radius r centred at x ∈ X. Indeed, letting x0 = 0,

rq = qφ(q) and Tx : T1 → T1 be the rotation by an angle x, we recover that the set

of φ well-approximable numbers consists of those x such that T qx (0) ∈ B(0, rq) for

infinitely many q ∈ N. Another variant of this question, called the moving target

problem, is concerned with the investigation of the limsup set

{x ∈ X : x ∈ B(T n(x0), rn) for infinitely many n ∈ N},

see [4, 8]. A recent account on this line of research is provided in [24]. Observe that,

by replacing the map T with the random walk on Td driven by the Lebesgue measure,

the random covering set E(x,A) may be viewed as a moving target problem limsup

set provided An = B(0, rn) for all n ∈ N. For an interesting application of limsup

sets to the study of Brownian motion, we refer to [39].

In this paper, we focus on the natural problem of determining almost sure values

of Hausdorff and packing dimensions of random covering sets in the case when they

have zero Lebesgue measure. We denote the Hausdorff and packing dimensions by

dimH and dimP, respectively. For d = 1 and for an arbitrary decreasing sequence

A = (An)n∈N of intervals of lengths (ln)n∈N, the almost sure Hausdorff dimension of

the random covering set is given by

(1.1) dimH E(x,A) = inf
{

0 < t ≤ 1 :
∞∑
n=1

(ln)t <∞
}

= lim sup
n→∞

log n

− log ln
.

For ln = n−α, α > 1, this is proved by Fan and Wu [25] and, as explained in

their paper, the method works also for more general decreasing sequences (ln)n∈N.

Using an approach different from that of [25], Durand [13] generalised the result

of [25] and obtained a dichotomy result for the Hausdorff measure of E(x,A) for

general gauge functions. The dimension result (1.1), as well as its analogy in Td
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for random coverings with balls, can also be derived from the mass transference

principle proved by Beresnevich and Velani in [3] (see [32] for details). In addition

to random covering sets, the mass transference technique has proved to be a useful

tool in studying the limsup sets in the context of Diophantine approximation and

shrinking target problems. See e.g. [2, 3, 24, 28]. However, its applicability is

essentially limited to the case when the sequence A consists of balls and, therefore,

it cannot be utilised in the general setting of this paper.

Notice that the methods used in [13, 25] rely essentially on the ambient space

being a torus and generating sets being balls. One needs to employ new ideas in

investigating random covering sets generated by more general sets. The case when

the generating sets are rectangle-like was first studied in [32]. More precisely, assume

that the generating sets in A are of the form An = Π(Ln(R)) for all n ∈ N, where

Π: Rd → Td is a natural covering map, R is a subset of the closed unit cube [0, 1]d

with non-empty interior and, for all n ∈ N, the map Ln : Rd → Rd is a contracting

linear injection such that the sequences of singular values of (Ln)n∈N decrease to 0

as n tends to infinity. Note that the singular values of Ln are the lengths of the

semi-axes of Ln(B(0, 1)). Under this assumption, according to [32], almost surely

the Hausdorff dimension of E(x,A) is given in terms of singular value functions

Φt(Ln) (for the definition see [32]), that is, almost surely

(1.2) dimH E(x,A) = inf
{

0 < t ≤ d :
∞∑
n=1

Φt(Ln) <∞
}

with the interpretation inf ∅ = d.

In [47], Persson proved that (1.2) remains valid when dropping off the monotonic-

ity assumption on the singular values of (Ln)n∈N in [32]. Indeed, he showed that,

for a sequence A of open subsets of Td, almost surely

(1.3) dimH E(x,A) ≥ inf
{

0 < t ≤ d :
∞∑
n=1

gt(An) <∞
}
,

where

(1.4) gt(F ) :=
L(F )2

It(F )

for all Lebesgue measurable sets F ⊂ Td with L(F ) > 0, and

(1.5) It(F ) :=

∫∫
F×F
|x− y|−t dL(x)dL(y)

is the t-energy of F . For simplicity, we use the notation |x−y| for both the Euclidean

distance and the natural distance in Td. When the generating sets of A are open
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rectangles, the lower bound in (1.3) equals the right-hand side of (1.2). Hence, the

monotonicity assumption on (Ln)n∈N is not needed.

Inspired by the results of [32, 47], we aim at an exact dimension formula for the

random covering sets constructed from an arbitrary sequence A of open sets or,

more generally, Lebesgue measurable sets satisfying a mild density condition. To

this end, we introduce the following notation. For 0 ≤ t < ∞, the t-dimensional

Hausdorff content of a set F ⊂ Rd is denoted by

(1.6) Ht
∞(F ) := inf

{ ∞∑
n=1

(diamFn)t : F ⊂
∞⋃
n=1

Fn
}
,

where diam is the diameter of a subset of Rd. For a sequence A = (An)n∈N of subsets

of Rd, we define

(1.7) t0(A) := inf
{

0 < t ≤ d :
∞∑
n=1

Ht
∞(An) <∞

}
with the interpretation inf ∅ = d. If A is a sequence of Lebesgue measurable subsets

of Rd, we set

(1.8) s0(A) := inf
{

0 < s ≤ d :
∞∑
n=1

Gs(An) <∞
}

with the interpretation inf ∅ = d, where

(1.9) Gs(E) := sup{gs(F ) : F ⊂ E, F is Lebesgue measurable and L(F ) > 0}

with the interpretation sup ∅ = 0. Finally, given F ⊂ Rd, we say that a point x ∈ F
has positive Lebesgue density with respect to F if

lim inf
r→0

L(F ∩B(x, r))

L(B(x, r))
> 0

and, moreover, the set F has positive Lebesgue density if all of its points have positive

Lebesgue density with respect to F .

As a consequence of our main theorem (see Theorem 1.1), we will prove that

almost surely

(1.10) dimH E(x,A) = s0(A) = t0(A)

provided that A = (An)n∈N is a sequence of Lebesgue measurable subsets of Td

having positive Lebesgue density. It is worth noting that s0(A) could be strictly

larger than Persson’s lower bound (i.e. the right-hand side of (1.3)) even when A

consists of open sets (see Example 7.1).
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Let us first give some remarks and briefly illustrate our main strategy in the

proof of (1.10). The whole proof consists of three parts: dimH E(x,A) ≤ t0(A),

s0(A) = t0(A) and dimH E(x,A) ≥ s0(A) almost surely. The assumption of positive

Lebesgue density is only used in the proof of the equality s0(A) = t0(A). Without

this assumption, the equality may fail and, furthermore, it may happen that almost

surely dimH E(x,A) < t0(A) and dimH E(x,A) > s0(A) (see Examples 7.2 and 7.4).

The proof of the upper bound (i.e. dimH E(x,A) ≤ t0(A)) is direct and simple.

To prove the equality s0(A) = t0(A), we manage to establish certain relations

between the quantities Ht
∞(·) and Gt(·) (see Lemmas 3.2 and 3.10). The proof of

these relations employs some potential theoretic arguments, and is rather long. A

key ingredient is a subtle and technical result (Proposition 3.8), which allows us

to approximate a given measure µ and its s-energy simultaneously by a certain

sequence of normalised Lebesgue measures. As for the lower bound, we note that if

U is open, then a straightforward approximation argument implies that

Gs(U) = sup{gs(V ) : V ⊂ U, V is open and L(V ) > 0}.

With Persson’s result, this characterisation can be employed to give a more direct

proof of the fact that s0(A) is a lower bound for dimH E(x,A) in the case when A

is a sequence of open sets. However, this method does not work if the sets in the

sequence A fail to be open.1 For this reason, we need to make use of a completely

different approach to deal with a more general generating sequence A. For that

purpose, we introduce the notion of minimal regular energy which allows us to give

a lower bound of the Hausdorff dimension of random covering sets under certain

energy condition (see Section 4). A rather sophisticated random mass distribution

argument is then carried out in Section 5 to verify this condition.

Regarding the packing dimension of random covering sets, we show that if the

sets in A are Lebesgue measurable and L(An) > 0 for infinitely many n ∈ N, then

almost surely

(1.11) dimP E(x,A) = d.

For open generating sets, this result is immediate since E(x,A) is a Gδ-set, which is

almost surely dense. As in the case of Hausdorff dimension, replacing open generat-

ing sets by Lebesgue measurable ones (of positive measure) turns out to be a subtle

task. The strategy in the proof of (1.11) is somewhat analogous to that of (1.10).

1When A consists of open sets, it is also unclear whether Persson’s method could be used
to prove this lower bound in our more general setting, where the translations x = (xn)n∈N are
independent with a law not singular with respect to L.
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However, instead of the minimal regular energy and a mass distribution argument,

we apply a result that allows us to conclude that dimP E(x,A) = d by estimating,

for compact sets F , the number of dyadic cubes intersecting F ∩
⋃∞
i=n(xn +An) in a

set of positive Lebesgue measure (see Proposition 6.4). Observe that since E(x,A)

is almost surely dense, the box counting dimension of E(x,A) exists and is equal to

d almost surely.

To summarise, the equation (1.10) gives a characterisation of the almost sure

value of the Hausdorff dimension of random covering sets in Td for rather general

generating sequences A when the translations x = (xn)n∈N are independent and

uniformly distributed. As illustrated by Example 7.2 (see also Example 7.4), the

assumption on positive Lebesgue density cannot be replaced by the weaker assump-

tion that L(An ∩ B(x, r)) > 0 for all r > 0, x ∈ An and n ∈ N. In our main

result, Theorem 1.1, we will further generalise (1.10) and (1.11) in several different

directions. Firstly, we will replace the uniform distribution by an arbitrary Radon

probability measure which is not purely singular with respect to the Lebesgue mea-

sure. Secondly, we will be able to replace the torus Td by any open subset of Rd, in

particular, by Rd itself. These generalisations allow us to deduce (1.10) and (1.11)

for many natural unbounded models, including the case when (xn)n∈N are indepen-

dent Gaussian random variables on Rd and (An)n∈N are Lebesgue measurable subsets

with positive Lebesgue density supported on a fixed compact subset of Rd. Finally,

we extend (1.10) and (1.11) to Lie groups and, more generally, to smooth Riemann

manifolds. To achieve this, note that when the ambient space is Td, the structure

is linear in the sense that the random covering set is of the form

(1.12) E(x,A) = lim sup
n→∞

f(xn, An)

where the function f : Td × Td → Td is defined as f(x, y) = x + y. Thus, a natural

attempt to extend (1.10) and (1.11) to Lie groups or, more generally, to smooth

manifolds is to study a nonlinear structure where f is a smooth mapping.

Before presenting our main result in full generality, we will set up some further

notation. Let U, V ⊂ Rd be open sets and let f : U × V → Rd be a C1-map such

that the maps f(·, y) : U → f(U, y) and f(x, ·) : V → f(x, V ) are diffeomorphisms

for all (x, y) ∈ U ×V . Denote by D1f and D2f the derivatives of f(·, y) and f(x, ·),
respectively. We assume that there exists a constant Cu > 0 such that

(1.13) ‖Dif(x, y)‖ , ‖(Dif(x, y))−1‖ ≤ Cu

for all (x, y) ∈ U × V and i = 1, 2.
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Let σ be a Radon probability measure on U which is not purely singular with

respect to the Lebesgue measure L. We consider the probability space (UN,F ,P)

which is the completion of the infinite product of (U,B(U), σ), where B(U) is the

Borel σ-algebra on U . Assuming that A = (An)n∈N is a sequence of subsets of V ,

define for all x ∈ UN a random covering set E(x,A) by

E(x,A) := lim sup
n→∞

f(xn, An) =
∞⋂
n=1

∞⋃
k=n

f(xk, Ak).

Now we can finally present our main theorem.

Theorem 1.1. Let f : U ×V → Rd be as above and let ∆ ⊂ V be compact. Assume

that A = (An)n∈N is a sequence of non-empty subsets of ∆. Then

(a) dimH E(x, A) ≤ t0(A) for all x ∈ UN.

(b) dimH E(x,A) ≥ s0(A) for P-almost all x ∈ UN provided that A is a sequence

of Lebesgue measurable sets.

(c) s0(A) = t0(A) provided that A is a sequence of Lebesgue measurable sets

with positive Lebesgue density.

(d) dimP E(x,A) = d for P-almost all x ∈ UN provided that An are Lebesgue

measurable and L(An) > 0 for infinitely many n ∈ N.

It follows immediately from Theorem 1.1.(d) that the upper box counting dimen-

sion of E(x,A) equals d almost surely. From the proof of Theorem 1.1.(d), we see

that E(x,A) is almost surely dense in a set of positive Lebesgue measure. There-

fore, also the lower box counting dimension equals d almost surely. As a corollary of

Theorem 1.1, we obtain the following dimension result for random covering sets in

Riemann manifolds. Note that in Corollary 1.2, the quantities s0(A) and t0(A) are

defined as in (1.7) and (1.8) by using the distance function induced by the Riemann

metric and by replacing L by the Riemann volume.

Corollary 1.2. Let KKK, MMM and NNN be d-dimensional Riemann manifolds. Assume

that f : KKK ×MMM → NNN is a C1-map such that f(x, ·) and f(·, y) are local diffeomor-

phisms satisfying (1.13). Let ∆ ⊂MMM be compact and let A = (An)n∈N be a sequence

of subsets of ∆. Suppose that σ is a Radon probability measure on KKK such that it is

not purely singular with respect to the Riemann volume on KKK. Then the statements

(a)–(d) of Theorem 1.1 are valid.

As mentioned earlier, choosing KKK = MMM = NNN = Td, f(x, y) = x+ y and σ = L, we

recover the previously mentioned setting in Td. The assumption that the generating
8



sets are subsets of a compact set ∆ is needed, for example, to guarantee that E(x,A)

is non-empty. A natural class of generating sets A which satisfy the assumptions of

Theorem 1.1 and to which the earlier known results are not applicable are regular

Cantor sets having positive Lebesgue measure. For the role of other assumptions

in Theorem 1.1, we refer to Section 7 where, among other things, sharpness of our

results will be discussed. Theorem 1.1 has a refinement concerning the Hausdorff

measures of E(x,A) with respect to doubling gauge functions. The exact statement

of this result is given in Section 8.

The paper is organised as follows: We begin with technical auxiliary results in

Section 2. In Section 3, we prove items (a) and (c) of Theorem 1.1. In Section 4, we

introduce a new concept called minimal regular energy and show how it can be used

to estimate Hausdorff dimensions of random covering sets. Section 5 is dedicated

to the proof of Theorem 1.1.(b) whereas the statement (d) is handled in Section 6.

In Section 7, we explain how Corollary 1.2 follows from Theorem 1.1 and illustrate

by examples the role of the assumptions and the sharpness of Theorem 1.1. In the

last section, we give further generalisations of Theorem 1.1 and some remarks. For

example, we present some results concerning Hausdorff measures of random covering

sets with respect to general gauge functions.

2. Auxiliary results

In this section, we prove technical lemmas which will be needed in Sections 3–

6. When studying random covering sets in the torus, one often utilises the simple

fact that u ∈ x + E if and only if x ∈ u − E for every E ⊂ Td. In the nonlinear

setting, given a parameterised family of diffeomorphisms Wx, we attempt to find

a parameterised family of diffeomorphisms Xu such that u ∈ Wx(E) if and only if

x ∈ Xu(E). It is easy to see that the linearised local version of this problem has a

solution and, therefore, this should be the case for the original nonlinear problem

as well. In order to state this result formally, we need the following notation.

Definition 2.1. Let U ⊂ Rd be open. A C1-map W : U × Rd → Rd is said to

be a uniform local bidiffeomorphism, if there exist r0 > 0, y0 ∈ Rd and a constant

C > 0 such that, for all x ∈ U and y ∈ B(y0, r0), the maps W (x, ·) : B(y0, r0) →
W (x,B(y0, r0)) and W (·, y) : U → W (U, y) are uniform diffeomorphisms, that is,

diffeomorphisms satisfying

(2.1) ‖DiW (x, y)‖ , ‖(DiW (x, y))−1‖ ≤ C
9



for all x ∈ U , y ∈ B(y0, r0) and i = 1, 2, where D1W and D2W denote the

derivatives of W (·, y) and W (x, ·), respectively. A uniform local bidiffeomorphism

W generates a parameterised family of uniform diffeomorphisms Wx : B(y0, r0) →
Wx(B(y0, r0)), x ∈ U , by the formula Wx(y) := W (x, y).

Lemma 2.2. Let Wx : B(y0, r0)→ Wx(B(y0, r0)), x ∈ U , be a parameterised family

of uniform diffeomorphisms generated by a uniform local bidiffeomorphism W : U ×
Rd → Rd. Then there exists a parameterised family of uniform diffeomorphisms

Xz : Vz → Xz(Vz) where z ∈ W (U,B(y0, r0)) and Vz ⊂ B(y0, r0) is open such that,

for all A ⊂ B(y0, r0), we have

z ∈ Wx(A) if and only if x ∈ Xz(A ∩ Vz).

Furthermore,

(2.2) ‖DXz(y)‖ , ‖(DXz(y))−1‖ ≤ C2

for all z ∈ W (U,B(y0, r0)) and y ∈ Vz. Here C is as in Definition 2.1.

Proof. Since, for all z ∈ W (U,B(y0, r0)), the set U z := {x ∈ U : z ∈ W (x,B(y0, r0))}
is open and non-empty, we may define a map Rz : U z → B(y0, r0) by Rz(x) := Tx(z),

where Tx := W (x, ·)−1. That is,

W (x,Rz(x)) = W (x, Tx(z)) = z.

Consider z ∈ W (U,B(y0, r0)). We show that Rz : U z → Rz(U z) is a uniform

diffeomorphism. If x, u ∈ U z satisfy Rz(x) = Rz(u), then Tx(z) = Tu(z) = y

for some y ∈ B(y0, r0) and, therefore, W (x, y) = z = W (u, y). Thus x = u,

implying that Rz is injective. Since W (x, Tx(z)) = z for all x ∈ U z, we have

D1W (x, Tx(z)) +D2W (x, Tx(z)) ◦DxTx(z) = 0, giving

DRz(x) = DxTx(z) = −
(
D2W (x, Tx(z))

)−1 ◦D1W (x, Tx(z)).

This implies

(2.3) ‖DRz(x)‖ , ‖(DRz(x))−1‖ ≤ C2

for all z ∈ W (U,B(y0, r0)) and x ∈ U z. Observing that, for all A ⊂ B(y0, r0) and

x ∈ U ,

z ∈ W (x,A) ⇐⇒ Tx(z) ∈ A ⇐⇒ Rz(x) ∈ A ⇐⇒ x ∈ (Rz)−1(A),

we may define Vz := Rz(U z) and Xz := (Rz)−1. The claim (2.2) follows from

(2.3). �
10



For every A ⊂ Rd and δ > 0, let

(2.4) V δ(A) := {x ∈ Rd : dist(x,A) ≤ δ}

be the closed δ-neighbourhood of A. Here dist(x,A) := inf{|x − a| : a ∈ A} is

the distance between x and A. According to the next lemma, using the notation

of Lemma 2.2, for each Lebesgue measurable set F ⊂ Rd, the Lebesgue measure of

F ∩Wx(A) is close to that of Wx(A) for most points x ∈ F provided that A is a

subset of a sufficiently small ball.

Lemma 2.3. Let U ⊂ Rd, r0 > 0, y0 ∈ Rd and W : U × Rd → Rd be as in

Definition 2.1. Assume that Wx(y0) = x for all x ∈ U and F ⊂ U is Lebesgue

measurable. Then, for every ε > 0, there is δ = δ(F, ε) > 0 such that, for all

Lebesgue measurable sets A ⊂ B(y0, δ), we have

(2.5) L
({
x ∈ F : L(F ∩Wx(A)) ≥ (1− ε)L(Wx(A))

})
≥ (1− ε)L(F ).

Proof. We start by proving that x 7→ L(F ∩ Wx(A)) is a Borel map. Assume

first that F and A are compact. Since L is a Radon measure, we have L(E) =

limδ→0 L(V δ(E)) for all compact sets E. This, in turn, implies that the function

E 7→ L(E), defined for compact sets, is upper semi-continuous. Moreover, the fact

that the map E 7→ E ∩ A is upper semi-continuous for compact sets A ⊂ Rd (for

the definition of upper semi-continuity in this context see [38, p. 200]) implies that

the map x 7→ L(F ∩Wx(A)) is upper semi-continuous and, therefore, a Borel map.

Assume now that F and A are Lebesgue measurable. Since L is inner regular,

that is, L(E) = sup{L(C) : C ⊂ E, C is compact} for all Lebesgue measurable

sets E ⊂ Rd, we may choose increasing sequences (Fi)i∈N and (Aj)j∈N of compact

sets such that Fi ⊂ F , Aj ⊂ A, limi→∞ L(Fi) = L(F ) and limj→∞ L(Wx(Aj)) =

L(Wx(A)) for all x ∈ U . In particular,

lim
j→∞

lim
i→∞
L(Fi ∩Wx(Aj)) = L(F ∩Wx(A))

for all x ∈ U and, therefore, the map x 7→ L(F ∩Wx(A)) is Borel measurable. It

follows that all the sets we encounter in the proof below are Lebesgue measurable.

First we prove (2.5) for compact sets F . Clearly, we may assume that L(F ) > 0.

Note that (2.5) is equivalent to

(2.6) L
({
x ∈ F : L(F c ∩Wx(A)) > εL(Wx(A))

})
< εL(F ),

where the complement of a set E is denoted by Ec. Now suppose that (2.6) is not

true. Then there exists ε > 0 such that, for all δ > 0, there is a measurable set
11



A ⊂ B(y0, δ) with L(A) > 0 satisfying L(Λ) ≥ εL(F ), where

Λ := {x ∈ F : L(F c ∩Wx(A)) > εL(Wx(A))}.

Suppose that z ∈ Wx(A). Since Wx(y0) = x for all x ∈ U , we have |z−x| ≤ C2δ =: δ̃.

Denoting the characteristic function of a set E by χE, we obtain by Fubini’s theorem

that ∫
Λ

L(F c ∩Wx(A)) dL(x) ≤
∫
F

L(F c ∩Wx(A)) dL(x)

=

∫∫
χF (x)χWx(A)(z)χF c(z) dL(z)dL(x)

=

∫∫
χF (x)χWx(A)(z)χV δ̃(F )\F (z) dL(z)dL(x)

=

∫
V δ̃(F )\F

∫
F

χWx(A)(z) dL(x)dL(z).

(2.7)

From Lemma 2.2 we deduce that z ∈ Wx(A) if and only if x ∈ Xz(A∩Vz). Further-

more, L(Xz(A ∩ Vz)) ≤ C2dL(A) by (2.2). Thus

(2.8)

∫
Λ

L(F c ∩Wx(A)) dL(x) ≤ C2dL(A)L(V δ̃(F ) \ F ).

On the other hand, since Wx is a uniform diffeomorphism, L(Wx(A)) ≥ C−dL(A)

for all x ∈ U . Combining this with the definition of Λ, inequality (2.8) and the fact

that L(Λ) ≥ εL(F ), we obtain∫
Λ

L(F c ∩Wx(A)) dL(x) ≥ ε

∫
Λ

L(Wx(A)) dL(x)

= ε

∫
Λ

∫
χWx(A)(z) dL(z)dL(x) ≥ ε

∫
Λ

∫
χWx(A)(z)χF (z) dL(z)dL(x)

= ε

∫
Λ

∫
χWx(A)(z) dL(z)dL(x)− ε

∫
Λ

∫
χWx(A)(z)χF c(z) dL(z)dL(x)

≥ C−dεL(A)L(Λ)− ε
∫

Λ

∫
χWx(A)(z)χF c(z) dL(z)dL(x)

≥ εL(A)
(
C−dεL(F )− C2dL(V δ̃(F ) \ F )

)
.

(2.9)

Since F is compact, L(F ) = limi→∞ L(V 1
i
(F )) and, therefore, for every ε̃ > 0, there

is δ > 0 such that L(V δ̃(F )\F ) < ε̃L(F ). Hence, (2.9) contradicts (2.8), completing

the proof of (2.5) for compact sets F .
12



For a Lebesgue measurable set F , choose a compact set K ⊂ F satisfying L(K) ≥
(1− ε)L(F ). Then

L
({
x ∈ F : L(F ∩Wx(A)) ≥ (1− ε)2L(Wx(A))

})
≥ L

({
x ∈ K : L(K ∩Wx(A)) ≥ (1− ε)L(Wx(A))

})
≥ (1− ε)L(K) ≥ (1− ε)2L(F ),

completing the proof of (2.5). �

The last lemma of this section is a counterpart of Lemma 2.3 for energies of sets.

Lemma 2.4. Let U ⊂ Rd, r0 > 0, y0 ∈ Rd and W : U × Rd → Rd be as in

Definition 2.1. Assume that Wx(y0) = x for all x ∈ U . Let F1, F2 ⊂ U be bounded

Lebesgue measurable sets and let 0 ≤ t < d. Then, for every ε > 0, there exists

δ1 = δ1(F1, F2, ε) > 0 such that∫∫
F1×F2

∫∫
Wx1 (A1)×Wx2 (A2)

|u1 − u2|−t dL(u1)dL(u2)dL(x1)dL(x2)

≤ (1 + ε)

∫∫
F1×F2

L(Wx1(A1))L(Wx2(A2))|x1 − x2|−t dL(x1)dL(x2),

provided that A1, A2 ⊂ B(y0, δ1) are Lebesgue measurable.

Proof. Clearly, we may assume that L(F1) > 0 and L(F2) > 0. Let R > 1 be such

that F1, F2 ⊂ B(0, R− 1). Then

0 <

∫∫
F1×F2

|u1−u2|−t dL(u1)dL(u2) ≤
∫∫

B(0,R)×B(0,R)

|u1−u2|−t dL(u1)dL(u2) <∞.

It follows that, for every ε̃ > 0, there exists δ ∈ R with 0 < δ < 1 such that

(2.10)

∫∫
D(δ)

|u1 − u2|−t dL(u1)dL(u2) ≤ ε̃

∫∫
F1×F2

|u1 − u2|−t dL(u1)dL(u2),

where D(δ) := {(u1, u2) ∈ B(0, R) × B(0, R) : |u1 − u2| ≤ δ}. Consider 0 <

ε̃ < 1
2

and let δ > 0 be such that (2.10) is valid. Defining δ1 := 1
4
C−1ε̃δ, gives

diamWx(B(y0, δ1)) < 1
2
ε̃δ for all x ∈ U .

Let A1 and A2 be Lebesgue measurable subsets of B(y0, δ1). Recall that Wx(y0) =

x for all x ∈ U . Thus, if ui ∈ Wxi(Ai) for i = 1, 2 and |x1 − x2| > 1
2
δ, we have

13



|u1 − u2| > (1− 2ε̃)|x1 − x2| and, therefore,

∫
{(x1,x2)∈F1×F2 : |x1−x2|> 1

2
δ}

∫∫
Wx1 (A1)×Wx2 (A2)

|u1 − u2|−t dL(u1)dL(u2)dL(x1)dL(x2)

≤ (1− 2ε̃)−t
∫
{(x1,x2)∈F1×F2 : |x1−x2|> 1

2
δ}
|x1 − x2|−t

× L(Wx1(A1))L(Wx2(A2)) dL(x1)dL(x2)

≤ (1− 2ε̃)−t
∫∫

F1×F2

L(Wx1(A1))L(Wx2(A2))|x1 − x2|−t dL(x1)dL(x2).

(2.11)

To estimate the remaining part of the integral, we make the change of variables

ui = Wxi(ũi) = W (xi, ũi) for i = 1, 2. The Jacobians of these coordinate transfor-

mations are bounded from above by Cd. By Fubini’s theorem,∫
{(x1,x2)∈F1×F2 : |x1−x2|≤ 1

2
δ}

∫∫
Wx1 (A1)×Wx2 (A2)

|u1 − u2|−t dL(u1)dL(u2)dL(x1)dL(x2)

≤ C2d

∫∫
A1×A2

∫
{(x1,x2)∈F1×F2 : |x1−x2|≤ 1

2
δ}
|W (x1, ũ1)−W (x2, ũ2)|−t

× dL(x1)dL(x2)dL(ũ1)dL(ũ2) =: L.

Recall that, by the choice of δ1, we have |W (x1, ũ1)−W (x2, ũ2)| ≤ δ provided that

|x1−x2| ≤ 1
2
δ. The fact that, for i = 1, 2, we have |W (xi, ũi)−W (xi, y0)| ≤ Cδ1 < 1

for all xi ∈ Fi and ũi ∈ Ai gives W (xi, ũi) ∈ B(0, R). Making the change of variables

x̃i = W (xi, ũi) for i = 1, 2 and using the fact that the Jacobians are bounded by Cd,

inequality (2.10) gives

L ≤ C4d

∫∫
A1×A2

∫∫
D(δ)

|x̃1 − x̃2|−t dL(x̃1)dL(x̃2)dL(ũ1)dL(ũ2)

≤ C4dε̃L(A1)L(A2)

∫∫
F1×F2

|x̃1 − x̃2|−t dL(x̃1)dL(x̃2)

≤ C6dε̃

∫∫
F1×F2

L(Wx1(A1))L(Wx2(A2))|x̃1 − x̃2|−t dL(x̃1)dL(x̃2).

(2.12)

Combining (2.11) and (2.12) gives the claim. �

3. Upper bound for Hausdorff dimension

In this section, we prove claims (a) and (c) in Theorem 1.1. We begin with the

following observation.
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Lemma 3.1. Let (En)n∈N be a sequence of subsets of Rd. Then

dimH

(
lim sup
n→∞

En
)
≤ inf

{
t ≥ 0 :

∞∑
n=1

Ht
∞(En) <∞

}
.

Proof. For 0 ≤ s <∞ and 0 < δ <∞, we denote by Hs and Hs
δ the s-dimensional

Hausdorff measure and δ-measure, respectively. Let t > 0 with
∑∞

n=1Ht
∞(En) <∞.

For the purpose of proving the claim, it suffices to show that dimH

(
lim supn→∞En

)
≤

t. In what follows, we prove a slightly stronger result that Ht
(
lim supn→∞En

)
= 0.

Let ε > 0 and let N ∈ N so that
∑∞

n=N Ht
∞(En) < εt

2
. For every n ≥ N

and k ∈ N, we choose Un,k ⊂ Rd such that
⋃∞
k=1 Un,k ⊃ En for all n ≥ N and∑∞

n=N

∑∞
k=1(diamUn,k)

t ≤ εt. Clearly, diamUn,k ≤ ε and, therefore,

Ht
ε

(
lim sup
n→∞

En
)
≤ Ht

ε

( ∞⋃
n=N

En
)
≤

∞∑
n=N

∞∑
k=1

(diamUn,k)
t ≤ εt.

As ε can be arbitrarily small, we have Ht(lim supn→∞En) = 0, which completes the

proof. �

Proof of Theorem 1.1.(a). The inequality dimH E(x, A) ≤ t0(A) follows directly

from Lemma 3.1, using a simple observation that Ht
∞(f(x,E)) ≤ (Cu)

tHt
∞(E) for

all x ∈ U and E ⊂ V , where Cu is the constant appearing in (1.13). �

The rest of this section is devoted to proving that s0(A) = t0(A) under the

assumptions of Theorem 1.1.(c), where s0(A) and t0(A) are as in (1.8) and (1.7),

respectively. We start by proving that s0(A) ≤ t0(A).

Lemma 3.2. Let E ⊂ Rd be a Lebesgue measurable set. For all t ≥ 0, we have

Ht
∞(E) ≥ Gt(E). In particular, for every sequence A := (An)n∈N of Lebesgue

measurable subsets of Rd, we have s0(A) ≤ t0(A).

Proof. We may assume that L(E) > 0 and Ht
∞(E) < ∞. Let ε > 0. We choose

disjoint Borel sets En, n ∈ N, such that
⋃∞
n=1En ⊃ E and

∑∞
n=1(diamEn)t <

Ht
∞(E) + ε. Notice that, for all n ∈ N,

It(E ∩ En) =

∫∫
(E∩En)×(E∩En)

|x− y|−t dL(x)dL(y) ≥ (diamEn)−tL(E ∩ En)2.

It follows that

(3.1) It(E) ≥
∞∑
n=1

It(E ∩ En) ≥
∞∑
n=1

(diamEn)−tL(E ∩ En)2.
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From (3.1) and Cauchy-Schwarz inequality, we obtain( ∞∑
n=1

(diamEn)t
)
It(E) ≥

( ∞∑
n=1

(diamEn)t
)( ∞∑

n=1

(diamEn)−tL(E ∩ En)2
)

≥
( ∞∑
n=1

L(E ∩ En)
)2

= L(E)2,

which implies that
∑∞

n=1(diamEn)t ≥ gt(E) (see (1.4)). Hence, Ht
∞(E)+ε > gt(E).

Letting ε tend to zero, gives Ht
∞(E) ≥ gt(E). As Ht

∞(·) is a monotone increasing

function, we conclude that Ht
∞(E) ≥ Gt(E). According to this inequality, we have

s0(A) ≤ t0(A) for every sequence A of Lebesgue measurable subsets of Rd. �

Remark 3.3. The following extension of Lemma 3.2 can be proven with the same

argument: if µ is a finite Borel measure supported on E and t ≥ 0, we have

Ht
∞(E) ≥ µ(E)2∫∫

E×E |x− y|−t dµ(x)dµ(y)
.

We proceed by estimating Ht
∞(E) from above by means of Gt(E). Our estimate is

based on a technical result stated in Proposition 3.8. In what follows, the restriction

of a measure µ to a set E ⊂ Rd is denoted by µ|E, that is, µ|E(F ) := µ(E ∩ F ) for

all F ⊂ Rd. For a Radon measure µ on Rd and 0 < s < d, let

Is(µ) :=

∫∫
|x− y|−s dµ(x)dµ(y)

be the s-energy of µ. Given a Borel set E ⊂ Rd, let P(E) be the space of Borel

probability measures supported on E, and let E+ be the set of points in E having

positive Lebesgue density, that is,

E+ :=
{
x ∈ E : lim inf

r→0

L(E ∩B(x, r))

L(B(x, r))
> 0
}
.

We denote by E the closure of a set E ⊂ Rd, by B(0, 1) ⊂ Rd the closed unit ball

centred at the origin and by C(B(0, 1)) the family of continuous maps from B(0, 1)

to R.

We continue by verifying several elementary lemmas.

Lemma 3.4. Letting s > 0, the mapping η 7→ Is(η) is lower semi-continuous on

P(B(0, 1)), when P(B(0, 1)) is equipped with the weak-star topology.

Proof. The result is well known (see for example [40, (1.4.5)]) and follows from the

fact that the mapping (x, y) 7→ |x− y|−s is non-negative and lower semi-continuous

on Rd × Rd. �
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Lemma 3.5. Let η ∈ P(B(0, 1)). Suppose that (Fn)n∈N is a sequence of Borel

subsets of B(0, 1) satisfying limn→∞ η(Fn) = 1. Then ηn := η(Fn)−1η|Fn converges

to η in the weak-star topology as n tends to infinity. Moreover, limn→∞ Is(ηn) = Is(η)

for all s > 0.

Proof. Letting g ∈ C(B(0, 1)), we have that

0 ≤
∫
|g − gχFn| dη ≤ (1− η(Fn)) max

x∈B(0,1)
|g(x)|.

From this it follows that

lim
n→∞

∫
g dηn = lim

n→∞
η(Fn)−1

∫
gχFn dη =

∫
g dη

and, therefore, ηn converges to η in the weak-star topology.

Let s > 0. By Lemma 3.4, we have lim infn→∞ Is(ηn) ≥ Is(η). Notice that, for all

n ∈ N,

Is(ηn) = η(Fn)−2

∫∫
Fn×Fn

|x− y|−s dη(x)dη(y) ≤ η(Fn)−2Is(η),

which implies that lim supn→∞ Is(ηn) ≤ Is(η). Hence, limn→∞ Is(ηn) = Is(η), as

desired. �

For a Borel set F ⊂ B(0, 1) and s > 0, we recall the notation Is(F ) = Is(L|F )

from (1.5). For every k ∈ N, define

(3.2) Qk := {[0, 2−k)d + α : α ∈ 2−kZd}.

Lemma 3.6. Let F ⊂ B(0, 1) be a Borel set, and let 0 < s < d. Then, for every

p ∈ R with 0 < p ≤ 1, there exists a Borel set F1 ⊂ F so that L(F1) = pL(F ) and

Is(F1) ≤ 2p2Is(F ).

Proof. Let 0 < p ≤ 1. Write µ := L|F and choose a large integer ` ∈ N so that

(3.3) (1 + 2
√
d
`

)s < 3
2
.

Since Is(µ) <∞, there is n ∈ N such that

(3.4)
∑

Q,Q′∈Qn
dist(Q,Q′)<2−n`

∫∫
Q×Q′

|x− y|−s dµ(x)dµ(y) < 1
2
p2Is(µ).

Here dist(Q,Q′) = inf{|x − y| : x ∈ Q and y ∈ Q′}. For each Q ∈ Qn, construct a

Borel subset Q̃ of Q ∩ F such that L(Q̃) = pL(Q ∩ F ). Defining F1 :=
⋃
Q∈Qn Q̃,

we have F1 ⊂ F and L(F1) = pL(F ).
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We proceed by showing that Is(F1) ≤ 2p2Is(F ). Set η := L|F1 . Since F1 ⊂ F ,

inequality (3.4) gives∑
Q,Q′∈Qn

dist(Q,Q′)<2−n`

∫∫
Q×Q′

|x− y|−s dη(x)dη(y) < 1
2
p2Is(µ).

The proof will be complete, once we show that

(3.5)
∑

Q,Q′∈Qn
dist(Q,Q′)≥2−n`

∫∫
Q×Q′

|x− y|−s dη(x)dη(y) ≤ 3
2
p2Is(µ).

Note that if Q,Q′ ∈ Qn with dist(Q,Q′) ≥ 2−n`, x ∈ Q and y ∈ Q′, we obtain

dist(Q,Q′) ≤ |x− y| ≤ dist(Q,Q′) + 2
√
d2−n

and, therefore, by (3.3),

2
3

dist(Q,Q′)−s ≤ |x− y|−s ≤ dist(Q,Q′)−s.

This, in turn, implies that∫∫
Q×Q′
|x− y|−s dη(x)dη(y) ≤ dist(Q,Q′)−sη(Q)η(Q′)

= p2 dist(Q,Q′)−sµ(Q)µ(Q′) ≤ 3
2
p2

∫∫
Q×Q′

|x− y|−s dµ(x)dµ(y).

Summing over Q,Q′ ∈ Qn with d(Q,Q′) ≥ 2−n`, we obtain (3.5) as desired. �

The following lemma is a special case of Proposition 3.8.

Lemma 3.7. Let E ⊂ B(0, 1) be a Borel set with L(E) > 0, and let k,m ∈ N.

Assume that E0 ⊂ E is a non-empty Borel set such that

(3.6)
L(E ∩B(x, r))

L(B(x, r))
>

1

k

for all x ∈ E0 and 0 < r ≤ 2−m. Let 0 < s < d and µ ∈ P(E0) with Is(µ) < ∞.

Then there is a sequence (Fn)n∈N of Borel subsets of E with positive Lebesgue measure

such that the sequence µn := L(Fn)−1L|Fn, n ∈ N, converges to µ in the weak-star

topology as n tends to infinity, and limn→∞ Is(µn) = Is(µ).

Proof. We divide the proof into three steps.

Step 1. Construction of (µn)n∈N. For all n ∈ N, let

{xn,1, . . . , xn,pn : |xn,i − xn,j| ≥ 2−n for all i 6= j}
18



be a subset of E0 with maximal cardinality. Then

E0 ⊂
pn⋃
i=1

B(xn,i, 2
−n).

For i = 1, . . . , pn, we denote by Qn,i the set of points y ∈ B(xn,i, 2
−n) for which i is

the smallest index such that |y − xn,i| = minj=1,...,pn |y − xn,j|. Then the sets Qn,i,

i = 1, . . . , pn, are pairwise disjoint Borel sets satisfying

E0 ⊂
pn⋃
i=1

Qn,i =

pn⋃
i=1

B(xn,i, 2
−n) and(3.7)

B(xn,i, 2
−n−1) ⊂ Qn,i ⊂ B(xn,i, 2

−n) for all i = 1, . . . , pn.(3.8)

For all i = 1, . . . , pn, define

(3.9) ci :=
µ(Qn,i)

L(E ∩B(xn,i, 2−n−2))

and set c := maxi=1,...,pn ci. Lemma 3.6 implies that, for every i = 1, . . . , pn, we can

construct a Borel set Fn,i such that

Fn,i ⊂ E ∩B(xn,i, 2
−n−2),(3.10)

L(Fn,i) = ci
c
L
(
E ∩B(xn,i, 2

−n−2)
)

and(3.11)

Is(Fn,i) ≤ 2c2i
c2
Is
(
E ∩B(xn,i, 2

−n−2)
)
.(3.12)

By (3.10), the sets Fn,i, i = 1, . . . , pn, are pairwise disjoint and, moreover,

(3.13) dist(Fn,i, Fn,j) ≥ 2−n−1 for i 6= j.

We complete the construction in step 1 by setting

Fn :=

pn⋃
i=1

Fn,i and µn := L(Fn)−1L|Fn .

Observe that L(Fn) > 0 since L(B(x, r) ∩ E) > 0 for all x ∈ E0 and r > 0.

Step 2. Convergence of (µn)n∈N. By (3.9) and (3.11), we have L(Fn,i) = c−1µ(Qn,i)

for all i = 1, . . . , pn. It follows that

L(Fn) = c−1 and(3.14)

µn(Qn,i) = µn(Fn,i) = µ(Qn,i)(3.15)

for all i = 1, . . . , pn. Let F ⊂ Rd be a compact set. From (3.15) and the fact that

diam(Qn,i) ≤ 2 · 2−n (see (3.8)), we conclude that, for all ε > 0, (recall (2.4))

lim sup
n→∞

µn(F ) ≤ lim sup
n→∞

∑
1≤i≤pn
Qn,i⊂Fε

µn(Qn,i) ≤ µ(V ε(F )).
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Combining this with the fact that µ(F ) = limε→0 µ(V ε(F )), leads to the conclu-

sion lim supn→∞ µn(F ) ≤ µ(F ). The weak-star convergence now follows from the

Portmanteau theorem [38, Theorem 17.20].

Step 3. Convergence of (Is(µn))n∈N. Since the sequence (µn)n∈N converges to µ in

the weak-star topology, Lemma 3.4 gives lim infn→∞ Is(µn) ≥ Is(µ). Hence, for the

purpose of proving that limn→∞ Is(µn) = Is(µ), it suffices to show that, for every

ε > 0, there exists N ∈ N such that

(3.16) Is(µn) ≤ (1 + ε)Is(µ)

for all n ≥ N . Let ε > 0 and select ` ∈ N such that

(3.17) (1 + 4
`
)s < 1 + ε

2
.

Moreover, choose a large integer N ≥ m such that, for all n ≥ N ,

(3.18)

∫∫
{(x,y) : |x−y|≤2−n(`+8)}

|x− y|−s dµ(x)dµ(y) < ε
4L
Is(µ),

where

L := max
{

2s(`+ 8)s, 2k2Is(B(0, 1))L(B(0, 1))−28s
}
.

Let n ≥ N and set Dn := {Qn,i : i = 1, . . . , pn}. Notice that if Q,Q′ ∈ Dn with

dist(Q,Q′) ≥ 2−n`, x ∈ Q and y ∈ Q′, we have, by (3.8), that

dist(Q,Q′) ≤ |x− y| ≤ dist(Q,Q′) + 4 · 2−n

and, therefore, by (3.17),

(1 + ε
2
)−1 dist(Q,Q′)−s ≤ |x− y|−s ≤ dist(Q,Q′)−s.

Combining this with (3.15), we conclude that∫∫
Q×Q′
|x− y|−s dµn(x)dµn(y) ≤ dist(Q,Q′)−sµn(Q)µn(Q′)

= dist(Q,Q′)−sµ(Q)µ(Q′) ≤ (1 + ε
2
)

∫∫
Q×Q′

|x− y|−s dµ(x)dµ(y).

Summing over Q,Q′ ∈ Dn with dist(Q,Q′) ≥ 2−n`, we obtain that∑
Q,Q′∈Dn

dist(Q,Q′)≥2−n`

∫∫
Q×Q′

|x− y|−s dµn(x)dµn(y) ≤ (1 + ε
2
)Is(µ).

To complete the proof of (3.16), it is sufficient to verify that

(3.19)
∑

Q,Q′∈Dn

dist(Q,Q′)<2−n`

∫∫
Q×Q′

|x− y|−s dµn(x)dµn(y) ≤ ε
2
Is(µ).
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Since µn is supported on Fn =
⋃pn
i=1 Fn,i, the left-hand side of (3.19) is bounded

above by

∑
1≤i,j≤pn

dist(Fn,i,Fn,j)<2−n(`+4)

∫∫
Fn,i×Fn,j

|x− y|−s dµn(x)dµn(y) =: (I) + (II),

where

(I) :=
∑

1≤i,j≤pn: i 6=j
dist(Fn,i,Fn,j)<2−n(`+4)

∫∫
Fn,i×Fn,j

|x− y|−s dµn(x)dµn(y) and

(II) :=
∑

1≤i≤pn

∫∫
Fn,i×Fn,i

|x− y|−s dµn(x)dµn(y).

We proceed by estimating (I) and (II) separately. First we obtain

(I) ≤
∑

1≤i,j≤pn: i 6=j
dist(Fn,i,Fn,j)<2−n(`+4)

2(n+1)sµn(Fn,i)µn(Fn,j) (by (3.13))

=
∑

1≤i,j≤pn: i 6=j
dist(Fn,i,Fn,j)<2−n(`+4)

2(n+1)sµ(Qn,i)µ(Qn,j) (by (3.15))

≤
∑

Q,Q′∈Dn

dist(Q,Q′)<2−n(`+4)

2(n+1)sµ(Q)µ(Q′)

≤
∑

Q,Q′∈Dn

dist(Q,Q′)<2−n(`+4)

2s(`+ 8)s
∫∫

Q×Q′
|x− y|−s dµ(x)dµ(y) (by (3.8))

≤ 2s(`+ 8)s
∫∫
{(x,y) : |x−y|≤2−n(`+8)}

|x− y|−s dµ(x)dµ(y)

≤ ε
4
Is(µ). (by (3.18))

Set α := L(B(0, 1)) and β := Is(B(0, 1)). Using the change of variables x̃ = rx, it

is straightforward to see that

(3.20) Is(B(x, r)) = L(B(x, r))2α−2r−sβ
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for all x ∈ Rd and all r > 0. Therefore,

(II) =
∑

1≤i≤pn

c2Is(Fn,i) (by (3.14))

≤
∑

1≤i≤pn

2c2
i Is
(
E ∩B(xn,i, 2

−n−2)
)

(by (3.12))

=
∑

1≤i≤pn

2µ(Qn,i)
2Is (E ∩B(xn,i, 2

−n−2))

L
(
E ∩B(xn,i, 2−n−2)

)2 (by (3.9))

≤
∑

1≤i≤pn

(2k2α−2β8s)µ(Qn,i)
22(n−1)s (by (3.20) and (3.6))

≤ (2k2α−2β8s)
∑

1≤i≤pn

∫∫
Qn,i×Qn,i

|x− y|−s dµ(x)dµ(y) (by (3.8))

≤ (2k2α−2β8s)

∫∫
{(x,y) : |x−y|≤2·2−n}

|x− y|−s dµ(x)dµ(y)

≤ ε
4
Is(µ). (by (3.18))

We conclude that (I) + (II) ≤ ε
2
Is(µ), from which (3.19) follows. This completes

the proof of Lemma 3.7. �

Now we are ready to state the main technical result of this section.

Proposition 3.8. Let E ⊂ Rd be a bounded Borel set with L(E) > 0, and let

0 < s < d. Assume that µ ∈ P(E+) with Is(µ) < ∞. Then there is a sequence

(Fn)n∈N of Borel subsets of E+ with positive Lebesgue measure such that the sequence

µn := L(Fn)−1L|Fn, n ∈ N, converges to µ in the weak-star topology as n tends to

infinity, and limn→∞ Is(µn) = Is(µ).

Proof. Without loss of generality, we may assume that E ⊂ B(0, 1). For every

k,m ∈ N, define

Ek,m :=
{
x ∈ E :

L(E ∩B(x, r))

L(B(x, r))
>

1

k
for all 0 < r ≤ 2−m

}
,

and set Ek :=
⋃∞
m=1 Ek,m. Then Ek,m ↑ Ek as m tends to infinity and, moreover,

Ek ↑ E+ as k tends to infinity. Choose sufficiently large k0 ∈ N such that µ(Ek0) > 0.

For every integer k ≥ k0, pick mk ∈ N such that

µ(Ek,mk) ≥ (1− 1
k
)µ(Ek).

Since Ek ↑ E+ as k tends to infinity and µ is supported on E+, we have

lim
k→∞

µ(Ek,mk) = 1.
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Set ηk := µ(Ek,mk)
−1µ|Ek,mk for all k ≥ k0. From Lemma 3.5, we obtain

(3.21) lim
k→∞

ηk = µ and lim
k→∞

Is(ηk) = Is(µ).

Let k ≥ k0. Replacing in Lemma 3.7 the sets E and E0 by E+ and Ek,mk ,

respectively, implies the existence of a sequence (Fk,i)i∈N of Borel subsets of E+

such that

lim
i→∞
L(Fk,i)

−1L|Fk,i = ηk and lim
i→∞

Is
(
L(Fk,i)

−1L|Fk,i
)

= Is(ηk).

Combining this with (3.21), we see that there exists a sequence (ik)k∈N of natural

numbers such that

lim
k→∞
L(Fk,ik)

−1L|Fk,ik = µ and lim
k→∞

Is
(
L(Fk,ik)

−1L|Fk,ik
)

= Is(µ).

This completes the proof of Proposition 3.8. �

Next lemma states that every Lebesgue measurable set with positive Lebesgue

density is contained in a Borel set with positive Lebesgue density having the same

Hausdorff content as the original set.

Lemma 3.9. Let R > 0 and s > 0. Assume that E ⊂ B(0, R) is a Lebesgue

measurable subset of Rd. Then there exists a Borel set X ⊂ B(0, R) such that

E ⊂ X, L(X \ E) = 0 and Hs
∞(E) = Hs

∞(X). Furthermore, under the additional

assumption E+ = E, we may choose X so that X+ = X.

Proof. The definition of Hs
∞(·) implies that, for every n ∈ N, there exists a sequence

(Fn,i)i∈N of Borel sets satisfying E ⊂
⋃∞
i=1 Fn,i and

∑∞
i=1(diamFn,i)

s < Hs
∞(E) + 1

n
.

Defining F :=
⋂∞
n=1

⋃∞
i=1 Fn,i, it is clear that F is Borel measurable, E ⊂ F and

Hs
∞(F ) = Hs

∞(E). Moreover, there exists a Borel set A ⊂ B(0, R) such that E ⊂ A

and L(A) = L(E). Setting X := F ∩A, it is easy to see that X fulfils all the desired

properties.

If E+ = E, the above construction may lead to the situation where X+ 6= X.

However, we have E ⊂ X+ ⊂ X and, therefore, Hs
∞(X+) = Hs

∞(E) = Hs
∞(X)

and L(X+) = L(E) = L(X). Note that (X+)+ = X+. (Indeed, (A+)+ = A+ for

all Lebesgue measurable sets A ⊂ Rd since L(A+) = L(A).) Since X is a Borel

set, so is X+. We complete the proof by deducing that the set Y := X+ has the

following properties: Y ⊂ B(0, R) is a Borel set, Y + = Y , E ⊂ Y , L(Y \ E) = 0

and Hs
∞(Y ) = Hs

∞(E). �

The next lemma may be regarded as a complementary result to Lemma 3.2.
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Lemma 3.10. Let 0 < t < s < d and R > 0. Then there exists a positive constant

C = C(s, t, d, R) such that, for all Lebesgue measurable sets E ⊂ B(0, R) with

E+ = E, we have

Hs
∞(E) ≤ CGt(E).

Proof. We may assume that E 6= ∅. Since E+ = E 6= ∅, we have L(E) > 0 and,

therefore, Hs
∞(E) > 0.

We first assume that E is Borel measurable. By Frostman’s lemma [45, Theorem

8.8], there exists a Radon measure µ supported on E such that µ(B(x, r)) ≤ rs for all

x ∈ Rd and r > 0 and, moreover, µ(E) = cHs
∞(E), where c is a constant depending

only on d. Next we make a standard calculation in a slightly complicated looking

fashion since that will be useful for later purposes (see Section 8). Let h(r) := rt

and h̃(r) := rs for all r ≥ 0. Set δ := s
t
−1 and a := µ(E)−

1
1+δ . Then h̃(r) ≤ h(r)1+δ

for all r > 0. By [45, Theorem 1.15], we have for some constant c1 depending on t

and s that

0 < It(µ) =

∫∫
µ
(
{y ∈ Rd :

1

h(|x− y|)
≥ u}

)
du dµ(x)

≤
∫∫

min{µ(E), µ(B(x, h−1(u−1)))} du dµ(x)

≤
∫ (∫ a

0

µ(E) du+

∫ ∞
a

h̃(h−1(u−1)) du
)
dµ(x)

≤
∫ (

µ(E)1− 1
1+δ +

∫ ∞
a

u−1−δ du
)
dµ(x)

≤ c1µ(E)1+ δ
1+δ ≤ c1

(
cHs
∞(B(0, R))

)1− t
sµ(E).

Thus 0 < It(µ) ≤ c̃µ(E) <∞, where c̃ is a constant depending only on t, s and R.

Applying Proposition 3.8 to E, we find a sequence (µk)k∈N of measures such

that µk = µ(E)L(Ek)
−1L|Ek and limk→∞ It(µk) = It(µ). Here each Ek is a Borel

measurable subset of E with 0 < L(Ek) < ∞. For all sufficiently large k ∈ N, we

obtain
µ(E)2

L(Ek)2
It(Ek) = It(µk) ≤ 2It(µ) ≤ 2c̃µ(E),

giving

Hs
∞(E) = c−1µ(E) ≤ 2c̃c−1L(Ek)

2

It(Ek)
≤ 2c̃c−1Gt(E)

by (1.9). Choosing C := 2c̃c−1, completes the proof for Borel sets E.

The general case of E being Lebesgue measurable may be reduced to the above

setting in the following manner. By Lemma 3.9, there exists a Borel set X ⊂ B(0, R)
24



so that X+ = X, E ⊂ X, Hs
∞(X) = Hs

∞(E) and L(X \ E) = 0. Since E ⊂ X

and L(X \ E) = 0, we have Gt(X) = Gt(E). The above established inequality

Hs
∞(X) ≤ CGt(X) implies that Hs

∞(E) ≤ CGt(E). �

Now we are ready to prove Theorem 1.1.(c).

Proof of Theorem 1.1.(c). Choose R > 0 such that ∆ ⊂ B(0, R). Recalling (1.7)

and (1.8), the statement follows directly from Lemmas 3.2 and 3.10. �

4. Minimal regular energy

In this section, we introduce a new concept of minimal regular energy and study

basic properties of it. We also explain how it can be used to estimate dimensions of

random covering sets. The main results are Proposition 4.5 and Lemma 4.7, which

are needed in our proof of Theorem 1.1.(b).

For E ⊂ Rd, set

P0(E) :=
{
µ ∈ P(E) : µ =

k∑
i=1

ciL|Ei , k ∈ N, ci > 0 and Ei ⊂ E are Borel sets
}
.

Recall from Section 3 that P(E) is the space of Borel probability measures supported

on E. For E ⊂ Rd and 0 < s < d, define

Γs(E) :=

{
inf{Is(µ) : µ ∈ P0(E)}, if L(E) > 0,
∞, if L(E) = 0.

The quantity Γs(E) is called the minimal regular s-energy of E.

Lemma 4.1. Let E ∈ B(Rd) and 0 < s < d. Then the following properties hold:

(i) If F ⊂ E is a Borel set, then Γs(E) ≤ Γs(F ).

(ii) If L(E) > 0, then Γs(E) <∞.

(iii) If E is bounded, then Γs(E) > 0.

(iv) For every ε > 0, there exists δ = δ(E, ε) > 0 such that

Γs(F ) ≤ Γs(E) + ε

provided that F ∈ B(Rd) and L(E \ F ) < δ.

(v) Let (En)n∈N be a sequence of Borel subsets of E. Supposing that L(E) <∞,

we have

Γs
( ∞⋃
i=1

Ei
)

= lim
n→∞

Γs
( n⋃
i=1

Ei
)

= inf
n∈N

Γs
( n⋃
i=1

Ei
)
.
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Proof. The statement (i) is obvious. To verify (ii), choose a compact set F ⊂ E

with L(F ) > 0 (recall that L is inner regular), and set µ := L(F )−1L|F . Clearly,

µ ∈ P0(E). Since 0 < s < d, we have

Is(µ) = L(F )−2

∫∫
F×F
|x− y|−s dL(x)dL(y)

≤ L(F )−2

∫∫
B(0,R)×B(0,R)

|x− y|−s dL(x)dL(y) <∞,

where R > 0 is sufficiently large so that F ⊂ B(0, R). Hence Γs(E) <∞.

For the purpose of proving (iii), suppose on the contrary that Γs(E) = 0. Then

there exists a sequence (µn)n∈N such that µn ∈ P0(E) and limn→∞ Is(µn) = 0. Since

E is bounded, the sequence (µn)n∈N has at least one accumulation point, say µ, in

the weak-star topology. By Lemma 3.4, Is(·) is lower semi-continuous and, therefore,

Is(µ) = 0, leading to a contradiction since µ is a Borel probability measure. This

completes the proof of (iii).

Next we verify (iv). We may assume that L(E) > 0. Then Γs(E) < ∞ by (ii).

Let ε > 0. By the definition of Γs(·), there exists µ =
∑k

i=1 ciL|Ei ∈ P0(E) such

that Is(µ) ≤ Γs(E) + ε
2
, where Ei ⊂ E and L(Ei) > 0 for all i = 1, . . . , k. Define

δ1 := min{L(Ei) : i = 1, . . . , k},

γ :=

√
Γs(E) + ε

2

Γs(E) + ε
and δ := (1− γ)δ1.

Let F ∈ B(Rd) with L(E \F ) < δ. We proceed by showing that Γs(F ) ≤ Γs(E) + ε.

First notice that, for all i = 1, . . . , k,

L(Ei ∩ F ) ≥ L(Ei ∩ E)− L(E \ F ) = L(Ei)− L(E \ F )

≥ L(Ei)− δ ≥ γL(Ei).

Letting 0 < % < 1, by the inner regularity of L, there is a compact set Ẽi ⊂ Ei ∩ F
such that L(Ẽi) ≥ %L(Ei ∩ F ) for all i = 1, . . . , k. Setting

µF :=
1

cF

k∑
i=1

ciL|Ẽi ,

where cF :=
∑k

i=1 ciL(Ẽi) > 0, the measure µF is supported on F and, therefore,

µF ∈ P0(F ). Using the fact that Ei ⊂ E for all i = 1, . . . , k, we deduce that

L(Ẽi) ≥ %L(Ei ∩ F ) > %γL(Ei).

Thus, cF ≥
∑k

i=1 ci%γL(Ei) = %γ and

Is(µF ) ≤ (cF )−2Is(µ) ≤ ρ−2γ−2(Γs(E) + ε
2
) = %−2(Γs(E) + ε).
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Hence Γs(F ) ≤ %−2(Γs(E) + ε). Letting % tend to 1, gives Γs(F ) ≤ Γs(E) + ε. This

completes the proof of (iv).

Finally, (v) follows from (i), (iv) and the fact that

lim
n→∞

L
( ∞⋃
i=1

Ei \
( n⋃
j=1

Ej
))

= 0.

�

We proceed by giving an equivalent definition of Γs(A) although we will not

apply it in this paper. We use the notation µ� ν to indicate that the measure µ is

absolutely continuous with respect to the measure ν.

Lemma 4.2. Let E ⊂ Rd. With convention inf ∅ =∞, we have

Γs(E) = inf{Is(µ) : µ ∈ P(E) with µ� L}.

Proof. It is sufficient to show that, for every µ ∈ P(E) with µ � L and for every

ε > 0, there exists η ∈ P0(E) such that

Is(η) ≤ Is(µ) + ε.

To prove the above fact, we denote by h = dµ
dL the Radon-Nikodym derivative of µ

with respect to L. Approximating h by step functions, we see that, for every δ > 0,

there exists a step function g =
∑k

i=1 aiχEi , where ai > 0, Ei is a Borel set and

Ei ⊂ E for all i = 1, . . . , k, so that

(4.1)
∣∣Is(µ)−

∫∫
|x− y|−sg(x)g(y) dL(x)dL(y)

∣∣ < ε

2

and

(4.2)
∣∣∫ h(x) dL(x)−

∫
g(x) dL(x)

∣∣ < δ.

Let u :=
∑k

i=1 aiL(Ei). Then u > 1 − δ by (4.2). Defining η := 1
u

∑k
i=1 aiL|Ei ,

implies that η ∈ P0(E). Using (4.1), we get for a small enough δ that

Is(η) = u−2

∫∫
|x− y|−sg(x)g(y) dL(x)dL(y)

≤ (1− δ)−2(Is(µ) + ε
2
)

≤ Is(µ) + ε.

This completes the proof of the lemma. �

Lemma 4.3. Let (En)n∈N be a decreasing sequence of compact subsets of Rd, and

let 0 < s < d. Assume that there exists c > 0 such that Γs(En) < c for all n ∈ N.

Then Hs
∞
(⋂∞

n=1 En
)
≥ c−1. In particular, dimH

(⋂∞
n=1 En

)
≥ s.
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Proof. According to the definition of Γs(·), for every n ∈ N, there exists µn ∈ P0(En)

so that Is(µn) < c. Let µ be an accumulation point of the sequence (µn)n∈N in the

weak-star topology. Then µ is supported on
⋂∞
n=1En and, furthermore, Is(µ) ≤ c

by lower semi-continuity of Is(·) (see Lemma 3.4). The conclusion follows from

Remark 3.3. �

In the remaining part of this section, we assume that U ⊂ Rd is open and

(An(x))n∈N is a sequence of B(Rd)-valued functions defined on U such that

(C-1) L(An(x)) <∞ for all x ∈ U and n ∈ N, and

(C-2) limy→x L
(
(An(x) \ An(y)) ∪ (An(y) \ An(x))

)
= 0 for all x ∈ U and n ∈ N.

Let UN :=
∏∞

n=1 U be endowed with the product topology. Consider η ∈ P(U) and

set P :=
∏∞

i=1 η.

Lemma 4.4. Let E ∈ B(Rd) with L(E) <∞. Then, for all n ∈ N, the mapping

(xi)
n
i=1 7→ Γs

(
E ∩

n⋃
i=1

Ai(xi)
)

is upper semi-continuous on Un :=
∏n

i=1 U . Moreover, the mapping

x := (xi)
∞
i=1 7→ Γs

(
E ∩

∞⋃
i=1

Ai(xi)
)

is Borel measurable on UN.

Proof. Let x ∈ UN and n ∈ N. By (C-2), L
(⋃n

i=1Ai(xi) \
⋃n
j=1 Aj(yj)

)
is close

to 0 when (yi)
n
i=1 ∈ Un is close to (xi)

n
i=1. Applying Lemma 4.1.(iv), we obtain

upper semi-continuity (and hence Borel measurability) of the mapping (xi)
n
i=1 7→

Γs
(
E∩

⋃n
i=1Ai(xi)

)
defined on Un and that of the mapping x 7→ Γs

(
E∩

⋃n
i=1 Ai(xi)

)
defined on UN. It follows from Lemma 4.1.(v) that

lim
n→∞

Γs
(
E ∩

n⋃
i=1

Ai(xi)
)

= Γs
(
E ∩

∞⋃
i=1

Ai(xi)
)
,

which, in turn, implies Borel measurability of the map x 7→ Γs
(
E ∩

⋃∞
i=1Ai(xi)

)
on

UN. �

Next proposition provides a sufficient condition for determining a lower bound for

Hausdorff dimensions of typical random covering sets.

Proposition 4.5. Let E ⊂ Rd be compact with L(E) > 0. In addition to (C-1)

and (C-2), assume that An(x) is compact for all x ∈ U and n ∈ N. Let 0 < s < d.
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Suppose that, for all compact sets F ⊂ E, we have for P-almost all x ∈ UN that

(4.3) Γs

(
F ∩

( ∞⋃
i=n

Ai(xi)
))

= Γs(F ) for all n ∈ N.

Then

Hs
∞
(
lim sup
n→∞

An(xn)
)
≥ Γs(E)−1 and dimH

(
lim sup
n→∞

An(xn)
)
≥ s

for P-almost all x ∈ UN.

Proof. From (4.3), we obtain

Γs

(
E ∩

( ∞⋃
i=1

Ai(xi)
))

= Γs(E)

for P-almost all x ∈ UN. Note that 0 < Γs(E) < ∞ by Lemma 4.1 claims (ii) and

(iii). Letting ` > 2, Lemma 4.1.(v) and Lemma 4.4 imply the existence of a Borel

measurable function n1 : UN → N such that

Γs

(
E ∩

(n1(x)⋃
i=1

Ai(xi)
))

< (1 + `−1)Γs(E)

for P-almost all x ∈ UN. By Lemma 4.1.(i), we find N1 ∈ N and a Borel set Λ1 ⊂ UN1

so that

(4.4) ηN1(Λ1) > 1− `−1 and Γs

(
E ∩

(N1⋃
i=1

Ai(xi)
))

< (1 + `−1)Γs(E)

for all (x1, . . . , xN1) ∈ Λ1, where ηN1 :=
∏N1

i=1 η. Applying (4.3) with F = E ∩(⋃N1

i=1Ai(xi)
)
, gives for all (x1, . . . , xN1) ∈ Λ1 that

(4.5) Γs

(
E ∩

(N1⋃
i=1

Ai(xi)
)
∩
( ∞⋃
j=N1+1

Aj(xj)
))

< (1 + `−1)Γs(E)

for
(∏∞

i=N1+1 η
)
-almost all (xN1+1, xN1+2, . . .) ∈

∏∞
i=N1+1 U . Moreover, by Fubini’s

theorem, inequality (4.5) holds for P-almost all x ∈ Λ1 ×
∏∞

i=N1+1 U . As above, it

follows from Lemma 4.1.(i) that there exist a natural number N2 > N1 and a Borel

set Λ2 ⊂ Λ1 ×
∏N2

i=N1+1 U ⊂ UN2 with ηN2(Λ2) ≥ ηN1(Λ1)− `−2 such that

Γs

(
E ∩

(N1⋃
i=1

Ai(xi)
)
∩
( N2⋃
j=N1+1

Aj(xj)
))

< (1 + `−1)(1 + `−2)Γs(E)

for all (x1, . . . , xN2) ∈ Λ2.

By induction, we deduce that there exist a strictly increasing sequence (Nn)n∈N

of positive integers and a sequence (Λn)n∈N of Borel sets such that Λn ⊂ UNn ,
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Λn+1 ⊂ Λn ×
∏Nn+1

i=Nn+1 U ,

(4.6) ηNn+1(Λn+1) ≥ ηNn(Λn)− `−n−1

and

(4.7) Γs

(
E ∩

n⋂
k=1

( Nk⋃
i=Nk−1+1

Ai(xi)
))

<
( n∏
i=1

(1 + `−i)
)
Γs(E)

for all (x1, . . . , xNn) ∈ Λn. Here N0 := 0. Defining Ω :=
⋂∞
n=1(Λn ×

∏∞
i=N1+1 U) and

using (4.6), implies that

(4.8) P(Ω) ≥ 1−
∞∑
n=1

`−n =
`− 2

`− 1
.

Moreover, by (4.7) and Lemma 4.3, we have

Hs
∞
( ∞⋂
n=1

Nn⋃
i=Nn−1+1

Ai(xi)
)
≥
(( ∞∏

i=1

(1 + `−i)
)
Γs(E)

)−1

and

dimH

( ∞⋂
n=1

Nn⋃
i=Nn−1+1

Ai(xi)
)
≥ s

(4.9)

for all x ∈ Ω. This gives dimH

(
lim supn→∞An(xn)

)
≥ s for all x ∈ Ω. Since ` can

be taken arbitrarily large, it follows from (4.8) that

Hs
∞
(
lim sup
n→∞

An(xn)
)
≥ Γs(E)−1 and dimH

(
lim sup
n→∞

An(xn)
)
≥ s

for P-almost all x ∈ UN. �

The above proof readily leads to the following deterministic version of Proposi-

tion 4.5, which may be of independent interest.

Proposition 4.6. Let E ⊂ Rd be compact with L(E) > 0, and let (An)n∈N be a

sequence of compact subsets of Rd. Let 0 < s < d. Suppose that, for all compact

sets F ⊂ E, we have that

Γs

(
F ∩

( ∞⋃
i=n

Ai
))

= Γs(F ) for all n ∈ N.

Then

Hs
∞
(
lim sup
n→∞

An
)
≥ Γs(E)−1 and dimH

(
lim sup
n→∞

An
)
≥ s.

In the last result of this section, we give a sufficient condition for the validity

of (4.3). Recall that, by the definition of Γs(·), the inequality (4.3) is valid for all

F ∈ B(Rd) with L(F ) = 0.
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Lemma 4.7. Let F ∈ B(Rd) with L(F ) > 0, and let 0 < s < d. Assume that, for

every ε > 0 and δ > 0 and for every n ∈ N, there exist an integer N > n and a

Borel measurable set Ω ⊂ UN with P(Ω) > 1− δ such that

(4.10)

∫
Ω

Γs
(
F ∩

N⋃
i=n

Ai(xi)
)
dP(x) < Γs(F ) + ε.

Then, for P-almost all x ∈ UN,

Γs
(
F ∩

∞⋃
i=n

Ai(xi)
)

= Γs(F )

for all n ∈ N.

Proof. Let n ∈ N and γ > 0. By Lemma 4.1.(i),

Γs
(
F ∩

N⋃
i=n

Ai(xi)
)
≥ Γs

(
F ∩

∞⋃
i=n

Ai(xi)
)
≥ Γs(F )

for all x ∈ UN and N ∈ N. Let

Ω′ :=
{
x ∈ UN : Γs

(
F ∩

( ∞⋃
i=n

Ai(xi)
))
≥ Γs(F ) + γ

}
.

It follows from Lemma 4.4 that Ω′ is a Borel set. We show that P(Ω′) = 0. Suppose

on the contrary that P(Ω′) > 0 and choose

(4.11) ε :=
P(Ω′)γ

2
and δ :=

P(Ω′)γ

2(γ + 2Γs(F ))
.

Recall that Γs(F ) <∞ by Lemma 4.1.(ii). Then, for all integers N > n and for all

Borel measurable sets Ω ⊂ UN with P(Ω) > 1− δ, we have∫
Ω

Γs
(
F ∩

N⋃
i=n

Ai(xi)
)
dP(x)

≥
∫

Ω\Ω′
Γs(F ) dP(x) +

∫
Ω∩Ω′

Γs(F ) + γ dP(x)

= P(Ω \ Ω′)Γs(F ) + P(Ω ∩ Ω′)(Γs(F ) + γ)

≥ (P(Ω)− P(Ω′))Γs(F ) + (P(Ω′) + P(Ω)− 1)(Γs(F ) + γ)

= (2P(Ω)− 1)Γs(F ) + (P(Ω′) + P(Ω)− 1)γ

≥ (1− 2δ)Γs(F ) + (P(Ω′)− δ)γ (by (4.11))

= Γs(F ) + ε.

This contradicts (4.10) and completes the proof. �
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5. Lower bound for Hausdorff dimension

The main purpose of this section is to verify Theorem 1.1.(b). This is achieved

by showing first that, under certain assumptions on the measure η ∈ P(U) and the

sequence (An(x))n∈N, the assumption (4.10) of Lemma 4.7 holds. Theorem 1.1.(b)

then follows by applying Lemma 4.7 and Proposition 4.5.

We start with a simple observation on independent random variables.

Lemma 5.1. Let (an)n∈N be a sequence of positive numbers such that
∑∞

n=1 an =∞,

and let 0 < c < 1. Suppose that (ωn)n∈N is a sequence of independent random

variables with ωn ∈ {0} ∪ [an,∞[ and the probability P satisfies

(5.1) P(ωn 6= 0) ≥ c.

Then, for all N ∈ N and C ≥ 0, we have

lim
M→∞

P
( M∑
n=N

ωn ≥ C
)

= 1.

Proof. Observe that the claim is equivalent to the statement
∞∑
n=1

ωn =∞ P-almost surely.

Assuming to the contrary that this is not true, Kolmogorov’s zero-one law implies

that

(5.2)
∞∑
n=1

ωn <∞ P-almost surely.

Define bn := min{1, an} for n ∈ N. Then either bn = 1 for infinitely many

n ∈ N, or bn = an for all sufficiently large n ∈ N. In both of these cases, we have∑∞
n=1 bn =∞. Defining

ω̃n :=

{
0, if ωn = 0

1, if ωn 6= 0,

gives

(5.3) ωn ≥ ω̃nbn

for all n ∈ N. In particular,
∑∞

n=1 ω̃nbn < ∞ P-almost surely by (5.2). By Kol-

mogorov’s three series theorem, there exists α > 0 such that

(i)
∑∞

n=1 P(ω̃nbn ≥ α) converges and

(ii)
∑∞

n=1 E(ω̃nbnχ{ω̃nbn≤α}) converges.
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Assume first that lim supn→∞ bn = b > 0. By inequality (5.1), the sum in (i) diverges

for all α < b and also for α = b provided that bn > b for infinitely many n ∈ N, whilst

the sum in (ii) diverges for all α > b and also for α = b provided that bn ≤ b for all

large enough n ∈ N, since E(ω̃nbnχ{ω̃nbn≤α}) ≥ cbn. This leads to a contradiction.

Supposing that limn→∞ bn = 0, inequality (5.1) implies the divergence of the sum in

(ii) for all α > 0, which is a contradiction. This completes the proof. �

In the remaining part of this section, let U ⊂ Rd be open and let E ⊂ U be a

compact set with L(E) > 0. Assume that η ∈ P(U) satisfies η(E) > 0, η|E � L|E
and

(5.4) sup
x,y∈E

h(x)

h(y)
<∞,

where h := dη|E
dL is the Radon-Nikodym derivative of η|E with respect to L. Set

P :=
∏∞

i=1 η. Let 0 < s < d. Next we define a special sequence (An(x))n∈N.

Definition 5.2. Let y0 ∈ Rd. Assume that (Kn)n∈N is a sequence of compact sets

in Rd satisfying

(i) L(Kn) > 0,

(ii) limn→∞ diamKn = 0,

(iii) limn→∞ dist(y0, Kn) = 0 and

(iv)
∑∞

n=1 gs(Kn) =∞ (recall (1.4)).

Choose r0 > 0 such that Kn ⊂ B(y0, r0) for all n ∈ N. Assume that W : U ×
B(y0, r0) → Rd is a uniform bidiffeomorphism (recall Definition 2.1) satisfying

W (x, y0) = x for all x ∈ U . Define An(x) := W (x,Kn) for all x ∈ U and n ∈ N.

The sequence (An(x))n∈N has the following properties:

Lemma 5.3. Let (An(x))n∈N be as in Definition 5.2. Then the properties (C-1) and

(C-2) from Section 4 are satisfied. Furthermore,

(C-3) for every ε > 0 and for every Borel set F ⊂ E with L(F ) > 0, there exists

N ∈ N so that

L
({
x ∈ F :

L(F ∩ An(x))

L(An(x))
≥ 1− ε

})
≥ (1− ε)L(F )

for all n ≥ N , and
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(C-4) for all Borel sets F1, F2 ⊂ E with positive Lebesgue measure and for every

ε > 0, there exists N ∈ N such that∫∫
F1×F2

∫∫
An(x)×Am(y)

|u− v|−s dL(u)dL(v)dL(x)dL(y)

≤(1 + ε)

∫∫
F1×F2

L(An(x))L(Am(y))|x− y|−s dL(x)dL(y)

for all n,m ≥ N .

Proof. Property (C-1) is clearly valid. Note that L(F ) = limδ→0 L(V δ(F )) for all

compact sets F ⊂ Rd (recall (2.4)). Let n ∈ N. Since W is a uniform bidiffeomor-

phism, we have, for every δ > 0, that An(y) ⊂ V δ(An(x)) provided y is close enough

to x. Thus, limy→x L
(
An(x) \ An(y)

)
= 0 by the continuity of x 7→ L(An(x)). Fur-

thermore, for every ε > 0 and x ∈ U , there exist δ1, δ2 > 0 such that L
(
V δ1(An(y))\

An(y)
)
< ε for all y ∈ B(x, δ2). This, in turn, gives limy→x L

(
An(y) \ An(x)

)
= 0,

implying (C-2). Property (C-3) follows from Lemma 2.3 and properties (ii) and (iii)

of Definition 5.2. Finally, (C-4) is given by Lemma 2.4 and items (ii) and (iii) of

Definition 5.2. �

Now we are ready to prove that the assumption (4.10) of Lemma 4.7 is satisfied

for compact sets.

Proposition 5.4. Let F ⊂ E be a compact set with L(F ) > 0. Then, for every

ε > 0, δ > 0 and n ∈ N, there exist an integer N > n and a Borel measurable set

Ω ⊂ UN with P(Ω) > 1− δ such that

(5.5)

∫
Ω

Γs
(
F ∩

N⋃
i=n

Ai(xi)
)
dP(x) < Γs(F ) + ε.

Proof. Let ε > 0, δ > 0 and n ∈ N. Choose µ =
∑k

i=1 ciL|Fi ∈ P0(F ) satisfying

Is(µ) < Γs(F ) + ε
2
.

Let 0 < γ < 1 be sufficiently small (which will be determined later). By partitioning

Fi into smaller Borel sets, if necessary, such that each new Fi is an approximate level

set of the density h with small diameter and with η(Fi) > 0 (recall that L(F ) > 0

implies η(F ) > 0 by (5.4)), we may assume that, for all i = 1, . . . , k and m ≥ n,

(5.6) sup
x,y∈Fi

max
{h(x)

h(y)
,
L(Am(x))

L(Am(y))
,
Is(Am(x))

Is(Am(y))

}
≤ 1 + γ.
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For every i = 1, . . . , k, fix zi ∈ Fi. Define, for all m ≥ n,

Fi,m :=
{
x ∈ Fi :

L(Fi ∩ Am(x))

L(Am(x))
> 1− γ

}
.

Using the fact that the map x 7→ L(F ∩ An(x)) is Borel measurable (see the proof

of Lemma 2.3), we deduce that Fi,m is a Borel set. By (C-3) and (C-4), there exists

an integer M > n such that

(5.7) L(Fi,m) ≥ (1− γ)L(Fi)

for all i = 1, . . . , k and m ≥M and, moreover,∫∫
Fi×Fj

∫∫
Am(x)×Ap(y)

|u− v|−s dL(u)dL(v)dL(x)dL(y)

≤(1 + γ)3L(Am(zi))L(Ap(zj))

∫∫
Fi×Fj

|x− y|−s dL(x)dL(y)

(5.8)

for all i = 1, . . . , k and m, p ≥M .

Applying Lemma 5.1 with am = gs(Am(zi)) and ωm = χFi,mgs(Am(zi)) (recall

(1.4)), Definition 5.2.(iv) together with inequalities (2.1) and (5.7) imply that we

may choose integers M1 := M < M2 < · · · < Mk+1 recursively such that

P
({

x ∈ UN :

Mi+1−1∑
m=Mi

χFi,m(xm)gs(Am(zi)) ≥ γ−1
})
≥ 1− γ

k

for all i = 1, . . . , k. Let N := Mk+1. Define

(5.9) Ωi :=
{
x ∈ UN :

Mi+1−1∑
m=Mi

χFi,m(xm)gs(Am(zi)) ≥ γ−1
}

for all i = 1, . . . , k and set

(5.10) Ω :=
k⋂
i=1

Ωi.

Then Ω is a Borel set with P(Ω) ≥ 1− γ.

For all x ∈ Ω, we define a finite Borel measure µx as

µx :=
k∑
i=1

∑
m∈Si(x)

ci,m(x)L|Fi∩Am(xm),

where

Si(x) := {m ∈ N : Mi ≤ m < Mi+1, xm ∈ Fi,m} and

ci,m(x) := ciL(Fi)
L(Am(zi))

Is(Am(zi))

( ∑
p∈Si(x)

gs(Ap(zi))
)−1

.
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Since F and Ai(xi) are compact the measure µx is supported on F ∩
⋃N
i=nAi(xi).

Notice that, if xm ∈ Fi,m, the inequality (5.6) results in

L(Fi ∩ Am(xm)) ≥ (1− γ)L(Am(xm)) ≥ (1− γ)(1 + γ)−1L(Am(zi))

which, in turn, yields

‖µx‖ =
k∑
i=1

ciL(Fi)
∑

m∈Si(x)

L(Am(zi))L(Fi ∩ Am(xm))

Is(Am(zi))

( ∑
p∈Si(x)

gs(Ap(zi))
)−1

≥ (1− γ)(1 + γ)−1

k∑
i=1

ciL(Fi)
∑

m∈Si(x)

L(Am(zi))
2

Is(Am(zi))

( ∑
p∈Si(x)

gs(Ap(zi))
)−1

= (1− γ)(1 + γ)−1,

where ‖µx‖ represents the total mass of µx. Since ‖µx‖−1µx ∈ P0

(
F ∩

⋃N
i=nAi(xi)

)
,

we have

Γs
(
F ∩

N⋃
i=n

Ai(xi)
)
≤ Is(‖µx‖−1µx) =

Is(µ
x)

‖µx‖2
≤ (1 + γ)2

(1− γ)2
Is(µ

x).

In what follows, we estimate
∫

Ω
Is(µ

x) dP(x). Set

SΩ :=
{
S = (Si)

k
i=1 : Si ⊂ {Mi,Mi + 1, . . . ,Mi+1 − 1} and

∑
p∈Si

gs(Ap(zi)) ≥ γ−1
}
.

For S ∈ SΩ, define

π−1(S) :=
k⋂
i=1

{x ∈ UN : xm ∈ Fi,m if m ∈ Si, and xm ∈ (Fi,m)c

if m ∈ {Mi,Mi + 1, . . . ,Mi+1 − 1} \ Si}.
(5.11)

Clearly, π−1(S) is a Borel set. Observe that Ω =
⋃

S∈SΩ
π−1(S), where the union is

disjoint. Let

Js(A,B) :=

∫∫
A×B
|x− y|−s dL(x)dL(y)

for all Lebesgue measurable sets A,B ⊂ Rd. Consider S ∈ SΩ and define QSi :=∑
m∈Si gs(Am(zi)) for all i = 1, . . . , k. Then∫

π−1(S)

Is(µ
x) dP(x) ≤

k∑
i=1

k∑
j=1

∑
m∈Si

∑
p∈Sj

cicjL(Fi)L(Fj)L(Am(zi))L(Ap(zj))

QSiQSjIs(Am(zi))Is(Ap(zj))

×
∫
π−1(S)

Js(Am(xm), Ap(xp)) dP(x).

(5.12)

In order to complete the proof of Proposition 5.4, we need two more lemmas.
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Lemma 5.5. Let (Y,F , ν) be a probability space, and let u : Y ×Y → R and ũ : Y →
R be non-negative measurable functions. Let E1, . . . , EN ∈ F with ν(Ei) > 0 for all

i = 1, . . . , N . Then we have

∫ ( N∏
i=1

χEi(yi)
)
u(y1, y2)

N∏
j=1

dν(yj) =

∏N
i=1 ν(Ei)

ν(E1)ν(E2)

∫
E1×E2

u(y1, y2) dν(y1)dν(y2)

and ∫ ( N∏
i=1

χEi(yi)
)
ũ(y1)

N∏
j=1

dν(yj) =

∏N
i=1 ν(Ei)

ν(E1)

∫
E1

ũ(y1) dν(y1).

Proof. The equalities follow from simple calculations. �

We will use the Landau big O notation in the sense that, given positive functions

g1, g2 : R→ R, the notation g1(γ) ≤ (1 +O(γ))g2(γ) means that there exist C, δ > 0

such that g1(γ) ≤ (1 + Cγ)g2(γ) when 0 < γ < δ.

Lemma 5.6. Let S ∈ SΩ. For all i, j = 1, . . . , k, m ∈ Si and p ∈ Sj, the following

properties hold:

(i) If m 6= p, then∫
π−1(S)

Js(Am(xm), Ap(xp)) dP(x)

≤ (1 +O(γ))
P(π−1(S))

L(Fi)L(Fj)
L(Am(zi))L(Ap(zj))Js(Fi, Fj),

(ii) If m = p (which implies that i = j), then∫
π−1(S)

Js(Am(xm), Ap(xp)) dP(x) ≤ (1 +O(γ))P(π−1(S))Is(Am(zi)).

Proof. We begin by verifying (i). Recall that, by (5.11),

χπ−1(S)(x) =
k∏
i=1

( ∏
m∈Si

χFi,m(xm)
)
·
( ∏
n∈S∗i

χ(Fi,n)c(xn)
)
,
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where S∗i := {Mi,Mi + 1, . . . ,Mi+1 − 1} \ Si. Notice also that η(Fi,m), η(Fj,p) > 0

by (5.7) and (5.4). Applying Lemma 5.5, we deduce∫
π−1(S)

Js(Am(xm), Ap(xp)) dP(x)

=
P(π−1(S))

η(Fi,m)η(Fj,p)

∫∫
Fi,m×Fj,p

Js(Am(x), Ap(y)) dη(x)dη(y)

≤ (1 + γ)2

(1− γ)2

P(π−1(S))

L(Fi)L(Fj)

∫∫
Fi,m×Fj,p

∫∫
Am(x)×Ap(y)

|u− v|−s dL(u)dL(v)dL(x)dL(y)

(by (5.6) and (5.7))

≤ (1 + γ)5

(1− γ)2

P(π−1(S))

L(Fi)L(Fj)
L(Am(zi))L(Ap(zj))Js(Fi, Fj). (by (5.8))

To prove (ii), we apply (5.6) and Lemma 5.5 to obtain∫
π−1(S)

Js(Am(xm), Ap(xp)) dP(x) =
P(π−1(S))

η(Fi,m)

∫
Fi,m

Is(Am(x)) dη(x)

≤ (1 + γ)2P(π−1(S))

L(Fi,m)

∫
Fi,m

Is(Am(zi)) dL(x) = (1 + γ)2P(π−1(S))Is(Am(zi)).

�

Now we continue the proof of Proposition 5.4. Recalling (5.12) and (5.9), and

applying Lemma 5.6, yields∫
π−1(S)

Is(µ
x) dP(x) ≤ P(π−1(S))(1 +O(γ))

( k∑
i=1

k∑
j=1

cicjJs(Fi, Fj)

+
k∑
i=1

c2
iL(Fi)

2(QSi)
−1
)

≤ P(π−1(S))(1 +O(γ))
(
Is(µ) + γ

( k∑
i=1

ciL(Fi)
)2
)

≤ P(π−1(S))(1 +O(γ))(Is(µ) + γ).

Thus, by the choice of µ, we have∫
Ω

Is(µ
x) dP(x) =

∑
S∈SΩ

∫
π−1(S)

Is(µ
x) dP(x) ≤ P(Ω)(1 +O(γ))(Is(µ) + γ)

≤ (1 +O(γ))(Γs(F ) + ε
2

+ γ).

The claim follows by choosing sufficiently small γ. �

We complete this section by proving Theorem 1.1.(b).
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Proof of Theorem 1.1.(b). We start by reducing the claim to the setting of Propo-

sition 5.4. We may assume that s0(A) > 0. Consider s < s0(A). Since Gs(E) = 0

for all E ⊂ Rd with L(E) = 0, we may assume that L(An) > 0 for all n ∈ N by

removing sets with L(An) = 0 from the original sequence A = (An)n∈N if necessary.

Since Is(E) ≤ Is(F ) for E ⊂ F and since L is inner regular, replacing An by a

suitable subset, we may assume that An is compact for all n ∈ N and

(5.13)
∞∑
n=1

gs(An) =∞.

We proceed by constructing a sequence (Kn)n∈N of compact sets satisfying Def-

inition 5.2 (i)–(iv) such that Kn ⊂ An for all n ∈ N. Indeed, let (Qi)
m1
i=1 be the

closed dyadic cubes with side length 2−1 intersecting ∆. Notice that, for any Borel

set E ⊂ ∆, we have E = ∪m1
i=1E ∩ Qi and, moreover, there exists i ∈ {1, . . . ,m1}

with L(E ∩Qi) ≥ 1
m1
L(E). Thus,

m1∑
i=1

gs(E ∩Qi) =

m1∑
i=1

L(E ∩Qi)
2

Is(E ∩Qi)
≥

m1∑
i=1

L(E ∩Qi)
2

Is(E)
≥ L(E)2

(m1)2Is(E)
=

1

(m1)2
gs(E).

It follows that
m1∑
i=1

∞∑
j=1

gs(Aj ∩Qi) =
∞∑
j=1

m1∑
i=1

gs(Aj ∩Qi) ≥
1

(m1)2

∞∑
j=1

gs(Aj) =∞.

Therefore, there exists k0 ∈ {1, . . . ,m1} such that
∑∞

j=1 gs(Aj ∩ Qk0) = ∞. Define

Q̃1 := Qk0 . We pick integers n1 < n2 < · · · < nN1 so that

L(Ani ∩ Q̃1) > 0 for all i = 1, . . . , N1 and

N1∑
i=1

gs(Ani ∩ Q̃1) ≥ 1.

Since
∑∞

j=N1+1 gs(Aj ∩ Q̃1) =∞, a similar argument shows that there exist a dyadic

cube Q̃2 ⊂ Q̃1 with side length 2−2, and positive integers nN1+1 < · · · < nN2 such

that

L(Ani ∩ Q̃2) > 0 for all i = N1 + 1, . . . , N2 and

N2∑
i=N1+1

gs(Ani ∩ Q̃2) ≥ 1.

Repeat this process inductively. As a result, we find a decreasing sequence (Q̃l)l∈N of

dyadic cubes, an increasing sequence (Nl)l∈N of integers and an increasing sequence

(nl)l∈N of indices such that, for every k = 0, 1 . . . ,

L(Ani ∩ Q̃k+1) > 0 for all i = Nk + 1, . . . , Nk+1 and

Nk+1∑
j=Nk+1

gs(Anj ∩ Q̃k+1) ≥ 1.
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Defining Kj := Anj ∩ Q̃k+1 for every j = Nk + 1, . . . , Nk+1, gives
∑∞

j=1 gs(Kj) =∞
and limn→∞ diamKn = 0. Finally, setting {y0} :=

⋂∞
k=1 Q̃k, leads to

lim
n→∞

dist(y0, Kn) = 0.

Hence, the sequence (Kn)n∈N satisfies items (i)–(iv) in Definition 5.2.

Since the measure σ determining the probability P (recall Section 1) is not singular

with respect to L, there exists a compact set E ⊂ U such that σ(E) > 0, σ|E � L
and (5.4) is satisfied with h := dσ|E

dL . Let f : U × V → Rd be as in the introduction.

For all (x, y) ∈ U × V , let Tx := f(x, ·)−1 and T y := f(·, y)−1. Then, for all x ∈ U ,

the set f(U, y0) ∩ f(x, V ) is non-empty (it always contains the point f(x, y0)) and

open, y0 ∈ Vx := Tx
(
f(U, y0) ∩ f(x, V )

)
and x ∈ Ux := T y0

(
f(U, y0) ∩ f(x, V )

)
.

Thus the map Wx : Vx → Ux defined by Wx(v) := T y0(f(x, v)) is a diffeomorphism

with Wx(y0) = x and

‖DWx‖ , ‖(DWx)
−1‖ ≤ (Cu)

2

where Cu is as in inequality (1.13). Clearly, the derivative of the map x 7→ Wx(v) has

the same bounds. Let O be an open and bounded set such that E ⊂ O ⊂ O ⊂ U .

Consider 0 < r0 < min{dist(y0, V
c), (Cu)

−2 dist(O,U c)}. Then B(y0, r0) ⊂ Vx for

all x ∈ O. Thus, W : O×B(y0, r0)→ Rd, defined by W (x, y) = Wx(y), is a uniform

bidiffeomorphism satisfying W (x, y0) = x for all x ∈ O (recall Definition 5.2).

Ignoring a finite number of sets Kn, if necessary, we may assume that Kn ⊂ B(y0, r0)

for all n ∈ N. We conclude that all the conditions in Definition 5.2 are fulfilled.

As a result of the fact that T y0 is a diffeomorphism, we conclude that

dimH

(
lim sup
n→∞

f(xn, Kn)
)
≥ dimH

(
lim sup
n→∞

W (xn, Kn)
)

for all x ∈ UN. Here we have an inequality instead of an equality since for xn ∈
U \ O it may happen that Kn 6⊂ Vxn . Finally, the claim follows by combining

Proposition 5.4, Lemma 4.7 and Proposition 4.5. �

6. Packing dimension of random covering sets

In this section, we prove Theorem 1.1.(d). For the purpose of studying packing

dimensions of random covering sets, we set

N∗` (E) := #{Q ∈ Q` : L(Q ∩ E) > 0}

for all E ⊂ Rd and ` ∈ N. Here the symbol # stands for the cardinality and Q` is as

in (3.2). We begin with a result concerning a lower bound for packing dimensions

of intersections of decreasing sequences of compact sets.
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Lemma 6.1. Let (En)n∈N be a decreasing sequence of compact subsets of Rd with

positive Lebesgue measure. Let s > 0. Assume that there exists a sequence (`n)n∈N

of natural numbers such that

(6.1) N∗`n+1
(Q ∩ En+1) ≥ 2`n+1s

for all n ∈ N and for all Q ∈ Q`n with L(Q ∩ En) > 0. Then dimP

(⋂∞
n=1En

)
≥ s.

Proof. For n ∈ N, set

Fn := En ∩
( ⋃

Q∈Q`n
L(Q∩En)>0

Q
)
,

and let F∞ :=
⋂∞
n=1 Fn. Clearly, Fn ⊂ En is compact and L(Fn) = L(En). Hence,

N∗`n(Q ∩ Fn) = N∗`n(Q ∩En) for all n ∈ N and Q ∈
⋃∞
k=1Qk. In particular, we have

(6.2) N∗`n+1
(Q ∩ Fn+1) ≥ 2`n+1s

for all n ∈ N and Q ∈ Q`n with L(Q ∩ Fn) > 0. Denoting by dimB the upper box

counting dimension, we will show that

(6.3) dimB(V ∩ F∞) ≥ s

for all open sets V with V ∩ F∞ 6= ∅. By the Baire category theorem, (6.3) implies

that dimP(F∞) ≥ s (see for example [21, Proposition 3.6 and Corollary 3.9]) and,

therefore, dimP

(⋂∞
n=1En

)
≥ s, as desired.

To prove (6.3), let V be an open set so that V ∩ F∞ 6= ∅. Then there exist n ∈ N
and Q ∈ Q`n such that 3Q ⊂ V and Q ∩ Fn 6= ∅, where 3Q stands for the union of

all elements Q′ ∈ Q`n with Q′ ∩ Q 6= ∅. By the definition of Fn, there is Q∗ ∈ Q`n
such that Q∗ ∩Q 6= ∅ and L(Q∗ ∩Fn) > 0. Since Q∗ ⊂ 3Q ⊂ V , replacing Q by Q∗,

if necessary, we may assume that L(Q ∩ Fn) > 0. Using (6.2) recursively, leads to

(6.4) N∗`m(Q ∩ Fm) ≥ 2`ms

for all m > n. Furthermore, we claim that, for every m > n,

(6.5) #{Q′ ∈ Q`m : Q′ ∩Q ∩ F∞} ≥ N∗`m(Q ∩ Fm) ≥ 2`ms,

from which we conclude that dimB(Q∩F∞) ≥ s and, therefore, dimB(V ∩F∞) ≥ s.

To prove (6.5), it follows from (6.4) that it is enough to show that Q′ ∩ F∞ 6= ∅
for all Q′ ∈ Q`m with L(Q′ ∩ Fm) > 0. For this purpose, consider Q′ ∈ Q`m
with L(Q′ ∩ Fm) > 0. By (6.2), there exists Q′1 ∈ Q`m+1 such that Q′1 ⊂ Q′ and

L(Q′1 ∩ Fm+1) > 0. Using this fact recursively, we see that, for every p ∈ N, there

exists Q′p ∈ Q`m+p such that Q′p ⊂ Q′p−1 and L(Q′p ∩ Fm+p) > 0. Hence, we have

L(Q′ ∩ Fm+p) > 0 for all p ∈ N, which implies that Q′ ∩ F∞ 6= ∅. This completes

the proof of the lemma. �
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Before applying the above result to estimate packing dimensions of random cov-

ering sets, we prove several lemmas.

Lemma 6.2. For all A ∈ B(Rd) and ` ∈ Z, we have N∗` (A) ≥ 2`dL(A).

Proof. The claim follows directly from a simple volume argument. �

Let U ⊂ Rd be open, and let (An(x))n∈N be a sequence of compact-set-valued

functions defined on U satisfying the conditions (C-1) and (C-2) from Section 4.

Let η ∈ P(U) and set P :=
∏∞

i=1 η.

Lemma 6.3. Let E ∈ B(Rd) with 0 < L(E) <∞, and let ` ∈ Z. Then the mapping

(xi)
n
i=1 7→ N∗`

(
E ∩

n⋃
i=1

Ai(xi)
)

is lower semi-continuous on Un for all n ∈ N. Moreover, the mapping

x 7→ N∗`
(
E ∩

∞⋃
i=1

Ai(xi)
)

is Borel measurable on UN.

Proof. It suffices to prove the first part of the lemma; the second part follows directly

from the first one and the following easily-checked identity:

(6.6) N∗`
(
E ∩

∞⋃
i=1

Ai(xi)
)

= lim
n→∞

N∗`
(
E ∩

n⋃
i=1

Ai(xi)
)
.

Let (xi)
n
i=1 ∈ Un and write k := N∗`

(
E ∩

⋃n
i=1 Ai(xi)

)
for short. Then there are

k different elements in Q`, say Q1, . . . , Qk, such that L
(
Qj ∩

⋃n
i=1 Ai(xi)

)
> 0 for

all j = 1, . . . , k. It follows from (C-2) that L
(⋃n

i=1 Ai(xi) \
⋃n
j=1Aj(yj)

)
is close to

0 when (yi)
n
i=1 ∈ Un is close to (xi)

n
i=1 and, therefore, when (yi)

n
i=1 is in a small

neighbourhood of (xi)
n
i=1, we have L

(
Qj ∩

⋃n
i=1Ai(yi)

)
> 0 for all j = 1, . . . , k.

Hence, N∗`
(
E ∩

⋃n
i=1Ai(yi)

)
≥ k, concluding the proof of lower semi-continuity. �

The following result may be regarded as an analogy of Proposition 4.5.

Proposition 6.4. Let E ⊂ U be compact with η(E) > 0. Suppose that η|E � L.

Moreover, assume that, for every `, n ∈ N and for every compact sets F ⊂ E with

η(F ) > 0,

(6.7) N∗`
(
F ∩

∞⋃
i=n

Ai(xi)
)

= N∗` (F )
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for P-almost all x ∈ UN. Then

dimP

(
lim sup
n→∞

An(xn)
)

= d

for P-almost all x ∈ UN.

Proof. Replacing E by a compact subset, if necessary, we may assume that 0 <
dη|E
dL (x) <∞ for all x ∈ E. Thus, for all F ⊂ E, we have

(6.8) L(F ) > 0 if and only if η(F ) > 0.

Let ε, δ > 0. It suffices to verify that

(6.9) P
({

x ∈ UN : dimP

(
lim sup
n→∞

An(xn)
)
≥ d− δ

})
≥ 1− ε.

For this purpose, we are going to construct a Borel set Ω ⊂ UN with P(Ω) > 1− ε,
and two sequences (`k)k∈N and (mk)k∈N of natural numbers such that, for all x ∈ Ω,

k ∈ N and Q ∈ Q`k , we have

(6.10) N∗`k+1

(
Q ∩ E ∩

k+1⋂
j=1

mj+1⋃
i=mj+1

Ai(xi)
)
≥ 2`k+1(d−δ)

provided that L
(
Q ∩ E ∩

⋂k
j=1

⋃mj+1

i=mj+1Ai(xi)
)
> 0. By Lemma 6.1, this implies

that

dimP

(
lim sup
n→∞

An(xn)
)
≥ d− δ

for all x ∈ Ω, from which (6.9) follows.

Now we present our construction. Set `1 := 1 and m1 := 1. Notice that

γ1 := min{L(Q ∩ E) : Q ∈ Q`1 and L(Q ∩ E) > 0} > 0.

Choosing a large integer `2 > `1 so that 2−`2δ < γ1, it follows from Lemma 6.2 that

(6.11) N∗`2(Q ∩ E) ≥ 2`2dγ1 > 2`2(d−δ)

for all Q ∈ Q`1 with L(Q ∩ E) > 0. Hence, by (6.7), for P-almost all x ∈ UN and

for all Q ∈ Q`1 with L(Q ∩ E) > 0, we have

N∗`2
(
Q ∩ E ∩

∞⋃
i=m1+1

Ai(xi)
)

= N∗`2(Q ∩ E) > 2`2(d−δ),

where we used (6.8) and the fact that N∗` (Q∩A) = N∗` (Q∩A) for all ` ∈ N, Q ∈ Q`
and A ⊂ Rd. By (6.6) and Lemma 6.3, we find a large integer m2 > m1 and a Borel

set Λ2 ⊂ Um2 with ηm2(Λ2) > 1− ε
2

such that, for all (x1, . . . , xm2) ∈ Λ2,

N∗`2
(
Q ∩ E ∩

m2⋃
i=m1+1

Ai(xi)
)
> 2`2(d−δ)
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for all Q ∈ Q`1 with L(Q ∩ E) > 0. Define a mapping τ2 : Λ2 → (0,∞) by

τ2(x1, . . . , xm2) := min
{
L
(
Q ∩ E∩

( m2⋃
i=m1+1

Ai(xi)
))

: Q ∈ Q`2

with L
(
Q ∩ E ∩

( m2⋃
i=m1+1

Ai(xi)
))
> 0
}
.

By (C-2), the function τ2 is continuous and, hence, Borel measurable on Λ2. Since

τ2(x1, . . . , xm2) > 0 for all (x1, . . . , xm2) ∈ Λ2, there exist γ2 > 0 and a Borel set

Λ′2 ⊂ Λ2 such that

ηm2(Λ′2) > ηm2(Λ2)− ε

6
> 1− 2ε

3

and

τ2(x1, . . . , xm2) ≥ γ2

for all (x1, . . . , xm2) ∈ Λ′2. Choose `3 > `2 so that 2−`3δ < γ2. Lemma 6.2 implies

that, for all (x1, . . . , xm2) ∈ Λ′2 and Q ∈ Q`3 ,

N∗`3
(
Q ∩ E ∩

( m2⋃
i=m1+1

Ai(xi)
))
≥ 2`3dγ2 > 2`3(d−δ)

provided that L
(
Q ∩ E ∩ (

⋃m2

i=m1+1Ai(xi))
)
> 0. Again, by (6.7), we find m3 > m2

and a Borel set Λ3 ⊂ Λ′2 ×
∏m3

i=m2+1 U ⊂ Λ2 ×
∏m3

i=m2+1 U ⊂ Um3 such that

ηm3(Λ3) > ηm2(Λ′2)− ε

12
> 1− 3ε

4

and, moreover, for all (x1, . . . , xm3) ∈ Λm3 and Q ∈ Q`3 ,

N∗`3
(
Q ∩ E ∩

2⋂
j=1

( mj+1⋃
i=mj+1

Ai(xi)
))
> 2`3(d−δ)

provided that L
(
Q ∩ E ∩ (

⋃m2

i=m1
Ai(xi))

)
> 0.

Continuing the above process, we construct recursively two increasing sequences

(`k)k∈N and (mk)k∈N of integers and a sequence (Λk)k∈N of Borel sets such that

Λk ⊂ Umk , Λk+1 ⊂ Λk ×
∏mk+1

i=mk+1 U , ηmk(Λk) > 1 − (2k−1)ε
2k

and inequality (6.10)

holds for all (x1, . . . , xmk+1
) ∈ Λk+1. Setting Ω :=

⋂∞
k=1(Λk ×

∏∞
i=mk+1 U), gives

P(Ω) = limk→∞ η
mk(Λk) ≥ 1 − ε and, moreover, (6.10) holds for all x ∈ Ω. This

completes the proof. �

Now we are ready to prove our main result on the packing dimension of random

covering sets.
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Theorem 6.5. Let E ⊂ Rd be compact with η(E) > 0. Suppose that η|E is equivalent

with L|E. Let (An(x))n∈N be a sequence of compact-set-valued functions defined on

U satisfying the conditions (C-1) and (C-2) from Section 4. In addition, suppose

that, for all compact sets F ⊂ E with L(F ) > 0,

(6.12)
∞∑
n=1

η
(
{x ∈ F : L(F ∩ An(x)) > 0}

)
=∞.

Then, for P-almost all x ∈ UN,

dimP

(
lim sup
n→∞

An(xn)
)

= d.

Proof. Let ` ∈ N, and let F ⊂ E be compact with L(F ) > 0. By Proposition 6.4, it

is sufficient to prove that, for all n ∈ N,

(6.13) N∗`
(
F ∩

∞⋃
i=n

Ai(xi)
)

= N∗` (F )

for P-almost all x ∈ UN. Note that (6.13) is equivalent to the statement that, for

all Q ∈ Q` with L(Q ∩ F ) > 0,

(6.14) L
(
Q ∩ F ∩

∞⋃
i=n

Ai(xi)
)
> 0 for P-almost all x ∈ UN.

Fix Q ∈ Q` with L(Q ∩ F ) > 0. For all k ∈ N, we consider the independent events

Ek := {xk ∈ Q ∩ F : L(Q ∩ F ∩ Ak(xk)) > 0}.

Replacing F by Q ∩ F in (6.12), we have
∑∞

k=1 η(Ek) = ∞. Applying the second

Borel-Cantelli lemma, yields (6.14). �

We complete this section by proving Theorem 1.1.(d).

Proof of Theorem 1.1.(d). Recall from the introduction that An(xn) = f(xn, An).

Since L is inner regular, we may assume that the sets An are compact with L(An) > 0

and properties (C-1) and (C-2) are satisfied. Let F ⊂ U be a compact set with

L(F ) > 0 such that σ|E is equivalent with L|F . As in the proof of Theorem 1.1.(b),

we may replace f(xn, An) by W (xn, An). Then (6.12) follows from Lemma 2.3.

Hence, Theorem 6.5 implies the claim. �

7. Proof of Corollary 1.2 and examples

The aim of this section is to verify Corollary 1.2 and to discuss the sharpness of

our results. We begin by proving Corollary 1.2 as a consequence of Theorem 1.1.
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Proof of Corollary 1.2. Observe that, for all sequences (En)n∈N and (Fn)n∈N of sub-

sets of NNN , we have lim supn→∞(En ∪ Fn) = (lim supn→∞En) ∪ (lim supn→∞ Fn).

Therefore, covering MMM and NNN by a finite number of coordinate charts, we may

assume that f : KKK × V → Rd satisfies the assumptions in Theorem 1.1 with the

exception that f(·, y) is not necessarily injective. Recall that as long as (1.13) is

valid, the dependence of f on the first coordinate plays no role when proving that

t0(A) is an upper bound for the dimension and s0(A) = t0(A) (see Section 3).

In Sections 4–6, where the lower bounds are proven, we restrict our considerations

into a bounded set where σ is absolutely continuous with respect to the Lebesgue

measure. We deduce that, covering KKK by a finite number of coordinate charts, we

may assume that f : U × V → Rd is as in Theorem 1.1 and, therefore, Corollary 1.2

follows from Theorem 1.1. �

We continue by constructing examples that demonstrate the sharpness of our

results. We begin with showing that the lower bound proven by Persson (see (1.3))

is not always sharp.

Example 7.1. Let Q1, Q2 ⊂ Rd be disjoint open cubes with side lengths r1 and

r2, respectively. Let 0 < ρ < 1. Divide Q2 into 2nd subcubes Qj
2 and set FQ2 :=⋃2nd

j=1 ρQ
j
2, where ρQ is the concentric cube with Q having side length ρ times that

of Q. Define A := Q1 ∪ FQ2. Using the change of variables x′ = rix for i = 1, 2,

one easily sees that It(Q1) = C1r
−t
1 L(Q1)2 and It(FQ2) ≤ C2r

−t
2 L(FQ2)2, where C1

and C2 are constants depending only on d and t. Choosing sufficiently small ρ > 0,

guarantees that L(A) < 2L(Q1) which, in turn, implies that

gt(A)

gt(FQ2)
≤ 4L(Q1)2

It(Q1)

It(FQ2)

L(FQ2)2
≤ C

(r1

r2

)t
,

where C is a constant. Hence, Gt(A) ≥ gt(FQ2) ≥ C−1( r2
r1

)tgt(A). Since the ratio r2
r1

can be chosen arbitrarily large, we conclude that even for open sets and for σ := L,

the lower bound given for dimH E(x,A) in [47] by means of gt may be strictly smaller

than the quantity s0(A) in Theorem 1.1 (see (1.8)).

Next we give an example which shows that if we replace the assumption that every

An has positive Lebesgue density by a weaker assumption that L(An ∩B(x, r)) > 0

for all n ∈ N, x ∈ An and r > 0, Theorem 1.1.(c) is not valid and dimH E(x,A) can

be almost surely strictly smaller than t0(A).

Example 7.2. Let σ := L on T2 and set P :=
∏∞

i=1 σ. Define f(x, y) : T2×T2 → T2

by f(x, y) = x+ y for all (x, y) ∈ T2×T2. For every n ∈ N, let En := [0, 1]×{0} ⊂
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T2 and Fn :=
⋃∞
i=1B(yi, 2

−n−i) ⊂ T2 where the centres yi are dense in En. Set

An := En ∪ Fn and write A := (An)n∈N, E := (En)n∈N and F := (Fn)n∈N. We

deduce that L(An ∩B(y, r)) > 0 for all r > 0 and y ∈ An but

lim inf
r→0

L(An ∩B(y, r))

L(B(y, r))
= 0

for H1-almost all y ∈ En\Fn, which follows by applying the Lebesgue density theorem

for H1|En and noting that L(An ∩B(y, r)) ≤ 2rH1(B(y, r) ∩ En ∩ Fn). Recall that

lim sup
n→∞

(xn + An) = lim sup
n→∞

(xn + En) ∪ lim sup
n→∞

(xn + Fn).

Now
∑∞

n=1H1
∞(En) = ∞ and

∑∞
n=1Ht

∞(Fn) < ∞ for all t > 0. Thus t0(A) = 1

and t0(F) = 0. By Corollary 1.2, we have dimH

(
lim supn→∞(xn + Fn)

)
= 0 for all

x ∈ (T2)N. Furthermore, lim supn→∞(xn + En) = ∅ P-almost surely, since

P
(
(xn + En) ∩ (xm + Em) 6= ∅ for some n,m ∈ N with n 6= m

)
= 0.

We conclude that dimH

(
lim supn→∞(xn + An)

)
= 0 < 1 = t0(A) P-almost surely.

Observe that s0(A) = s0(F) = 0.

Next we construct an example illustrating that if the generating sets An do not

have positive Lebesgue density it is possible that dimH E(x,A) > s0(A) almost

surely. For this purpose, we recall the following notation from [20].

Definition 7.3. For all 0 < s ≤ d, let

Gs(Rd) := {F ⊂ Rd :F is a Gδ-set such that dimH(
∞⋂
i=1

fi(F )) ≥ s for all

similarities fi : Rd → Rd, i ∈ N}.

We say that the sets in the class Gs(Rd) have large intersection property.

In [20, Theorem A], Falconer showed that Gs(Rd) is the maximal class of Gδ-sets

of Hausdorff dimension at least s which is closed under countable intersections and

similarities. Moreover, in [20, Theorem B], he gave several equivalent ways to define

the class Gs(Rd), one of them being

(7.1) F ∈ Gs(Rd) ⇐⇒ Ms
∞(F ∩Q) =Ms

∞(Q) for all dyadic cubes Q,

where Ms
∞ is the s-dimensional net content defined as in (1.6) with covering sets

being dyadic cubes. Definition (7.1) was extended by Bugeaud [9] and Durand [14]

for general gauge functions and open subsets of Rd.
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Example 7.4. Let σ := L on Td, P :=
∏∞

i=1 σ and define f : Td × Td → Td by

f(x, y) = x + y for all (x, y) ∈ Td × Td. Consider 0 < s < t < d and choose

a sequence (B̃i)i∈N of open balls such that dimH E(x, (B̃i)i∈N) = t for P-almost all

x ∈ (Td)N. Fix such a typical covering set and denote it by F . Assume that (Bi)i∈N is

a sequence of open balls such that dimH E(x, (Bi)i∈N) = s for P-almost all x ∈ (Td)N.

Let (ri)i∈N be a decreasing sequence of positive real numbers which tends to 0 so slowly

that E(x, (B(0, ri
2

)i∈N)) = Td for P-almost all x ∈ (Td)N (for the existence of such

(ri)i∈N, see [36]). Viewing Td = [−1
2
, 1

2
[d⊂ Rd, we define Ai := riF ∪Bi for all i ∈ N

and set A := (Ai)i∈N.

The fact that dimH F < d implies that L(F ) = 0 and, hence, Gt(Ai) = Gt(Bi)

for all i ∈ N, giving s0(A) = s (recall (1.8)). By [13, Theorem 2], we have F ∈
Gt(] − 1

2
, 1

2
[d). Let F̃ be the lift of F to Rd by a covering map. We claim that

F̃ ∈ Gt(Rd). Indeed, to prove this claim, by [14, Lemma 10], it is enough to show

that the equality in (7.1) (in which F is replaced by F̃ ) holds for all dyadic cubes

Q with small diameter. This is the case, since F ∈ Gt(] − 1
2
, 1

2
[d) and F̃ is the lift

of F . Since Gt(Rd) is closed under countable intersections and similarities by [20,

Theorem A], we obtain H̃(x) :=
⋂∞
i=n(xi + riF̃ ) ∈ Gt(Rd) for all x ∈ Td and, thus,

H(x) := H̃(x)∩ ]− 1
2
, 1

2
[d ∈ Gt(]− 1

2
, 1

2
[d) by [14, Proposition 1].

Since E(x, (B(0, ri
2

)i∈N)) = Td for P-almost all x ∈ Td, every point of Td belongs

to B(xi,
ri
2

) for infinitely many i ∈ N. Using the fact that the sequence (ri)i∈N

tends to zero, we conclude that ] − 1
2
, 1

2
[d⊂

⋃∞
i=nB(xi,

ri
2

)∩ ] − 1
2
, 1

2
[d for all n ∈ N.

Combining this with the fact H̃(x) ∩ B(xi,
ri
2

)∩ ] − 1
2
, 1

2
[d⊂ xi + riF for all i ≥ n,

leads to H(x) ⊂
⋃∞
i=n(xi + riF ) for P-almost all x ∈ Td. By [14, Proposition 1],

every Gδ-set containing a subset in Gt(] − 1
2
, 1

2
[d) belongs to Gt(] − 1

2
, 1

2
[d). Thus,

P-almost surely, dimH

(⋂∞
n=1

⋃∞
i=n(xi + riF )

)
≥ t, giving

dimH E(x,A) ≥ dimH E(x, (riF )i∈N) ≥ t > s = s0(A)

for P-almost all x ∈ (Td)N.

Finally, we give examples which show that Theorem 1.1 fails if the distribution σ

is singular with respect to the Lebesgue measure.

Example 7.5. (a) Let f(x, y) be as in Example 7.4 and let σ := δx0 for some x0 ∈
Td. Set P :=

∏∞
i=1 σ. Defining An := B(0, n−

1
d )\{0}, we obtain s0(A) = t0(A) = d.

However, lim supn→∞(xn+An) = ∅ P-almost surely. Thus, Theorem 1.1 is not valid.

(b) Let s < d and let C be the regular 2d-corner Cantor set on Td with dimH C =

dimP C = s. Set σ := Hs|C and assume that everything else is as in example (a).
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Then E(x,A) ⊂ C almost surely. In particular,

dimH E(x,A) ≤ dimP E(x,A) ≤ s < s0(A) = t0(A) = d

P-almost surely. Hence, for every s < d there exists a measure σ with dimH σ = s

for which Theorem 1.1 fails.

Remark 7.6. Seuret [49] and Ekström and Persson [17] have recently obtained re-

sults for dimensions of random covering sets generated by balls which are distributed

according to singular measures. These results give further examples demonstrating

that the assumption of non-singularity of σ is necessary for the validity of Theo-

rem 1.1.

8. Further generalisations and remarks

8.1. A weak large intersection property of random covering sets. In [13, 47],

it is proved that, when A = (An)n∈N is a sequence of open balls or general open

sets on Td so that
∑∞

n=1 gs(An) = ∞ for some 0 < s ≤ d, then almost surely the

random covering set E(x,A) has the large intersection property in the sense that

E(x,A) ∈ Gs (cf. Definition 7.3). We remark that this result also holds under a

weaker condition that
∑∞

n=1 Gs(An) =∞, because one may find open subsets Bn of

An so that
∑∞

n=1 gs(Bn) =∞, according to the following easily checked fact:

Gs(A) = sup{gs(B) : B ⊂ A, B is open}

whenever A is open. We emphasise that, in the above investigation, the assumption

of An being open is essential and cannot be dropped, for otherwise E(x,A) may not

be a Gδ-set.

Nevertheless, in the general setting that the sets in A are Lebesgue measurable,

we obtain the following weak large intersection property of random covering sets.

Theorem 8.1. Assuming that A is a sequence of Lebesgue measurable sets, we have

under the conditions of Theorem 1.1 that

dimH

( ∞⋂
j=1

E(xj,A)
)
≥ s0(A)

for (
∏∞

j=1 P)-almost all (xj)j∈N ∈
∏∞

j=1 U
N.

Proof. This can be verified by modifying the proof of Proposition 4.5 in the following

manner: Let ϕ : N → N × N be a bijection obtained using the diagonal method.

Repeat the construction of Proposition 4.5 such that the n-th construction step is
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done using the variable xϕ(n)1 , where ϕ(n)1 is the first coordinate of ϕ(n). This

leads to the conclusion

dimH

( ∞⋂
n=1

Nn⋃
i=Nn−1+1

Ai(x
ϕ(n)1

i )
)
≥ s

(cf. (4.9)), which implies the desired result. �

8.2. Hausdorff measure of random covering sets. Let d ∈ N. Denote by G

the collection of functions h : [0,∞[→ [0,∞[ such that h is increasing, positive near

0, limr→0 h(r) = h(0) = 0 and h(r)r−d is decreasing. Any element of G is called a

gauge function. For F ⊂ Rd and h ∈ G, we use Hh(F ) and Hh
∞(F ) to denote the

Hausdorff measure and Hausdorff content of F with respect to the gauge function h

(cf. [10, 48]). For instance, Hh
∞(F ) is defined by replacing (diamFn)s by h(diamFn)

in the definition (1.6).

In [13], Durand studied the Hausdorff measures of random covering sets on Td

when A is a sequence of balls of the form An = B(0, rn). Using the mass transference

principle established in [3], he showed that, for any h ∈ G with limr→0 h(r)r−d =∞,

almost surely

Hh(E(x,A)) =

{
∞ if

∑∞
n=1 h(rn) =∞,

0 otherwise.

However, this approach does not extend to the general case when the sets in A are

not ball-like, since the mass transference principle may fail in such situation.

To deal with the general case, let us introduce some notation. For a Lebesgue

measurable set F ⊂ Rd with L(F ) > 0 and h ∈ G, we define the h-energy of F by

Ih(F ) :=

∫∫
F×F

h(|x− y|)−1 dL(x)dL(y).

Set gh(F ) := L(F )2Ih(F )−1 and use gh to define Gh(F ) as in (1.9). Following the

argument in the proof of Lemma 3.2 with routine changes, we can show that

(8.1) Hh
∞(F ) ≥ Gh(F ).

As a generalisation of Theorem 1.1, we have the following result on the Hausdorff

measures of general random covering sets.

Theorem 8.2. Let h ∈ G. Under the assumptions of Theorem 1.1, we have

(i)
∑∞

n=1Hh
∞(An) <∞ =⇒ Hh(E(x,A)) = 0.

(ii)
∑∞

n=1Gh(An) = ∞ =⇒ Hh(E(x,A)) = ∞ for P-almost all x ∈ UN,

provided that Ih(B(0, R)) <∞ for all R > 0 and An are Lebesgue measurable.
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(iii) Assume that r 7→ h(r)r−d+ε is decreasing for some ε > 0 and, moreover,

assume that h̃ ∈ G is such that the inequality h̃(r) ≤ h(r)1+δ is valid for

some δ > 0 and all r > 0. Then
∞∑
n=1

Gh(An) <∞ =⇒
∞∑
n=1

Hh̃
∞(An) <∞,

provided that An are Lebesgue measurable with positive Lebesgue density.

Proof. Statement (i) follows from a routine modification of the proof of Lemma 3.1.

Statement (ii) follows from the proof of Theorem 1.1.(b) with slight modifications.

Indeed, in the proof of Theorem 1.1.(b), the only place where the fact that the kernel

is |x|−s is needed is inequality (2.11) (see the proof of Lemma 2.4). To extend that

inequality associated to h, it is enough to have that

(8.2) h(r) ≤
(
1 +O(ε)

)
h((1− ε)r) for all 0 < r < 2R.

Note that h is doubling in the sense that h(2r) < ch(r) for some constant c > 1,

which follows from the fact that h(r)r−d is decreasing. Hence, the gauge function h̃

obtained from h as the linear interpolation of h at points 2−n, n ∈ N, is equivalent

with h and satisfies (8.2). Now Proposition 4.5 implies that Hh(E(x,A)) > 0 P-

almost surely. It is not difficult to see that if
∑∞

n=1Gh(An) =∞ there exists a gauge

function h′ such that limr→0 h
′(r)h(r)−1 = 0 and

∑∞
n=1Gh′(An) = ∞. Therefore,

Hh′(E(x,A)) > 0 which implies Hh(E(x,A)) =∞.

The proof of (iii) is essentially identical to that of Lemma 3.10. Observe that

one may assume that Hh̃(B(0, R)) > 0 for some R > 0 since otherwise the claim

is trivial. The assumption that h(r)r−d+ε is decreasing is needed at the end of the

proof of Lemma 3.7 when the term (II) is estimated. (Recall that Lemma 3.7 is

needed in the proof of Proposition 3.8). Observe that heuristically Hh̃(B(0, R)) > 0

means that h̃(r) should be larger than rd for small r > 0 and, therefore, h(r) should

be larger than r
d

1+δ for small r > 0. �

Remark 8.3. One may expect that, for some R > 0, there exists a constant C > 0

such that, for all Lebesgue measurable sets F ⊂ B(0, R),

(8.3) Hh
∞(F ) ≤ CGh(F ).

If so, the condition
∑∞

n=1Gh(An) =∞ in Theorem 8.2.(ii) can be replaced by
∞∑
n=1

Hh
∞(An) =∞.

However, (8.3) does not hold for general doubling gauge functions even in the case

where F is a ball. Indeed, let h(r) = rd(log r)2 for all 0 < r < r0, where r0 is chosen
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such that h is increasing. A straightforward calculation implies that Ih(B(x, r))

is comparable to (rd| log r|)−1. Applying [45, Theorem 1.15] to product measures,

making a discrete approximation and using the fact that the sum
∑n

i=1 a
2
i is min-

imised for the uniform probability vector (a1, . . . , an), it is not difficult to see that

gh(B(x, r)) is comparable to Gh(B(x, r)). Therefore, Gh(B(x, r)) is comparable to

h(r)| log r|−1 while Hh
∞(B(x, r)) is comparable to h(r).

Remark 8.4. Here we indicate how Gh(F ) can be calculated for some concrete

examples. Assume that F = B(x, r). It follows immediately from the definition

that Gh(F ) ≤ h(2r). If h(r)r−d+ε is decreasing for some ε > 0 (thus h is doubling),

one easily sees that Ih(F ) ≤ Cr2dh(r)−1 for some constant C > 0. Therefore, Gh(F )

is comparable to h(r). Another easily calculable example is when F is a rectangle

(or parallelepiped in higher dimensions) with side lengths a ≥ b. Then Gs(F ) is

comparable to as for 0 < s < 1 and to abs−1 for 1 < s < 2.

Remark 8.5. Basing on the above remark, one can verify that (8.3) holds in the

following particular cases: (i) F is a ball and h is a gauge function so that r 7→
h(r)r−d+ε is decreasing for some ε > 0; (ii) F is a rectangle, and h(r) = rs for some

non-integer s ∈ (0, 2).

8.3. A question on the measurability of level sets of random covering sets.

It is a natural question whether dim E(x,A) takes a constant value almost surely

in the general setting that A is a sequence of Lebesgue measurable sets, where

dim is either the Hausdorff, packing or box counting dimension. It is obvious that

dim E(x,A) does not depend on a finite number of coordinates xi. Therefore,

Fs := {x ∈ UN : dim E(x,A) = s}

is a tail event for every 0 ≤ s ≤ d, provided that Fs is measurable. In this case,

the Kolmogorov’s zero-one law would imply that x 7→ dim E(x,A) is almost surely

a constant. Theorem 1.1 gives the value of this constant under further assumptions

on A.

Using the results of Dellacherie [12] and Mattila and Mauldin [46], it is easy to

see that Fs is measurable with respect to the σ-algebra generated by analytic sets

provided that the sets An are analytic for all n ∈ N (for details see [33]). For

Lebesgue measurable generating sets (An)n∈N, we do not know whether the sets Fs

are measurable or not.
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[7] Borel, E. (1897). Sur les séries de Taylor. Acta Math. 21 243–247. MR 1554891
[8] Bugeaud, Y. (2003). A note on inhomogeneous Diophantine approximation. Glasg. Math. J.

45 105–110. MR 1972699
[9] Bugeaud, Y. (2004). Intersective sets and Diophantine approximation, Michigan Math. J.

52 667–682. MR 2097404
[10] Carleson, L. (1967). Selected problems on exceptional sets. D. Van Nostrand Co., Inc.,

Princeton, N.J.-Toronto, Ont.-London. MR 0225986
[11] Chen, C., Koivusalo, H., Li, B. and Suomala, V. (2014). Projections of random covering

sets. J. Fractal Geom. 1 449–467. MR 3299820
[12] Dellacherie, C. (1972). Ensembles analytiques, capacités, mesures de Hausdorff. Lecture

Notes in Mathematics 295, Springer-Verlag. MR 0492152
[13] Durand, A. (2010). On randomly placed arcs on the circle. Recent developments in frac-

tals and related fields. Appl. Numer. Harmon. Anal., Birkhäuser Boston Inc., 343–351.
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