SELF-AFFINE SETS IN ANALYTIC CURVES AND ALGEBRAIC SURFACES

DE-JUN FENG AND ANTTI KÄENMÄKI

Abstract

We characterize analytic curves that contain non-trivial self-affine sets. We also prove that compact algebraic surfaces cannot contain non-trivial self-affine sets.

1. Introduction

Self-similar and self-affine sets are among the most typical and important fractal objects; see e.g. [2]. They can be generated by the so-called iterated function systems; see Section 2. Although these sets can be very irregular as one expects, they often have very rigid geometric structure.

It is not surprising that typical non-flat smooth manifolds do not contain any non-trivial self-similar or self-affine set. For instance, circles are such examples. To see this, suppose to the contrary that a circle C contains a non-trivial self-affine set E. Let f be a contractive affine map in the defining iterated function system of E. Then $f(E) \subset E$ and thus $f(E)$ is contained in both C and $f(C)$. However, since $f(C)$ is an ellipse with diameter strictly smaller than that of C, the intersection of $f(C)$ and C contains at most two points. This is a contradiction since $f(E)$ is an infinite set.

The above general phenomena was first clarified by Mattila [6] in the self-similar case. He proved that a self-similar set E satisfying the open set condition either lies on an m dimensional affine subspace or $\mathcal{H}^{t}(E \cap M)=0$ for every m-dimensional C^{1}-submanifold of \mathbb{R}^{n}. Here t is the Hausdorff dimension of E and \mathcal{H}^{t} is the t-dimensional Hausdorff measure. This result was later generalized to self-conformal sets in $[4,5,7]$. As a related work, Bandt and Kravchenko [1] showed that if E is a self-similar set which spans \mathbb{R}^{n} and $x \in E$, then there does not exist a tangent hyperplane of E at x.

As an easy consequence of the result of Mattila or that of Bandt and Kravchenko, an analytic planar curve does not contain any non-trivial self-similar set unless it is a straight line segment. In a private communication, Mattila asked which kind of analytic planar curves

Date: December 21, 2016.
2000 Mathematics Subject Classification. Primary 28A80; Secondary 32C25, 51H30.
Key words and phrases. Self-affine set, analytic curve, algebraic surface.
can contain a non-trivial self-affine set. The main purpose of this article is to answer this question.

We first remark that any closed parabolic arc is a self-affine set. This interesting fact was first pointed out by Bandt and Kravchenko [1]. In that paper, they considered self-affine planar curves consisting of two pieces $E=f_{1}(E) \cup f_{2}(E)$. They showed that if a certain condition on the eigenvalues of f_{1} and f_{2} holds, then the curve E is differentiable at all except for countably many points. They also introduced a stronger condition on the eigenvalues which guarantees the curve E to be continuously differentiable. This result implies that there exist many continuously differentiable self-affine curves. However, Bandt and Kravchenko furthermore showed that self-affine curves cannot be very smooth: the only simple C^{2} self-affine planar curves are parabolic arcs and straight lines.

In our main result, instead of curves that are itself self-affine, we consider general self-affine sets and examine when they can be contained in an analytic curve.

Theorem A. An analytic curve in $\mathbb{R}^{n}, n \geq 2$, which cannot be embedded in a hyperplane contains a non-trivial self-affine set if and only if it is an affine image of $\eta:[c, d] \rightarrow \mathbb{R}^{n}$, $\eta(t)=\left(t, t^{2}, \ldots, t^{n}\right)$, for some $c<d$.

The above result gives a complete answer to the question of Mattila: the only analytic planar curves that contain non-trivial self-affine sets are parabolic arcs and straight line segments. As explained by Mattila, the question is related to the study of singular integrals and self-similar sets in Heisenberg groups. In such groups, self-similar sets are self-affine in the Euclidean metric. From the singular integral theory point of view, it is thus important to understand when a self-affine set is contained in an analytic manifold.

Concerning manifolds, we study an analogue of Mattila's question. We examine which kind of algebraic surfaces can contain self-affine sets. Our result shows that this cannot happen on compact surfaces.

Theorem B. A compact algebraic surface does not contain non-trivial self-affine sets.

It is easy to see that non-compact surfaces, such as paraboloids, can contain non-trivial self-affine sets; see Example 4.1. To finish the article, we introduce in Proposition 4.3 a sufficient condition for the inclusion of a self-affine set in an algebraic surface.

2. Preliminaries

In this section, we introduce the basic concepts to be used throughout in the article. A mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is affine if $f(x)=T x+c$ for all $x \in \mathbb{R}^{n}$, where T is a $n \times n$ matrix
and $c \in \mathbb{R}^{n}$. The matrix T is called a linear part of f. It is easy to see that an affine map is invertible if and only if its linear part is non-singular. A mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is strictly contractive if $|f(x)-f(y)|<|x-y|$ for all $x, y \in \mathbb{R}^{n}$. Note that an affine mapping f is strictly contractive if and only if its linear part T has operator norm $\|T\|$ strictly less than 1. A non-empty compact set $E \subset \mathbb{R}^{n}$ is called self-affine if $E=\bigcup_{i=1}^{\ell} f_{i}(E)$, where $\left\{f_{i}\right\}_{i=1}^{\ell}$ is an affine iterated function system (IFS), i.e. a finite collection of strictly contractive invertible affine maps $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$; see [3]. Moreover, E is called self-similar if all the f_{i} 's are similitudes. We say that a self-affine set is non-trivial if it is not a singleton.

If $a<b$, then a non-constant continuous function $\gamma:[a, b] \rightarrow \mathbb{R}^{n}$ is called a curve. We denote the set $\gamma([a, b]) \subset \mathbb{R}^{n}$ by $\operatorname{Img}(\gamma)$ and refer to it also as a curve. By saying that a curve γ contains a set A we obviously mean that $A \subset \operatorname{Img}(\gamma)$. A curve γ is simple if $\gamma(s) \neq \gamma(t)$ for $a \leq s<t<b$. We say that a curve $\gamma:[a, b] \rightarrow \mathbb{R}^{n}, \gamma(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)$, is analytic if $x_{i}:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and real analytic on (a, b) for all $i \in\{1, \ldots, n\}$. Recall that a function is real analytic on an open set $U \subset \mathbb{R}$ if, at any point $t \in U$, it can be represented by a convergent power series on some interval of positive radius centered at t. Similarly, if x_{i} 's are C^{k} functions for some $k \in \mathbb{N}$, then the curve γ is called C^{k} curve. The k-th derivative of a C^{k} curve γ is $\gamma^{(k)}(t)=\left(x_{1}^{(k)}(t), \ldots, x_{n}^{(k)}(t)\right)$. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an invertible affine mapping and $\gamma:[a, b] \rightarrow \mathbb{R}^{n}$ is a curve, then $f \circ \gamma$ is the affine image of the curve.

Let $P: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a non-constant polynomial with real coefficients. The set

$$
S(P)=\left\{x \in \mathbb{R}^{n}: P(x)=0\right\}
$$

is called an algebraic surface. The degree of P, denoted by $\operatorname{deg}(P)$, is the highest degree of its terms, when P is expressed in canonical form. The degree of a term is the sum of the exponents of the variables that appear in it.

3. SElf-affine sets and analytic curves

In this section, we prove Theorem A. Our arguments are inspired by the proof of [1, Theorem 3(i)]. We will first show that an affine image of $\eta:[c, d] \rightarrow \mathbb{R}^{n}, \eta(t)=\left(t, t^{2}, \ldots, t^{n}\right)$, contains a non-trivial self-affine set. This follows immediately from the following lemma.

Lemma 3.1. If $\eta:[c, d] \rightarrow \mathbb{R}^{n}, \eta(t)=\left(t, t^{2}, \ldots, t^{n}\right)$, then $\operatorname{Img}(\eta)$ is a non-trivial self-affine set for all $c<d$.

Proof. Let

$$
0<\lambda<\left(2^{n} \sqrt{n} \max \left\{(2|c|+1)^{n},(|c|+|d|+1)^{n}\right\}\right)^{-1}<1
$$

and choose $t_{1}, \ldots, t_{\ell} \in[c, d]$ with $\ell \in \mathbb{N}$ such that the self-similar set of $\left\{x \mapsto \lambda(x-c)+t_{i}\right\}_{i=1}^{\ell}$ is $[c, d]$. Write $c_{i, k, j}=\binom{k}{j}\left(\frac{t_{i}}{\lambda}-c\right)^{k-j}$ and observe that

$$
\left(t-\left(c-\frac{t_{i}}{\lambda}\right)\right)^{k}=\sum_{j=1}^{k} c_{i, k, j}\left(t^{j}-\left(c-\frac{t_{i}}{\lambda}\right)^{j}\right)
$$

for all $k \in\{1, \ldots, n\}, i \in\{1, \ldots, \ell\}$, and $t \in \mathbb{R}$.
Defining for each $i \in\{1, \ldots, \ell\}$ a lower-triangular matrix by

$$
T_{i}=\left(\begin{array}{ccccc}
\lambda c_{i, 1,1} & 0 & 0 & \cdots & 0 \\
\lambda^{2} c_{i, 2,1} & \lambda^{2} c_{i, 2,2} & 0 & \cdots & 0 \\
\lambda^{3} c_{i, 3,1} & \lambda^{3} c_{i, 3,2} & \lambda^{3} c_{i, 3,3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\lambda^{n} c_{i, n, 1} & \lambda^{n} c_{i, n, 2} & \lambda^{n} c_{i, n, 3} & \cdots & \lambda^{n} c_{i, n, n}
\end{array}\right)
$$

we see, by the choice of λ and the fact that $t_{i} \in[c, d]$, that

$$
\begin{aligned}
\left\|T_{i}\right\| & \leq \sqrt{n} \max _{k \in\{1, \ldots, n\}} \sum_{j=1}^{k}\left|\lambda^{k} c_{i, k, j}\right|=\sqrt{n} \max _{k \in\{1, \ldots, n\}} \sum_{j=1}^{k} \lambda^{k}\binom{k}{j}\left|\frac{t_{i}}{\lambda}-c\right|^{k-j} \\
& \leq \sqrt{n} \max _{k \in\{1, \ldots, n\}} \sum_{j=1}^{k} \lambda^{j}\binom{k}{j}\left(\left|t_{i}\right|+|c|+1\right)^{k-j} \leq \lambda \sqrt{n} \max _{k \in\{1, \ldots, n\}}\left(\left|t_{i}\right|+|c|+1\right)^{k} 2^{k}<1 .
\end{aligned}
$$

Therefore, the affine map $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by

$$
f_{i}\left(x_{1}, \ldots, x_{n}\right)=T_{i}\left(x_{1}, \ldots, x_{n}\right)-T_{i}\left(c-\frac{t_{i}}{\lambda},\left(c-\frac{t_{i}}{\lambda}\right)^{2}, \ldots,\left(c-\frac{t_{i}}{\lambda}\right)^{n}\right)
$$

is contractive and satisfies

$$
\begin{aligned}
f_{i}\left(t, t^{2}, \ldots, t^{n}\right) & =T_{i}\left(t-\left(c-\frac{t_{i}}{\lambda}\right), t^{2}-\left(c-\frac{t_{i}}{\lambda}\right)^{2}, \ldots, t^{n}-\left(c-\frac{t_{i}}{\lambda}\right)^{n}\right) \\
& =\left(\lambda\left(t-\left(c-\frac{t_{i}}{\lambda}\right)\right), \lambda^{2}\left(t-\left(c-\frac{t_{i}}{\lambda}\right)\right)^{2}, \ldots, \lambda^{n}\left(t-\left(c-\frac{t_{i}}{\lambda}\right)\right)^{n}\right) \\
& =\left(\lambda(t-c)+t_{i},\left(\lambda(t-c)+t_{i}\right)^{2}, \ldots,\left(\lambda(t-c)+t_{i}\right)^{n}\right)
\end{aligned}
$$

for all $t \in[c, d]$. Hence the self-affine set of $\left\{f_{i}\right\}_{i=1}^{\ell}$ is the curve $\operatorname{Img}(\eta)$.
Let us next focus on the opposite claim.
Theorem 3.2. If an analytic curve which cannot be embedded in a hyperplane contains a non-trivial self-affine set, then it is an affine image of $\eta:[c, d] \rightarrow \mathbb{R}^{n}, \eta(t)=\left(t, t^{2}, \ldots, t^{n}\right)$, for some $c<d$.

Proof. Let $\gamma:[a, b] \rightarrow \mathbb{R}^{n}$ be an analytic curve such that $\operatorname{Img}(\gamma)$ is not contained in a hyperplane. Suppose that E is a non-trivial self-affine set of an affine IFS $\left\{f_{i}\right\}_{i=1}^{\ell}$ such that $E \subset \operatorname{Img}(\gamma)$ Let \mathcal{S} be the semigroup generated by f_{1}, \ldots, f_{ℓ} under composition.

By analyticity and the assumption that $\operatorname{Img}(\gamma)$ is not contained in a hyperplane, without loss of generality, we may assume that $E \subset \gamma((a, b))$ and $\gamma^{\prime}(t) \neq 0$ for all $t \in(a, b)$. Since (a, b) has a countable cover of open intervals I_{i} such that $\gamma\left(I_{i}\right)$ has no intersection points, we have $E \subset \bigcup_{i} E \cap \gamma\left(I_{i}\right)$ and therefore, by the Baire Category Theorem, there exists i and an open set U such that $\emptyset \neq E \cap U \subset E \cap \gamma\left(I_{i}\right)$. Since $E \cap U$ contains a non-trivial self-affine set, we see that no generality is lost if we assume the curve γ to be simple.

Fix $\varphi \in \mathcal{S}$ and write

$$
\begin{equation*}
\varphi(x)=M\left(x-x_{0}\right)+x_{0} \tag{3.1}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$, where $x_{0} \in \mathbb{R}^{n}$ is the fixed point of φ and M is an $n \times n$ invertible matrix. Note that $x_{0} \in E$. Since $E \subset \gamma((a, b))$ there exists $t_{0} \in(a, b)$ such that $x_{0}=\gamma\left(t_{0}\right)$. Hence we may rewrite (3.1) as

$$
\begin{equation*}
\varphi(x)=M\left(x-\gamma\left(t_{0}\right)\right)+\gamma\left(t_{0}\right) . \tag{3.2}
\end{equation*}
$$

Since E is non-trivial, there exists a sequence $\left(t_{i}\right)_{i \in \mathbb{N}}$ of distinct numbers in (a, b) such that $t_{i} \rightarrow t_{0}$ as $i \rightarrow \infty$ and $\gamma\left(t_{i}\right) \in E$ for all $i \in \mathbb{N}$. Furthermore, since $\varphi(E) \subset E \subset \gamma((a, b))$, we see that $\varphi\left(\gamma\left(t_{i}\right)\right) \in \operatorname{Img}(\gamma)$ and therefore, for each $i \in \mathbb{N}$ there exists $t_{i}^{\prime} \in(a, b)$ such that

$$
\begin{equation*}
\varphi\left(\gamma\left(t_{i}\right)\right)=\gamma\left(t_{i}^{\prime}\right) \tag{3.3}
\end{equation*}
$$

Recalling that γ is simple and $\varphi\left(\gamma\left(t_{0}\right)\right)=\gamma\left(t_{0}\right)$, we see that $t_{i}^{\prime} \rightarrow t_{0}$ as $i \rightarrow \infty$. By (3.1) and (3.3), we have

$$
\begin{equation*}
M\left(\gamma\left(t_{i}\right)-\gamma\left(t_{0}\right)\right)=\varphi\left(\gamma\left(t_{i}\right)\right)-\gamma\left(t_{0}\right)=\gamma\left(t_{i}^{\prime}\right)-\gamma\left(t_{0}\right) \tag{3.4}
\end{equation*}
$$

and therefore,

$$
M\left(\frac{\gamma\left(t_{i}\right)-\gamma\left(t_{0}\right)}{t_{i}-t_{0}}\right)=\frac{\gamma\left(t_{i}^{\prime}\right)-\gamma\left(t_{0}\right)}{t_{i}^{\prime}-t_{0}} \cdot \frac{t_{i}^{\prime}-t_{0}}{t_{i}-t_{0}}
$$

Letting $i \rightarrow \infty$, we have

$$
\begin{equation*}
M \gamma^{\prime}\left(t_{0}\right)=\lambda \gamma^{\prime}\left(t_{0}\right), \tag{3.5}
\end{equation*}
$$

where $\lambda=\lim _{i \rightarrow \infty}\left(t_{i}^{\prime}-t_{0}\right) /\left(t_{i}-t_{0}\right) \neq 0$ by the invertibility of M.
Let J be an invertible matrix such that

$$
J^{-1} \gamma^{\prime}\left(t_{0}\right)=(1,0, \ldots, 0)
$$

and

$$
J^{-1} M J=\left(\begin{array}{cccc}
A_{1} & 0 & \cdots & 0 \\
0 & A_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & A_{m}
\end{array}\right)
$$

is a real canonical Jordan form of M. Write $A=J^{-1} M J$ and recall that if λ_{i} is a real eigenvalue of M, then

$$
A_{i}=\left(\begin{array}{cccccc}
\lambda_{i} & 1 & 0 & \cdots & 0 & 0 \\
0 & \lambda_{i} & 1 & \cdots & 0 & 0 \\
0 & 0 & \lambda_{i} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \lambda_{i} & 1 \\
0 & 0 & 0 & \cdots & 0 & \lambda_{i}
\end{array}\right)
$$

and if λ_{i} is a non-real eigenvalue of M with real part a_{i} and imaginary part b_{i}, then

$$
A_{i}=\left(\begin{array}{cccccc}
C_{i} & I & 0 & \cdots & 0 & 0 \\
0 & C_{i} & I & \cdots & 0 & 0 \\
0 & 0 & C_{i} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & C_{i} & I \\
0 & 0 & 0 & \cdots & 0 & C_{i}
\end{array}\right)
$$

where

$$
C_{i}=\left(\begin{array}{cc}
a_{i} & b_{i} \\
-b_{i} & a_{i}
\end{array}\right) \quad \text { and } \quad I=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Note that by (3.5), we have $\lambda_{1}=\lambda \in \mathbb{R}$. Observe also that, by (3.4), it holds that

$$
\begin{equation*}
A J^{-1}\left(\gamma\left(t_{i}\right)-\gamma\left(t_{0}\right)\right)=J^{-1}\left(\gamma\left(t_{i}^{\prime}\right)-\gamma\left(t_{0}\right)\right) \tag{3.6}
\end{equation*}
$$

for all $i \in \mathbb{N}$.
Defining $\tilde{\gamma}:[a, b] \rightarrow \mathbb{R}^{n}$ by

$$
\tilde{\gamma}(t)=J^{-1}\left(\gamma(t)-\gamma\left(t_{0}\right)\right)
$$

we clearly have $\tilde{\gamma}\left(t_{0}\right)=0$ and $\tilde{\gamma}^{\prime}\left(t_{0}\right)=(1,0, \ldots, 0)$. Write $\tilde{\gamma}(t)=\left(\tilde{x}_{1}(t), \ldots, \tilde{x}_{n}(t)\right)$. Since $\tilde{x}_{1}^{\prime}\left(t_{0}\right)=1 \neq 0$, the inverse \tilde{x}_{1}^{-1} exists and is analytic on $(-\varepsilon, \varepsilon)$ for some $\varepsilon>0$. To simplify notation, let us denote \tilde{x}_{1}^{-1} by t and its parameters by \tilde{x}_{1}. Therefore, \tilde{x}_{k} can be considered to be an analytic function of \tilde{x}_{1} on $(-\varepsilon, \varepsilon)$ for all $k \in\{2, \ldots, n\}$. Note that

$$
\tilde{x}_{k}(0)=0=\tilde{x}_{k}^{\prime}(0)
$$

for all $k \in\{2, \ldots, n\}$ and $\tilde{x}_{2}, \ldots, \tilde{x}_{n}$ are not constant functions. Indeed, if \tilde{x}_{k} was a constant for some k, then, by the fact that each \tilde{x}_{k} is a linear combination of x_{1}, \ldots, x_{n}, the curve γ would be contained in a hyperplane in \mathbb{R}^{n}. Let $\eta:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}^{n}$ be defined by

$$
\begin{equation*}
\eta\left(\tilde{x}_{1}\right)=\left(\tilde{x}_{1}, \tilde{x}_{2}\left(\tilde{x}_{1}\right), \ldots, \tilde{x}_{n}\left(\tilde{x}_{1}\right)\right) . \tag{3.7}
\end{equation*}
$$

The goal of the proof is to show that the curve η is of the claimed form.

Let us next collect three facts related to the above defined setting.
Fact 1. Write $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ and let $Y=\sum_{j=1}^{n} a_{1 j} \tilde{x}_{j}$. Then

$$
\begin{equation*}
A\left(\tilde{x}_{1}, \tilde{x}_{2}, \ldots, \tilde{x}_{n}\right)=\left(Y, \tilde{x}_{2}(Y), \ldots, \tilde{x}_{n}(Y)\right) \tag{3.8}
\end{equation*}
$$

for all $\tilde{x}_{1} \in(-\varepsilon, \varepsilon)$.

Proof. By (3.6), the equality (3.8) holds for infinitely many different values of \tilde{x}_{1}. By analyticity, (3.8) holds on the whole interval ($-\varepsilon, \varepsilon$).

The next fact concerns the shape of the matrix A.
Fact 2. The matrix A is diagonal. In other words, all the block matrices A_{i} have dimension 1.

Proof. Let us first show that A_{1} has dimension 1. Suppose to the contrary that $d_{1}=$ $\operatorname{dim}\left(A_{1}\right)>1$. Since the eigenvalue associated to A_{1} is $\lambda \in \mathbb{R}$, we have

$$
A_{1}=\left(\begin{array}{ccccc}
\lambda & 1 & \cdots & 0 & 0 \\
0 & \lambda & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \lambda & 1 \\
0 & 0 & \cdots & 0 & \lambda
\end{array}\right)
$$

By Fact 1, we see that

$$
\begin{equation*}
\lambda \tilde{x}_{d_{1}}\left(\tilde{x}_{1}\right)=\tilde{x}_{d_{1}}\left(\lambda \tilde{x}_{1}+\tilde{x}_{2}\right) . \tag{3.9}
\end{equation*}
$$

Notice that there exist integers $p_{2}, \ldots, p_{n} \geq 2$ and reals $c_{2}, \ldots, c_{n} \neq 0$ such that for each $k \in\{2, \ldots, n\}$

$$
\begin{equation*}
\tilde{x}_{k}\left(\tilde{x}_{1}\right)=c_{k}\left(\tilde{x}_{1}\right)^{p_{k}}+o\left(\tilde{x}_{1}^{p_{1}}\right) \tag{3.10}
\end{equation*}
$$

as $\tilde{x}_{1} \rightarrow 0$. Plugging (3.10) into (3.9), and comparing the coefficients of Taylor series in \tilde{x}_{1} on both sides, we get

$$
\lambda c_{d_{1}}=c_{d_{1}} \lambda^{p_{d_{1}}}
$$

which implies that $p_{d_{1}}=1$, a contradiction. Hence we have $\operatorname{dim}\left(A_{1}\right)=1$ and therefore $Y=\lambda \tilde{x}_{1}$.

Let us next assume inductively that for some $k \in\{1, \ldots, n-1\}$ the matrices A_{1}, \ldots, A_{k} are of dimension 1 and show that $\operatorname{dim}\left(A_{k+1}\right)=1$. Suppose to the contrary that $d=\operatorname{dim}\left(A_{k+1}\right)>$ 1. Now there are two cases: either λ_{k+1} is real or not. If λ_{k+1} is real, then the same argument
as that for A_{1} gives a contradiction. We may thus assume that $\lambda_{k+1}=a+i b$ with $b \neq 0$. The matrix A_{k+1} is therefore of the form

$$
A_{i}=\left(\begin{array}{ccccccc}
a & b & 1 & 0 & \cdots & 0 & 0 \\
-b & a & 0 & 1 & \cdots & 0 & 0 \\
0 & 0 & a & b & \cdots & 0 & 0 \\
0 & 0 & -b & a & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & a & b \\
0 & 0 & 0 & 0 & \cdots & -b & a
\end{array}\right) .
$$

Let $\ell=k+d$. Applying (3.8), we see that

$$
\begin{aligned}
a \tilde{x}_{\ell-1}+b \tilde{x}_{\ell} & =\tilde{x}_{\ell-1}\left(\lambda \tilde{x}_{1}\right), \\
-b \tilde{x}_{\ell-1}+a \tilde{x}_{\ell} & =\tilde{x}_{\ell}\left(\lambda \tilde{x}_{1}\right) .
\end{aligned}
$$

Using the above identities and comparing the coefficients of $\tilde{x}_{1}^{p_{\ell}}$ and $\tilde{x}_{1}^{p_{\ell-1}}$ in the Taylor expansions of \tilde{x}_{ℓ} and $\tilde{x}_{\ell-1}$, we see that $p_{\ell}=p_{\ell-1}$; and moreover,

$$
\begin{aligned}
a c_{\ell-1}+b c_{\ell} & =c_{\ell-1} \lambda^{p_{\ell}} \\
-b c_{\ell-1}+a c_{\ell} & =c_{\ell} \lambda^{p_{\ell}},
\end{aligned}
$$

or, equivalently,

$$
\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)\binom{c_{\ell-1}}{c_{\ell}}=\lambda^{p_{\ell}}\binom{c_{\ell-1}}{c_{\ell}}
$$

This means that the real number $\lambda^{p_{\ell}}$ is an eigenvalue of the above matrix, a contradiction.
By Fact 2, we may now write

$$
\begin{equation*}
A=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \tag{3.11}
\end{equation*}
$$

where $\lambda_{1}=\lambda \in(-1,1) \backslash\{0\}$. With this observation, we can examine how the curve η defined in (3.7) looks like.

Fact 3. There exist integers $p_{2}<p_{3}<\cdots<p_{n}$ such that a piece of the curve $\operatorname{Img}(\gamma)$, namely $\gamma:\left(t_{0}-\delta, t_{0}+\delta\right) \rightarrow \mathbb{R}^{n}$ for some $\delta>0$, is an affine image of the curve $\eta:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}^{n}$ defined by

$$
\eta(t)=\left(t, t^{p_{2}}, \ldots, t^{p_{n}}\right)
$$

Proof. By (3.11) and (3.8), we have

$$
\begin{equation*}
\tilde{x}_{k}\left(\lambda \tilde{x}_{1}\right)=\lambda_{k} \tilde{x}_{k}\left(\tilde{x}_{1}\right) \tag{3.12}
\end{equation*}
$$

and hence, by (3.10), there exist integers $p_{2}, \ldots, p_{n} \geq 2$ and reals $c_{2}, \ldots, c_{n} \neq 0$ such that

$$
c_{k}\left(\lambda \tilde{x}_{1}\right)^{p_{k}}=\lambda_{k} c_{k} \tilde{x}_{1}^{p_{k}}+o\left(\tilde{x}_{1}^{p_{k}}\right) .
$$

This implies that $\lambda_{k}=\lambda^{p_{k}}$ and $\tilde{x}_{k}\left(\lambda \tilde{x}_{1}\right)=\lambda^{p_{k}} \tilde{x}_{k}\left(\tilde{x}_{1}\right)$. Taking p_{k}-th derivative on both sides gives $\tilde{x}_{k}^{\left(p_{k}\right)}\left(\lambda \tilde{x}_{1}\right)=\tilde{x}_{k}^{\left(p_{k}\right)}\left(\tilde{x}_{1}\right)$. Hence $\tilde{x}_{k}^{\left(p_{k}\right)}\left(\lambda^{j} \tilde{x}_{1}\right)=\tilde{x}_{k}^{\left(p_{k}\right)}\left(\tilde{x}_{1}\right)$ for all $j \in \mathbb{N}$. Letting $j \rightarrow \infty$, we get $\tilde{x}_{k}^{\left(p_{k}\right)}\left(\tilde{x}_{1}\right) \equiv \tilde{x}_{k}^{\left(p_{k}\right)}(0)=c_{k} p_{k}$! and therefore,

$$
\tilde{x}_{k}\left(\tilde{x}_{1}\right)=c_{k} \tilde{x}_{1}^{p_{k}}
$$

Since the curve $\tilde{\gamma}$ is not contained in a hyperplane, we see that, for any non-zero vector $\left(b_{1}, \ldots, b_{n}\right)$, the sum $\sum_{k=1}^{n} b_{k} \tilde{x}_{k}$ is not identically zero. Thus the integers p_{2}, \ldots, p_{n} are mutually distinct.

We have now proved that, possibly after a permutation on coordinate axis, the curve $\gamma:\left(t_{0}-\delta, t_{0}+\delta\right) \rightarrow \mathbb{R}^{n}$ for some $\delta>0$, is an affine image under the affine transformation $u \mapsto J^{-1}\left(u-\gamma\left(t_{0}\right)\right)$ of the curve

$$
t \mapsto\left(t, c_{2} t^{p_{2}}, \ldots, c_{n} t^{p_{n}}\right)
$$

defined on $(-\varepsilon, \varepsilon)$ for some integers $2 \leq p_{2}<p_{3}<\cdots p_{n}$ and reals $c_{2}, \ldots, c_{n} \neq 0$. Applying a further affine transformation $\left(u_{1}, u_{2}, \ldots, u_{n}\right) \mapsto\left(u_{1}, u_{2} / c_{2}, \ldots, u_{n} / c_{n}\right)$ we have finished the proof of Fact 3.

By Fact 3, it suffices to show that $p_{k}=k$ for all $k \in\{2, \ldots, n\}$. Observe that $\eta:(-\varepsilon, \varepsilon) \rightarrow$ \mathbb{R}^{n} given by Fact 3 is an analytic simple curve which cannot be embedded in a hyperplane and it contains a non-trivial self-affine set. Therefore, applying the previous argument once more, we find integers $2 \leq q_{2}<q_{3}<\cdots<q_{n}$ and $t_{1} \in(-\varepsilon, \varepsilon) \backslash\{0\}$ such that, under a suitable linear transformation J^{\prime}, the curve

$$
t \mapsto J^{\prime}\left(\eta(t)-\eta\left(t_{1}\right)\right)
$$

defined on $\left(t_{1}-\xi, t_{1}+\xi\right) \subset(-\varepsilon, \varepsilon)$ for some $\xi>0$ can be parametrized by

$$
t \mapsto\left(t, t^{q_{2}}, \ldots, t^{q_{n}}\right)
$$

This means that, writing $J^{\prime}=\left(b_{k j}\right)_{1 \leq k, j \leq n}$, we have

$$
\begin{equation*}
\sum_{j=1}^{n} b_{k j}\left(t^{p_{j}}-t_{1}^{p_{j}}\right)=\left(\sum_{j=1}^{n} b_{1 j}\left(t^{p_{j}}-t_{1}^{p_{j}}\right)\right)^{q_{k}} \tag{3.13}
\end{equation*}
$$

for all $t \in\left(t_{1}-\xi, t_{1}+\xi\right)$ and $k \in\{2, \ldots, n\}$. By analyticity, (3.13) holds for all $t \in \mathbb{R}$.
We will next compare the degrees of polynomials on both sides of (3.13) for all $k \in$ $\{2, \ldots, n\}$. Let $d=\operatorname{deg}\left(\sum_{j=1}^{n} b_{1 j}\left(t^{p_{j}}-t_{1}^{p_{j}}\right)\right) \in\left\{1, p_{2}, \ldots, p_{n}\right\}$. When k runs over $\{2, \ldots, n\}$,
the degrees of the right-hand side of (3.13) are $d q_{2}, d q_{3}, \ldots, d q_{n}$, whereas the left-hand side has degree in $\left\{1, p_{2}, \ldots, p_{n}\right\}$. Therefore,

$$
\left\{d q_{2}, d q_{3}, \ldots, d q_{n}\right\} \subset\left\{1, p_{2}, \ldots, p_{n}\right\}
$$

which implies that

$$
\begin{equation*}
p_{k}=d q_{k} \tag{3.14}
\end{equation*}
$$

for all $k \in\{2, \ldots, n\}$. Since $d \in\left\{1, p_{2}, \ldots, p_{n}\right\}$, we must have $d=1$ - otherwise, by (3.14), $q_{k}=1$ for some $k \in\{2, \ldots, n\}$ which is a contradiction. But since $d=1$, we may write (3.13) as

$$
\sum_{j=1}^{n} b_{k j}\left(t^{p_{j}}-t_{1}^{p_{j}}\right)=\left(c\left(t-t_{1}\right)\right)^{p_{k}}
$$

for all $k \in\{2, \ldots, n\}$. In particular, this shows that $\left(t-t_{1}\right)^{p_{n}}$ is a linear combination of $\left(t-t_{1}\right),\left(t^{p_{2}}-t_{1}^{p_{2}}\right), \ldots,\left(t^{p_{n}}-t_{1}^{p_{n}}\right)$. Since $t_{1} \neq 0$, all powers $t^{j}, j \in\left\{1, \ldots, p_{n}\right\}$, appear in $\left(t-t_{1}\right)^{p_{n}}$ with non-degenerate coefficients, and it follows that $p_{k}=k$ for all $k \in\{2, \ldots, n\}$.

Remark 3.3. (1) Bandt and Kravchenko showed that there are plenty of C^{1} planar self-affine curves (i.e. self-affine sets that are C^{1} planar curves); see [1, Theorem 2]. Furthermore, in [1, Theorem 3(ii)], they showed that parabolic arcs and straight line segments are the only simple C^{2} planar self-affine curves. This result also follows from Theorem A by a simple modification. It would be interesting to know that if a self-affine set E is contained in a C^{2} planar curve, then does there exists an analytic curve containing E ?
(2) The analyticity assumption in Theorem A is well motivated since for each $k \in \mathbb{N}$ it is easy to construct a non-quadratic C^{k} planar curve containing a self-affine set. It would also be interesting to know if there exists a self-affine set E which is a subset of a strictly convex C^{2} planar curve, but is not a subset of any quadratic curve. Also, when can a self-affine set intersect an analytic curve in a set of positive measure for some relevant measure such as the self-affine measure? In the self-conformal case, this property implies that the whole set is contained in an analytic curve; see [4, Theorem 2.1].

4. SELF-AFFINE SETS AND ALGEBRAIC SURFACES

In this section, we prove Theorem B and introduce self-affine polynomials.
Proof of Theorem B. Let $P: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a non-constant polynomial with real coefficients such that $S(P)$ is compact. Suppose to the contrary that there exists a non-trivial self-affine set E contained in $S(P)$. Let f be one of the mappings of the affine IFS defining E and set $P_{n}=P \circ f^{-n}$ for all $n \in \mathbb{N}$. Observe that the degree of P_{n} is at most $\operatorname{deg}(P)$. It is easy to see that $S\left(P_{n}\right)=f^{n}(S(P))$ for all $n \in \mathbb{N}$ and therefore $\operatorname{diam}\left(S\left(P_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$. By the
assumption, we have $f^{n}(E) \subset f^{n}(S(P))=S\left(P_{n}\right)$ for all $n \in \mathbb{N}$, and by the invariance, we have $f^{n}(E) \subset f^{n-1}(E) \subset \cdots \subset E$ for all $n \in \mathbb{N}$.

Since the ring of polynomials having degree at most $\operatorname{deg}(P)$ is finite dimensional there exist $P_{k_{1}}, \ldots, P_{k_{m}}$ such that each P_{n} is a linear combination of these polynomials. Choose n so large that

$$
\operatorname{diam}\left(S\left(P_{n}\right)\right)<\min _{i \in\{1, \ldots, m\}} \operatorname{diam}\left(f^{k_{i}}(E)\right)=\operatorname{diam}\left(\bigcap_{i=1}^{m} f^{k_{i}}(E)\right)
$$

But since $P_{n}=\sum_{i=1}^{m} c_{i} P_{k_{i}}$ for some c_{i}, we have

$$
\bigcap_{i=1}^{m} f^{k_{i}}(E) \subset \bigcap_{i=1}^{m} S\left(P_{k_{i}}\right) \subset S\left(P_{n}\right)
$$

This contradiction finishes the proof.
Example 4.1. It is clear that a hyperplane can contain a non-trivial self-affine set. In this example, we show that also other kinds of non-compact algebraic surfaces can contain non-trivial self-affine sets. Let $P: \mathbb{R}^{d} \rightarrow \mathbb{R}, P\left(x_{1}, \ldots, x_{d}\right)=x_{1}^{2}+\cdots+x_{d-1}^{2}-x_{d}$ and fix an interval $[a, b] \subset \mathbb{R}$. Define a mapping $\eta:[a, b]^{d-1} \rightarrow \mathbb{R}^{d}$ by setting $\eta\left(x_{1}, \ldots, x_{d-1}\right)=$ $\left(x_{1}, \ldots, x_{d-1}, x_{1}^{2}+\cdots+x_{d-1}^{2}\right)$. Let $\left\{c_{i}\left(x_{1}, \ldots, x_{d-1}\right)+\left(d_{i}, \ldots, d_{i}\right)\right\}_{i=1}^{\ell}$ be an affine IFS on \mathbb{R}^{d-1} so that $[a, b]^{d-1}$ is the self-affine set generated by it. Define $f_{i}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ by setting

$$
f_{i}\left(x_{1}, \ldots, x_{d}\right)=\left(\begin{array}{ccccc}
c_{i} & 0 & \cdots & 0 & 0 \\
0 & c_{i} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & c_{i} & 0 \\
2 c_{i} d_{i} & 2 c_{i} d_{i} & \cdots & 2 c_{i} d_{i} & c_{i}^{2}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d-1} \\
x_{d}
\end{array}\right)+\left(\begin{array}{c}
d_{i} \\
d_{i} \\
\vdots \\
d_{i} \\
(d-1) d_{i}^{2}
\end{array}\right)
$$

for all $\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$ and $i \in\{1, \ldots, \ell\}$. Since $f_{i}\left(\eta\left(x_{1}, \ldots, x_{d-1}\right)\right)=\eta\left(c_{i} x_{1}+d_{i}, \ldots, c_{i} x_{d-1}+\right.$ d_{i}) the image $\eta\left([a, b]^{d-1}\right) \subset S(P)$ is invariant under the affine IFS $\left\{f_{i}\right\}_{i=1}^{\ell}$.

The previous example does not characterize the polynomials for which the associated algebraic surface contains non-trivial self-affine sets. Suppose that $P: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a nonconstant polynomial with real coefficients. We say that a contractive invertible affine map f is a scaling factor for P if there exists a constant $C \in \mathbb{R}$ such that

$$
\begin{equation*}
P \circ f=C P \tag{4.1}
\end{equation*}
$$

A polynomial P is called self-affine if it has two scaling factors with distinct fixed points.
Example 4.2. Let $P: \mathbb{R}^{2} \rightarrow \mathbb{R}, P\left(x_{1}, x_{2}\right)=x_{2}-x_{1}$. It is easy to see that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, $f\left(x_{1}, x_{2}\right)=\frac{1}{2}\left(x_{1}, x_{2}\right)$, and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, g\left(x_{1}, x_{2}\right)=\frac{1}{2}\left(x_{1}+1, x_{2}+1\right)$, are scaling factors for P and have distinct fixed points.

The following proposition shows that a polynomial P being self-affine is sufficient for the inclusion of self-affine sets.

Proposition 4.3. If $P: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a self-affine polynomial, then $S(P)$ contains a non-trivial self-affine set.

Proof. Let f be a scaling factor for P with a constant C. Note that there exists a non-singular $d \times d$ matrix M with $\|M\|<1$ and $a \in \mathbb{R}^{d}$ so that $f(x)=M x+a$ for all $x \in \mathbb{R}^{d}$. Observe that

$$
f^{n}(x)=M^{n} x+\sum_{i=0}^{n-1} M^{i} a \rightarrow \sum_{i=0}^{\infty} M^{i} a=: x_{0}
$$

as $n \rightarrow \infty$, where $x_{0} \in \mathbb{R}^{d}$ is the fixed point of f. Choose $x \in \mathbb{R}^{d}$ such that

$$
\left|P\left(x_{0}\right)\right|+1<|P(x)| .
$$

Such a point x exists since P is not bounded. Since

$$
C^{n} P(x)=P \circ f^{n}(x) \rightarrow P\left(x_{0}\right)
$$

as $n \rightarrow \infty$ we may choose n large enough so that $\left|C^{n} P(x)\right|<\left|P\left(x_{0}\right)\right|+1$. Thus $|C|<1$.
Let h and g be scaling factors for P with distinct fixed points. If f is any finite composition of the mappings h and g, then f is a scaling factor for P. If C is the constant associated to the scaling factor f, then the above reasoning implies that $|C|<1$. Furthermore, if x_{0} is the fixed point of f, then $P\left(x_{0}\right)=P \circ f\left(x_{0}\right)=C P\left(x_{0}\right)$. Since $|C|<1$, this implies $P\left(x_{0}\right)=0$ and $x_{0} \in S(P)$. Recalling that $S(P)$ is closed it thus contains the self-affine set generated by the affine IFS $\{h, g\}$.

Remark 4.4. It would be interesting to characterize all the algebraic surfaces associated to self-affine polynomials. For example, in the two-dimensional case, is the surface always contained in a line through the origin? Of course, the ultimate open question here is to characterize all the algebraic surfaces containing self-affine sets.

Acknowledgement. Feng was partially supported by the HKRGC GRF grants (projects CUHK401013, CUHK14302415).

References

[1] C. Bandt and A. Kravchenko. Differentiability of fractal curves. Nonlinearity, 24(10):2717-2728, 2011.
[2] K. Falconer. Fractal geometry. John Wiley \& Sons Ltd., Chichester, 1990. Mathematical foundations and applications.
[3] J. E. Hutchinson. Fractals and self-similarity. Indiana Univ. Math. J., 30(5):713-747, 1981.
[4] A. Käenmäki. On the geometric structure of the limit set of conformal iterated function systems. Publ. Mat., 47(1):133-141, 2003.
[5] A. Käenmäki. Geometric rigidity of a class of fractal sets. Math. Nachr., 279(1):179-187, 2006.
[6] P. Mattila. On the structure of self-similar fractals. Ann. Acad. Sci. Fenn. Ser. A I Math., 7(2):189-195, 1982.
[7] V. Mayer and M. Urbański. Finer geometric rigidity of limit sets of conformal IFS. Proc. Amer. Math. Soc., 131(12):3695-3702 (electronic), 2003.

Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong E-mail address: djfeng@math.cuhk.edu.hk

Department of Mathematics and Statistics, P.O. Box 35 (MaD), FI-40014 University of Jyväskylä, Finland

E-mail address: antti.kaenmaki@jyu.fi

