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Abstract. Let {Mi}`
i=1 be a non-trivial family of d× d complex matrices, in the

sense that for any n ∈ N, there exists i1 · · · in ∈ {1, . . . , `}n such that Mi1 · · ·Min
6=

0. Let P : (0,∞) → R be the pressure function of {Mi}`
i=1. We show that for each

q > 0, there are at most d ergodic q-equilibrium states of P , and each of them
satisfies certain Gibbs property.

1. Introduction and results

In this paper, we study the thermodynamic formalism for matrix products. We will

characterize the structure of equilibrium states of pressure functions, and also examine

the Gibbs properties of such states. This work was first carried out in [11] in the case

that the involved matrices are non-negative and satisfy a kind of irreducibility. Some

applications were given in the multifractal analysis of the top Lyapunov exponents

of matrix products [11, 6, 8] (see also [10]). In this paper, we will consider arbitrary

complex matrices.

Let (Σ, σ) be the one-sided full shift over the alphabet {1, . . . , `} (cf. [1]) and let

{Mi}`
i=1 be a family of d× d complex matrices. For q > 0, we define

(1.1) P (q) = lim
n→∞

1

n
log

∑
J∈Σn

‖MJ‖q,

where Σn is the collection of all words of length n over {1, . . . , `}, MJ = Mj1 · · ·Mjn

for J = j1 · · · jn, and ‖ · ‖ is the standard matrix norm. By sub-additivity, the above

limit exists and takes values in the set R ∪ {−∞}. The function P is called the

pressure function of {Mi}`
i=1. It plays an important role in the multifractal analysis

of Lyapunov exponents of matrices [11, 6, 8]. Moreover, it is closely related to the

dimension theory of self-affine sets and measures [4, 15].
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Denote the collection of all σ-invariant Borel probability measures on Σ by Mσ(Σ).

Endow Mσ(Σ) with the weak-star topology. For µ ∈Mσ(Σ), we define

(1.2) M∗(µ) = lim
n→∞

1

n

∑
J∈Σn

µ([J ]) log ‖MJ‖,

where [J ] denotes the n-th cylinder {x = (xi)
∞
i=1 ∈ Σ : x1 · · ·xn = J} in Σ. The term

M∗(µ) is called the Lyapunov exponent of {Mi}`
i=1 with respect to µ. It also takes

values in the set R ∪ {−∞}. The following variational principle for P was proved in

[3] in a more general sub-additive setting:

(1.3) P (q) = sup{qM∗(µ) + h(µ) : µ ∈Mσ(Σ)},
where h(µ) denotes the measure-theoretic entropy of µ with respect to σ (cf. [19]).

We remark that (1.3) was proved earlier in [7, 15] when the matrices are non-negative

or invertible, respectively. For given q > 0, let

(1.4) Iq = {µ ∈Mσ(Σ) : P (q) = qM∗(µ) + h(µ)}.
Each element µ in Iq is called a q-equilibrium state of P . Since both M∗(·) and h(·) are

upper semi-continuous on Mσ(Σ), Iq is a non-empty closed convex subset of Mσ(Σ).

In particular, Iq contains ergodic elements (each extreme point of Iq is an ergodic

measure).

Our main purpose is to characterize the structure of Iq. This question was par-

tially raised from [16]. A complete characterization is given in Theorem 1.7. In the

following, we shall present the setting and results. Proofs of the results are postponed

until §2.

Definition 1.1. Let F be R or C. A family of d × d matrices {Mi}`
i=1 with entries

in F is said to be irreducible over Fd if there is no non-zero proper linear subspace V

of Fd such that MiV ⊆ V for all i ∈ {1, . . . , `}.

The above definition is adopted from [2, p. 48]. If {Mi}`
i=1 is irreducible over

Fd, then there exist D > 0 and k ∈ N such that for any words I, J ∈ Σ∗ =⋃∞
n=1{1, . . . , `}n, there exists a word K in

⋃k
n=1{1, . . . , `}n such that

(1.5) ‖MIKJ‖ ≥ D‖MI‖‖MJ‖.
For a proof, see [8, Proposition 2.8]. This property is crucial in the proof of the

following proposition.
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Proposition 1.2. Let F be R or C, and {Mi}`
i=1 a family of d × d matrices with

entries in F. If {Mi}`
i=1 is irreducible over Fd, then for each q > 0, P has a unique

q-equilibrium state µq. Furthermore, µq has the following Gibbs property:

(1.6) C−1 exp(−nP (q))‖MJ‖q ≤ µq([J ]) ≤ C exp(−nP (q))‖MJ‖q

for all n ∈ N and J ∈ Σn. Moreover, P is differentiable over (0,∞) and P ′(q) =

M∗(µq) for q > 0.

Remark 1.3. Proposition 1.2 is an analogue of Bowen’s theory about the equilibrium

state of Hölder continuous additive potentials (cf. [1]). See [18, 19] for backgrounds

and more details about the classical thermodynamic formalism of additive potentials.

Proposition 1.2 was first proved in [11] for non-negative matrices under a different

irreducibility assumption (that is, there exists r ∈ N so that
∑r

i=1(M1 + · · · + M`)
r

is a strictly positive matrix). An extension was recently given in [9, Theorem 5.5] to

certain sub-additive potentials.

Let us next consider the non-irreducibility case. Denote the n×m zero matrix by

0n×m.

Proposition 1.4. Let F be R or C, and {Mi}`
i=1 a family of d × d matrices with

entries in F. Then there exist an invertible d × d matrix T , t ∈ {1, . . . , d}, and

positive integers d1, . . . , dt with d = d1 + · · ·+ dt such that for every i ∈ {1, . . . , `} the

product T−1MiT is a partitioned matrix of the form

(1.7) T−1MiT =
(
A

(j,k)
i

)
1≤j,k≤t

,

where A
(j,k)
i , j, k ∈ {1, . . . , t}, satisfy the following two properties:

(i) A
(j,k)
i is a dj × dk matrix and A

(j,k)
i = 0dj×dk

when j > k.

(ii) For any j ∈ {1, . . . , t}, either the family {A(j,j)
i }`

i=1 is irreducible over Fdj , or

A
(j,j)
i = 0dj×dj

for all i ∈ {1, . . . , `}.

Considering the partition (1.7) in the above proposition, we set

Λ = Λ({Mi}`
i=1) = {j ∈ {1, . . . , t} : {A(j,j)

i }`
i=1 is irreducible over Fdj}.

Remark 1.5. It is possible that Λ = ∅. For instance, this is the case for {Mi}2
i=1,

where

M1 =

(
0 1

0 0

)
, M2 =

(
0 2

0 0

)
.
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Anyhow, it holds that Λ = ∅ if and only if there is k ∈ N such that Mi1 · · ·Min = 0d×d

for all n ≥ k and i1 · · · in ∈ {1, . . . , `}n. Observe first that T−1Mi1 · · ·MinT is a

partitioned matrix of the form (B(j,k))1≤j,k≤t, where

B(j,k) =
∑

1≤y1,...,yn−1≤t

A
(j,y1)
i1

A
(y1,y2)
i2

· · ·A(yn−1,k)
in

=
∑

j≤y1≤y2≤···≤yn−1≤k

A
(j,y1)
i1

A
(y1,y2)
i2

· · ·A(yn−1,k)
in

(1.8)

is a dj × dk matrix. According to (ii) of Proposition 1.4, Λ = ∅ implies A
(j,j)
i = 0dj×dj

for all i ∈ {1, . . . , `} and j ∈ {1, . . . , t}. Hence Mi1 · · ·Min = 0d×d for all n > t by

(1.8). To see the converse, assume contrarily that {A(j,j)
i }`

i=1 is irreducible over Cdj

for some j ∈ {1, . . . , t}. It follows now from (1.5) that for every n ∈ N there exists a

word i1 · · · in such that A
(j,j)
i1

· · ·A(j,j)
in

6= 0dj×dj
and, consequently, Mi1 · · ·Min 6= 0d×d.

Definition 1.6. A family of d × d complex matrices {Mi}`
i=1 is called non-trivial

if Λ 6= ∅, or equivalently, for each n ∈ N, there exists I ∈ {1, . . . , `}n such that

MI 6= 0d×d.

In the following, we always assume that {Mi}`
i=1 is non-trivial. If j ∈ Λ, then

the pressure function of {A(j,j)
i }`

i=1 is denoted by Pj and the Lyapunov exponent of

{A(j,j)
i }`

i=1 with respect to µ is denoted by A
(j)
∗ (µ). The following is the main result

of our paper.

Theorem 1.7. In the above general setting, it holds that

(i) M∗(µ) = max{A(j)
∗ (µ) : j ∈ Λ} for each ergodic measure µ ∈Mσ(Σ).

(ii) P is a real-valued convex function on (0,∞), and P (q) = max{Pj(q) : j ∈ Λ}
for all q > 0.

(iii) if q > 0 and µj,q, j ∈ Λ, is the unique q-equilibrium state for Pj, then

Iq = conv{µj,q : Pj(q) = P (q)},
where conv(A) is the convex hull of A.

Remark 1.8. The equality in (i) of Theorem 1.7 may fail for non-ergodic measures of

Mσ(Σ). For instance, consider {Mi}2
i=1, where M1 = diag(1, 2) and M2 = diag(3, 2).

Let µ1 = δ1∞ , µ2 = δ2∞ (here δx denotes the Dirac measure at x), and µ = pµ1 +(1−
p)µ2 for some 0 < p < 1. It is easy to check that

M∗(µ1) = log 2, A(1)
∗ (µ1) = 0, A(2)

∗ (µ1) = log 2
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and

M∗(µ2) = log 3, A(1)
∗ (µ2) = log 3, A(2)

∗ (µ2) = log 2.

Since M∗(·), A
(1)
∗ (·), and A

(2)
∗ (·) are affine on Mσ(Σ), we have

M∗(µ) = p log 2 + (1− p) log 3, A(1)
∗ (µ) = (1− p) log 3, A(2)

∗ (µ) = log 2,

and thus, M∗(µ) > max{A(i)
∗ (µ) : i ∈ {1, 2}}.

Remark 1.9. The pressure function for products of matrices has been studied in the

literature under some stronger conditions. Let {Mi}`
i=1 be a family of real invertible

matrices. Assume that {Mi}`
i=1 satisfies the strong irreducibility and contraction

conditions (cf. [2, 13]). Guivarc’h and Le Page showed in [13, Theorem 8.8] that the

pressure function P of {Mi}`
i=1 corresponds to the logarithm of the spectral radius

of certain Ruelle transfer operator and moreover, P is real analytic on (0,∞), and it

can be extended to an analytic function on {z ∈ C : <z > 0}. This strengthens an

early result of Le Page [17].

2. Proofs of the results

This section is dedicated to the proof of Theorem 1.7. For the convenience of the

reader we shall also present complete proofs for Propositions 1.2 and 1.4.

Proof of Proposition 1.2. Let q > 0. Define a sequence of probability measures

(νn,q)n≥1 on Σ so that

νn,q([I]) =
‖MI‖q

∑
J∈Σn

‖MJ‖q

for all I ∈ Σn. Let νq be a limit point of the sequence (νn,q)n≥1 in the weak topology.

Furthermore, let µq be a limit point of the sequence
(

1

n

n−1∑
j=0

νq ◦ σ−j

)

n≥1

in the weak topology. Using (1.5) and a proof essentially identical to that of [11,

Theorem 3.2], we see that µq ∈ Mσ(Σ) is ergodic and has the Gibbs property (1.6).

Thus

qM∗(µq) + h(µq) ≥ lim
n→∞

1

n

∑
J∈Σn

µq([J ]) log
(
C−1 exp(nP (q))µq([J ])

)

− lim
n→∞

1

n

∑
J∈Σn

µq([J ]) log µq([J ]) = P (q).
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Recalling (1.3), this implies µq ∈ Iq.

Applying (1.6) and the ergodicity of µq, and using an identical argument as in [1,

proof of Theorem 1.22] (or using [16, Theorem 3.6]), we see that µq is the unique

element in Iq. According to this uniqueness, we have P ′(q) = M∗(µq), which follows

from the Ruelle-type derivative formula of pressures obtained in [7, Theorem 1.2]:

P ′(q−) = inf{M∗(µ) : µ ∈ Iq}, P ′(q+) = sup{M∗(µ) : µ ∈ Iq}.
We remark that although [7, Theorem 1.2] only deals with non-negative matrices, the

proof given there works for arbitrary matrices. Alternatively, to show that P ′(q) =

M∗(µq), we may apply (1.6) and the ergodicity of µq, and follow [14, proof of Theorem

2.1] (see also [16, Theorem 4.4]). ¤

Proof of Proposition 1.4. We prove the proposition by induction on d. Clearly the

proposition is true when d = 1. Assuming there exists an integer p so that the

proposition is true for all d ≤ p, we show below that it remains true for d = p + 1.

Let L(n,m) be the collection of all n×m matrices with entries in F.

If {Mi}`
i=1 is irreducible over Fd, we simply take t = 1 and have nothing else to

prove. We may thus assume that {Mi}`
i=1 is reducible, that is, there exists a non-

zero proper linear space V of Fd such that MiV ⊂ V . If we let v = dim V , then

1 ≤ v and d − v ≤ d − 1 = p. We choose an invertible linear map T1 : Fd → Fd

such that T1(Fv × {0}) = V . Then for each i ∈ {1, . . . , `} there exist Ei ∈ L(v, v),

Bi ∈ L(v, d− v), Di ∈ L(d− v, d− v) so that

T−1
1 MiT1 =

(
Ei Bi

0(d−v)×v Di

)
.

Now by the induction assumption, there exist invertible matrices T2 ∈ L(v, v) and

T3 ∈ L(d − v, d − v) such that (T−1
2 EiT2)

`
i=1 and (T−1

3 DiT3)
`
i=1 have the desired

partitioned form for all i ∈ {1, . . . , `}. It follows that

T4 = T1

(
T2 0v×(d−v)

0(d−v)×v T3

)

is an invertible d× d matrix and

T−1
4 MiT4 =

(
T−1

2 EiT2 T−1
2 BiT3

0(d−v)×v T−1
3 DiT3

)

has the desired partitioned form for all i ∈ {1, . . . , `}. ¤
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Before proving Theorem 1.7, we shall first prove the following auxiliary result.

Proposition 2.1. Let (X,F , µ) be a probability space and T : X → X an ergodic

measure-preserving transformation. Let {fn}∞n=1 be a sequence of non-negative Borel

measurable functions on X such that supx∈X f1(x) < ∞ and

(2.1) fn+m(x) ≤ fm(x)fn(Tmx)

for all m,n ∈ N and x ∈ X. If ε > 0 and α = limn→∞(1/n)
∫

log fn dµ, then the

following claims hold:

(i) If α 6= −∞, then for µ-almost every x ∈ X, there exists a positive integer

n0(x) such that

(2.2) | log fn(Tmx)− nα| ≤ (n + m)ε

for all n ≥ n0(x) and m ∈ N.

(ii) If α = −∞, then for any N > 0 and µ-almost every x ∈ X, there exists a

positive integer n0(x) such that

(2.3) log fn(Tmx) ≤ −Nn + (n + m)ε

for all n ≥ n0(x) and m ∈ N.

Proof. We only prove (i). The proof of (ii) is similar.

Assume that α ∈ R. Let ε > 0 and take 0 < δ < ε/4. By the Kingman’s sub-

additive ergodic theorem, for µ-almost every x ∈ X, there exists n0(x) such that

| log fn(x)− nα| ≤ nδ

for all n ≥ n0(x), and

| log fm(x)−mα| ≤ (n0(x) + m)δ

for all m ∈ N. Hence by (2.1), we have for n ≥ n0(x) and m ∈ N,

log fn(Tmx) ≥ log fn+m(x)− log fm(x)

≥ (n + m)(α− δ)−m(α + δ)− n0(x)δ

≥ nα− 2(n + m)δ ≥ nα− (n + m)ε.

(2.4)

To see the opposite inequality, take k large enough such that |β − α| < δ, where

β =
1

k

∫
log fk dµ.
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Since {fn(x)}∞n=1 is sub-multiplicative, by [3, Lemma 2.2], we have for any n ≥ 2k,

(fn(x))k ≤ C2k2
n−k∏
j=0

fk(T
jx)

for all x ∈ X, where C = max{1, supx∈Σ f1(x)}. It follows that for n ≥ 2k and m ∈ N,

log fn(Tmx) ≤ 2k log C +
n−k+m∑

i=0

1

k
log fk(T

ix)−
m−1∑
i=0

1

k
log fk(T

ix).

Applying the Birkhoff ergodic theorem to the function 1
k

log fk, and combining it with

the above inequality, we find for µ-almost every x ∈ X an integer ñ0(x) ≥ 2kδ−1 log C

such that

log fn(Tmx) ≤ nδ + (n− k + m)(β + δ)−m(β − δ)

≤ nβ + 2(n + m)δ ≤ nα + 3(n + m)δ

≤ nα + (n + m)ε

for all n ≥ ñ0(x) and m ∈ N. This together with (2.4) yields (2.2). ¤

As a direct corollary of Proposition 2.1, we have the following.

Corollary 2.2. Under the assumptions of Proposition 2.1, for any ε,N > 0 and for

µ-almost every x ∈ X, there is C(x) > 0 such that

|fn(Tmx)| ≤ C(x) exp(n max{α,−N}) exp((n + m)ε)

for all n,m ∈ N.

Proof of Theorem 1.7. We only need to prove part (i), since parts (ii) and (iii) follow

immediately from (i), the variational principle (1.3), and Proposition 1.2.

Fix an ergodic measure µ ∈Mσ(Σ). The direction M∗(µ) ≥ max{A(j)
∗ (µ) : j ∈ Λ}

follows from the fact that

‖A(j,j)
i1

· · ·A(j,j)
in
‖ ≤ ‖T−1Mi1 · · ·MinT‖ ≤ ‖T−1‖‖T‖‖Mi1 · · ·Min‖

for any j ∈ Λ and i1, . . . , in ∈ {1, . . . , `}. We only need to prove the other direction.

By Furstenberg-Kesten’s theorem [12] on random matrices, or Kingman’s sub-

additive ergodic theorem (see e.g. [19]), we have for µ-almost every x = (xi)
∞
i=1 ∈ Σ,

(2.5) lim
n→∞

1

n
log ‖Mx1···xn‖ = M∗(µ).
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For any i ∈ {1, . . . , t}, define a sequence {f (j)
n }∞n=1 of non-negative functions on Σ by

setting

f (j)
n (x) = ‖A(j,j)

x1
· · ·A(j,j)

xn
‖

for all x = (xi)
∞
i=1 ∈ Σ. Let ε,N > 0. Apply Corollary 2.2 for {f (j)

n }∞n=1 to obtain

that, for µ-almost every x = (xi)
∞
i=1 ∈ Σ, there exists C(x) ≥ 1 such that

‖A(j,j)
xm+1xm+2···xm+n

‖ ≤ C(x) exp(n max{A(j)
∗ (µ),−N}) exp((n + m)ε)

≤ C(x) exp(n max{W,−N}) exp((n + m)ε),
(2.6)

for all j ∈ {1, . . . , t} and n,m ∈ N, where

W = max{A(j)
∗ (µ) : j ∈ Λ}.

For the rest of the proof, we take a point x = (xi)
∞
i=1 ∈ Σ such that both (2.5) and

(2.6) hold for x.

Fix n ∈ N. According to (1.8), T−1Mx1···xnT is a partitioned matrix of the form

(B(j,k))1≤j,k≤t, where each B(j,k) is a dj × dk matrix given by

(2.7) B(j,k) =
∑

j≤y1≤y2≤···≤yn−1≤k

A(j,y1)
x1

A(y1,y2)
x2

· · ·A(yn−1,k)
xn

.

It is easy to check that the number of words y1y2 · · · yn−1 ∈ {1, . . . , t}n−1, satisfying

the restriction j ≤ y1 ≤ y2 ≤ · · · ≤ yn−1 ≤ k, is bounded above by h(n) = (2n)t.

Furthermore, each such a word jy1y2 · · · yn−1k can be written as an1
1 an2

2 · · · ans
s , where

s ∈ {1, . . . , t}, j = a1 < · · · < as = k, and n1, . . . , ns ∈ N with n1 + · · ·+ ns = n + 1.

Hence

(2.8) A(j,y1)
x1

A(y1,y2)
x2

· · ·A(yn−1,k)
xn

= W1A
(a1,a2)
xn1

W2A
(a2,a3)
xn1+n2

· · ·Ws−1A
(as−1,as)
xn1+n2+···+ns−1

Ws,

where

Wi =





Idai×dai
if ni = 1,

A
(ai,ai)
xn0+···+ni−1+1 · · ·A(ai,ai)

xn0+···+ni−1 if ni > 1

for all i ∈ {1, . . . , s}. Here Id×d is the d× d identity matrix and n0 = 0. Observe that

(2.6) gives

‖Wi‖ ≤ C(x) exp ((ni − 1) max{W,−N}) exp ((n1 + · · ·+ ni − 1)ε)
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for all i ∈ {1, . . . , s}. Hence, by (2.8), we have

‖A(j,y1)
x1

A(y1,y2)
x2

· · ·A(yn−1,k)
xn

‖ ≤ Ls−1

s∏
i=1

‖Wi‖

≤ Ls−1C(x)s exp((n + 1− s) max{W,−N}) exp(nsε)

≤ DLtC(x)t exp(n max{W,−N}) exp(ntε),

(2.9)

where

L = 1 + max{‖A(j1,j2)
i ‖ : j1, j2 ∈ {1, . . . , t} and i ∈ {1, . . . , `}},

D = max{1, exp((t + 1) max{W,−N})}.
Therefore, by (2.7)–(2.9), we have the estimate

‖T−1Mx1···xnT‖ ≤ t2 max{‖B(j,k)‖ : j, k ∈ {1, . . . , t}}
≤ t2h(n)DLtC(x)t exp(n(max{W,−N})) exp(ntε)

for all n ∈ N. Combining this estimate and (2.5) yields

M∗(µ) = lim
n→∞

1

n
log ‖T−1Mx1···xnT‖ ≤ max{W,−N}+ tε.

Letting N →∞ and ε → 0, we get

M∗(µ) ≤ W = max{A(j)
∗ (µ) : j ∈ Λ},

which finishes the proof of part (i) of Theorem 1.7. ¤

3. Extensions and remarks

For an invertible matrix M ∈ Rd×d, following [4], we define the singular value

function of M as

φq(M) = α1(M) · · ·αk(M)αk+1(M)q−k,

where 0 ≤ q < d, k is the integral part of t, and αi(M) is the i-th largest singular

value of M . For q > d, we put φq(M) = | det(M)|q/d. It is known (see [4, Lemma

2.1]) that φq is sub-multiplicative in the sense that

φq(M1M2) ≤ φq(M1)φ
q(M2)

for any two invertible matrices M1,M2 ∈ Rd×d. For a given family of invertible

matrices {Mi}`
i=1 ⊂ Rd×d, similar to (1.1), we define

(3.10) P φ(q) = lim
n→∞

1

n
log

∑
J∈Σn

φq(MJ).
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For µ ∈Mσ(Σ), we define

(3.11) φq
∗(µ) = lim

n→∞
1

n

∑
J∈Σn

µ(J) log φq(MJ).

Then by [15, Theorem 2.6], or more generally by [3, Theorem 1.1], we have the

following variational principle

P φ(q) = max{φq
∗(µ) + h(µ) : µ ∈Mσ(Σ)}.

Similarly we can study the structure of the equilibrium states of P φ(q). It is easy

to see that Theorem 1.7 remains true for P φ(q) when 0 ≤ q ≤ 1 or q ≥ d − 1.

Observe also that it is true when q is an integer: if M∧q is the q-th exterior product

of M ∈ Rd×d (i.e. the
(

d
q

)× (
d
q

)
matrix whose entries are the q× q minors of M), then

α1(M
∧q) = α1(M) · · ·αq(M) = φq(M).

This gives a partial answer to [16, Question 6.3].

Question 3.1. When using (3.10) and (3.11) instead of (1.1) and (1.2), does The-

orem 1.7 hold for q ∈ [1, d− 1] \ N?

We remark that some assumption was given in [5] so that an analogue of (1.5)

(where ‖ · ‖ is replaced by φq(·)) holds; and for such case, an analogue of Proposition

1.2 holds for P φ (cf. [9, Theorem 5.5]).
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