NON-UNIQUENESS OF ERGODIC MEASURES WITH FULL
HAUSDORFF DIMENSION ON A GATZOURAS-LALLEY CARPET

JULIEN BARRAL AND DE-JUN FENG

ABSTRACT. In this note, we show that on certain Gatzouras-Lalley carpet, there exist
more than one ergodic measures with full Hausdorff dimension. This gives a negative
answer to a conjecture of Gatzouras and Peres in [8].

1. INTRODUCTION

The problem we are interested in is the uniqueness of ergodic invariant measures on
non-conformal repellers with full Hausdorff dimension (see [7, 3] for a survey). For C1+@
conformal repellers, the existence and the uniqueness of an ergodic measure with full
dimension follows from Bowen’s equation together with the classical thermodynamic for-

malism [17].

For non-conformal repellers much less is known. The problem of existence of an ergodic
measure with full dimension is solved for the class of Lalley-Gatzouras carpets and its
nonlinear version [6, 11, 12]. In [8], Gatzouras and Peres conjectured that such a measure
is unique. However, in this note, we show that this may fail on linear Lalley-Gatzouras car-
pets. Such a phenomenon is known for some other examples of self-affine sets constructed

by Kéenméki and Vilppolainen [5].

To construct our example, let (X,0x) and (Y,0y) be one-sided full shifts over finite
alphabets A and B, respectively. Let m : X — Y be a 1-block factor map, i.e., there is a
map 7 : A — B such that

m(z) = (7(2:)Z1, == (2:)Z; € X,

Let ¢ : X - Rand ¥ : Y — R be two positive functions which are constants over the

cylinders of first generation of X and Y respectively, i.e.,

() = ¢(z1), YY) =¥(y1)

for each z = (2;)°, € X and y = (v;)2, € Y. Furthermore, assume that ¢(z) > (7 (x))
for all z € X.
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Define

(L1) P(g,1) = sup{

hu(ox) = hyon—1(oy) N huowl(UY)}

f odu f pomdu |’
where the supremum is taken over the collection M(X,ox) of all ox-invariant Borel
probability measures on X. Here h,(0x) stands for the measure-theoretic entropy of ox
with respect to p (cf. [17, 19]). Since the entropy maps p +— h,(0x) and p+— hyor-1(0y)
are upper semi-continuous, the supremum is attained on M (X, ox). Moreover, since ¢(x)
and 1(y) only depend on the first coordinates of x and y, the supermum can be only

attained at Bernoulli measures in M (X, ox) *.

In the next section, we construct an example to show that in the above general setting,
there may have two different Bernoulli measures in M (X, o) attaining the supermum
in (1.1), which leads to a counter-example to Gatzouras and Peres conjecture on Lalley-

Gatzouras carpets (see Section 3).

In fact, Gatzouras and Peres raised the wider conjecture claiming that if f is a smooth
expanding map, then any compact invariant set K which satisfies specification carries
a unique ergodic invariant measure p of full dimension. Moreover, p is mixing for f.
This conjecture was proved to be true in some special cases, e.g., as we said when f is
a conformal C'T® map on smooth Riemanian manifolds [8], and also when f is a linear
diagonal endomorphism on the d-torus [4]. In particular, it is true for Bedford-McMullen

self-affine carpets and sponges [2, 14, 9] and some sofic self-affine sets [18, 20, 15].

The same kind of questions have been studied on horseshoes. It is proved in [13] that
for nonlinear horseshoes there may be no ergodic measure of full dimension, while such a

measure exists for linear horseshoes [1], but may be not unique [16].

2. AN EXAMPLE

Let M(Y,o0y) denote the collection of all oy-invariant Borel probability measures on

Y. Notice that
P(¢,) = sup P(o,9,v),
veM(Y,oy)
where

P ) =) pu), Py sp  Melr)Zluloy)

a f¢du HEM(X,0x), f@bdu

;Lo7r_1:1/

for v € M(Y,oy). Since ¢(x) and ¢(y) only depend on the first coordinates of x and y,

P(¢,1,v) can only be maximized at Bernoulli measures v in M (Y, oy).

We make the following assumptions:

1As a related result, Luzia [12] proved recently that the supremum in (1.1) always can be attained at
ergodic measures when ¢ and ¥ are assumed to be general positive Holder continuous functions.
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(1) ¢(z) =X >0 on X for some constant A;
(2) B - {a7b}7 A = {17 7£a7£a + 17 7£a +€b}7 %({17 76(1}) - {a}a %({Ea +
1,--+ €y + lp}) = {b}), where £, ¢, € N.

Then, since due to our assumption we have [¢du = X for all p € M(X,0x), the

Ledrappier-Walters relativized variational principal [10] yields

- §<log<za>y<[a]> +log(6)v([0])),

where [¢] == {y = (y;))2; € Y : y1 = ¢} for ¢ € B. Setting x = v([a]) and H(z) =
—zlog(z) — (1 — x)log(1l — x), we thus have for all Bernoulli measures v € M (Y, oy),

Yo + @bb(l - :L‘)’

where 1, and vy, stand for the constant values of ¢ over [a] and [b] respectively.

P(¢,v)

(1) Po.vw) = [(x) = (og(la/ by} +log(ty)) +

A counter-example will appear if we find X, ¢,, £y, %, and ¢, such that f attains its

maximum for at least two values of z in [0, 1].

Setting U = %log(ﬁa/&,) and V = 1/’a¢_ ¥
b

V e (—1,00) and M > 0 such that

, the problem transfers to finding U € R,

g(x) =Ux 2\4+1+v$_0, vV xe0,1]

and g(x) = 0 has more than one solution in [0, 1]. We can seek for a quadratic polynomial
F(r) = A— B(z — 1/2)? with A, B > 0 such that

(i) F(x) > H(z) for all x € [0, 1]; and

(ii) the equation F'(xz) = H(x) has more than one solution in [0, 1].

Due to the common symmetry properties of F' and H with respect to x = 1/2 and the
concavity of these functions, this will be the case if we make sure that the curvature of F’
at 1/2 is larger than that of H at 1/2 and inf,¢c(o1)(F(z) — H(x)) = 0. Recalling that the
curvature of a smooth function h(x) being given by

B (@)
(1+ (W' (2))?)3/2
we have Kg(1/2) = 4 and Kp(1/2) = 2B. Thus we get the following necessary and

sufficient condition to guarantee that (i)-(ii) hold:

Kn(z) =

(2.2) B>2, A= max (B(w- 1/2)* + H(x)).

Now take a pair of numbers A, B so that (2.2) holds. Then the identity

—(Uz —M)(1+Vz)=A— Bz —1/2)
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yields

UV = B,
MV —U = B,
M= A- B/4.

This forces
(A—B/4)V?* - BV - B =0.

The positive root of the above equation is

Then, using the equality UV = B yields

(2.4) U=+VAB - B/2.

Next take

(2.5) Yo =1, Yg—thp =V,

and take positive integers £, ¢; such that

(2.6) log(fa/ty) > -V B,

In the end, take A such that

(2.7) IOg(i‘\l/gb) =U, ie, A= IOg(%Mb) = log(Ea/&,)%.

According to (2.6)-(2.7), A > 1+ V and thus ¢ = A > max(¢)) = max(¢4, ¥p).
Then for the above constructed X, €4, £y, %q, and 1)y, the function f(z) defined in (2.1)

attains its supremum at two different points z in [0, 1]. This yields an example that the

supermum in (1.1) is attained at two different Bernoulli measures in M (X, 0x).
In the end, we provide a more concrete example for A\, €4, €y, 14, and .

Example 2.1. Set
B =3log2 =~ 2.07944
and
A =log3 — 1—72 log 2 ~ 0.69427643.

One can check that (1.1) holds for such A and B. Indeed, the supermum in defining A is
attained at x = 1/3. Then

2B + 4VAB
U=VAB - B/2~0.16182292, V = 4;\/37 ~ 12.8501046.
Take
Yo =1+V ~13.8501046, ¢ =1
and

la =150, £,=1, X\=Ilog(la/ts)- % ~ 30.9636922.
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3. APPLICATION TO GATZOURAS-LALLEY CARPETS

Let A, 44, lp,,, and ¢ be constructed as in Example 2.1. Notice that
3exp(=MNly < 3-e739.150 < 1,  exp(—1pa) + exp(—1p) < 2e71 < 1.

Then we can build a Gatzouras-Lalley carpet in the unit square as the attractor K of the
IFS {Sar: 1 <r <l U{Shs:1< s <4y}, where

Sar(2,y) = (exp(=A)z, exp(=1ha)y) + (2r exp(=A),0), 1 <7 < L,
Sb,s(2,y) = (exp(=A)z, exp(=1hp)y) + (2rexp(=A), 1 —exp(=¢p)), 1 <5 <4,

Gatzouras and Lalley [6] proved that the Hausdorff dimension of K is equal to P(¢,v),
which is attained by some Bernoulli measure on X. The previous section shows that such

a measure is not unique; in our example there are exactly two such measures.
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