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Abstract. Let µ be a planar Mandelbrot measure and π∗µ its orthogonal projection
on one of the principal axes. We study the thermodynamic and geometric properties of
π∗µ. We first show that π∗µ is exact dimensional, with dim(π∗µ) = min(dim(µ), dim(ν)),
where ν is the Bernoulli product measure obtained as the expectation of π∗µ. We also
prove that π∗µ is absolutely continuous with respect to ν if and only if dim(µ) > dim(ν).
Our results provides a new proof of Dekking-Grimmett-Falconer formula for the Haus-
dorff and box dimension of the topological support of π∗µ, as well as a new variational
interpretation. We obtain the free energy function τπ∗µ of π∗µ on a wide subinterval
[0, qc) of R+. For q ∈ [0, 1], it is given by a variational formula which sometimes yields
phase transitions of order larger than 1. For q > 1, it is given by min(τν , τµ), which
can exhibit first order phase transitions. This is in contrast with the analyticity of τµ
over [0, qc). Also, we prove the validity of the multifractal formalism for π∗µ at each
α ∈ (τ ′π∗µ(qc−), τ ′π∗µ(0+)].
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1. Introduction

Mandelbrot measures are statistically self-similar measures introduced in early seventies

by B. Mandelbrot in [41] as a simplified model for energy dissipation in intermittent tur-

bulence. In R2, such a non-trivial random measure µ is built on [0, 1]2 and is characterized
2



by E(µ([0, 1]2)) = 1 and the equality in law

(1.1) µ =
∑

0≤i,j≤m−1

Wi,j µ
(i,j) ◦ S−1

i,j ,

where m is an integer ≥ 2, Si,j are similarity maps on R2 defined by

Si,j(x, y) =

(
x+ i

m
,
y + j

m

)
,

Wi,j are non-negative random variables satisfying

E

 ∑
0≤i,j≤m−1

Wi,j

 = 1

and

D := −E

 ∑
0≤i,j≤m−1

Wi,j logm(Wi,j)

 > 0,

µ(i,j) are independent copies of µ, which are also independent of the weights Wi,j . More-

over, µ and (Wi,j , µ
(i,j))0≤i,j≤m−1 can be constructed on the same probability space so

that (1.1) holds not only in law but also almost surely.

The topological support of µ, denoted by K, is a statistically self-similar limit set so

that the following equality holds in law:

K =
⋃

0≤i,j≤m−1
Wi,j>0

Si,j(Ki,j),

where Ki,j are independent copies of K.

The fine geometric properties of µ were initially studied by Mandelbrot himself in [41,

40], as well as by Kahane and Peyrière in [36]. It was established that µ is exact D-

dimensional, i.e. the local dimension of µ equals D on a set of full µ-measure. Moreover, a

statistical description of the mass distribution of µ at small scales was given by Mandelbrot

by using large deviation properties of the branching random walk naturally associated

with µ.

On the other hand, the topological and measure theoretic properties of K and the

natural branching measure it carries have been studied intensively [42, 51, 12, 18, 23, 31,

19, 26, 9, 39, 44, 54, 20, 46, 52, 53, 27, 50].

Mandelbrot measures, as well as self-similar measures and Gibbs measures, are typical

objects illustrating the multifractal formalism, which emerged in the middle of the eighties

from turbulence theory [30] and hyperbolic dynamical systems [32, 15], in order to describe

geometrically at small scales the distribution of a measure, or the Hölder singularities of

a function; this formalism can be viewed as a geometric counterpart of large deviation

theory. For measures, it can be defined as follows.
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If (X, d) is a locally compact metric space and µ is a positive and finite compactly

supported measure, denoting its topological support as supp(µ), the Lq-spectrum of µ is

a kind of free energy concave function defined by

τµ : q ∈ R 7→ lim inf
r→0+

log sup
{∑

i µ(B(xi, r))
q
}

log(r)
,

where the supremum is taken over all the centered packings of supp(µ) by closed balls

of radius r. When (X, d) possesses the Besicovitch property, i.e. the Bescovitch covering

lemma holds in (X, d) (see e.g. [43]), like Euclidean Rd or any symbolic space endowed

with the standard metric, for α ∈ R, it is always the case that (see e.g. [11, 49, 37])

dimH E(µ, α) ≤ τ∗µ(α) := inf{αq − τµ(q) : q ∈ R},

where

E(µ, α) =

{
x ∈ supp(µ) : lim

r→0+

log(µ(B(x, r)))

log(r)
= α

}
,

here dimH stands for the Hausdorff dimension, and we adopt the convention that

dimH ∅ = −∞.

We say that the multifractal formalism holds for µ at α if dimH E(µ, α) = τ∗µ(α), and

we say that it holds for µ if this equality holds for all α, i.e. the Hausdorff spectrum

α 7→ dimH E(µ, α) and τµ form a Legendre pair. Furthermore, we say that there is k-th

order phase transition at q for µ if τµ has a (k − 1)-th order derivative but no k-th order

derivative at q.

In this paper we will investigate the multifractal structure of the orthogonal projections

of a Mandelbrot measure µ on the horizontal and vertical axes, and its relation with that

of µ. For this purpose, we recall that under mild assumptions, defining for q ∈ R

T (q) = − logm
∑

0≤i,j≤m−1

E(1{Wi,j>0}W
q
i,j),

then on the interval {q ∈ R : T ∗(T ′(q)) ≥ 0}, τµ = T and hence τµ is analytic (see

Section 2.2).

In our study of projections of µ, we will consider the range q ≥ 0 for the Lq-spectrum.

This restriction is often met in the geometric study of measures obtained via projection

schemes, like self-similar measures obtained as projections of Bernoulli products on self-

similar sets satisfying the weak separation condition (see e.g. [29] and the references

therein) or self-affine measures obtained as projections of Bernoulli products on almost all

the attractors associated with a given finite collection of contractive linear maps [25, 7].

For a line ` in R2 passing through the origin, we let π` denote the orthogonal projection

from R2 to `, and let π`∗µ denote the push-forward of µ under π`. For almost every line

`, the behavior of the Lq-spectrum τπ`∗µ(q) of π`∗µ is essentially similar to that of the

projections of Gibbs measures treated in [6]. In this case, due to Marstrand’s projection
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theorem, one is naturally led to consider the case where D ≤ 1, for otherwise the projection

of µ is absolutely continuous with respect to Lebesgue measure and it is hard to say

more about the multifractality in general. Then, since D ≤ 1, the dimension of the

projection is still D, and there are two possible behaviors in terms of the Lq-spectrum.

If dimH K ≤ 1 as well, then τπ`∗µ = τµ on the interval [0, q2], where q2 is defined by

τµ(q2) = 2 (notice that q2 ≥ 3 due to the concavity of τµ and the facts that τµ(1) = 0 and

τµ(0) ≥ −dimH supp(µ) = −1 in this case). If dimH K > 1, there is a second order phase

transition at the unique q̃ ∈ [0, 1] at which τ∗µ(τ ′µ(q̃)) = 1; more precisely, the Lq-spectrum

τπ`∗µ is analytic over (0, q̃) and (q̃, q2) but not twice differentiable at q̃; specifically, it is

linear on [0, q̃] and equals τµ on [q̃, q2]. Also, the multifractal formalism is valid at any

α ∈ τ ′π`∗µ([0, q2]). It is worth mentioning that the preservation of the Lq-spectrum over

[1, q2] is a fact valid for any measure (see [34, 3]).

The situation is significantly different with the principal axes. To begin with, it is

worth noticing that for a Gibbs measure associated with a Hölder potential on the unit

square, e.g. for the self-similar measures obtained when the weights Wi,j are constant, its

projection on any of the main directions is still a Gibbs measure of this kind [13], so no

special new phenomenon appears related to its multifractal nature. Things turn out to be

more interesting with (random) Mandelbrot measures.

Let π denote the orthogonal projection on the first principal axis. It is known (Dekking

and Grimmett [18], Falconer [23]), that dimH π(K) in general differs from the typical

value obtained by Marstrand’s projection theorem when one projects on almost every line.

Instead of being equal to min(dimH K, 1), dimH π(K) is given by the following variational

formula:

(1.2) dimH π(K) = inf
0≤h≤1

logm

m−1∑
i=0

E(Ni)
h,

where Ni = #{0 ≤ j ≤ m − 1 : Wi,j > 0}. Moreover, this dimension equals the

box counting dimension of π(K). It turns out that understanding the geometric struc-

ture of the projection π∗µ of the Mandelbrot measure µ heavily relies on its expecta-

tion, which is the Bernoulli product measure ν associated with the probability vector(
pi =

∑m−1
j=0 E(Wi,j)

)
0≤i≤m−1

, for which it is known that

τν(q) = − logm
∑

0≤i≤m−1
pi>0

pqi .

In this paper, we show (see Theorems 3.1, 3.3 and 10.2) that when µ 6= 0, π∗µ is exact

dimensional with dim(π∗µ) = dim(µ) = D if and only if dim(µ) ≤ dim(ν), in which case

π∗µ is singular with respect to ν, while if dim(µ) > dim(ν) then π∗µ is absolutely contin-

uous with respect to ν. Exact dimensionality and “dimension conservation properties” of

projections of Mandelbrot measures on all the lines have already been established in [27];
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however, the result of [27] is not quantitative, whilst for the principal axes we provide the

precise values for the dimensions, which differ from those given by Marstrand’s theorem

for almost every line when ν is not the Lebesgue measure. Also, as a consequence of The-

orem 3.3 we get a new variational interpretation of Dekking-Grimmett-Falconer formula

for dimH π(K) (see Corollary 3.5 and Theorem 10.2).

Regarding the multifractal analysis (see Theorems 3.7 and 10.3), for q ≥ 1 we prove

that

τπ∗µ(q) = min(τµ(q), τν(q))

on a non-trivial interval [1, q̃c). This fact is a source of first order phase transitions when

the graphs of τν and T cross each other transversally. For 0 < q ≤ 1, we prove that τπ∗ν

is given by the following variational formula:

τπ∗µ(q) = − inf

logm

m−1∑
i=0

m−1∑
j=0

E(W s
i,j)

q/s

: q ≤ s ≤ 1

 ,

which converges to the value of dimH π(K) given by (1.2) as q tends to 0. The function

τπ∗µ is differentiable over [0, 1]. It coincides with τµ(q) when the infimum is attained at

s = q and τν(q) when it is attained at s = 1. Otherwise, the infimum is attained at

a unique s(q) ∈ (q, 1), and this property holds on a neighborhood of q over which by

definition of s(q) we have τπ∗µ(q) > max(τµ(q), τν(q)); see figures in Section 4. These

possible changes of analytic expressions lead to phase transitions of orders greater than or

equal to 2. Also, each transversal crossing of the graphs of τν and T in the domain (1, q̃c)

gives rise to a first order phase transition.

We also verify the validity of the multifractal formalism over (τ ′π∗µ(q̃c−), τ ′π∗µ(0+)].

When applied to the so-called branching measure on K, our result yields a partial multi-

fractal classification of the box-counting dimension of the fibers π−1({x}), x ∈ π(K) (see

Corollary 11.1).

Let us finally mention that Mandelbrot martingales in various Bernoulli random envi-

ronments play an important role in our study.

The paper is organized as follows. We will mainly work with Mandelbrot measures on

the symbolic space {0, . . . ,m− 1}N × {0, . . . ,m− 1}N, for this offers a simpler framework

to expose ideas and techniques. The transfer of the results from the symbolic space to

the Euclidean plane is explained in Section 10. In Section 2 we recall basic facts from

multifractal formalism, as well as the formal definition of Mandelbrot measures and a

precise known result for their multifractal analysis on the symbolic space. In Section 3

we present in complete rigor our main results in this symbolic context, while Section 4

contains comments and examples related to phase transitions. Section 5 provides the

proof of our results related to the dimension of the projected measures, as well as the
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new variational interpretation of the Hausdorff dimension of their topological support.

Sections 6 to 8 provide the proof of Theorem 3.7 about the multifractal analysis of the

projection. Specifically, Section 6 deals with the differentiability property of the function

identified to be the Lq-spectrum of π∗µ, Section 7 exhibits the sharp lower bound for the

Lq-spectrum, and Section 8 deals both with the sharp upper bound for the Lq-spectrum

and the Hausdorff spectrum. Sections 5, 7 and 8 use moments estimates developed in

Section 9 for quantities related to Mandelbrot martingales in Bernoulli environments, as

well as other basic results gathered in the Appendix.

2. Preliminaries on multifractal formalism and Mandelbrot measures on

symbolic spaces

Throughout this paper, we use N to denote the set of natural numbers, i.e. N =

{1, 2, . . .}. Let us first restate the multifractal formalism in this context.

2.1. Multifractal formalism on symbolic spaces. Let m ≥ 2 be an integer. For n ≥ 0

let Σn = {0, . . . ,m − 1}n. By convention, Σ0 consists of the empty word ε. Then define

Σ∗ =
⋃
n≥0 Σn, (Σ × Σ)∗ =

⋃
n≥0(Σn × Σn), and Σ = {0, . . . ,m − 1}N. The sets Σ∗ and

(Σ × Σ)∗ act in the standard way by concatenation on Σ∗ ∪ Σ and (Σ × Σ)∗ ∪ (Σ × Σ)

respectively. We denote by σ the standard left shift operation on Σ∗∪ (Σ×Σ). The length

of a word w ∈ Σ∗, i.e. its number of letters, is denoted as |w|.

For x = x1 · · ·xp · · · ∈ Σ, set x|n = x1 · · ·xn if n ≥ 1 and ε if n = 0. For u ∈ Σ∗, set

[u] = {x ∈ Σ : x||u| = u}.

The set Σ is endowed with the standard metric distance

d(x, x′) = m
− sup

{
n:x|n=x′|n

}
,

and Σ× Σ is endowed with the distance d((x, y), (x′, y′)) = max(d(x, x′), d(y, y′)).

Given a positive and finite Borel measure ρ on Σ or Σ×Σ, its topological support, i.e.

the smallest closed set carrying the whole mass of µ is denoted as supp(ρ), and its lower

and upper local dimensions at x ∈ supp(ρ) are defined as

dimloc(ρ, x) = lim inf
n→∞

log(ρ([x|n]))

(−n log(m))
and dimloc(ρ, x) = lim sup

n→∞

log(ρ([x|n]))

(−n log(m))

respectively. Let

dimH(ρ) = inf{dimH E : ρ(E) > 0 and E is a Borel set} and

dimP (ρ) = inf{dimP E : ρ(E) = ‖ρ‖ and E is a Borel set},

where dimP E stands for the packing dimension of E (see e.g. [43]) and ‖ρ‖ stands for the

total mass of ρ .
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It is well known that (see e.g. [16, 17])

dimH(ρ) = sup{s : dimloc(ρ, x) ≥ s for ρ-almost every x} and

dimP (ρ) = inf{s : dimloc(ρ, x) ≤ s for ρ–almost every x};

when these two dimensions coincide, we say that ρ is exact dimensional and writes dim(ρ)

for the common value.

The Lq-spectrum of ρ is the mapping τρ : R→ R ∪ {−∞} given by

τρ(q) = lim inf
n→∞

−1

n
logm

∑
w∈Sn

1{ρ([w])>0}ρ([w])q (q ∈ R),

where Sn stands for Σn or Σn × Σn. It is well known that (cf. [47])

τ ′ρ(1+) ≤ dimH(ρ) ≤ dimP (ρ) ≤ τ ′ρ(1−).

For all α ∈ R, set

E(ρ, α) = {x ∈ supp(ρ) : dimloc(ρ, x) = α},

E(ρ, α) = {x ∈ supp(µ) : dimloc(ρ, x) = α}

and

E(ρ, α) = E(ρ, α) ∩ E(ρ, α).

Then it is always the case that (see e.g. [37, 49])

dimH E(ρ, α) ≤ max(dimH E(ρ, α),dimH E(ρ, α)) ≤ τ∗ρ (α),

where the Legendre transform of f : R→ R ∪ {−∞} is defined as

f∗ : α ∈ R 7→ inf
q∈R

(αq − f(q)),

and a negative dimension means that the set is empty. We say that the multifractal

formalism holds at α if

dimH E(ρ, α) = τ∗ρ (α).

It is well-known (see e.g. [37, 49]) that for α ≤ τ ′ρ(0+),

(2.1) dimH{x ∈ supp(ρ) : dimloc(ρ, x) ≤ α} ≤ inf
q≥0
{αq − τρ(q)} = τ∗ρ (α).

2.2. Multifractal analysis of the Mandelbrot measures on Σ × Σ. Now let us

formally define the Mandelbrot measures on Σ × Σ. We consider a non-negative random

vector

W = (Wi,j)(i,j)∈Σ1×Σ1

whose entries are integrable. For q ∈ R we define

(2.2) T (q) = TW (q) = − logm
∑

(i,j)∈Σ1×Σ1

E(1{Wi,j>0}W
q
i,j).
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Let N =
∑

(i,j)∈Σ1×Σ1
1{Wi,j>0}, and assume that P(N ∈ {0, 1}) < 1.

To build a Mandelbrot measure on Σ × Σ we assume that T (1) = 0 and consider a

sequence (W (u, v))(u,v)∈
⋃
n≥0 Σn×Σn of independent copies of W , defined on a probability

space (Ω,A,P).

Let η be the uniform measure on Σ×Σ, i.e. η([u, v]) = m−2n for each cylinder [u, v] :=

[u] × [v] of generation n. For each n ≥ 1 let µn = µW,n be the measure on Σ × Σ whose

density with respect to η is constant over each cylinder [u, v] := [u] × [v] of generation n

and given by m2nQ(u, v), where

Q(u, v) =
n∏
j=1

Wuj ,vj (u|j−1, v|j−1).

Denote the total mass of µn as Yn, i.e.

Yn =
∑

|u|=|v|=n

Q(u, v).

By construction the sequence (Yn)n≥1 is a non-negative martingale of expectation 1 with

respect to the filtration (σ(W (u, v) : |u| = |v| ≤ n − 1))n≥1, thus it converges to a limit,

which we denote by Y .

Let Tn = {(u, v) ∈ Σn × Σn : Q(u, v) > 0}. The sequence (Tn)n≥1 represents the

generations of a Galton-Watson process with offspring distribution given by that of N .

We have

Kn := supp(µn) =
⋃

(u,v)∈Tn

[u]× [v].

For n ≥ k ≥ 1 and (u, v) ∈ Σk × Σk, the statistical self-similarity of the construction

yields µn([u]× [v]) = Q(u, v)Yn−k(u, v), with (Yn−k(u, v))(u,v)∈Σk×Σk a family of indepen-

dent copies of Yn−k, also independent of σ(W (u, v) : |u| = |v| ≤ k − 1).

Consequently, with probability 1, there exists a family (Y (u, v))(u,v)∈Σk×Σk,k≥1) of copies

of Y such that for each k ≥ 1 and (u, v) ∈ Σk × Σk,

(2.3) lim
n→∞

µn([u]× [v]) = Q(u, v)Y (u, v).

Moreover, the random variables Y (u, v), (u, v) ∈ Σk × Σk, are independent, and generate

a σ-field independent of σ(W (u, v) : |u| = |v| ≤ k − 1). By construction, this means that

µn weakly converges to a measure µ defined by

µ([u]× [v]) = Q(u, v)Y (u, v).

Moreover, µ is positive (i.e. Y > 0) with positive probability if and only if T ′(1−) > 0; and

this is also equivalent to the uniform integrability of (Yn)n≥1, that is E(Y ) = 1 ([36, 22]).

From now on we assume that this condition (i.e., T ′(1−) > 0) holds; in this case, it is

known (cf. [36, 35]) that the measure µ, if non-degenerate, is exact dimensional and

dim(µ) = T ′(1−) almost surely on {µ 6= 0}.
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Also, the events {µ 6= 0} and {K :=
⋂
n≥1Kn 6= ∅} coincide up to a set of probability 0

over which K = supp(µ) (see Proposition A.1 for a proof). In addition, the inequality

T ′(1−) > 0 and the concavity of T imply that T (0) = − logm(E(N)) < 0, i.e. E(N) > 1.

We have the following result regarding the multifractal analysis of µ (see also [33, 24,

48, 45, 5] for slightly less sharp versions). Recall that f∗ stands for the Legendre transform

of f .

Theorem 2.1 ([1]). Suppose that T is finite on a neighborhood of 0 and N ≥ 2 conditional

on {N 6= 0}. Define f(α) = T ∗(α) if T ∗(α) ≥ 0 and f(α) = −∞ otherwise. With

probability 1, conditional on {µ 6= 0}, τµ = f∗ and the multifractal formalism holds at

all α in the domain of τ∗µ = f . In particular, τµ(q) = T (q) at each q ∈ R such that

T ∗(T ′(q)) ≥ 0.

Since we mainly want to focus on new phenomena associated with π∗µ, to avoid too

many technicalities we discard the case when

sup{q ≥ 1 : T (q) > −∞} = sup{q ≥ 1 : T ∗(T ′(q)) > 0},

for which τµ itself exhibits a first order phase transition on (1,∞) [1].

Thus, when we study the validity of the multifractal formalism for π∗µ, our assumptions

will be:

• P(N ∈ {0, 1}) < 1, T ′(1−) > 0;

• T is finite on a neighborhood of 0;

• either ∃ qc > 1 such that T ∗(T ′(q−c )) = 0

or T ∗(T ′(q)) > 0 for all q ≥ 0, in which case we set qc =∞.

(2.4)

We drop the assumption that N ≥ 2 when N 6= 0 because this does not affect the

validity of Theorem 2.1 for the local dimensions α associated with non-negative q by

Legendre duality, and for our study of π∗µ we will only focus on the case q ≥ 0. The

assumption that T is finite on a neighborhood of 0 implies that E(Y −h) < ∞ for some

h > 0 (see [38, Theorem 2.4]).

3. Main results for projections of Mandelbrot measures on the symbolic

space

Throughout this section we assume that P(N ∈ {0, 1}) < 1 and T ′(1−) > 0. We are

interested in the geometric properties of the measure π∗µ, where π stands for the canonical

projection onto the first factor of Σ× Σ.
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For 0 ≤ i, j ≤ m− 1 set

(3.1) pi =

m−1∑
j=0

E(Wi,j) and Vi,j =

{
Wi,j/pi if pi > 0,

1/m otherwise.

(In fact those i for which pi = 0 will play no role in our study.) Then write Vi := (Vi,j)j∈Σ1

and define

(3.2) Ti(q) = TVi(q) = − logm
∑
j∈Σ1

E(1{Vi,j>0}V
q
i,j), q ∈ R.

Notice that Ti(1) = 0 for all 0 ≤ i ≤ m− 1.

Let ν stand for the Bernoulli product measure on Σ associated with the probability

vector (p0, . . . , pm−1), that is

ν([x1 . . . xn]) = px1 . . . pxn

for n ≥ 1 and x1, . . . , xn ∈ {0, 1, . . . ,m− 1}.

By construction

(3.3) m−T (q) =
∑
i,j

E(1{Wi,j>0}W
q
i,j) =

∑
i,j

1{pi>0}p
q
iE(V q

i,j) =
∑
i

1{pi>0}p
q
im
−Ti(q).

Consequently,

(3.4) T ′(1−) =
∑
i

pi(T
′
i (1−)− logm(pi)) =

(∑
i

piT
′
i (1−)

)
+ dim(ν),

where we recall that

dim(ν) = −
m−1∑
i=0

pi log(pi)/ log(m).

Notice that ν = E(π∗µ), and recall that a direct calculation yields

(3.5) τν(q) = − logm

m−1∑
i=0

pqi (q ∈ R).

For q ∈ R, we denote by νq the Bernoulli product measure on Σ associated with the

probability vector
(
pq0m

τν(q), . . . , pqm−1m
τν(q)

)
.

Below we discard two trivial situations.

We first discard the case when pi = 1 for some 0 ≤ i ≤ m − 1, which means that the

measure µ is supported on a deterministic vertical line hence is a Mandelbrot measure on

a line, for which the multifractal nature is analogue to that of a 1-dimensional Mandelbrot

measure. For 0 ≤ i ≤ m− 1, we set

Ni = #{0 ≤ j ≤ m− 1 : Wi,j > 0}.

We also discard the case when Ni = 1 almost surely for all 0 ≤ i ≤ m− 1, which implies

that π∗µ is a Mandelbrot measure on a line as well.
11



3.1. Absolute continuity and dimension. This section gathers our results on the ab-

solute continuity/singularity of π∗µ with respect to ν = E(π∗µ), and on the dimension

of π∗µ and its associated conditional measures in the natural disintegration of µ along

π∗µ-almost every fiber {x} × Σ. The result on dim(π∗µ) also yields a new variational

principle for dimπ(K).

Theorem 3.1. With probability 1, conditional on {µ 6= 0}:

(1) If dim(µ) > dim(ν), then

(i) π∗µ is absolutely continuous with respect to ν.

(ii) Suppose that T is finite in a neighborhood of 1. Then the density of π∗ν with

respect to ν is in Ls(ν) for all s in the following non-empty set{
s ∈ (1, 2] : T (s) > 0 and

m−1∑
i=0

pim
−Ti(s) < 1

}
.

(2) If dim(µ) ≤ dim(ν), then π∗µ and ν are mutually singular.

Remark 3.2. Sufficient conditions for π∗µ to be equivalent to ν can be found in [8].

Theorem 3.3. With probability 1, conditional on {µ 6= 0}:

(1) If dim(µ) > dim(ν) then π∗µ is exact dimensional with dimension dim(ν); while

if dim(µ) ≤ dim(ν) and T is finite in a neighborhood of 1, then π∗µ is exact

dimensional with dimension dim(µ).

(2) Suppose that T is finite in a neighborhood of 1. For π∗µ-almost every x, the

conditional measure µx is exact dimensional with dimension dim(µ)−dim(π∗µ) =

dim(µ)−dim(ν) =
∑m−1

i=0 piT
′
i (1) if dim(µ) > dim(ν), and dimension 0 if dim(µ) ≤

dim(ν).

Remark 3.4. Recall that under the assumption that T is finite in a neighborhood of 1, in

[27] Falconer and Jin have already proven that with probability 1, conditional on {µ 6= 0},
for π∗µ-almost every x, dim(µx) = dim(µ) − dim(π∗µ) without specifying the value of

dim(π∗µ), hence of dim(µx).

When dim(µ) > dim(ν), a direct proof of the equality dim(µx) =
∑m−1

i=0 piT
′
i (1
−)

without the additional assumption on the finiteness of T near 1 can be found in [8].

The previous statement makes it possible to derive the dimension formula of π(K) by

using an adapted Mandelbrot measure, whilst in [23] Falconer builds statistically self-

similar subsets of π(K) of Hausdorff dimension smaller than but arbitrarily close to the

value given by (1.2). The new point is the variational principle invoking Mandelbrot

measures in (3.7) and the related uniqueness property.
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Corollary 3.5 (Dekking-Grimmett-Falconer formula revisited). Let

(3.6) ϕ : h ≥ 0 7→ log

(
m−1∑
i=0

E(Ni)
h

)
/ log(m).

With probability 1, conditional on {K 6= ∅},
dimH π(K) = dimB(π(K))

= inf
0≤h≤1

ϕ(h)

= max{H(π∗µ
′) : µ′ is a Mandelbrot measure supported on K},

(3.7)

where H(π∗µ
′) = min(dim(µ′), dimE(π∗µ

′)). Moreover, the maximum in (3.7) is attained

at a unique point if and only if ϕ′(0) ≤ 0, i.e.
∑m−1

i=0 log(E(Ni)) ≤ 0. Also, dim(π∗µ
′) =

H(π∗µ
′) at some point µ′ where the maximum is attained.

Remark 3.6. It is readily to check that dimH π(K) = dimH K if and only if the inequality∑m−1
i=0 E(Ni) logE(Ni) ≤ 0 holds, i.e. in (3.7) the infimum is attained at h = 1.

3.2. Validity of the multifractal formalism. Assume (2.4) (in which qc is well-defined)

and set

(3.8) q̃c =

{
qc if qc <∞ and τν(qc) ≥ T (qc)

inf{q > qc : τν(q) ≥ T (q)} otherwise
,

with the convention that inf ∅ = qc. Let

(3.9)

τ : q 7→



− inf

{
logm

m−1∑
i=0

E(Ni)
h : 0 ≤ h ≤ 1

}
if q = 0,

− inf

{
logm

m−1∑
i=0

pqim
−qTi(s)/s : q ≤ s ≤ 1

}
if 0 < q ≤ 1,

min(τν(q), T (q)) if 1 < q < q̃c or q = q̃c <∞.

Theorem 3.7. The function τ is differentiable everywhere except at the possible points in

(1, q̃c) at which the graphs of T and τν cross each other transversally. Moreover,

(1) with probability 1, conditional on {µ 6= 0}, for all q ∈ [0, q̃c),

(3.10) τ(q) = lim
n→∞

−1

n
logm

∑
|u|=n

1{π∗µ([u])>0}π∗µ([u])q.

In particular τπ∗µ(q) = τ(q). Also, if q̃c = qc < ∞, then τπ∗µ(q) = qT ′(qc−) for

q > qc.

(2) If α ∈ (τ ′(q̃c−), τ ′(0+)], with probability 1, conditional on {µ 6= 0}, the multifractal

formalism holds at α.

Remark 3.8. Notice that when qc < ∞, the equality τν(qc) = T (qc) cannot hold if

τ ′ν(qc) ≤ T ′(qc−), for this would imply that τ∗ν (τ ′ν(qc)) ≤ T ∗(T ′(qc−)) = 0, while τ∗ν ◦ τ ′ν is

always positive over R.
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Remark 3.9. The same conclusion as in (3.10) and Theorem 3.7(2) holds if we replace

π∗µ([x|n]) by π∗µn([x|n]) in the definition of the level sets E(π∗µ, α).

Remark 3.10. (1) The identities τ = T = τν over [0, qc) hold if and only if for all

i ∈ {0, . . . ,m− 1} with pi > 0, E(Ni) = 1 and Wi,j ∈ {0, pi} almost surely for all

0 ≤ j ≤ m− 1, i.e. Ti is identically equal to 0 (see Section 6.1).

(2) On the other hand, a sufficient condition to have τ = τν over R+ and τν > T

over (0, 1) and τν < T over (1,∞) is (P): there exists a partition {I1, . . . , IL}
of {0 ≤ i ≤ m − 1 : pi > 0} such that (a) pi does not depend on i ∈ Ik and∏
i∈Ik E(Ni) = 1 for each 1 ≤ k ≤ L; (b) there exists 1 ≤ k ≤ L such that #Ik ≥ 2

and E(Ni) 6= 1 for at least two values of i ∈ Ik; (c) for all i ∈ {0, . . . ,m− 1} with

pi > 0, Wi,j ∈ {0, pi/E(Ni)} almost surely for all 0 ≤ j ≤ m− 1. See the proof of

Lemma 8.6.

Remark 3.11. In all the examples we have examined numerically and for which we do

not have τν = T , the functions τν and T coincide at three points at most. We do not know

whether this is a general fact.

Remark 3.12. We think (and know that it is true on some intervals) that the validity

of the multifractal formalism for π∗µ holds almost surely for all α ∈ (τ ′(q̃c−)), τ ′(0+)].

However, we dediced to limit the technicalities as much as possible, the most important

facts being the new behaviors associated with the projection. In particular, the proof of

the validity of the multifractal formalism will show that the possible phase transitions

separate the domain of possible exponents α into intervals over which the computation

of the Hausdorff dimension of the sets E(π∗µ, α) uses different arguments, this being in

contrast with what happens for the measure µ itself, indeed we can use one uniform

approach to deal with all the level sets E(µ, α) (see [1]).

Remark 3.13 (Similar result for critical Mandelbrot measures). When T ′(1−) = 0, un-

der mild assumptions there exists a substitute to the degenerate Mandelbrot measure µ,

namely a critical Mandelbrot measure µ̃, which satisfies the same statistical self-similarity

(1.1) with the set K as its support, but E(‖µ‖) =∞; the multifractal analysis of this mea-

sure is considered in [5]. Defining qc like when T ′(1−) > 0, we have qc = 1. Furthermore,

defining q̃c = 1 and ν as for µ, the conclusions of Theorem 3.7 holds for π∗µ̃.

4. Phase transition. Remarks and examples

This section gathers a series of remarks and examples related to phase transitions as-

sociated with π∗µ.

Remark 4.1. Let S denote the set of non-analytic points of τ in (0, q̃c). Then S is discrete

and possibly empty. Moreover, the cardinality of S ∩ (0, 1] is not less than the number
14



of times that the graphs of T and τν cross each other transversally over (0, 1). These

properties will be established in Section 5.

Now we give some examples to illustrate Theorem 3.7.

Example 4.2 (Lognormal canonical cascades). Let us consider the standard lognormal

canonical cascade, for which the weights Wi,j are independent and Wi,j ∼ m−2 exp(βN −
β2/2), where β ≥ 0 and N ∼ N (0, 1). We have

T (q) = 2(q − 1)− β2

2 log(m)
q(q − 1).

A necessary and sufficient condition for µ to be almost surely positive is T ′(1) = 2 −
β2

2 log(m) > 0, i.e. β ∈ [0, 2
√

logm).

Fix β ∈ (0, 2
√

logm) (we discard the case β = 0 which corresponds to µ being the

restriction of the Lebesgue measure to [0, 1]2). Then, the dimension of µ equals 2− β2

2 log(m) ,

and the measure ν is simply the Lebesgue measure restricted to [0, 1], so τν(q) = q − 1.

Also, due to Theorem 3.1, the measure π∗µ is almost surely equivalent to Lebesgue measure

if and only if T ′(1) > 1, i.e. β ∈ [0,
√

2 log(m)).

We also have T ′(q)q−T (q) = 2− β2q2

2 log(m) , so qc = 2
√

log(m)/β. Moreover, T (q) = τν(q)

if and only if q = 1 or q = q0 := 2 log(m)/β2.

Thus, if β ∈ [0,
√

log(m)], we have qc ≤ q̃c = q0; if β ∈ (
√

log(m),
√

2 log(m)), qc = q̃c

and τν and T cross once transversally at q0 ∈ (1, qc), and do not cross over [0, 1); if β =√
2 log(m) then τν and T cross at 1 = q0 only and qc = q̃c; if β ∈ (

√
2 log(m), 2

√
log(m)),

then T and τν cross once transversally at q0 ∈ (0, 1) and do not cross over (1,∞).

The previous observations and the definition of τ yield, with probability 1:

• if β ∈ (0,
√

logm], then τ(q) = q − 1 over [0, q0 = q̃c] (and q0 > 1).

• If β ∈ (
√

log(m),
√

2 log(m)), τ(q) = q−1 over [0, q0], τ(q) = T (q) over [q0, qc = q̃c],

and q0 ∈ (1, qc).

In this case π∗µ provides new examples of statistically self-similar measures

absolutely continuous with respect to the Lebesgue measure over [0, 1], with a

non-trivial Hausdorff spectrum and a first order phase transition, here at q0 (see

also [28] for deterministic examples for which, however, the Hausdorff spectrum is

not described at the phase transition).

• If β =
√

2 log(m), τ(q) = q − 1 over [0, 1 = q0] and τ(q) = T (q) over [1, qc = q̃c].

• If β ∈ (
√

2 log(m), 2
√

log(m)) then q0 < 1, and a calculation using the definition

of τ over [0, 1] shows that τ(q) = −1+T ′(
√
q0)q over [0,

√
q0] and τ(q) = T (q) over

[
√
q0, qc = q̃c].
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In the last two cases, for which dim(µ) ≤ 1, our result provides, for the special

directions of projection considered in this paper, the same information as that

given by [6] for almost every direction, and recalled in Section 1.

Illustrations are provided by Figure 1.

q0
1

−1

−2

q0 = q̃cqc

(a) β ∈ (0,
√

logm].

q0
1

−1

−2

q0

qc = q̃c

(b) β ∈ (
√

logm,
√

2 logm). First order
phase transition at q0 and second order
phase transition at qc.

q0
1

−1

−2

qc = q̃c

(c) β =
√

2 logm. Second order phase tran-

sitions at q0 = 1 and qc =
√

2.

q0
1

−1

−2

√
q0

qc = q̃c

(d) β ∈ (
√

2 logm, 2
√

logm). Second order
phase transitions at

√
q0 and qc.

Figure 1. The thick curve represents τπ∗µ over [0, q̃c] in case (A) and
[0,∞] in the other cases, while the dashed curve represents T .

Below we construct a concrete example so that qc = ∞ and the function τπ∗µ has a

non-differentiable point in (1,∞) (i.e. first order phase transition), and a non-C∞ smooth

point in (0, 1) (i.e. phase transition of order ≥ 2). It is illustrated in Figure 2.

Example 4.3. Let (p0, . . . , pm−1) be a positive probability vector different from the vector

(m−1, . . . ,m−1). We have pmax = max{pi : 0 ≤ i ≤ m − 1} > m−1. We assume that

p0 = pmax >
√
p1 = . . . =

√
pm−1. Fix β in the interval (m,mp−1

max) and λ ∈ (0, 1).

Let (Vi,j)1≤i≤m−1,0≤j≤m−1 be a family of random variables which take value β/m with
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probability λβ−1 and cm,β,λ = β(1−λ)
m(β−λ) with probability 1− λβ−1. Let

V0,0 ∈
(

max
1≤i≤m−1

pi
p2

max

, 1

)
,

V0,1 = 1 − V0,0, and V0,j = 0 if j ≥ 2; also suppose that V0,1 < V0,0. Set Wi,j = piVi,j for

all 0 ≤ i, j ≤ m− 1 and define the functions Ti and T as previously.

For all 1 ≤ i ≤ m−1 and 0 ≤ j ≤ m−1, by construction, Wi,j ≤ piβ/m < W0,0 < p0 < 1,

and also W0,1 < W0,0 < 1. Consequently, T ′(1) > 0. Also, for all 0 ≤ i ≤ m − 1,

E
(∑m−1

j=0 Vi,j

)
= 1 and for 1 ≤ i ≤ m− 1,

− log(m)T ′i (1) = E

m−1∑
j=0

Vi,j log(Vi,j)

 = λ log

(
β

m

)
+m(1− λβ−1)cm,β,λ log(cm,β,λ)

and − log(m)T ′0(1) = V0,0 log(V0,0) + V0,1 log(V0,1). Thus, if we take λ close enough to 1

and V0,0 close enough to 1, then
∑m−1

i=0 piT
′
i (1) < 0, so that 0 < T ′(1) < τ ′ν(1), and T < τ

near 1+. Now let us make T (q) explicit:

T (q) = − logm

(
(p0V0,0)q + (p0V0,1)q +

m−1∑
i=1

mλβ−1
(
pi
β

m

)q
+m(1− λβ−1)(picm,β,λ)q

)
.

Hence T (q) = −q logm(p0V0,0) + o(1) as q → ∞, with − logm(p0V0,0) > − logm(p0) > 0

since V0,0 < 1. This shows that T ∗ ◦ T ′ does not vanish over R+ and qc = ∞. Moreover

τν(q) = −q logm(pmax) + o(1) as q →∞, so τν(q) < T (q) near ∞. It follows that there is

a first order phase transition over (1,∞).

Now let us look at the situation over [0, 1]. Clearly − logm(m(m − 1) + 2) = T (0) <

τν(0) = −1, and T ′(1) < τ ′ν(1) which implies that τν < T near 1−. Thus, the graphs of

τν and T cross each other on [0, 1], and we know from Theorem 3.7 that there is at least

one phase transition of order at least 2. Let us be a little bit more precise. Set

G(q, s) =
m−1∑
i=0

pqim
−Ti(s)q/s.

Then

∂G

∂s
(q, s) = −s−2q log(m)

m−1∑
i=0

pqim
−Ti(s)q/sT ∗i (T ′i (s)).

By construction, ∂G
∂s (1, 1) = − log(m)

∑m−1
i=0 piT

′
i (1) > 0.

Thus, by continuity of ∂G
∂s (q, s), for q near 1−, ∂G

∂s (q, s) > 0 for all s ∈ [q, 1], which

implies that τ is attained at s = q and τ(q) = T (q). Also T ∗i (T ′i (0)) = −Ti(0) = 1 > 0

if i ≥ 1, T ∗0 (T ′0(0)) = −T0(0) = logm(2) > 0 and by construction
∑m−1

i=0 T ′i (1) < 0.

Consequently, for all q near 0+, ∂G
∂s (q, q) < 0 and ∂G

∂s (q, 1) > 0, which implies that τ(q) is

attained at some s ∈ (q, 1) and τ(q) > max(τν(q), T (q)).
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Figure 2. Illustration of Example 4.3 with m = 2, p0 = .62, β = 3.22,
λ = .99 and V00 = .99 (blue curve: T ; black curve: τν ; red curve: τ).
qc = q̃c = ∞. One phase transition of order ≥ 2 at some q0 ∈ (0, 1) and
one first order phase transition at some q′0 ∈ (1,∞). τπ∗µ = τ > max(τν , T )
over [0, q0), τπ∗µ = T = τµ over [q′0, q0], and τπ∗µ = τν over [q0,∞).

Example 4.4. This example exhibits two phase transitions over [0, 1] and no first order

phase transition over (1, qc), with qc < ∞ and τπ∗µ = τµ over (1,∞). Take m = 2,

p0 ∈ (0, 1), and N0 and N1 two random integers taking values in {0, 1, 2} and with positive

expectation. Then for 0 ≤ i, j ≤ 1 define Vi,j = (E(Ni))
−11{j≤Ni−1}. This yields Ti(q) =

(q − 1) logE(Ni), hence T ∗i (T ′i (s)) = −Ti(0) = T ′i (1) = logE(Ni) for all s ≥ 0. Also,

T (q) = − log2

(
pq0E(N0)1−q + (1− p0)qE(N1)1−q) .

We require E(N0) < 1,

E(N0)E(N1) > 1,(4.1)

E(N0)p0E(N1)1−p0 < 1,(4.2) (
E(N0)

p0

)p0
(
E(N1)

1− p0

)1−p0

> 1.(4.3)

Properties (4.2) and (4.3) yield τ ′ν(1) > T ′(1) > 0. Also (4.1) implies E(N1) + E(N2) > 2

hence T (0) < −1 = τν(0). The graphs of τν and T cross each other on [0, 1]. Let G be

defined as in the previous example. Property (4.1) yields ∂G
∂s (q, s) < 0 for all s ∈ [q, 1]

if q is close enough to 0, hence τ(q) is attained at q = 1; τ(q) = τν(q). Moreover, (4.2)

implies that ∂G
∂s (q, s) > 0 for all s ∈ [q, 1] if q is close to 1, hence τ(q) is attained at s = q:

τ(q) = T (q). Then our study of τ in Section 6 implies that τ(q) > max(τν(q), T (q)) on a

non-trivial interval, i.e. τ is given by a third analytic expression.

It is also possible to choose the parameters so that T ′(1) < − log2(p0) = τ ′ν(+∞) and

p0 > E(N0), hence τν > T over (1,∞) and qc < ∞, which implies that τπ∗µ(q) = τµ(q)

over [1,∞). A concrete choice is p0 = .8, E(N0) = .6 and E(N1) = 1.8. See Figures 3.
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Figure 3. Illustration of Example 4.4 with p0 = .8, E(N0) = .6 and
E(N1) = 1.8 (blue curve: T ; dashed blue curve: τµ; black curve: τν ; red
curve: τ). qc = q̃c ' 1.229 < ∞. Phase transitions of orders ≥ 2 at some
q0 < q′0 in (0, 1), no first order phase transition over (1, qc), and one second
order phase transition at qc. τπ∗µ = τν over [0, q0], τπ∗µ = τ > max(τν , T )
over (q0, q

′
0), τπ∗µ = T = τµ over [q′0, qc], and τπ∗µ(q) = τµ(q) = T ′(qc)q over

[qc,∞).

Example 4.5 (Previous example continued). We can use the same model as in Exam-

ple 4.4 to get other different behaviors by modifying the values of the parameters p0, E(N0)

and E(N1). See Figures 4 to 6.

5. Proofs of Theorem 3.1, Theorem 3.3(1), and Corollary 3.5

We first introduce the following new notation and definitions.

For each u ∈ Σ∗, set

(5.1) π∗µ([u]) =
∑
v∈Σ|u|

µ([u, v]) =
∑
v∈Σ|u|

Q(u, v)Y (u, v) = ν(u)X(u),
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Figure 4. Same model as in Example 4.4 with p0 = .1, E(N0) = .4 and
E(N1) = 1.3 (blue curve: T ; black curve: τν ; red curve: τ). qc = q̃c = ∞.
Phase transitions of orders ≥ 2 at some q0 < q′0 in (0, 1), no first order phase
transition over (1,∞). τπ∗µ = T = τµ over [0, q0], τπ∗µ = τ > max(τν , T )
over (q0, q

′
0), and τπ∗µ = τν over [q′0,∞).

where

(5.2) X(u) =
∑
v∈Σ|u|

Y (u, v)

|u|∏
j=1

Vuj ,vj (u|j−1, v|j−1).

Define also

X̃(u) =
∑
v∈Σ|u|

|u|∏
j=1

Vuj ,vj (u|j−1, v|j−1),

and for all x ∈ Σ, and n ≥ 0, set

(5.3) Xn(x) = X(x|n) and X̃n(x) = X̃(x|n).

Keep in mind that all variables defined above depend implicitly on ω.

Now, let us start by presenting two results that will be used in this section. They are

proved in Section 9 as parts of Proposition 9.8 and Corollary 9.9 respectively.

Proposition 5.1. Let q ∈ (1, 2] such that T (q) > 0. Let η be the Bernoulli product measure

on Σ generated by a probability vector (p′0, . . . , p
′
m−1). Set A := max{1,

∑m−1
i=0 p′im

−Ti(q)}.
Then there exists a constant Cq depending on W and q such that

An ≤ EP⊗η(X
q
n) ≤ CqAn, ∀n ∈ N,
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Figure 5. Same model as in Example 4.4 with p0 = .3, E(N0) = .25 and
E(N1) = 2 (blue curve: T ; dashed blue curve: τµ; black curve: τν ; red
curve: τ). qc = q̃c ' 2.176 < ∞. One phase transition of order ≥ 2 at
some q0 ∈ (0, 1). One first order phase transition at some q′0 ∈ (1, qc), and
one second order phase transition at qc. τπ∗µ = τ > max(τν , T ) over [0, q0)
(in particular −τ(0) = dimH π(K) < min(−τν(0),−T (0))), τπ∗µ = τν over
[q0, q

′
0] and τπ∗µ = T = τµ over [q0, qc], and τπ∗µ(q) = τµ(q) = T ′(qc)q over

[qc,∞).

where Xn is defined as in (5.3).

Corollary 5.2. Let q ∈ (1, 2] such that T (q) > 0. Then there exists a constant Cq

depending on W and q such that for all n ∈ N:

m−nmin{τν(q),T (q)} ≤ E
( ∑
u∈Σn

π∗µ([u])q
)
≤ Cqm−nmin{τν(q),T (q)}.

5.1. Proof of Theorem 3.1: absolute continuity.

Proof of Theorem 3.1(1). (i) Since (Σ, d) satisfies the Besicovitch covering property, al-

most surely π∗µω(dx) = f(ω, x) ν(dx)+ρω(dx), where ρω is a Borel measure singular with

respect to ν and

(5.4) f(ω, x) = lim
n→∞

(
Xn(ω, x) =

π∗µω([x|n])

ν(x|n)

)
,

ν-almost everywhere. Thus, if EP⊗ν(f) = E(‖π∗µ‖) = 1, then ρω = 0 almost surely, i.e.

π∗µ is almost surely absolutely continuous with respect to ν.
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Figure 6. Same model as in Example 4.4 with p0 = .3, E(N0) = .3 and
E(N1) = 2 (blue curve: T ; dashed blue curve: τµ; black curve: τν ; red
curve: τ). qc ' 2.665 < ∞ and q̃c ' 3.059. One phase transition of
order ≥ 2 at some q0 ∈ (0, 1). No first order phase transition over [1, q̃c).
τπ∗µ = τ > max(τν , T ) over [0, q0) (in particular −τ(0) = dimH π(K) <
min(−τν(0),−T (0))) and τπ∗µ = τν over [q0, q̃c].

We know by the construction of µ that EP⊗ν(Xn) = E(‖µn‖) = 1 for all n ≥ 1. This

implies that for all λ ∈ (0, 1) the sequence (Xλ
n)n≥1 is uniformly integrable with respect

to P⊗ ν, hence by (5.4), limn→∞ EP⊗ν(Xλ
n) = EP⊗ν(fλ).

Next we claim that under P ⊗ ν, Xn converges in law to a random variable X̃. We

postpone its proof to the next paragraph. Since for any given λ ∈ (0, 1) the sequence

(Xλ
n)n≥1 is uniformly integrable, it follows that limn→∞ EP⊗ν(Xλ

n) = EP⊗ν(X̃λ). Hence

EP⊗ν(fλ) = EP⊗ν(X̃λ) for all λ ∈ (0, 1). Furthermore, if EP⊗ν(X̃) = 1, letting λ tend to

1 we get EP⊗ν(f) = 1.

We now prove that Xn converges in law to a random variable X̃ such that EP⊗ν(X̃) = 1.

By the definition of Xn(x), for any t > 0,

EP⊗ν(e−tXn) = EP⊗ν

( ∏
v∈Σn

φY

(
t
n∏
j=1

Vxj ,vj (x|j−1, v|j−1)
)
,

where φY stands for the Laplace transform of Y , i.e. φY (t) = E(e−tY ).

Let us show that

Mn(x) := max
v∈Σn

n∏
j=1

Vxj ,vj (x|j−1, v|j−1)
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converges in law to 0 under P⊗ ν, as n tends to ∞. For x ∈ Σ, let Qx be the probability

measure on

(Ω× Σ, σ(Vxn(x|n−1, v) : n ≥ 1, v ∈ Σn−1)⊗ B(Σ))

whose restriction to

σ(Vxj (x|n−1, v) : 1 ≤ j ≤ n, v ∈ Σj−1)⊗ σ([v] : v ∈ Σn)

is determined by

Qx,n(A× [v]) = E
(
1A(ω)

n∏
j=1

Vxj ,vj (x|j−1, v|j−1)
)

for A ∈ σ(Vxj (v) : 1 ≤ j ≤ n, v ∈ Σj−1) and v ∈ Σn. This yields a new skew product

measure ρ(dω,dx,dy) = ν(dx)Qx(dω,dy) on Ω × Σ2. A direct computation shows that

the random variables (ω, x, y) 7→ Vxj ,yj (x|j−1, y|j−1) are i.i.d. with respect to ρ, and their

logarithms are of expectation

m−1∑
i=0

pi

m−1∑
j=0

E(Vi,j log Vi,j) = − log(m)
m−1∑
i=0

piT
′
i (1−) < 0.

By the strong law of large numbers, for ρ-almost every (ω, x, y),

lim
n→∞

n∏
j=1

Vxj ,yj (x|j−1, y|j−1) = 0.

Now fix ε > 0. We have

P⊗ ν(Mn(x) ≥ ε) ≤ EP⊗ν

( ∑
v∈Σn

1{
∏n
j=1 Vxj,vj (x|j−1,v|j−1)≥ε}

)
≤ EP⊗ν

( ∑
v∈Σn

ε−11{
∏n
j=1 Vxj,vj (x|j−1,v|j−1)≥ε}

n∏
j=1

Vxj ,vj (x|j−1, v|j−1)
)

= ε−1ρ
({ n∏

j=1

Vxj ,yj (x|j−1, y|j−1) ≥ ε
})
,

and the right hand side converges to 0.

Consequently, since E(Y ) = 1, it follows that φY (u) = e−u+o(u) near 0+, so for each

t > 0 we can write

EP⊗ν(e−tXn) = EP⊗ν

(
1{Mn(x)<ε}e

−tX̃n(1+O(ε))
)

+ EP⊗ν

(
1{Mn(x)≥ε}e

−tXn
)

(5.5)

= EP⊗ν

(
e−tX̃n(1+O(ε))

)
+Rn,

where |Rn| ≤ 2P⊗ν(Mn(x) ≥ ε) and X̃n(1+O(ε)) ≥ 0. On the other hand, the information

gathered in Appendix B applied with η = ν and Ui = Vi shows that (X̃n(x, ·))n≥1 is a

Mandelbrot martingale in the random environment defined by ν, and X̃n converges P⊗ν-

almost surely to a limit X̃. We then deduce from the bounded convergence theorem and

the fact that P ⊗ ν(Mn(x) ≥ ε) tends to 0 as n → ∞ that EP⊗ν(e−tXn) converges to
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EP⊗ν(e−tX̃). Moreover, the condition dim(µ)− dim(ν) =
∑m−1

i=0 piT
′
i (1−) > 0 is sufficient

for (X̃n)n≥1 to be uniformly integrable (Theorem B.1), hence EP⊗ν(X̃) = 1.

(ii) Since T ′(1−) > 0, the assumption that T is finite on a neighborhood of 1 im-

plies that T (s) > 0, hence E(Y s) < ∞ on a right neighborhood of 1 (see [36] or [22]).

Moreover, the assumption dim(µ) > dim(ν) is equivalent to
∑m−1

i=0 piT
′
i (1) > 0, hence∑m−1

i=0 pim
−Ti(s) < 1 on a right neighborhood of 1. Also, if s ∈ (1, 2] and both E(Y s) <∞

and
∑m−1

i=0 pim
−Ti(s) < 1, then supn≥1 EP⊗ν(Xn(x)s) < ∞ by Proposition 5.1. For any

such s > 1, using (5.1) we get∫
Σ

(π∗µ([x|n])

ν([x|n])

)s−1
π∗µ(dx) =

∑
u∈Σn

1{ν([u])>0}

(π∗µ([u])

ν([u])

)s−1
π∗µ([u]) =

∑
u∈Σn

ν([u])X(u)s.

Thus

sup
n≥1

E
(∫

Σ

(π∗µ([x|n])

ν([x|n])

)s−1
π∗µ(dx)

)
= sup

n≥1
EP⊗ν(Xn(x)s) <∞.

Consequently, by the Fatou lemma,

E
(

lim inf
n→∞

∫
Σ

(π∗µ([x|n])

ν([x|n])

)s−1
π∗µ(dx)

)
≤ lim inf

n→∞
E
(∫

Σ

(π∗µ([x|n])

ν([x|n])

)s−1
π∗µ(dx)

)
< ∞,

from which we get

lim inf
n→∞

∫
Σ

(π∗µ([x|n])

ν([x|n])

)s−1
π∗µ(dx) <∞ a.s.

Due to [43, Theorem 2.12(3)], this implies both the absolute continuity of π∗µ with respect

to ν and the desired result about the density of π∗µ with respect to ν. �

Proof of Theorem 3.1(2). If dim(µ) < dim(ν), there is nothing to prove since dimP (π∗µ) ≤
dim(µ).

Suppose now that dim(µ) = T ′(1) = dim(ν). This time, under P ⊗ ν, the martingale

X̃n(ω, x) converges to 0 almost surely since
∑m−1

i=0 piT
′
i (1−) = 0 (see Theorem B.1 again).

This implies that Mn(x) = maxv∈Σn

∏n
j=1 Vxj ,vj (x|j−1, v|j−1) converges to 0 almost surely

under P⊗ν. Using (5.5) this time yields the convergence in law to 0 forXn, and EP⊗ν(fλ) =

0 for all λ ∈ (0, 1). Consequently, f = 0 with P ⊗ ν probability 1, which is equivalent to

the fact that π∗µ and ν are almost surely mutually singular. �

5.2. Proof of Theorem 3.3(1): dimension. When dim(µ) > dim(ν), since by The-

orem 3.1(1)(i) π∗µ is absolutely continuous with respect to ν, we already know that if

µ 6= 0, then dim(π∗µ) = dim(ν). However, under the assumption that T is finite in a

neighborhood of 1, we give an alternative proof which works regardless of the respective

positions of dim(µ) and dim(ν), and independently of absolute continuity considerations.

We will use Corollary 5.2 and the following elementary lemma.
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Lemma 5.3. Let ρ be a positive and finite Borel measure on Σ. Let D ≥ 0. If for

all ε > 0 there exists q > 1 such that
∑

n≥1m
n(q−1)(D−ε)∑

|u|=n ρ([u])q < ∞, then

dimloc(ρ, x) ≥ D for ρ-almost every x. Also, if for all ε > 0 there exists q ∈ (0, 1) such

that
∑

n≥1m
n(q−1)(D+ε)

∑
|u|=n ρ([u])q <∞, then dimloc(ρ, x) ≤ D for ρ-almost every x.

Proof. Fix ε > 0. For all q > 1 and n ≥ 1, applying Markov’s inequality yields

ρ
({
x ∈ Σ :

log(ρ([x|n]))

−n log(m)
≤ D − ε

})
= ρ

({
x ∈ Σ : ρ([x|n])q−1 ≥ m−n(q−1)(D−ε)

})
≤ mn(q−1)(D−ε)

∫
Σ
ρ([x|n])q−1 ρ(dx)

= mn(q−1)(D−ε)
∑
|u|=n

ρ([u])q.

Consequently, if
∑

n≥1m
n(q−1)(D−ε)∑

|u|=n ρ([u])q < ∞, by the Borel-Cantelli lemma we

get dimloc(ρ, x) ≥ D − ε for ρ-almost every x.

The upper local dimension of ρ is dealt with similarly. �

Recall that dim(ν) = τ ′ν(1) and that almost surely, conditional on {µ 6= 0}, dim(µ) =

T ′(1). We deduce from Corollary 5.2 that for q > 1 close enough to 1, there exists a

constant Cq such that for all n ≥ 1,

E
( ∑
u∈Σn

π∗µ([u])q
)
≤ Cq ·

{
m−n(q−1) dim(ν)+o(q−1) if T ′(1) > τ ′ν(1)

m−n(q−1)T ′(1)+o(q−1) if T ′(1) ≤ τ ′ν(1)

as q → 1+. Fix ε > 0. Take q close enough to 1 so that the previous upper bound

holds with |o(q − 1)| ≤ ε(q − 1)/4. By Lemma C.1 we conclude that, with probability 1,

conditional on {µ 6= 0}, for n large enough,

mn(q−1)(D−ε)
∑
|u|=n

π∗µ([u])q ≤ m−nε(q−1)/2,

with D = τ ′ν(1) if T ′(1) > τ ′ν(1), and D = T ′(1) otherwise. Then Lemma 5.3 yields the

expected lower bound for dimloc(π∗µ, x), π∗µ-almost everywhere.

To control dimloc(π∗µ, x), π∗µ-almost everywhere, we only need to deal with the case

T ′(1) > τ ′ν(1). Indeed, for π∗µ-almost every x, we obviously have dimloc(π∗µ, x) ≤ dim(µ).

Now assume T ′(1) > τ ′ν(1). Let q ∈ (0, 1). We have

E
( ∑
u∈Σn

π∗µ([u])q
)

=
∑
u∈Σn

ν([u])qE(X(u)q)

≤
∑
u∈Σn

ν([u])qE(X(u))q =
∑
u∈Σn

ν([u])q = m−nτν(q).

This is enough to conclude that dimloc(π∗µ, x) ≤ τ ′ν(1) for π∗µ-almost every x by using

again Lemmas C.1 and 5.3.
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Putting together the previous arguments we conclude that with probability 1, condi-

tional on {µ 6= 0}, π∗µ is exact dimensional with dim(π∗µ) = dim(ν) if T ′(1) > τ ′ν(1) and

dim(π∗µ) = dim(µ) if T ′(1) ≤ τ ′ν(1).

5.3. Proof of Corollary 3.5: variational principle.

Let ϕ : h ∈ R+ 7→ logm
∑m−1

i=0 E(Ni)
h.

We begin with the proof of (3.7). The upper bound for the box dimension of π(K) can

be obtained as a consequence of our approach to the multifractal analysis, or by using

Falconer’s argument in [23] (see also [18]). To see it, notice that at a given generation n of

the construction, π(Kn) is covered by at most
∑
|u|=n(#{v ∈ Σn : Q(u, v) > 0})h, for all

0 ≤ h ≤ 1, which yields that the expectation of this number is at most (inf0≤h≤1m
ϕ(h))n.

Applying Lemma C.1, we obtain that dimB(π(K)) ≤ inf0≤h≤1 ϕ(h). Thus it remains to

derive a lower bound for the Hausdorff dimension of π(K).

Let h0 be a point at which inf0≤h≤1 ϕ(h) is attained. Due to the convexity and the

analyticity of ϕ, such a point is not unique if and only if E(Ni) = 1 when E(Ni) > 0. Let

us consider the Mandelbrot measure associated with the following weights:

W ′i,j = p′iV
′
i,j with V ′i,j =


1{Wi,j>0}

E(Ni)
if E(Ni) > 0

0 otherwise
,

where

p′ = (p′i)0≤i≤m−1 =

(
E(Ni)

h0∑m−1
k=0 E(Nk)h0

)
0≤i≤m−1

.

Let µ′ be the associated Mandelbrot measure and ν ′ the Bernoulli product associated

with p′. Notice that for this measure the function T = TW ′ is everywhere finite, so that

Theorem 3.3(1) applies to µ′ in any case: dim(π∗µ
′) = H(π∗µ

′). Also,

dim(ν ′) = −
h0
∑m−1

i=0 E(Ni)
h0 logm(E(Ni))∑m−1

i=0 E(Ni)h0
+ logm

(
m−1∑
i=0

E(Ni)
h0

)
= ϕ(h0)− h0ϕ

′(h0)

and

(5.6)

m−1∑
i=0

p′iT
′
V ′i

(1) =

∑m−1
i=0 E(Ni)

h0 logm(E(Ni))∑m−1
i=0 E(Ni)h0

= ϕ′(h0).

Next we show that dimH π(K) ≥ H(π∗µ
′) ≥ ϕ(h0), by considering the scenarios h0 = 1,

h0 ∈ (0, 1) and h0 = 0, separately. First suppose that h0 = 1. Then µ′ is the so-called

branching measure on K, and we see that

dim(ν ′) +
m−1∑
i=0

p′iT
′
V ′i

(1) = ϕ(1) = log(E(N))/ log(m) > 0,

hence µ′ is non-degenerate with positive probability (a fact that can also be directly seen

from T ′W ′(1)). Moreover, since on [0, 1] ϕ takes its minimum at h = 1, by smoothness of
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ϕ we must have ϕ′(1) ≤ 0, consequently
∑m−1

i=0 p′iT
′
V ′i

(1) ≤ 0, and thus by Theorem 3.3,

dim(π∗µ
′) = dim(µ′) and dimH π(K) = dimH(K) = ϕ(1) when K 6= ∅.

Next suppose that 0 < h0 < 1. We have ϕ′(h0) = 0, hence
∑m−1

i=0 p′iT
′
V ′i

(1) = 0 and thus

by Theorem 3.3,

dim(π∗µ
′) = dim(µ′) = dim(ν ′) = ϕ(h0),

yielding dimH π(K) ≥ ϕ(h0) when K 6= ∅.

Finally suppose that h0 = 0. Then ϕ′(0) ≥ 0, so
∑m−1

i=0 p′iT
′
V ′i

(1) ≥ 0 and thus by

Theorem 3.3, dim(π∗µ
′) = dim(ν ′) = ϕ(0) ≤ dim(µ′) when µ′ 6= 0, and consequently,

dimH π(K) ≥ ϕ(0) when K 6= ∅.

So far we have proved (3.7). Below we discuss the uniqueness problem regarding the

last variational relation in (3.7).

Notice that the Mandelbrot measure µ′ considered above has a dimension equal to

dimH K if and only if T ′W ′(1) = −TW ′(0) = logm(E(N)), that is TW ′ is linear. In this

case, if h0 = 1, µ′ is the branching measure. If h0 < 1, since

TW ′(q) = q logm

(m−1∑
i=0

E(Ni)
h0

)
− logm

m−1∑
i=0

1{pi>0}E(Ni)
1+q(h0−1)

and the second derivative of TW ′ vanishes, we get that E(Ni) = 1 for each i such that

pi > 0. Once again µ′ is the branching measure.

For the uniqueness problem, the case when dimH K = dimH π(K) is clear from the

above discussion, since the same argument in fact shows that a Mandelbrot measure

supported on K whose dimension equals that of K must be the branching measure. Thus

we can suppose that dimH K > dimH π(K).

Suppose that the maximum in (3.7) is attained at a Mandelbrot measure µ′′ defined

simultaneously with µ′ and supported on K conditional on non-vanishing. Then it is easily

seen that µ′′ is generated by a random vector W ′′ such that W ′′i,j > 0 only if Wi,j > 0,

and we can associate with W ′′ the probability vector (p′′i =
∑m−1

j=0 E(W ′′i,j))0≤i≤m−1 and

the vectors V ′′i = (W ′′i,j/p
′′
i )0≤j≤m−1 if p′′i > 0 and 0 otherwise. Moreover, p′i > 0 implies

p′′i > 0 for otherwise the formula inf0≤h≤1 logm
∑m−1

i=0 E(Ni)
h for the Hausdorff dimension

of π(K) would give a strictly smaller dimension. Recall that

(5.7) H(π∗µ
′′) = min

(
dim(ν ′′), dim(ν ′′) +

m−1∑
i=0

p′′i T
′
V ′′i

(1−)
)
.

Now, let us observe that
∑m−1

i=0 p′′i T
′
V ′′i

(1−) is always smaller than or equal to

m−1∑
i=0

p′′i T
′
V ′i

(1−) =
m−1∑
i=0

p′′i logm E(Ni).
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This is due to the fact that TV ′′i is concave, equal to 0 at 1, and

(5.8) TV ′′i (0) = − logm E(
m−1∑
j=0

1{W ′′i,j>0}) ≥ − logm E(Ni),

implying that T ′V ′′i
(1−) ≤ −TV ′′i (0) ≤ logm E(Ni).

Consequently, in order to optimize dim(ν ′′) +
∑m−1

i=0 p′′i T
′
V ′′i

(1−), µ′′ must satisfy the

condition that T ′V ′′i
(1−) = T ′V ′i

(1−) = logm E(Ni). On the other hand, by concavity of

TV ′′i on [0, 1], TV ′′i (0) ≤ −T ′V ′′i (1−). Finally, since by (5.8), TV ′′i (0) ≥ − logm E(Ni) =

−T ′V ′′i (1−), we get TV ′′i (0) = − logm E(Ni) = −T ′V ′′i (1−), hence TV ′′i is linear on [0, 1]. This

means that like for V ′i , the coordinates of the vector V ′′i equal either 0 or 1/E(Ni). Since,

moreover, W ′′i,j = 0 as soon as W ′i,j = 0, we get V ′′i = V ′i almost surely. On the other hand,

a simple study using Lagrange multipliers shows that dim(ν ′′) +
∑m−1

i=0 p′′i logm E(Ni) is

optimal for p′′ = p′, the maximum being unique. In other words, the maximum over µ′′

of dim(ν ′′) +
∑m−1

i=0 p′′i T
′
V ′′i

(1−) is reached uniquely at µ′.

Now, suppose first that ϕ′(0) ≤ 0, i.e. the infimum of ϕ over [0, 1] is reached at a unique

h0 ∈ (0, 1], or at h0 = 0 with ϕ′(0) = 0. In both cases, we have ϕ′(h0) ≤ 0, and our study

of µ′ (cf. (5.6)) shows that
∑m−1

i=0 p′iT
′
V ′i

(1−) =
∑m−1

i=0 p′i logm E(Ni) = ϕ′(h0) ≤ 0, showing

that H(π∗µ
′) = dim(µ′). Consequently, by the arguments in the last paragraph, for any

Mandelbrot measure µ′′ supported on K,

dim(ν ′′) +

m−1∑
i=0

p′′i T
′
V ′′i

(1−) ≤ dim(ν ′) +

m−1∑
i=0

p′iT
′
V ′i

(1−) = dim(µ′) = H(π∗µ
′),

where the first equality holds if and only if µ′′ = µ′. Then, the relation (5.7) yields µ′ as

the unique Mandelbrot measure such that H(π∗µ
′) is maximal.

Next suppose that ϕ′(0) > 0. Fix λ > 1 and Uλ a random variable independent

of V ′ and taking value λ > 1 with probability λ−1 and 0 with probability 1 − λ−1.

Take p′′ = p′ and replace V ′ by V ′′ = (V ′′0 , V
′′

1 , V
′′

2 , . . . , V
′′
m−1) with V ′′i = Uλ · V ′i . This

yields a Mandelbrot measure µ′′ different from µ′, with the same expectation ν ′ and∑m−1
i=0 p′′i T

′
V ′′i

(1) =
∑m−1

i=0 p′iT
′
V ′i

(1)− logm(λ) > 0 if λ is close enough to 1. Consequently,

H(π∗µ
′′) = dim(ν ′) = H(π∗µ

′), and there is no uniqueness in this case.

6. Proof of Theorem 3.7: Differentiability properties of the function τ

6.1. Differentiability over (0, 1−].

Notice that the differentiability of τ over (0, 1−] automatically holds if τ ≡ T over (0, 1],

and that this holds in particular if Ti is linear and E(Ni) = 1 for all 0 ≤ i ≤ m − 1 such

that E(Ni) > 0, i.e. Ti ≡ 0 so that T = τν = τ (it is shown below that this is also a

necessary condition, which is equivalent to having E(Ni) = 1 and Vi,j = 1{Wi,j>0} for all
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0 ≤ j ≤ m− 1 almost surely). Moreover, still in this case, since we have excluded the case

that Ni = 1 for all 0 ≤ i ≤ m− 1 such that E(Ni) > 0, by Theorem 3.1(2), π∗µ and ν are

mutually singular, and thus π∗µ 6= ν almost surely.

Now suppose that τ 6≡ T over (0, 1]. For 0 < q ≤ s ≤ 1 set

G(q, s) =
m−1∑
i=0

pqim
−qTi(s)/s

and

g(q, s) = s2(−q log(m))−1∂G

∂s
(q, s) =

m−1∑
i=1

pqim
−qTi(s)/sT ∗i (T ′i (s)).

Let q ∈ (0, 1]. To begin with suppose that the infimum defining τ(q), i.e. the infimum

of G(q, ·), is reached at s ∈ (q, 1) (hence q < 1). We claim that s is unique and for all

q′ in an open neighborhood of q there exists a unique s(q′) ∈ (q′, 1) such that τ(q′) =

− logmG(q, s(q′)). To show this claim, notice that at any s0 ∈ (q, 1) at which the infimum

defining τ(q) is reached, g(q, s0) = 0. Moreover, for all s ∈ [q, 1],

∂g

∂s
(q, s) =

m−1∑
i=1

pqim
−qTi(s)/s(−q log(m)s−2(T ∗i (T ′i (s)))

2 + sT ′′i (s)) ≤ 0.

Suppose that T ′′i (s) = 0 for some i. ThenE
m−1∑
j=0

V s
i,j(log(Vi,j))

2

E
m−1∑
j=0

V s
i,j

 =

E
m−1∑
j=0

V s
i,j(log(Vi,j))

2

.

It follows that by the Cauchy-Schwarz inequality, there exists a constant c such that almost

surely either Vi,j = 0 or Vi,j = c, hence c = 1/E(Ni). In this case, T ∗i (T ′i (s)) = log(E(Ni)).

Consequently, for ∂g
∂s (q, s) to be equal to 0 we need to have E(Ni) = 1 and Vi,j = 1{Wi,j>0}

for all 0 ≤ i, j ≤ m−1 such that pi > 0, a situation that we have discarded by assuming that

τ 6= T (notice that this property is equivalent to requiring that Ti ≡ 0 for all 0 ≤ i ≤ m−1

such that pi > 0). Thus ∂g
∂s (q, s) < 0, hence g(q, s) can vanish only at one point of (q, 1),

that we denote by s(q). Then, because ∂g
∂s (q, s(q)) < 0, the implicit function theorem

implies our claim, as well as the analyticity of s(·) and τ on any maximal interval of points

q such that s(q) ∈ (q, 1). In addition, s′(q) = −
∂g
∂q

(q,s(q))
∂g
∂s

(q,s(q))
. We also notice that the study of

s 7→ g(q, s) shows that s 7→ ∂G
∂s (q, s) is negative on the left hand side of s(q) and positive

on the right hand side, so the infimum of G(q, ·) over [q, 1] can be reached neither at q

nor at 1.

Now suppose that the infimum of G(q, ·) is reached at s0 ∈ {q, 1}. Suppose that this

infimum is reached at another point of [q, 1] as well (this can hold only if q < 1). Then, let

s1 ∈ (q, 1) at which G(q, ·) reaches a local maximum, hence g(q, ·) vanishes. Our previous

analysis of the sign of g(q, ·), which is the opposite of the sign of ∂G
∂s (q, ·), shows that
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∂G
∂s (q, ·) is negative on the left of s1, which is a contradiction. Thus the infimum of G(q, ·)
at s0 is strict. We again denote this point s0 by s(q).

We notice that the argument in the above paragraph also shows that if q is a point of

(0, 1) at which τν and T coincide, i.e. G(q, 1) = G(q, q), then τ(q) cannot be attained at

q or 1. This entails the fact that τ = T = τν only if Ti ≡ 0 when pi > 0.

Next we prove that both τ and s(·) are continuous over (0, 1]. Suppose that q ∈ (0, 1].

Let (qn)n≥1 be a sequence of points in (0, 1] such that qn → q. Without loss of generality,

we can assume that s(qn) converges as well, to a number, say sq, which necessarily belongs

to [q, 1] since s(qn) ∈ [qn, 1]. It follows by continuity of G that G(qn, s(qn)) → G(q, sq).

Suppose that sq 6= s(q). Then, G(q, s(q)) < G(q, sq), hence there exist n0 > 1 and ε > 0

such that for all n ≥ n0, for all s ∈ [qn, 1],

G(qn, s) ≥ G(qn, s(qn)) > G(q, s(q)) + ε.

However, there exists a sequence (sn)n≥1 such that sn ∈ [qn, 1] for all n ≥ n0 and

(qn, sn)→ (q, s(q)). By continuity of G over [0, 1], G(qn, sn)→ G(q, s(q)), but G(qn, sn) >

G(q, s(q)) + ε, which gives a contradiction. Consequently, we obtained the desired conti-

nuity property of s(·), and that of τ = − logmG(·, s(·)).

Let us denote by I the set of the connected components of {q ∈ (0, 1) : s(q) ∈ (q, 1)}.

Let E = (0, 1] \
⋃
I∈I I. Let q0 ∈ E. If q0 is an interior point of E, then by continuity

of s, we must have either s(q) = q or s(q) = 1 on the maximal interval Iq0 containing q0

and contained in E; as a consequence, both s(·) and τ are analytic on the interior of Iq0 .

Suppose that q0 ∈ ∂E and q0 < 1. Notice that since q0 is an accumulating point of⋃
I∈I I, by continuity of ∂G

∂s and s(·), either ∂G
∂s (q0, q0) = 0 if s(q0) = q0 or ∂G

∂s (q0, 1) = 0 if

s(q0) = 1.

Up to symmetry between the left and the right hand sides of q0, there are essentially

three situations. There exists η > 0 such that either s(q) = q over [q0 − η, q0) and

s(q) ∈ (q, 1) over (q0, q0 + η], s(q) = 1 over [q0 − η, q0) and s(q) ∈ (q, 1) over (q0, q0 + η],

or s(q) ∈ (q, 1) both over [q0 − η, q0) and (q0, q0 + η]. It means that q0 cannot be an

accumulating point of boundary points of E. Indeed, suppose that on the contrary q0

is such a point. Then s(q0) ∈ {q0, 1}. First assume that s(q0) = q0. By the remark in

the last paragraph, ∂G
∂s (q, q) should have infinitely many zeros accumulating at q0, which

would imply that ∂G
∂s (q, q) = 0 for all q ∈ (0, 1) by analyticity of G; but this does not

hold, for otherwise τ = T , a case that we discarded. Indeed if τ 6= T , there exists

q0 ∈ (0, 1) such that s(q0) ∈ (q0, 1). Then our previous study of g(q0, ·) shows that
∂G
∂s (q0, q0) = −(log)g(q0, q0)/q0 < 0 since g(q0, ·) is strictly decreasing and g(q0, s(q0)) = 0.

Next assume s(q0) = 1. Again by the remark in the last paragraph we should have
∂G
∂s (q, 1) = 0 and thus g(q, 1) = 0 for all q ∈ (0, 1), and it follows that g(q, s(q)) > 0

whenever s(q) 6= 1, leading to a contradiction.
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Finally suppose that q0 = 1. The same approach as above shows that there exists η > 0

such that either s(q) = 1 or s(q) ∈ (q, 1) over [1 − η, 1). Also, we notice that 0 cannot

be an accumulating point of ∂E since we assumed that the Ti are finite and analytic in a

neighborhood of 0.

We summarize the above in the following proposition.

Proposition 6.1. The functions τ and s(·) are continuous over (0, 1]. There exists a set

S, finite or empty, such that for each connected component I of (0, 1] \ S, the functions τ

and s(·) restricted to I are analytic, and I is a maximal interval over which either s(q) = q,

s(q) ∈ (q, 1) or s(q) = 1.

It remains to prove the differentiability of τ at each q ∈ S. Let q0 ∈ S. If q0 = 1, then

there exists η > 0 such that s(q) ∈ (q, 1) over [1− η, 1). The formula

(6.1) τ ′(q) = −
∂G
∂q (q, s(q))

log(m)G(q, s(q))

implies that τ ′(q) has a limit at 1−, hence by the mean value theorem τ is left differentiable

at 1.

Suppose that q0 < 1. If s(q) ∈ (q, 1) for all q in [q0 − η, q0 + η] \ {q0} for some η > 0,

then formula (6.1) and the continuity of s(·) combined with the mean value theorem yield

the fact that τ is C1 at q0. If s(q) = q on [q0 − η, q0) and s(q) ∈ (q, 1) on (q0, q0 + η],

we first notice that s(q)/q tends to 1 as q → q0+ by continuity of s(·). It is then almost

direct to see that τ ′(q) given by (6.1) converges to T ′(q0) as q → q0+. Indeed,

∂G

∂q
(q, s(q)) =

m−1∑
i=0

pqim
−Ti(s(q))q/s(q)(log(pi)− log(m)Ti(s(q))/s(q))(6.2)

=

m−1∑
i=0

pqim
−Ti(s(q))q/s(q)(log(pi)− log(m)T ′i (s(q)),(6.3)

due to the equality ∂G
∂s (q, s(q)) = 0. Then, letting q tend to q0+ and using the fact

that s(q)/q tends to 1, we get limq→q0+ τ
′(q) = T ′(q0). On the other hand, τ = T over

[q0 − η, q0), hence τ is C1 at q0. The other cases can be treated similarly.

6.2. Concavity of τ over [0, 1]. We will show later that the differentiability of τ over

(0, 1] combined with other arguments yields the equality of τ with the Lq-spectrum of

π∗µ over this interval, conditional on {µ 6= 0}. Consequently, τ is concave on [0, 1] and

automatically differentiable at the right hand side of 0 as soon as it is right continuous

at 0.

6.3. Continuity and differentiability at 0. Due to the previous discussion, it is enough

to prove the continuity at 0. However, we will examine the value of τ ′(0+). We distinguish

two cases.
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To begin with, suppose that h(q) = q/s(q) does not tend to 0 as q tends to 0. It follows

that s(q) tends to 0. Suppose that for some sequence (qn)n≥0 tending to 0, h(qn) →
h∗ ∈ (0, 1]. The study achieved above gives g(qn, s(qn)) = 0 if qn < s(qn) < 1 and

g(qn, s(qn)) ≤ 0 if s(qn) = qn. This implies that

m−1∑
i=0

E(Ni)
h∗ logm(E(Ni)) = lim

n→+∞
g(qn, s(qn))

vanishes if h∗ < 1 and is non-positive if h∗ = 1. By convexity of the mapping h ∈ [0, 1] 7→
logm

∑m−1
i=0 E(Ni)

h, we conclude that in any case,

− logm

m−1∑
i=0

E(Ni)
h∗ = − inf

0≤h≤1
logm

m−1∑
i=0

E(Ni)
h,

i.e. h∗ is the point at which the minimum in (1.2) is attained. Moreover limn→∞ τ(qn) =

− logm
∑m−1

i=0 E(Ni)
h∗ = τ(0). It follows that τ is right continuous at 0.

Now suppose that h(q) = q/s(q) tends to 0 as q tends to 0. We have q < s(q) ≤
1 for q small enough. From this it follows that g(q, s(q)) ≥ 0. Consequently, since∑m−1

i=0 1{pi>0} log(E(Ni)) = limq→0+ g(q, s(q)) (because h(q) tends to 0), this number is

non-negative. This implies that logm
∑m−1

i=0 1{pi>0} = inf0≤h≤1 logm
∑m−1

i=0 E(Ni)
h. On

the other hand limq→0+ τ(q) = − logm
∑m−1

i=0 1{pi>0}, hence τ is right continuous at 0, and

τ(0) = τν(0). In this case we set h∗ = 0.

In all the cases, we set

(6.4) p′i =

(
E(Ni)

h∗∑m−1
i′=0 E(Ni′)h∗

)
0≤i≤m−1

,

with the convention 00 = 0, and we denote by ν ′ the associated Bernoulli product.

6.4. The value of τ ′(0+). Now we use Proposition 6.1 to determine the value of τ ′(0+)

and examine more precisely the behavior of s(q) at 0+. This will be used to prove the

validity of the multifractal formalism for π∗µ at τ ′(0+). Our observation is the following:

Proposition 6.2. Let p′i be defined as in (6.4). One of the three following situations

occurs:

(i) τ = T near 0+ and τ ′(0+) = T ′(0).

(ii) τ = τν near 0+ and τ ′(0+) = τ ′ν(0). Moreover,
∑m−1

i=1 p′iT
∗
i (T ′i (1)) ≥ 0.

(iii) τ > max(T, τν) near 0+, and there exists s0 ∈ [0, 1] such that

τ ′(0+) = −
m−1∑
i=0

p′i(logm(pi)− T ′i (s0)).

Moreover,
∑m−1

i=0 p′iT
∗
i (T ′i (s0)) = 0.
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Proof. We treat the three cases considered in the statement separately.

Case 1: τ = T near 0+. In this case, h∗ = 1 and τ ′(0+) = T ′(0).

Case 2: τ = τν near 0+. We have h∗ = 0 and τ ′(0+) = τ ′ν(0). Moreover, for all q > 0

close enough to 0, s(q) = 1 which implies that g(q, s(q)) = g(q, 1) =
∑m−1

i=1 pqiT
∗
i (T ′i (1)) ≥

0. Consequently, letting q tend to 0 we get
∑m−1

i=1 p′iT
∗
i (T ′i (1)) ≥ 0.

Case 3: τ > max(T, τν) near 0+.

Assume at first that h∗ ∈ (0, 1]. Letting q tend to 0+ in the equality g(q, s(q)) = 0 we

obtain
∑m−1

i=0 p′iT
∗
i (T ′i (0)) = −

∑m−1
i=0 p′iTi(0) = 0. Then, applying (6.1) and (6.3) at q close

enough to 0+ and letting q tend to 0 we obtain τ ′(0+) = −
∑m−1

i=0 p′i(logm(pi) − T ′i (0));

we then set s0 = 0.

Next assume that h∗ = 0. From the discussion of the continuity of τ at 0 we deduce that

τ(0) = τν(0). Next, consider a sequence (qn)n≥1 converging to 0+ such that s(qn) (which

belongs to (qn, 1)) tends to s0 ∈ [0, 1]. From the equality g(qn, s(qn)) = 0 we deduce that∑m−1
i=0 p′iT

∗
i (T ′i (s0)) = 0 by letting n tend to ∞. Moreover, using (6.1) and (6.3) with qn

and letting n tend to ∞ yields τ ′(0+) = −
∑m−1

i=0 p′i(logm(pi)− T ′i (s0)). �

6.5. Differentiability at 1. Due to (6.1), if q < s(q) < 1 in a left neighborhood of 1,

by (6.1), τ ′(1−) = T ′(1). This, together with the facts that τ ≥ max(τν , T ) over [0, 1]

and τ(1) = T (1) = τν(1) implies that τ ′ν(1) ≥ T ′(1). Then, if the last inequality is strict,

τν > T hence τ = T on a right neighborhood of 1, which yields the differentiability of τ

at 1. If τ ′ν(1) = T ′(1), then min(τν , T ) must have a derivative equal to T ′(1) on the right

of 1, and we get the desired conclusion as well.

If s(q) = 1 in a left neighborhood 1, then there we have τ = τν ≥ T , and τ ′(1−) = τ ′ν(1).

Then a similar argument as in the previous case (with the roles of τν and T exchanged)

yields the existence of τ ′(1).

The case s(q) = q in a left neighborhood 1 is treated similarly.

In conclusion, we get

(6.5) τ ′(1) =

{
T ′(1) if T ′(1) ≤ τ ′ν(1)

τ ′(1) = τ ′ν(1) otherwise
.

6.6. Differentiability and concavity over (1, qc). Recall that qc is defined in (2.4).

The definition of τ clearly implies its concavity and differentiability at points at which the

graphs of τν and T do not cross transversally. Due to the analyticity of τν and T , there

are at most finitely many such points in a given bounded interval.

7. Proof of Theorem 3.7: Lower bound for the Lq-spectrum

Recall that T (q), τν(q) and τ(q) are defined/given in (2.2), (3.5) and (3.9), respectively.
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Proposition 7.1. With probability 1, conditional on {π∗µ 6= 0},

(1) for all q ≥ 1 the following properties hold:

(i) τπ∗µ(q) ≤ τµ(q);

(ii) if T (q) > 0, then τπ∗µ(q) ≥ min(τν(q), T (q));

(iii) if T ∗(T ′(q)) ≥ 0 then T (q) > 0. If, in addition, min(τν(q), T (q)) = T (q), then

τπ∗µ(q) = T (q).

(2) For all 0 < q ≤ 1, τπ∗µ(q) ≥ τ(q).

Since, as a Lq-spectrum, the function τπ∗µ is continuous over (0,∞) and τ , τν and T

are continuous, to prove the above proposition we only need to get the desired inequalities

for each q > 0.

Proof of Proposition 7.1. (1) (i) The fact that τπ∗µ(q) ≤ τµ(q) for q ≥ 1 is general and

comes from the super-additivity of x 7→ xq over R+ applied to
(
π∗µ([u]) =

∑
v∈Σn

µ([u, v])
)q

.

(ii) The almost sure inequality τπ∗µ(q) ≥ min(τν(q), T (q)) for a given q ≥ 1 such that

T (q) > 0 is a direct consequence of Corollary 9.10.

(iii) Let q ≥ 1 be such that T ∗(T ′(q)) ≥ 0 and suppose that T (q) ≤ 0. Recall that

T is concave, so its derivative is non-increasing. Also, T (1) = 0 and T ′(1) > 0. This

implies that T ′ is negative at some point of (1, q), otherwise T could not take non-positive

values over (1, q]. Since T ′ is non-increasing, it follows that T has a unique zero q0 over

(1, q] at which T ′(q0) < 0. This implies that T ∗(T ′(q0)) = q0T
′(q0) < 0. Since T ∗(T ′) is

non-increasing on R+ (its derivative is q 7→ qT ′′(q)), we get T ∗(T ′(q)) ≤ T ∗(T ′(q0)) < 0,

which is a contradiction. So T (q) > 0.

Now recall that by Theorem 2.1, T (q) = τµ(q) as soon as T ∗(T ′(q)) ≥ 0. Thus, if

min(τν(q), T (q)) = T (q), the equality τπ∗µ(q) = T comes from (i) and (ii).

(2) Recall that π∗µ([u]) = ν([u])X(u) for u ∈ Σn, where

X(u) =
∑
v∈Σn

µ([u, v])

ν([u])
=
∑
v∈Σn

Y (u, v)

n∏
k=1

Vuk,vk(u|k−1, v|k−1),

as defined in (5.2). For 0 < q ≤ 1 and q ≤ s ≤ 1, using Jensen’s inequality, for each n ≥ 1

we get

E
( ∑
u∈Σn

ν([u])qX(u)q
)

= E
( ∑
u∈Σn

ν([u])qX(u)s·q/s
)

≤
∑
u∈Σn

ν([u])qE(X(u)s)q/s.
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Then, using the fact that E(Y s) ≤ E(Y )s = 1, and the branching property, we obtain∑
u∈Σn

ν([u])qE(X(u)s)q/s =
∑
u∈Σn

ν([u])qE
(( ∑

v∈Σn

µ([u, v])

ν([u])

)s)q/s
≤

∑
u∈Σn

ν([u])qE
( ∑
v∈Σn

(µ([u, v])

ν([u])

)s)q/s
=

∑
u∈Σn

ν([u])qE
( ∑
v∈Σn

Y (u, v)s
n∏
k=1

Vuk,vk(u|k−1, v|k−1)s
)q/s

= E(Y s)q/s
∑
u∈Σn

n∏
k=1

pqukm
−Tuk (s)q/s ≤

(m−1∑
i=0

pqim
−qTi(s)/s

)n
,

where pi and Ti are defined as in (3.1)-(3.2). Since this holds for all s ∈ [q, 1], for each

n ≥ 1 we obtain

E
( ∑
u∈Σn

ν([u])qX(u)q
)
≤
(

inf
q≤s≤1

m−1∑
i=0

pqim
−qTi(s)/s

)n
.

Consequently, Lemma C.1 yields that τπ∗µ(q) ≥ τ(q) almost surely. �

8. Proof of Theorem 3.7: Upper bound for the Lq-spectrum and validity of

the multifractal formalism

Recall that q̃c and τ are defined in (3.8), (3.9). Proposition 7.1 and the fact that both

τ(0) and τπ∗µ(0) equal the box counting dimension of π(K) yield the following lemma.

Lemma 8.1. With probability 1, conditional on {µ 6= 0}, τπ∗µ ≥ τ over [0, q̃c).

Consequently, due to the general inequality dimE(π∗µ, α) ≤ τ∗π∗µ(α), valid for all α,

to prove the validity of the multifractal formalism at any α ∈ [τ ′(q+), τ ′(q−)] for some

q ∈ (0, q̃c) or at α = τ ′(0+) almost surely, as well as the almost sure equality of τπ∗µ = τ

over [0, q̃c), it is enough to show that, for each q ∈ [0, q̃c), with probability 1, conditional

on {µ 6= 0}, dimE(π∗µ, α) ≥ τ∗(α) for α ∈ [τ ′(q+), τ ′(q−)] if q > 0 and α = τ ′(0+) if

q = 0.

Indeed, once this is done, we automatically have that almost surely, conditional on

{µ 6= 0}, τ∗(α) = αq − τ(q) ≤ dimE(π∗µ, α) ≤ τ∗π∗µ(α) ≤ αq − τπ∗µ(q) ≤ αq − τ(q).

Moreover, the information dimE(π∗µ, α) ≥ τ∗(α) for α = τ ′(q), where q describes a dense

countable subset of values of q, is enough to get the equality τ = τπ∗µ over [0, q̃c). Also,

the fact τπ∗µ(q) = qT ′(qc−) for q ≥ qc when q̃c = qc <∞ follows from Proposition 10.4.

Then, to get (3.10) for q ∈ (0, q̃c), we notice that if α ∈ {τ ′(q+), τ ′(q−)}, for any ε > 0

and large enough n, #{u ∈ Σn : π∗µ([u]) ≥ m−n(α+ε)} ≥ mn(τ∗(α)−ε), for otherwise a
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simple covering argument would give dimE(π∗µ, α) < τ∗(α). This implies∑
|u|=n

1{π∗µ([u])>0}π∗µ([u])q ≥ mn(τ∗(α)−ε)m−nq(α+ε) ≥ m−n(τ(q)+(q+1)ε).

Since ε is arbitrary, this yields lim supn→∞− 1
n logm

∑
|u|=n 1{π∗µ([u])>0}π∗µ([u])q ≤ τ(q).

Moreover, we already know (by Proposition 7.1) that

τπ∗µ(q) = lim inf
n→∞

− 1

n
logm

∑
|u|=n

1{π∗µ([u])>0}π∗µ([u])q ≥ τ(q).

This yields (3.10) and the equality τπ∗µ(q) = τ(q) for q > 0. The case when q = 0 just

comes from the fact that dimH K = dimBK.

In the remaining part of this section we will prove the desired inequality (that is, with

probability 1, conditional on {µ 6= 0}, dimE(π∗µ, α) ≥ τ∗(α)) by distinguishing the

following 4 cases:

Case (I): α = T ′(q) and τ(q) = T (q) with q ∈ (0, qc) \ {1}.
Case (II): α = τ ′(q) with τ(q) 6= T (q) and q ∈ (0, q̃c)\{1}, or α ∈ {τ ′(q+), τ ′(q−)}
with q ∈ (1, qc) and a first order phase transition occurs at q.

Case (III): α ∈ (τ ′(q+), τ ′(q−)) with q ∈ (1, qc) and a first order phase transition

occurs at q.

Case (IV): α = τ ′(0+).

Remark 8.2. To follow the different cases distinguished above, it is useful to have the

following properties in mind.

(1) If α = τ ′(1), our study of the exact dimensionality of π∗µ and (6.5) show that

dimE(π∗µ, α) = α = τ∗(α) almost surely conditional on {µ 6= 0}.
(2) The study of the differentiability of τ achieved in Section 6 shows that if q ∈ (0, 1)

then either τ(q) = T (q) and τ ′(q) = T ′(q) or τ(q) = τν(q) and τ ′(q) = τ ′ν(q).

(3) Simple considerations about the concave function min(τν , T ) show that at q ∈
(1, qc), if τ(q) = T (q) < τν(q) then τ ′(q) = T ′(q), if q ∈ (1, q̃c) and τ(q) =

τν(q) < T (q) then τ ′(q) = τ ′ν(q), and if q ∈ (1, qc) and τ(q) = T (q) = τν(q), then

{τ ′(q+), τ ′(q−)} = {T ′(q), τ ′ν(q)}.

8.1. Case (I). To begin with we recall some known facts about the multifractal analysis

of µ.

For q ≥ 0, let µq be the Mandelbrot measure built with the random vectors

Wq(u, v) = (mT (q)Wi,j(u, v)q)0≤i,j≤m−1, (u, v) ∈
⋃
n≥0

Σn × Σn.

According to the study in [5], with probability 1, conditional on {µ 6= 0}, all the Mandel-

brot measures µq, q ∈ [0, qc), are defined simultaneously, moreover, dim(µq) = T ∗(T ′(q)) >

0 and E(µ, T ′(q)) is of full µq-measure.
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Proposition 8.3. Fix q ∈ (0, qc) \ {1} such that τ(q) = T (q). With probability 1, condi-

tional on {µ 6= 0}, dim(π∗µq) = T ∗(T ′(q)).

The following corollary is our main goal.

Corollary 8.4. Fix q ∈ (0, qc)\{1} such that τ(q) = T (q). With probability 1, conditional

on {µ 6= 0}, dimE(π∗µ, T
′(q)) ≥ T ∗(T ′(q)) = τ∗(T ′(q)).

We start with the proof of the corollary, assuming Proposition 8.3.

Proof of Corollary 8.4. Suppose µ 6= 0. We first show that τ ′π∗µ(0+) ≥ τ ′(0+) ≥ T ′(q).

To see this, observe at first that τπ∗µ(0) = τ(0) since −τ ′π∗µ(0) is the upper box dimension

of π(K) and by (1.2), −τ(0) = dimB π(K). Since, moreover, τπ∗µ ≥ τ over (0, 1] by

Proposition 7.1(2), we get the first inequality that τ ′π∗µ(0+) ≥ τ ′(0+). Now if τ ′(0+) <

T ′(q), the equality τ(q) = T (q) yields

T ∗(T ′(q)) = qT ′(q)− T (q) > qτ ′(0+)− τ(q) ≥ τ∗(τ ′(0+)) = −τ(0) = dimB(π(K)).

However, by Proposition 8.3, dim(π∗µq) = T ∗(T ′(q)), so dim(π∗µq) > dimB π(K), which

is impossible since π∗µq is supported on π(K). Thus τ ′(0) ≥ T ′(q).

There is a subset Fq of supp(µ) of full µq-measure such that for all t ∈ Fq, dimloc(µq, t) =

dimloc(π∗µq, π(t)) = T ∗(T ′(q)) (by Proposition 8.3 and the fact that dim(µq) = T ∗(T ′(q)))

and dimloc(µ, t) = T ′(q) (by the multifractal analysis of µ [5]). This implies that for all

t ∈ Fq, dimloc(π∗µ, π(t)) ≤ dimloc(π∗µ, π(t)) ≤ dimloc(µ, t) = T ′(q). On the other hand,

since T ′(q) ≤ τ ′π∗µ(0+), it follows that for all α′ < T ′(q), by (2.1),

dim{x ∈ supp(π∗µ) : dimloc(π∗µ, x) ≤ α′} ≤ τ∗π∗µ(α′) ≤ α′q − τπ∗µ(q)

< T ′(q)q − τπ∗µ(q)

≤ T ′(q)q − τ(q) = T ∗(T ′(q)).

Consequently, since the family (E(π∗µ, α
′))α′<T ′(q) is non-decreasing and dim(π∗µq) =

T ∗(T ′(q)), we get π∗µq
(⋃

α′<T ′(q)E(π∗µ, α
′)) = 0. Now, set F̃q = π(Fq)\

⋃
α′<T ′(q)E(π∗µ, α

′).

By construction, F̃q ⊂ E(π∗µ, T
′(q)) and π∗µq(F̃q) = 1. Finally

dimE(π∗µ, T
′(q)) ≥ dim F̃q ≥ dimµq = T ∗(T ′(q)).

Moreover, by Remark 8.2, if q ≤ 1 then τ ′(q) = T ′(q), and if q > 1, then T ′(q) ∈
{τ ′(q+), τ ′(q−)}, so T ∗(T ′(q)) = τ∗(T ′(q)). This completes the proof of the corollary. �

Proposition 8.3 is a consequence of Theorem 3.3 and the following lemma.

Lemma 8.5. If q ∈ (0, qc)\{1} and τ(q) = T (q), then, conditional on {µq 6= 0}, dim(µq) =

T ∗(T ′(q)) ≤ dim(E(π∗µq)).
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Proof. We first show that for any q ∈ (0, qc), almost surely, conditional on {µq 6= 0},

(8.1) dim(µq)− dim(E(π∗µq)) =

m−1∑
i=0

pqim
T (q)−Ti(q)T ∗i (T ′i (q)).

To see this, notice that E(π∗µq) is a Bernoulli product measure on Σ generated by the

probability vector (p′0, . . . , p
′
m−1) with

p′i :=
m−1∑
j=0

mT (q)E(W q
i,j) = pqim

T (q)−Ti(q).

A simple computation yields that

dim(E(π∗µq)) = − 1

logm

m−1∑
i=0

p′i log p′i

= −T (q) +

(
m−1∑
i=0

pqim
T (q)−Ti(q)Ti(q)

)
− q

logm

(
m−1∑
i=0

pqi (log pi)m
T (q)−Ti(q)

)
.

(8.2)

In the meantime, since
∑

i=0 p
q
im

T (q)−Ti(q) = 1, differentiating with respect to q yields

(8.3) T ′(q) =

(
m−1∑
i=0

pqim
T (q)−Ti(q)T ′i (q)

)
− 1

logm

(
m−1∑
i=0

pqi (log pi)m
T (q)−Ti(q)

)
.

Since dim(µq) = T ∗(T ′(q)) = T ′(q)q − T (q) almost surely, by (8.2) and (8.3) we ob-

tain (8.1).

Next we show that if τ(q) = T (q) for some q ∈ (0, qc) \ {1}, then

m−1∑
i=0

pqim
T (q)−Ti(q)T ∗i (T ′i (q)) ≤ 0.

We consider the cases q ∈ (1, qc) and 0 < q < 1 separately. First suppose q ∈ (1, qc).

Recall that π∗µ([u]) = ν([u])X(u) for u ∈ Σn, where

X(u) =
∑
v∈Σn

µ([u, v])

ν([u])
=
∑
v∈Σn

Y (u, v)

n∏
k=1

Vuk,vk(u|k−1, v|k−1).

For 1 ≤ s ≤ q and n ≥ 1, using Jensen’s inequality and calculations similar to those

displayed in the proof of Proposition 7.1(2) (with reversed inequalities), as well as the fact

that E(Y s)1/s ≥ E(Y ) = 1, we can get that

E
( ∑
u∈Σn

π∗µ([u])q
)
≥
(m−1∑
i=0

pqim
−qTi(s)/s

)n
.

Consequently, due to Corollary 9.9,

−τ(q) = max(−τν(q),−T (q)) ≥ sup
1≤s≤q

logm

m−1∑
i=0

pqim
−qTi(s)/s.
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Since τ(q) = T (q), this implies that the supremum is reached at s = q. Differen-

tiating with respect to s at s = q then yields
∑m−1

i=0 pqim
−Ti(q)T ∗i (T ′i (q)) ≤ 0, hence∑m−1

i=0 pqim
T (q)−Ti(q)T ∗i (T ′i (q)) ≤ 0.

Finally, suppose that 0 < q < 1. By the definition of τ , the condition τ(q) = T (q) also

implies that the following infimum

inf
q≤s≤1

logm

m−1∑
i=0

pqim
−qTi(s)/s

is attained at q. Hence differentiating with respect to s at s = q yields

m−1∑
i=0

pqim
−Ti(q)T ∗i (T ′i (q)) ≤ 0.

This completes the proof of the lemma. �

8.2. Case (II).

In this section, we suppose that we do not have τ ≡ τν ≡ T over [0, q̃c), i.e. we are not

in the case where for each 0 ≤ i ≤ m− 1 such that pi > 0 the function Ti is equal to 0.

We will use the notation of Section 6. Recall that for q ∈ (0, 1], s(q) is the unique

s ∈ [q, 1] at which
∑m−1

i=1 pqim
−q(Ti(s)/s) gets minimized on [q, 1]. For q > 1, we define

s(q) = 1 if τ(q) = τν(q) holds. Also we recall Remark 8.2.

For q ∈ (0, q̃c) such that s(q) is defined, for 0 ≤ i ≤ m− 1 set

p′i = p′q,i = mτ(q)pqim
−qTi(s(q))/s(q).

Also let ν ′ = ν ′q be the Bernoulli measure associated with p′ = (p′0, . . . , p
′
m−1).

For s > 0 and 0 ≤ i, j ≤ m− 1, set

(8.4) V ′s,i,j = 1{Vi,j>0}V
s
i,jm

Ti(s),

so that for q′ ≥ 0

TV ′s,i(q
′) := − logm

m−1∑
j=0

E(V ′s,i,j
q′

) = Ti(q
′s)− q′Ti(s).

Set W ′s = (W ′s,i,j = p′iV
′
s,i,j)0≤i,j≤m−1. We have

TW ′s(q
′) =

m−1∑
i=0

(p′i)
q′m
−TV ′

s,i
(q′)
.

For all (u, v) ∈
⋃
n≥1 Σn×Σn, let W ′s,i,j(u, v) =

(
p′i1{Vi,j(u,v)>0}Vi,j(u, v)smTi(s)

)
0≤i,j≤m−1

.

This family of random weights generates a Mandelbrot mesure µW ′s simultaneously with µW .

We start with a first lemma.

Lemma 8.6. (1) If q ∈ (0, 1) and s(q) ∈ (0, 1), then
∑m−1

i=0 p′iT
∗
i (T ′i (s)) > 0 for all

s ∈ (0, s(q)).
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(2) If q ∈ (0, q̃c)\{1} and s(q) = 1, then either
∑m−1

i=0 p′iT
∗
i (T ′i (s)) = 0 for all s ∈ [0, 1],

or
∑m−1

i=0 p′iT
∗
i (T ′i (s)) > 0 for all s ∈ (0, 1) according to whether Ti is affine (and

equal to q 7→ (q−1) logm(E(Ni)) for each i such that pi > 0 and
∑m−1

i=0 p′iT
′
i (1) = 0,

or not.

Moreover, either the set S̃ of those q ∈ (0, q̃c) for which
∑m−1

i=0 p′iT
∗
i (T ′i (s)) = 0

for all s ∈ [0, 1] is discrete or it is equal to (0, q̃c)). The later case holds if and

only if property (P) of Remark 3.10(2) holds. In particular, T is finite over R+,

q̃c =∞, τ = τν > T over (0, 1) and τ = τν < T over (1,∞).

Proof. (1) Suppose q ∈ (0, 1) and s(q) ∈ (q, 1). The study of the differentiability of

τ achieved in Section 6.1 yields
∑m−1

i=0 p′iT
∗
i (T ′i (s(q))) = mτ(q)g(q, s(q)) = 0 and since

∂g
∂s (q, s(q)) < 0, we have g(q, s) = m−τ(q)

∑m−1
i=0 p′iT

∗
i (T ′i (s)) > 0 for all s ∈ (0, s(q)).

(2) First suppose that q ∈ (0, 1) and s(q) = 1. That means that τ(q) = τν(q). Here

again, we can use the study of τ to get that
∑m−1

i=0 p′iT
∗
i (T ′i (1)) =

∑m−1
i=0 p′iT

′
i (1) =

mτν(q)g(q, 1) ≥ 0. Now, notice that the derivative of s 7→
∑m−1

i=0 p′iT
∗
i (T ′i (s)) is s 7→∑m−1

i=0 p′isT
′′
i (s). If one of the Ti is not affine, then by an argument given in the study of

the differentiability of τ we can prove that T ′′i is strictly negative so
∑m−1

i=0 p′iT
∗
i (T ′i (s)) > 0

for all s ∈ (0, 1). Otherwise, the function
∑m−1

i=0 p′iT
∗
i ◦ T ′i is identically equal to 0 over its

domain by analyticity.

Suppose now that q ∈ (1, q̃c) and s(q) = 1. The condition τ(q) = τν(q) ≤ T (q) implies

that
∑m−1

i=0 p′im
−Ti(q) =

∑m−1
i=0 pqim

τν(q)−Ti(q) ≤ 1. Since, moreover,
∑m−1

i=0 p′im
−Ti(1) = 1,

by convexity of q 7→
∑m−1

i=0 p′im
−Ti(q), we must have

∑m−1
i=0 p′iT

′
i (1) ≥ 0. Then, the same

arguments as in previous paragraph yield the same conclusion.

For each q such that s(q) = 1 and
∑m−1

i=0 p′iT
∗
i (T ′i (s)) = 0 for all s ∈ [0, 1], the functions

Ti are linear and p′i = pqim
τν(q), so

∑m−1
i=0 pqiT

′
i (1) = m−τν(q)

∑m−1
i=0 p′iT

∗
i (T ′i (1)) = 0 and∑m−1

i=0 pqi log(E(Ni)) = m−τν(q)
∑m−1

i=0 p′iT
∗
i (T ′i (0)) = 0. If the set of such points q has

an accumulation point, then by analyticity, we must have
∑m−1

i=0 pqi log(E(Ni)) = 0 for

all q. It is then not hard to conclude that property (P) of Remark 3.10(2) holds. Then,

T is finite over R+, and the study of infq≤s≤1 logm
∑m−1

i=0 pqim
−qTi(s)/s for q ∈ (0, 1) and

sup1≤s≤q logm
∑m−1

i=0 pqim
−qTi(s)/s for q ∈ (1,∞) shows that both are uniquely reached at

s = 1, so τ = τν > T over (0, 1) and τ = τν < T over (1,∞). �

Lemma 8.7. Let q ∈ (0, q̃c) be such that s(q) is defined. Suppose that s > 0 is such

that
∑m−1

i=0 p′iT
∗
i (T ′i (s)) ≥ 0. With probability 1, the Mandelbrot measure µW ′s has the

same topological support as µ. If, moreover,
∑m−1

i=0 p′iT
∗
i (T ′i (s)) > 0 then, conditional on

{µW ′s 6= 0}, the measure π∗µW ′s is absolutely continuous with respect to ν ′. In particular,

ν ′(π(K)) > 0.
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Proof. To begin with we notice that
∑m−1

i=0 p′iT
′
V ′s,i

(1−) =
∑m−1

i=0 p′iT
∗
i (T ′i (s)). Thus, due

to (3.4) our assumption implies T ′W ′s(1−) ≥ dim(ν ′) > 0, hence µW ′s is non-degenerate.

Moreover, since the weights W ′s,i,j and Wi,j vanish simultaneously, Proposition A.1 shows

that µW ′s and µ have almost surely the same topological support.

If, moreover,
∑m−1

i=0 p′iT
∗
i (T ′i (s)) > 0, then T ′W ′s(1−) > dim(ν ′) and by Theorem 3.1(1)(a),

this implies that π∗µW ′s is almost surely absolutely continuous with respect to E(π∗µW ′s) =

ν ′, so ν ′(π(K)) > 0. �

Now, for q ∈ (0, q̃c) \ {1}, if s(q) < 1 or if s(q) = 1 and
∑m−1

i=0 p′iT
∗
i (T ′i (s)) > 0 for all

s ∈ (0, 1), let ν̃q = ν ′q. Otherwise, i.e. if q ∈ S̃ (S̃ is defined in Lemma 8.6) set ν̃q = π∗µW ′1
(recall that this Mandelbrot measure is defined before Lemma 8.6 and it has the same

topological support as µ almost surely by Lemma 8.7). The main result of this section is

the following.

Proposition 8.8. Let q ∈ (0, q̃c) \ {1} at which τ(q) 6= T (q) or q ∈ (1, qc) at which

τ(q) = τν(q) = T (q). Set α = τ ′(q) if s(q) < 1 and α = τ ′ν(q) otherwise. Then with prob-

ability 1, conditional on {µ 6= 0}, ν̃q(E(π∗µ, α)) > 0, and dim(ν̃q) = τ∗(α); consequently,

dimH E(π∗µ, α) ≥ τ∗(α).

From now on we fix q ∈ (0, q̃c) \ {1} at which τ(q) 6= T (q) or τ(q) = τν(q) = T (q).

Lemma 8.9. Suppose that ν̃q = ν ′. Let S stand for a maximal open interval of points

s > 0 such that
∑m−1

i=0 p′iT
∗
i (T ′i (s)) > 0 and E(Y s) < ∞. With probability 1, conditional

on {µ 6= 0}, for ν ′-almost every x in π(K), for all s ∈ S ,

lim
n→∞

−1

n
logm

∑
v∈Σn

(µ([x|n, v])

ν(x|n)

)s
=

m−1∑
i=0

p′iTi(s).

Proof. By convexity, we only need to check this for each s in a dense countable subset S
of S . Indeed, if this is done, there exists a subset of {µ 6= 0} of probability P(µ 6= 0) such

that the sequence of concave functions −1
n logm

∑
v∈Σn

(
µ([x|n,v])

ν(x|n)

)s
converge pointwise on

S, and this is enough to get the convergence over S .

Fix s ∈ S. For n ≥ 1 and x in the topological support of ν ′, set

Zs,n(x) =
( n∏
k=1

mTxk (s)
) ∑
v∈Σn

(µ([x|n, v])

ν([x|n])

)s
=

∑
v∈Σn

Y (x|n, v)s ·
n∏
k=1

mTxk (s)Vxk,vk(x|k−1, v|k−1)s.

Define V ′s,i, 0 ≤ i ≤ m − 1, as in (8.4). Since S is open, we have E(Y q′s) < ∞ and∑m−1
i=0 p′iTV ′s,i(q

′) > −∞ for some q′ > 1, and since
∑m−1

i=0 p′iT
′
V ′s,i

(1) =
∑m−1

i=0 p′iT
∗
i (T ′i (s)) >

0, we also have
∑m−1

i=0 p′iTV ′s,i(q
′) > 0 if q′ is close enough to 1. By Proposition B.2 applied
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with η = ν ′ and Ui = V ′s,i, the sequence Zs,n(x) converges P⊗ν ′ almost surely to the same

non-degenerate limit Z̃s(x) as the Mandelbrot martingale in random environment

Z̃s,n(x) =
∑
v∈Σn

n∏
k=1

mTxk (s)Vxk,vk(x|k−1, v|k−1)s.

This random variable satisfies the equation

(8.5) Z̃s(x) =
m−1∑
j=0

Vx1,jZ̃s(σx, j),

where the Z̃s(σx, j) are independent copies of Z̃s(σx), which are also independent of Vx1 .

Equation (8.5) shows that P({Z̃s(x) = 0}) is {fi}0≤i≤m−1;pi>0-stationary (cf. Defini-

tion A.2), where fi stands for the generating function of the random integer Ni. More-

over, we assumed from the beginning that there exists 0 ≤ i ≤ m − 1 such that pi > 0

for which P(Ni = 1) < 1. Consequently, Proposition A.3 shows that for ν ′-almost every

x, P({Z̃s(x) = 0}) is less than 1 (because Z̃s,n(x) is non-degenerate) and independent of

s ∈ S.

Also, for each s ∈ S, the event {Z̃s(x) = 0} contains the event
⋃
n≥1{Z̃s,n(x) = 0},

which due to the definition of Z̃s,n is independent of s and is equal to the extinction of the

branching process defining the Galton-Watson tree in random environment Tn(x) = {v ∈
Σn : Q(x|n, v) > 0}. In addition, the function P(

⋃
n≥1{Tn(x) = ∅}) is {fi}0≤i≤m−1;pi>0-

stationnary as well, and it cannot be equal to 1 since it is smaller than or equal to

P({Z̃s(x) = 0}). Consequently, we conclude that for ν ′-almost every x, the event {Z̃s(x) >

0 for all s ∈ S} equals Ax =
⋂
n≥1(Ax,n := {{v ∈ Σn : Q(x|n, v) > 0} 6= ∅}) up to a set of

probability 0.

We have

∫
ν ′({x : Zs(ω, x) > 0 for all s ∈ S and ω ∈ Ax})P(dω)

= EP⊗ν′(1{Zs(ω,x)>0 for all s∈S and ω∈Ax})

=

∫
P(Zs(ω, x) > 0 for all s ∈ S and ω ∈ Ax}) ν ′(dx)

=

∫
P(Ax) ν ′(dx).
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Notice that the events Ax,n are non-increasing so P(Ax =
⋂
n≥1Ax,n) = limn→∞ P(An,x).

Consequently, ∫
ν ′({x : Zs(ω, x) > 0 for all s ∈ S and ω ∈ Ax})P(dω)

=

∫
lim
n→∞

P(Ax,n) ν ′(dx)

= lim
n→∞

∫
P(Ax,n) ν ′(dx)

= lim
n→∞

E(ν ′({x : {v ∈ Σn : Q(x|n, v) > 0} 6= ∅}))

= lim
n→∞

E(ν ′(π(Kn)))

= E(ν ′( lim
n→∞

π(Kn)))

= E(ν ′(π(K)).

Since the inclusion {x : Zs(ω, x) > 0} ⊂ π(K(ω)) holds by construction, we obtained that

ν ′({x ∈ π(K(ω)) : Zs(ω, x) > 0 ∀ s ∈ S} = ν ′(π(K(ω))) almost surely. In other words,

with probability 1, conditional on {µ 6= 0}, for ν ′-almost every x in π(K), for all s ∈ S we

have Z̃s(x) > 0. Finally, Z̃s(x) is the positive limit of Zs,n(x). Since by definition we have∑
v∈Σn

(µ([x|n, v])

ν([x|n])

)s
=
( n∏
k=1

mTxk (s)
)−1

Zs,n(x)

we conclude that

lim
n→∞

−1

n
logm

∑
v∈Σn

(µ([x|n, v])

ν(x|n)

)s
= lim

n→∞

1

n

n∑
k=1

Ti(s) =
m−1∑
i=0

p′iTi(s),

due to the ergodic theorem applied to ν ′. �

Recall that Xn(x) =
∑
v∈Σn

µ([x|n, v])

ν(x|n)
for x ∈ Σ and n ≥ 1.

Lemma 8.10. Suppose that ν̃q = ν ′. Let

s0 = sup

{
s > 0 :

m−1∑
i=0

p′iT
∗
i (T ′i (s)) > 0 and E(Y s) <∞

}
.

With probability 1, for ν ′-almost every x ∈ π(K), either limn→∞− 1
n logmXn(x) = 0 or

limn→∞− 1
n logmXn(x) =

∑m−1
i=0 p′iT

′
i (s0) according to whether s0 > 1 or s0 ≤ 1.

Proof. We notice that s0 = s(q) when s(q) < 1. Due to the previous lemma, with proba-

bility 1, for ν ′-almost every x ∈ supp(π(K)), defining

τx(s) = lim inf
n→∞

−1

n
logm

∑
v∈Σn

(µ([x|n, v])

ν([x|n])

)s
,
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we have

(8.6) τx(s) = lim
n→∞

−1

n
logm

∑
v∈Σn

(µ([x|n, v])

ν([x|n])

)s
=

m−1∑
i=0

p′iTi(s)

over [0, s0). On the other hand, we naturally have

(8.7) τx(s) ≥ T̃ (s) :=
m−1∑
i=0

p′iTi(s)

for all s. This is due to Lemma C.1 and the fact that

E
( ∑
v∈Σn

(µ([x|n, v])

ν([x|n])

)s)
=

n∏
k=1

m−Txk (s).

Now let us make a few remarks.

There exist α0 < β0 in R such that, with probability 1, conditional on {µ 6= 0}, m−nβ0 ≤
µ([x|n,v])

ν([x|n]) ≤ m
−nα0 for all x ∈ π(K), n ≥ 1 and v ∈ Σn such that µ([x|n, v]) > 0. Indeed, for

all x ∈ π(K), n ≥ 1 we already have (min{pi : pi > 0})n ≤ ν(x|n) ≤ (max{pi : pi > 0})n.

Also, we can fix η > 0 such that Cη = max(E(1{Y >0}Y
−η),E(Y η)) < ∞. Then, for any

A > 0 and n ≥ 1,

P
(
∃ (u, v) ∈ Σn × Σn : 0 < µ([u, v]) ≤ m−nA or µ([u, v]) ≥ mnA

)
≤ m−nηAE

( ∑
(u,v)∈Σn×Σn

1{Q(u,v)>0}1{Y (u,v)>0}Q(u, v)−ηY (u, v)−η
)

+m−nηAE
( ∑

(u,v)∈Σn×Σn

Q(u, v)ηY (u, v)η
)

≤ Cηm−nηA
(
m−nT (−η) +m−nT (η)

)
.

Hence, if A is large enough so that Aη + min(T (−η), T (η)) > 0, by the Borel-Cantelli

lemma we get m−nA ≤ µ([x|n, v]) ≤ mnA for all x ∈ π(K), n ≥ 1 large enough and v ∈ Σn

such that µ([x|n, v]) > 0.

Recall that T̃ (s) :=
∑m−1

i=0 p′iTi(s). If s0 ≤ 1, then T̃ ′(s0) exists and by definition of s0

we have T̃ ∗(T̃ ′(s0)) = 0. Moreover, T̃ ∗ ◦ T̃ ′ is strictly decreasing in a neighborhood of s0

since we have already shown that when they are defined at some s, the functions T ′′i cannot

vanish simultaneously there. This, together with (8.7) implies that τ̃∗x(α) ≤ T̃ ∗(α) < 0 for

all α < T̃ ′(s0). Then applying Chernoff bound (see e.g. [21]) to the counting measure and

the random variable
µ([x|n,·])
ν(x|n) on Σn shows that

(8.8)

{
v ∈ Σn :

µ([x|n, v])

ν(x|n)
≥ m−nα

}
= ∅ for all α < T̃ ′(s0) and large enough n.

Over its domain, which contains a neighborhood of [0, 1], the mapping s 7→ T̃ ∗(T̃ ′(s))−
T̃ ′(s) is increasing on the left of 1 and decreasing on the right, and it takes the maximum

value 0 at 1. In other words, over its domain, the mapping α 7→ T̃ ∗(α) − α is strictly
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increasing on the left of T̃ ′(1) and strictly decreasing on the right of T̃ ′(1), since q 7→ T ′(q)

is decreasing.

Now, for α ∈ R, n ≥ 1 and ε > 0 define

f(n, α, ε) =
1

n
logm #

{
v ∈ Σn : m−n(α+ε) ≤

µ([x|n, v])

ν([x|n])
≤ m−n(α−ε)

}
.

Fix η > 0 and ε > 0. Again, using Chernoff inequality shows that for any α ∈ [α0, β0],

there exist εα ∈ (0, ε) and nα ≥ 1 such that for all n ≥ nα,

f(n, α, εα) ≤ τ∗x(α) + η ≤ T̃ ∗(α) + η.

Set αc = T̃ ′(s0) if s0 ≤ 1 and αc = T̃ ′(1) otherwise. Fix a finite covering
⋃N
i=1(αi− εi, αi+

εi) of [α0, β0] \ (αc − εc, αc + εc), where εc stands for εαc , and εi stands for εαi , and set

n0 = sup{nα : α ∈ {αc} ∪ {αi : 1 ≤ i ≤ N}}. Without loss of generality we assume that

the αi belong to [α0, β0]\(αc−εc, αc+εc). Moreover, due to (8.8), if s0 ≤ 1 we can restrict

the αi to be larger than or equal to αc, and set α0 = αc. Then, there exists γ > 0 such

that T̃ ∗(αi)− αi ≤ T̃ ∗(αc)− αc − γ for all αi.

For n ≥ n0 we have

Xn(x) =
∑
v∈Σn

µ([x|n, v])

ν(x|n)

≤ mf(n,αc,εc)m−n(αc−εc) +
N∑
i=1

mf(n,αi,εi)m−n(αi−εi)

≤ mn(η+ε)
(
mn(T̃ ∗(αc)−αc) +

N∑
i=1

mn(T̃ ∗(αi)−αi)
)

≤ mn(η+ε)mn(T̃ ∗(αc)−αc)(1 +Nm−nγ).

We conclude that lim infn→∞− 1
n logm(Xn(x)) ≥ αc − T̃ ∗(αc)− η − ε. Since this holds for

any positive η and ε, we get the desired lower bound: T̃ ′(s0) if s0 ≤ 1, and 0 otherwise.

On the other hand, due to (8.6), Gartner-Ellis theorem (see e.g. [21]) ensures that for all

s ∈ (0,min(s0, 1)), limε→0 lim infn→∞ f(n, T̃ ′(s), ε) = T̃ ∗(T̃ ′(s)). This immediately yields

that lim supn→∞− 1
n logm(Xn(x)) ≤ T̃ ′(s)) − T̃ ∗(T̃ ′(s)) for all 0 < s < min(s0, 1), since

Xn(x) ≥ mnf(n,α,ε)−n(α+ε) for all α ∈ R and ε > 0. Hence lim supn→∞− 1
n logm(Xn(x)) ≤

αc − T̃ ∗(αc). �

Proof of Proposition 8.8. Recall that α stands for τ ′(q) if s(q) < 1 and τ ′ν(q) if s(q) = 1.

We write π∗µ([x|n]) = ν([x|n])Xn(x).

At first we suppose that ν̃q = ν ′.

If q ∈ (0, 1) and s(q) < 1, applying the ergodic theorem to ν ′ to control the local

dimension of ν, and applying Lemma 8.10 to control Xn(x) (in which s0 = s(q)), we
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obtain that conditional on {π∗µ 6= 0}, for ν ′-almost every x ∈ π(K),

dimloc(π∗µ, x) =
(
−
m−1∑
i=0

p′i logm(pi)
)

+ T̃ ′(s0) = −
m−1∑
i=0

p′i logm(pi) +

m−1∑
i=0

p′iT
′
i (s(q))

= τ ′(q) = α,

by using (6.1) and (6.3). On the other hand,

dim(ν ′) = −
m−1∑
i=0

p′i logm(p′i) = −
m−1∑
i=0

p′i
(
q logm(pi) + τ(q)− qTi(s(q))/s(q)

)
= qτ ′(q)− τ(q) = τ∗(α)

by using (6.1) and (6.2).

If s(q) = 1, then ν ′ = νq, and this time we apply Lemma 8.10 with s0 = s(q) = 1 to

control Xn(x) . This yields that conditional on {π∗µ 6= 0}, for ν ′-almost every x ∈ π(K),

dimloc(π∗µ, x) =
(
−
m−1∑
i=0

p′i logm(pi)
)

+ 0 = τ ′ν(q).

Moreover, dim(νq) = τ∗ν (τ ′ν(q)) = τ ′ν(q)q − τν(q) = αq − τ(q) = τ∗(α) since τν(q) = τ(q)

and α ∈ {τ ′(q+), τ ′(q−)}.

Thus, at this stage, due to Corollary 8.4 and the conclusions obtained in the previous

lines, for all q ∈ (0, q̃c) \ S̃ and α = τ ′(q), or α ∈ {τ ′(q+), τ ′(q−)} if q > 1 and the graphs

of τν and T cross transversally at (q, T (q)), we have established the desired inequality

dimH E(π∗µ, α) ≥ τ∗(α), almost surely, conditional on {µ 6= 0}.

Now suppose that q ∈ S̃. Recall that ν̃q = π∗µW ′1 and by Lemma 8.7 the measure

µW ′1 has almost surely the same topological support as µ. Moreover, it follows from the

theory of Mandelbrot measures ([4, 5]) that, with probability 1, conditionally on µ 6= 0,

for µW ′1-almost every (x, y),

lim
n→∞

µ([x|n, y|n])

−n log(m)
= −

∑
0≤i,j≤m−1

E(W ′1,i,j logm(Wi,j))

= −
m−1∑
i=0

p′i logm(pi)−
m−1∑
i=0

p′i

m−1∑
j=0

E(V ′1,i,j logm V1,i,j)

= −
m−1∑
i=0

p′i logm(pi),
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since V ′1,i,j = Vi,j and 0 =
∑m−1

i=0 p′iT
′
i (1) =

∑m−1
i=0 p′i

∑m−1
j=0 E(V ′1,i,j logm V1,i,j). Also,

dim(µW ′1) = −
∑

0≤i,j≤m−1

E(W ′1,i,j logm(W ′1,i,j))

= −
m−1∑
i=0

p′i logm(p′i)−
m−1∑
i=0

p′i

m−1∑
j=0

E(V ′1,i,j logm V
′

1,i,j)

= −
m−1∑
i=0

p′i logm(p′i) +

m−1∑
i=0

p′iT
′
i (1)

= −
m−1∑
i=0

p′i logm(p′i) = dim(ν ′) = dim(E(π∗µW ′1)).

Consequently, for π∗µW ′1-almost every x, dimloc(π∗µ, x) ≤ −
∑m−1

i=0 p′i logm(pi) = τ ′ν(q) =

α. Moreover, dim(π∗µW ′1) = dim(ν ′) = τ∗ν (τ ′ν(q)) = τ∗(α) (the last inequality coming from

the equality τν(q) = τ(q) and the fact that α = τ ′ν(q) ∈ {τ ′(q+), τ ′(q−)}. Then, the same

arguments as in the proof of Corollary 8.4 where T is replaced by τν and µq by µW ′1 yield

dimH E(π∗µ, α) ≥ τ∗(α). �

8.3. Case (III).

Recall that in the case considered in this section, τν(q) = T (q), τ ′ν(q) 6= T ′(q), and

(τ ′(q+), τ ′(q−)) = (τ ′ν(q), T ′(q)) or (τ ′(q+), τ ′(q−)) = (T ′(q), τ ′ν(q)).

Fix λ ∈ [0, 1]. Let (nk)k≥1 be an increasing sequence of positive integers such that

nk = o(n1 + · · · + nk−1) as k → ∞, and n1 min(λ, 1 − λ) > 1 if λ > 0. For k ≥ 0,

let Nk =
∑k

i=1 ni and Nk,λ = Nk−1 + bλnkc. We will later further specify the sequence

(nk)k≥1.

For each n ≥ 0 and (u, v) ∈ Σn × Σn, set

W̃λ(u, v) =

Wq(u, v) =
(
pqim

T (q)V q
i,j(u, v)

)
0≤i,j≤m−1

if Nk−1 + 1 ≤ n ≤ Nk,λ for some k

(pq,iVi,j(u, v))0≤i,j≤m−1 otherwise
,

where pq,i is defined by

(8.9) pq,i = pqim
τν(q).

These random vectors can be used to build a non-homogeneous Mandelbrot measure in

the same way as µ and µq: for each n ≥ 0 and (u, v) ∈ Σn × Σn, define

Ỹλ(u, v) = lim
p→∞

Ỹλ,p(u, v),

where

(8.10) Ỹλ,p(u, v) =
∑

|u′|=|v′|=p

p∏
k=1

W̃λ,u′k,v
′
k
(u · u′|k−1, v · v

′
|k−1).
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Notice that the limit in defining Ỹλ(u, v) exists almost surely since (Ỹλ,p(u, v))p≥0) is a

non-negative martingale (of expectation 1). Write Ỹλ = Ỹλ(ε, ε) for convenience. Then,

µ̃λ([u]× [v]) = Ỹλ(u, v)

n∏
j=1

W̃λ,uj ,vj (u|j−1, v|j−1)

defines a measure almost surely. Moreover, the same argument as in Proposition A.1

shows that if µ̃λ is not equal to 0 almost surely, then its topological support equals that

of µ almost surely. It is the situation which occurs as the following proposition shows.

Also, µ̃1 = µq, while µ̃0 is a non-degenerate Mandelbrot measure such that E(π∗µ̃0) = νq

and by (3.4) dim(µ̃0)− dim(νq) =
∑m−1

i=0 pq,iT
′
i (1).

Proposition 8.11. E(Ỹλ) = 1; consequently µ̃λ is not almost surely degenerate, and with

probability 1, supp(µ̃λ) = supp(µ) conditional on {µ 6= 0}. Moreover, there exists h ∈ (1, 2]

such that

M(λ, h) = sup{E(Ỹλ(u, v)h) : n ≥ 0, u, v ∈ Σn} <∞.

We postpone the proof of Proposition 8.11 for a while.

For all k ≥ 1 and (u, v) ∈ ΣNk × ΣNk , define

µ̃T1 (u, v) =
k∏
i=1

Ni,λ∏
`=Ni−1+1

pqu`m
T (q)Vu`,v`(u|`−1, v|`−1)q,

µT (u, v) =
k∏
i=1

Ni,λ∏
`=Ni−1+1

pu`Vu`,v`(u|`−1, v|`−1),

µ̃τν0 (u, v) =

k∏
i=1

Ni∏
`=Ni,λ+1

pq,u`Vu`,v`(u|`−1, v|`−1),

µτν (u, v) =
k∏
i=1

Ni∏
`=Ni,λ+1

pu`Vu`,v`(u|`−1, v|`−1).

We have

(8.11) µ̃λ([u]× [v]) = µ̃T1 (u, v)µ̃τν0 (u, v)Ỹλ(u, v)

and

(8.12) µ([u]× [v]) = µT (u, v)µτν (u, v)Y (u, v).

Define

(8.13) α = λT ′(q) + (1− λ)τ ′ν(q) and α′ =
m−1∑
i=0

pqim
τν(q)T ′i (1).

Since α ∈ [τ ′(q+), τ ′(q−)] and τν(q) = τ(q) = T (q), we have

τ∗(α) = αq − τν(q) = λT ∗(T ′(q)) + (1− λ)τ∗ν (τ ′ν(q)).
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We will prove the following propositions and corollary, which give the desired conclusion.

Proposition 8.12. With probability 1, conditional on µ 6= 0, for µ̃λ-almost every (x, y),

the following hold:

lim
k→∞

log(µ̃T1 (x|Nk , y|Nk))

−Nk log(m)
= λT ∗(T ′(q)),

lim
k→∞

log(µ̃τν0 (x|Nk , y|Nk))

−Nk log(m)
= (1− λ)τ∗ν (τ ′ν(q)) + (1− λ)α′,

lim
k→∞

log(µT (x|Nk , y|Nk))

−Nk log(m)
= λT ′(q),

lim
k→∞

log(µτν (x|Nk , y|Nk))

−Nk log(m)
= (1− λ)τ ′ν(q) + (1− λ)α′,

lim
k→∞

log(Ỹλ(x|Nk , y|Nk))

−Nk log(m)
= lim

k→∞

log(Y (x|Nk , y|Nk))

−Nk log(m)
= 0;

in particular, dimloc(µ, (x, y)) = α+ (1− λ)α′ and dimloc(µ̃λ, (x, y)) = τ∗(α) + (1− λ)α′.

We will see in the proof of Proposition 8.11 that α′ ≥ 0.

Proposition 8.13. Suppose that λ ∈ (0, 1).

(1) With probability 1, conditional on {µ 6= 0}, dimloc(π∗µ̃λ, x) ≥ τ∗(α) for π∗µ̃λ-

almost every x.

(2) With probability 1, conditional on {µ 6= 0}, dimloc(π∗µ̃λ, x) ≤ τ∗(α) and

dimloc(π∗µ, x) ≤ α for π∗µ̃λ-almost every x.

Corollary 8.14. With probability 1, conditional on {µ 6= 0}, dimE(π∗µ, α) = τ∗(α).

Proof of Proposition 8.11. Recall that Ỹλ,p(u, v) is defined in (8.10). By definition, for

p ≥ 2,

Ỹλ,p(u, v) =
∑

0≤i,j≤m−1

W̃λ,i,j(u, v)Ỹλ,p−1(ui, vj).

Let h ∈ (1, 2]. We can use Kahane’s original approach [36] to the moments of Mandelbrot

martingales to write

Ỹλ,p(u, v)h ≤
( ∑

0≤i,j≤m−1

W̃λ,i,j(u, v)h/2Ỹλ,p−1(ui, vj)h/2
)2

and then get

E(Ỹλ,p(u, v)h) ≤
∑

0≤i,j≤m−1

E(W̃λ,i,j(u, v)h)E(Ỹλ,p−1(ui, vj)h)

+
∑

(i,j) 6=(i′,j′)

E(W̃λ,i,j(u, v)h/2W̃λ,i′,j′(u, v)h/2).
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If h is close enough to 1, there exists C > 0 such that∑
(i,j)6=(i′,j′)

E(W̃λ,i,j(u, v)h/2W̃λ,i′,j′(u, v)h/2) ≤ C

independently on (u, v), by equidistribution of the W (u, v) and the fact that our as-

sumption on the domain of finiteness of T we have E(W q′

i,j) < ∞ for all q′ < qc and

0 ≤ i, j ≤ m−1. Also, by construction E(Ỹλ,p−1(ui, vj)h) does not depend on (i, j). Thus,

if h < qc,

E(Ỹλ,p(u, v)h) ≤ C + E(Ỹλ,p−1(u0, v0)h)
∑

0≤i,j≤m−1

E(W̃λ,i,j(u, v)h).

By definition of W̃λ(u, v),∑
0≤i,j≤m−1

E(W̃λ,i,j(u, v)h) ∈
{m−1∑

i=0

phq,im
−Ti(h),mhT (q)−T (hq)

}
.

Since T ∗(T ′(q)) > 0 by our assumption q ∈ (1, qc), for h close enough to 1, we have

hT (q)− T (hq) < 0 hence mhT (q)−T (hq) < 1. On the other hand, since τν(q) = T (q),

ψ(h) :=

m−1∑
i=0

pq,im
−Ti(h) =

m−1∑
i=0

pqim
T (q)m−Ti(h),

and ψ(1) = ψ(q) = 1. Since ψ is convex, it follows that ψ(h) ≤ 1 on (1, q). Conse-

quently,
∑m−1

i=0 phq,im
−Ti(h) ≤ max{ph−1

q,i : 0 ≤ i ≤ m − 1}ψ(h) < 1, since all the positive

pq,i belong to (0, 1). Notice also that the derivative of ψ at 1 is non-positive, hence

α′ =
∑m−1

i=0 pq,iT
′(1) ≥ 0. Finally, if h is close enough to 1, there exists c ∈ (0, 1)

independent of (u, v) such that E(Ỹλ,p(u, v)h) ≤ C + cE(Ỹλ,p−1(u0, v0)h). This yields

E(Ỹλ,p(u, v)h) ≤ CE(Ỹλ,0(u0p, v0p)h)/(1 − c) = C/(1 − c), hence both E(Ỹλ(u, v)h) ≤
C/(1− c) and E(Ỹλ(u, v)) = 1. �

Proof of Proposition 8.12. Define Q̃λ(dω,dx,dy) = P(dω)µ̃λ,ω(dx,dy), Q̃1(dω,dx,dy) =

P(dω)µ̃1,ω(dx, dy) and Q̃0(dω,dx,dy) = P(dω)µ̃0,ω(dx,dy) the Peyrière measures associ-

ated with µ̃λ, µ̃1 and µ̃0 respectively. Also, set Ñk =
∑k

i=1bλnic and N ′k = Nk − Ñk.

It is straightforward to write that under Q̃λ, the random vectors W̃λ(x|n−1, y|n−1),

Nk−1 + 1 ≤ n ≤ Nk,λ, k ≥ 1, are independent and equidistributed, with the same law as

the vectors Wq(x|n−1, y|n−1), n ≥ 1, with respect to Q̃1(dω,dx,dy). Moreover, since

µ̃1,n([x|n]× [y|n]) =

n∏
k=1

Wq,xk,yk(x|k−1, y|k−1),

the strong law of large numbers yields

lim
k→∞

log(µ̃
1,Ñk

([x|Ñk ]× [y|Ñk ]))

−Ñk log(m)
= −E

∑
0≤i,j≤m−1

pqim
T (q)V q

i,j logm(pqim
T (q)V q

i,j) = T ∗(T ′(q)),
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Q̃1-almost surely. Since limk→∞ Ñk/Nk = λ, by definition of µ̃T1 (x|Nk , y|Nk)) we get the

first claim.

The same idea applied with µT (x|Nk , y|Nk) with respect to Q̃λ and µ
Ñk

([x|Ñk ]× [y|Ñk ])

with respect to Q̃1 yields

lim
k→∞

log(µT (x|Nk , y|Nk))

−Ñk log(m)
= −E

∑
0≤i,j≤m−1

pqim
T (q)V q

i,j logm(piVi,j) = T ′(q),

Q̃λ-almost surely, i.e. the third claim of the proposition since limk→∞ Ñk/Nk = λ.

For the second claim, we need to consider µ̃τν0 (x|Nk , y|Nk) and µ̃0,N ′k
([x|N ′k ]× [y|N ′k ]) with

respect to Q̃λ and Q̃0 respectively; then we apply the strong law of large numbers to

log(µ̃0,N ′k
([x|N ′k ]× [y|N ′k ]))/N ′k under Q̃0, and use the fact the limk→∞N

′
k/Nk = 1−λ. The

fourth claim follows similarly by considering µτν (x|Nk , y|Nk) and µN ′k([x|N ′k ]× [y|N ′k ]) with

respect to Q̃λ and Q̃0 respectively.

For the last two claims, an application of the Markov inequality shows that for any fixed

(u(k), v(k)) in ΣNk × ΣNk , for Z ∈ {Y, Ỹλ} and γ ∈ {−1, 1}, for any η > 0 and ε > 0,

Q̃λ({(x, y) : 1{Z(x|Nk ,y|Nk )>0}Z(x|Nk , y|Nk)γ > mNkε)

≤ m−NkηεE
(
1{Z(u(k),v(k))>0}Ỹλ(u(k), v(k))Zγη(u(k), v(k))

)
.

Since, conditional on {µ 6= 0} on non-vanishing, Y has finite negative moments, by Propo-

sition 8.11 and the Hölder inequality we can choose η so that

sup{E
(
1{Z(u(k),v(k))>0}Ỹλ(u(k), v(k))Zγη(u(k), v(k))

)
: k ≥ 1, Z ∈ {Y, Ỹλ}} <∞.

Consequently∑
k≥1

Q̃λ

({
(x, y) : 1{Z(x|Nk ,y|Nk )>0}Z(x|Nk , y|Nk)γ > mNkε

})
<∞,

and the desired claims follow from the Borel-Cantelli lemma.

Finally, the claim about the local dimensions follows from (8.11) and (8.12), and the

fact that limk→∞Nk−1/Nk = 1. �

Proof of Proposition 8.13(1). We will use the following lemma.

Lemma 8.15. There exist two bounded functions C(h) and ε(h) defined in a right neigh-

borhood V of 1, with limh→1+ ε(h) = 0, such that for all k ≥ 1,

∀h ∈ V, E
( ∑
|u|=Nk

π∗µ̃λ([u])h
)
≤ C(h)Nkm

Nk(−τ∗(α)(h−1)+ε(h)(h−1)+C(h)(k/Nk)).

We deduce from the previous lemma that for all ε > 0, for h close enough to 1+,

E
(∑

k≥1

∑
|u|=Nk m

Nk(h−1)(τ∗(α)−ε)π∗µ̃λ([u])h
)
<∞.
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This implies that with probability 1, conditional on {µ 6= 0}, for all ε > 0, there exists

h > 1 such that
∑

k≥1

∑
|u|=Nk m

Nk(h−1)(τ∗(α)−ε)π∗µ̃λ([u])h <∞. Due to Lemma 5.3 and

the fact that limk→∞Nk/Nk−1 = 1, we get dimloc(π∗µ̃λ, x) ≥ τ∗(α) for π∗µ̃λ-a.e. x, which

proves part (1) of Proposition 8.13.

If we were able to prove that the same estimate as in the lemma holds for h near 1−,

we could derive the second part of the proposition quite easily (but maybe such a bound

does not hold). We have to use another approach, which will be presented after the proof

of Lemma 8.15. �

Proof of Lemma 8.15. For k ≥ 1 and u ∈ ΣNk , by the definition of µ̃λ,

π∗µ̃λ([u]) =
∑
|v|=Nk

Ỹλ(u, v)

k∏
i=1

( Ni,λ∏
`=Ni−1+1

pqu`m
T (q)Vu`,v`(u|`−1, v|`−1)q

)

·
( Ni∏
`′=Ni,λ+1

pq,u′`Vu`′ ,v`′ (u|`′−1, v|`′−1)
)
.

Setting, for k ≥ 1 and h > 1 such that hq < qc (recall that q is fixed)

(8.14) Λ(k, h) =
( k∑
i=1

bλnic
)

(T (hq)− hT (q)) +
(
Nk −

k∑
i=1

bλnic
)

(τν(hq)− hτν(q)),

we can write

mΛ(k,h)π∗µ̃λ([u])h = Z(u)h
k∏
i=1

( Ni,λ∏
`=Ni−1+1

phqu`m
T (hq)m−hTu` (q)

)( Ni∏
`′=Ni,λ+1

phq,u`′

)
,

where

Z(u) =
∑
|v|=Nk

Ỹλ(u, v)
k∏
i=1

( Ni,λ∏
`=Ni−1+1

mTu` (q)Vu`,v`(u|`−1, v|`−1)q
)

·
( Ni∏
`′=Ni,λ+1

Vu`′ ,v`′ (u|`′−1, v|`′−1)
)
.

Fix h ∈ (1, 2] as in Proposition 8.11 such that M(λ, h) <∞ and set

C1(h) = max
0≤i≤m−1

∑
0≤j 6=j′≤m−1

E(mTi(q)h/2V
hq/2
i,j mTi(q)h/2V

hq/2
i,j′ )

and

C2(h) = max
0≤i≤m−1

∑
0≤j 6=j′≤m−1

E(V
h/2
i,j V

h/2
i,j′ ).

Taking h closer to 1 if necessary we have C(h) = max(C1(h), C2(h)) <∞. We notice that

Z(u) takes a form similar to X(u) in (9.4), and we can use the same approach as that in
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the proof of Lemma 9.5(ii) on the positive moments of X(u) (with t = h < 2 hence It = ∅)
to get

E(Z(u)h) ≤M(λ, h)C(h)

Nk∑
`=0

m−(θ
(1)
u1

+···+θ(`)
u`

),

where θ
(`)
i = hTi(q)− Ti(hq) if Nj−1 + 1 ≤ ` ≤ Nj,λ for some j and θ

(`)
i = Ti(h) otherwise.

It follows that, if we set p̃
(`)
i = phqi m

T (hq)m−hTi(q) wheneverNj−1 + 1 ≤ ` ≤ Nj,λ for some

j and p̃
(`)
i = phq,i otherwise, then

mΛ(k,h)E
∑
|u|=Nk

π∗µ̃λ([u])h

≤M(λ, h)C(h)

Nk∑
`=0

∑
|u|=Nk

m−(θ
(1)
u1

+···+θ(`)
u`

)
Nk∏
j=1

p̃(j)
uj

= M(λ, h)C(h)

Nk∑
`=0

( ∏̀
j=1

m−1∑
i=0

p̃
(j)
i m−θ

(j)
i

)( Nk∏
j′=`+1

m−1∑
i′=0

p̃
(j′)
i′

)
.

We have for each 1 ≤ j ≤ Nk, either
∑m−1

i=0 p̃
(j)
i =

∑m−1
i=0 phq,i = 1 or

∑m−1
i=0 p̃

(j)
i =∑m−1

i=0 phqi m
T (hq)m−hTi(q). On the other hand, the computations achieved in the proof of

Lemma 8.5 show that the derivative of h 7→
∑m−1

i=0 phqi m
T (hq)m−hTi(q) at h = 1 equals

log(m)(dim(µq)− dim(E(π∗µq))) ≤ 0. So
∑m−1

i=0 p̃
(j)
i ≤ 1 + o(h− 1).

On the other hand, we have
∑m−1

i=0 p̃
(j)
i m−θ

(j)
i =

∑m−1
i=0 phqi m

T (hq)m−Ti(hq) = 1 or∑m−1
i=0 p̃

(j)
i m−θ

(j)
i =

∑m−1
i=0 phq,im

−Ti(h), and the derivative at 1 of h 7→
∑m−1

i=0 phq,im
−Ti(h)

equals − log(m)
∑m−1

i=0 pq,iT
′
i (1) which is non-positive by a remark made in the proof of

Proposition 8.11. So
∑m−1

i=0 p̃
(j)
i m−θ

(j)
i ≤ 1 + o(h− 1).

Finally,

mΛ(k,h)E

 ∑
|u|=Nk

π∗µ̃λ([u])h

 = O(Nkm
o(h−1)Nk),

where O and o depend only on h. Since it is easily seen from (8.14) that

Λ(k, h) = Nk

(
λT ∗(T ′(q)) + (1− λ)τ∗ν (τ ′ν(q))

)
(h− 1) + o(h− 1)Nk +O(k),

where O and o still depend only on h, and we know that τ∗(α) = λT ∗(T ′(q)) + (1 −
λ)τ∗ν (τ ′ν(q)), we get the desired conclusion. �

Proof of Proposition 8.13(2). Recall that α′ =
∑m−1

i=0 pqim
τν(q)T ′i (1). If α′ = 0, the result

directly follows from Proposition 8.12 since projecting does not increase the upper local

dimensions.

Suppose now that α′ > 0. To begin, observe that any y ∈ Σ can be written y =

y1ỹ1 · y2ỹ2 · ykỹk · · · with yk ∈ Σbλnkc and ỹk ∈ Σnk−bλnkc, and denote by ϕ the mapping

x 7→ ỹ1ỹ1 · · · ỹk · · · . The mapping ϕ is β-Hölder continuous for all β ∈ (0, 1− λ).
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It will be convenient to use the version of µ̃0 associated with Q̃0 obtained from Q̃λ

as follows: For any collection (Ak)k≥1 such that Ak ⊂ Σ2
nk−bλnkc and Ak = Σ2

nk−bλnkc

for k large enough, and any measurable subset A of Ω, Q̃0(A ×
∏∞
k=1Ak) = Q̃λ(A ×∏∞

k=1(Σ2
bλnkc × Ak). In other words, Q̃0 is the push-forward of Q̃λ by the mapping Φ :

(ω, x, y) 7→ (ω, ϕ(x), ϕ(y)). Then Q̃0(dω,dx′, dy′) = P(dω)π∗µ̃0,ω(dx′)µ̃x0,ω(dy′) and due

to Theorem 3.3(2), with probability 1, conditional on µ̃0,ω 6= 0, for π∗µ̃0,ω-almost every x′,

the measure µ̃x
′

0,ω assigns 0 mass to sets of Hausdorff dimension less than α′.

Now write any measurable subset E of Ω × Σ2 as
⋃
ω∈πΩ(E)

⋃
x∈Eω E

ω,x, where πΩ is

the canonical projection onto Ω, Eω = π(π−1
Ω ({ω})∩E), and Eω,x = π−1

Ω×Σ({(ω, x)} ∩E),

where πΩ×Σ is the canonical projection onto Ω× Σ. Also, let µ̃xλ,ω denote the conditional

measure with respect to (πΩ×Σ)∗Q̃λ. It is defined on a measurable set B of full (πΩ×Σ)∗Q̃λ-

probability.

Fix α′′ ∈ [0, (1−λ)α′). Let E = {(ω, x, y) ∈ π−1
Ω×Σ(B) : dimloc(µ̃

x
λ,ω, y) ≤ α′′}. In partic-

ular, dimEω,x ≤ α′′ for all ω ∈ πΩ(E) and x ∈ Eω. Suppose that Q̃λ(E) > 0. By definition

of Q̃0, since E ⊂ Φ−1(Φ(E)) and Q̃λ(E) > 0 we have Q̃0(Φ(E)) > 0. This implies that

for all ω in a subset Ω′ of πΩ(E) of positive P-probability, there is Fω ⊂ ϕ(Eω) of positive

π∗µ̃0,ω-measure such that for all x′ ∈ Fω, x′ = ϕ(x) with x ∈ Eω and µ̃
ϕ(x)
0,ω (ϕ(Eω,x)) > 0.

However, by the Hölder properties of ϕ, dimϕ(Eω,x) ≤ β−1 dimEω,x ≤ β−1α′′ for all

β ∈ (0, 1−λ) hence dimϕ(Eω,x) < α′. This is a contradiction. Consequently, with proba-

bility 1, conditional on µ̃λ,ω 6= 0, for π∗µ̃λ,ω-almost every x, the inequality dimH(µ̃xλ,ω) > α′′

holds. Since α′′ is arbitrary in [0, (1− λ)α′), we even have dimH(µ̃xλ,ω) ≥ (1− λ)α′.

Combining this information with Proposition 8.12, conditional on µ 6= 0, we can find a

set Ẽ of full µ̃λ-measure such that for all (x, y) ∈ Ẽ,

(8.15) lim
k→∞

log(µ̃τν0 (x|Nk , y|Nk))

−N ′k log(m)
= τ∗ν (τ ′ν(q)) + α′,

(8.16) lim
k→∞

log(µ̃T1 (x|Nk , y|Nk))

−Nk log(m)
= λT ∗(T ′(q)) and lim

k→∞

log(Ỹλ(x|Nk , y|Nk))

Nk log(m)
= 0,

and for any F̃ ⊂ Ẽ with µ̃λ(F̃ ) > 0 and for π∗µ̃λ-almost every x ∈ π(F̃ ), µ̃xλ,ω(F̃ ) > 0 and

thus

(8.17) lim inf
k→∞

log #{v ∈ ΣNk : ([x|Nk ]× [v]) ∩ F̃ 6= ∅}
N ′k log(m)

≥ α′.

Set βq = T ∗(T ′(q)), β̃q = τ∗ν (τ ′ν(q)). For j ≥ 1 and ε > 0, let Ẽj,ε denote the set

consisting of the points (x, y) ∈ Σ× Σ such that for any k ≥ j, the following inequalities
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hold:

m−N
′
k(β̃q+α′−ε) ≥ µ̃τν0 (x|Nk , y|Nk) ≥ m−N ′k(β̃q+α′+ε),

m−Nk(λβq−ε) ≥ µ̃T1 (x|Nk , y|Nk) ≥ m−Nk(λβq+ε),

Ỹλ(x|Nk , y|Nk) ≥ m−Nkε.

By (8.15) and (8.16), Ẽ ⊂
⋃∞
j=1 Ẽj,ε = limj→∞ Ẽj,ε for all ε > 0. According to (8.17), for

any j ≥ 1 and ε > 0, for π∗µ̃λ-almost every x ∈ π(Ẽj,ε), there exists k ≥ j such that there

are at least mN ′k(α′−ε) words v ∈ ΣNk such that ([x|Nk ]× [v]) ∩ Ẽj,ε 6= ∅, so due to (8.11),

µ̃λ([x|Nk ]× [v]) ≥ m−Nk(λT ∗(T ′(q))+ε)m−N
′
k(τ∗ν (τ ′ν(q))+α′+ε)m−Nkε.

Consequently

π∗µ̃λ([x|Nk ]) ≥ m−NkλT ∗(T ′(q))−N ′kτ∗ν (τ ′ν(q))m−(2Nk+2N ′k)ε.

Since limk→∞N
′
k/Nk = 1− λ and limk→∞Nk−1/Nk = 1, we can conclude that

dimloc(π∗µ̃λ, x) ≤ λT ∗(T ′(q)) + (1− λ)τ∗ν (τ ′ν(q)) + 4ε = τ∗(α) + 4ε.

Letting j → ∞ and then letting ε → 0, we see that dimloc(π∗µ̃λ, x) ≤ τ∗(α) for π∗µ̃λ-

almost every x, and similar arguments using again Theorem 3.3(1) and the information

provided by Proposition 8.12 about µ as well as (8.12) yield dimloc(π∗µ, x) ≤ α for π∗µ̃λ-

almost every x. Notice that due to part (1) of the present proposition we can now claim

that the lim inf in (8.17) is in fact a limit and that the the conditional measures of µ̃λ

with respect to π∗µ̃λ are exact dimensional with dimension (1− λ)α′. �

Proof of Corollary 8.14. Due to Proposition 8.13, we only need to prove that for π∗µ̃λ-

almost every x, dimloc(π∗µ, x) ≥ α. Recall that α ∈ (τ ′(q+), τ ′(q−)). Hence by (2.1), for

any β < α,

dimH{x ∈ supp(π∗µ) : dimloc(π∗µ, x) ≤ β} ≤ βq − τ(q) < τ∗(α) = dim(π∗µ̃λ),

as a consequence, dimloc(π∗µ, x) > β for π∗µ̃λ-almost every x and we are done. �

8.4. Case (IV). We distinguish the three cases of Proposition 6.2.

Notice that by the results obtained in the previous sections we know that τπ∗µ = τ over

[0, q̃c) conditional on {µ 6= 0}. In particular, τ ′π∗µ(0+) = τ ′(0+).

(i) τ = T near 0+. In this case, we have τ ′(0+) = T ′(0), and by continuity the

property dim(µq) ≤ dim(E(µq)) which holds near 0+ by Lemma 8.5 extends to the Man-

delbrot measure µ0. Also, the approach developed in Section 8.1 still applies to give

dimH E(π∗µ, T
′(0)) ≥ τ∗(T ′(0)).

(ii) τ = τν near 0+. We have τ ′(0+) = τ ′ν(0). Let p′ = (p′i)0≤i≤m−1 be defined as

in (6.4) and recall that ν ′ is the Bernoulli product associated with p′. Since we have∑m−1
i=0 p′iT

∗
i (T ′i (1)) ≥ 0, the approach used in Section 8.2 when s(q) = 1 still works and
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shows that conditional on {µ 6= 0}, dimloc(π∗µ, x) = −
∑m−1

i=0 p′i logm(pi) = τ ′ν(0), either at

ν ′-almost every x ∈ π(K), or at π∗µW ′1-almost every x if
∑m−1

i=0 p′iT
∗
i ◦T ′i equals 0 over [0, 1]

(µW ′1 is the Mandelbrot measure associated with p′ and the vectors V ′1,i defined in (8.4)).

Moreover, by definition of the vector p′ we have dim(ν ′) = dimH(π(K)) = −τ(0) =

τ∗(τ ′ν(0)) in the first case and dim(ν ′) = dim(π∗µW ′1) = dimH(π(K)) = −τ(0) = τ∗(τ ′ν(0))

in the second case. This yields dimH E(π∗µ, τ
′
ν(0)) ≥ τ∗(τ ′ν(0)). We notice that in the

second case µW ′1 coincides with the measure µ′ considered in the proof of Corollary 3.5.

(iii) τ > max(τν , T ) near 0+. Using the notation of Proposition 6.2, we see that if

s0 > 0 we are exactly in the same situation as in Section 8.2, with in addition the fact

that
∑m−1

i=0 p′iT
∗
i (T ′i (1)) > 0 is excluded if s0 = 1. This yields dimH E(π∗µ, τ

′(0+)) ≥
τ∗(τ ′(0+)) in this case. If s0 = 0, consider the Mandelbrot measure µW ′0 associated with

p′ and the vectors V ′0,i defined in (8.4). Using the theory of Mandelbrot measures ([4, 5])

here again yields, with probability 1, conditional on µ 6= 0, for µW ′0-almost every (x, y),

lim
n→∞

µ([x|n, y|n])

−n log(m)
= −

∑
0≤i,j≤m−1

E(W ′0,i,j logm(Wi,j)) = τ ′(0+).

Also,

dim(µW ′0) = −
∑

0≤i,j≤m−1

E(W ′0,i,j logm(W ′0,i,j)) = dim(ν ′) = dim(E(π∗µW ′0))

(notice that µW ′0 is here again the Mandelbrot measure µ′ considered in the proof of

Corollary 3.5). Consequently, for π∗µW ′0-almost every x, we have dimloc(π∗µ, x) ≤ τ ′(0+),

and dim(π∗µW ′0) = dim(ν ′) = τ(0) = τ∗(τ ′(0+)). Then, an argument similar to that used

in the proof of Corollary 8.4 again yields the desired conclusion.

9. Positive moment estimates

We start by establishing two basic lemmas on concave functions in Section 9.1. Then

Section 9.2 provides positive moments estimates for X(x|n) with respect to P⊗η, where η

is a Bernoulli product.

9.1. Lemmas. We begin with an elementary observation.

Lemma 9.1. Let q > 1 and f : [1, q]→ R be a continuous concave function with f(1) = 0.

Let k ∈ N. Suppose that q1, . . . , qk ≥ 1 with
∑k

i=1 qk ≤ q. Then

(i)
∑k

i=1 f(qi) ≥ f(q) provided that
∑k

i=1 f(qi) ≤ 0;

(ii)
∑k

i=1 f(qi) ≥ min{0, f(q)}.

Proof. Clearly (ii) follows from (i). To prove (i), assume that
∑k

i=1 f(qi) ≤ 0. We show

below that
∑k

i=1 f(qi) ≥ f(q).
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Set ti =
f(qi)− f(1)

qi − 1
=

f(qi)

qi − 1
for 1 ≤ i ≤ k, and t =

f(q)

q − 1
. By concavity we have

t ≤ ti for every 1 ≤ i ≤ k. Since
∑k

i=1 f(qi) ≤ 0, we have ti = f(qi)/(qi − 1) ≤ 0 for

some i, and thus t ≤ ti ≤ 0. Therefore

k∑
i=1

f(qi) =
k∑
i=1

ti(qi − 1) ≥
k∑
i=1

t(qi − 1)

≥ t(q − k)

≥ t(q − 1) = f(q).

�

Remark 9.2. Under the conditions of Lemma 9.1, it is possible that 0 <
∑k

i=1 f(qi) <

f(q); for instance if we letf(x) = x− 1, q1 = 2 and q = 3, then 0 < f(q1) < f(q).

Lemma 9.3. Let q > 1 and f1, . . . , fm be continuous concave functions defined on [1, q]

satisfying fj(1) = 0 for 1 ≤ j ≤ m. Let (p′1, . . . , p
′
m) be a probability vector. Suppose that

q1, . . . , qk ≥ 1 with
∑k

i=1 qk ≤ q. Then

(9.1)
m∑
j=1

p′jm
−

∑k
i=1 fj(qi) ≤ max

1,
m∑
j=1

p′jm
−fj(q)

 .

Moreover, if
∑m

j=1 p
′
jm
−fj(q) < 1, then

∑m
j=1 p

′
jm
−

∑k
i=1 fj(qi) < 1.

Remark 9.4. Under the conditions of Lemma 9.3, it is possible that

1 >
m∑
j=1

p′jm
−

∑k
i=1 fj(qi) >

m∑
j=1

p′jm
−fj(q).

For instance letting f(x) = x− 1, q1 = 2 and q = 3, then 1 > m−f(q1) > m−f(q).

Proof of Lemma 9.3. We first show that

(9.2)

m∑
j=1

p′jm
−

∑k
i=1 fj(qi) ≤ 1 +

m∑
j=1

p′jm
−fj(q).

Set Λ = {1 ≤ j ≤ m :
∑k

i=1 fj(qi) < 0}. By Lemma 9.1,
∑k

i=1 fj(qi) ≥ fj(q) for each

j ∈ Λ. Hence
m∑
j=1

p′jm
−

∑k
i=1 fj(qi) ≤ 1 +

∑
j∈Λ

p′jm
−

∑k
i=1 fj(qi)

≤ 1 +
∑
j∈Λ

p′jm
−fj(q)

≤ 1 +
m∑
j=1

p′jm
−fj(q).

This proves (9.2).
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Next we show that

(9.3)

 m∑
j=1

p′jm
−

∑k
i=1 fj(qi)

n

≤ 1 +

 m∑
j=1

p′jm
−fj(q)

n

for any n ∈ N, from which (9.1) follows. Indeed setting p′j1...jn = p′j1 . . . p
′
jn

and fj1...jn =

fj1 + . . .+ fjn , then (9.3) can be re-written as∑
1≤j1,...,jn≤m

p′j1...jnm
−

∑k
i=1 fj1...jn (qi) ≤ 1 +

∑
1≤j1,...,jn≤m

p′j1...jnm
−fj1...jn (q);

but this is just the application of (9.2) to the probability weight (p′j1...jn) and the concave

functions fj1...jn . This finishes the proof of (9.1).

Finally, assume that
∑m

j=1 p
′
jm
−fj(q) < 1. By (9.1),

∑m
j=1 p

′
jm
−

∑k
i=1 fj(qi) ≤ 1. We need

to show that the inequality is strict. Suppose on the contrary that

m∑
j=1

p′jm
−

∑k
i=1 fj(qi) = 1.

Define g(x) =
∑m

j=1 p
′
jm
−x

∑k
i=1 fj(qi) for x ∈ R. Then g is convex. Notice that on a small

neighborhood U of 1,
∑m

j=1 p
′
jm
−xfj(q) < 1 for x ∈ U . For any fixed x ∈ U , applying (9.1)

to the functions xfi, we obtain that g(x) ≤ 1. Hence g takes a local maximum at x = 1.

However g is convex and analytic on R, it follows that g is constant on R and therefore

k∑
i=1

fj(qi) = 0

for any 1 ≤ j ≤ m. Then by Lemma 9.1(i), fj(q) ≤ 0 for all 1 ≤ j ≤ m, which contradicts

the assumption that
∑m

j=1 p
′
jm
−fj(q) < 1. This finishes the proof of the lemma. �

9.2. Positive moments estimates for Xn. Let us first recall some notation. We are

given W = (Wi,j)0≤i,j≤m−1, a non-negative random vector with E(
∑

i,jWi,j) = 1. Let

q > 1 and assume that E(
∑

i,jW
q
i,j) <∞. Set pi = E(

∑
jWi,j). Set

Vi,j =

{
Wi,j/pi, if pi 6= 0,
1/m, if pi = 0.

For t ∈ [0, q], set

T (t) = − logm E(
∑
i,j

W t
i,j), Ti(t) = − logm E(

∑
j

V t
i,j).

Then T and Ti (0 ≤ i ≤ m − 1) are well-defined continuous concave functions on [0, q],

with T (1) = Ti(1) = 0. Set Σ = {0, 1, . . . ,m − 1}N. Let µ be the (random) Mandelbrot

measure on Σ × Σ generated by W . Set Y = ‖µ‖ to be the total mass of µ and assume

that T (q) > 0. By Kahane-Peyriere [36] and Durrett-Liggett [22], this is equivalent to the
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property that 0 < E(Y q) < ∞. For each (u, v) ∈ (Σ × Σ)∗, let Y (u, v) be defined as in

(2.3). We defined in Section 5

(9.4) X(u) =
∑
v∈Σ|u|

Y (u, v)

|u|∏
j=1

Vuj ,vj (u|j−1, v|j−1), u ∈ Σ∗.

and Xn(x) = X(x|n) for all x ∈ Σ and n ≥ 1.

Given any Bernoulli product η on Σ generated by a probability vector (p′0, . . . , p
′
m−1),

we seek estimates of EP⊗η(X
q
n), i.e.

∑
|u|=n η([u])E(X(u)q).

For short we write Vu1,v1 = Vu1,v1(ε, ε) and

X1(u, j) =
∑

v∈Σ|u|: v1=j

Y (u, v)

|u|∏
k=2

Vuk,vk(u|k−1, v|k−1), j = 0, . . . ,m− 1.

Then

(9.5) X(u) =

m−1∑
j=0

Vu1,jX1(u, j).

We emphasize that X1(u, j) (j = 0, . . . ,m−1) are independent copies of X(σu). More-

over, they are independent of Vu1,j′ (j′ = 0, . . . ,m− 1).

By (9.4) and the assumption that E(Y q) <∞, we have E(X(u)q) <∞ for each u ∈ Σ∗.

In particular, E(X(u)) = 1.

For n ∈ N, set

∆n = {(x1, . . . , xn) ∈ Rn : x1 ≤ · · · ≤ xn}.

Lemma 9.5. Let t ∈ (1, q] and u ∈ Σ∗. Then

(i) E(X(u)t) ≥ m−Tu1 (t)E(X(σu)t).

(ii) There exists a positive constant C (depending on q) such that

(9.6) E(X(u)t) ≤ m−Tu1 (t)E(X(σu)t) + C + C
∑

(q1,...,qs)∈It

s∏
j=1

E (X(σu)qj ) ,

where It is defined by

It :=

{(
k1t

dte
, . . . ,

kst

dte

)
∈ ∆s : s, ki ∈ N ∩ [2,∞),

s∑
i=1

ki ≤ dte

}

∪
{
kt

dte
∈ R : k ∈ N, 2 ≤ k ≤ dte − 1

}
,

(9.7)

here dte is the smallest integer ≥ t.
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Proof. Since t > 1, by (9.5) and the super-additivity of x 7→ xt on R+,

X(u)t =

m−1∑
j=0

Vu1,jX1(u, j)

t

≥
m−1∑
j=0

V t
u1,jX1(u, j)t.

Taking expectations on both sides, we obtain (i).

To see (ii), by (9.5) and the sub-additivity of x 7→ xt/dte on R+,

X(u)t =


m−1∑

j=0

Vu1,jX1(u, j)

t/dte

dte

≤

m−1∑
j=0

V
t/dte
u1,j

X1(u, j)t/dte

dte

=
∑

k0+...+km−1=dte

dte!
k0! · · · km−1!

m−1∏
j=0

(Vu1,jX1(u, j))kjt/dte.

Taking expectations on both sides yields

E(X(u)t) ≤
∑

k0+...+km−1=dte

dte!
k0! · · · km−1!

E

m−1∏
j=0

V
kjt/dte
u1,j

m−1∏
s=0

E(X(σu)kst/dte),

from which (9.6) follows, thanks to the fact that E(X(σu)p) ≤ 1 for p ∈ [0, 1]; the involved

constant C can be taken as mq sup1≤q′≤q E(
∑

j V
q′

u1,j
). Here we use the fact that

E

m−1∏
j=0

V
kjt/dte
u1,j

 ≤ m−1∏
j=0

(E(V t
u1,j))

kj/dte

≤
m−1∏
j=0

(
E

(
m−1∑
s=0

V t
u1,s

))kj/dte

= E

(
m−1∑
s=0

V t
u1,s

)
≤ sup

1≤q′≤q
E

∑
j

V q′

u1,j

 ,

where the first ‘≤’ comes from the Hölder inequality. �

Next we would like to establish an analogue of Lemma 9.5 for
∏k
j=1 E(X(u)tj ), where

t1, . . . , tk ∈ (1, q] with t1+. . .+tk ≤ q. First we introduce some notation. For (x1, . . . , xn) ∈
∆n and (y1, . . . , ym) ∈ ∆m, let (z1, . . . , zn+m) ∈ ∆n+m be the vector re-ordered from the

numbers x1, . . . , xn, y1, . . . , ym; and write

(x1, . . . , xn)⊕ (y1, . . . , ym) := (z1, . . . , zn+m).

Clearly, the operation ⊕ is commutative. By convention, we write (x1, . . . , xn) ⊕ ∅ =

(x1, . . . , xn), where ∅ denotes the empty set.
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For t1, . . . , tk ∈ (1, q] with t1 ≤ · · · ≤ tk and t1 + . . .+ tk ≤ q, we write

(9.8) It1,...,tk = {w1 ⊕ · · · ⊕ wk : wi ∈ Iti ∪ {ti} ∪ {∅}}\{(t1, . . . , tk)},

where It is defined as in (9.7). The following simple property comes from the definition

of I(·):

Lemma 9.6. Assume that It1,...,tk 6= ∅. Then for any (q1, . . . , q`) ∈ It1,...,tk , q1 + · · ·+q` ≤
t1 + · · ·+ tk; moreover, either ` ≥ k + 1 or q1 + . . .+ q` ≤ t1 + . . .+ tk − 1/2.

Proof. For any vector w ∈ Rm, let ‖w‖ denote the sum of the absolute values of its

components. Clearly by (9.7), for any t > 1 and w ∈ It, we have ‖w‖ ≤ t. Fix (q1, . . . , q`) ∈
It1,...,tk . Then there exist wi ∈ Iti ∪ {ti} ∪ {∅} (i = 1, . . . , k) such that (q1, . . . , q`) =

w1⊕· · ·⊕wk. Therefore q1 + · · ·+q` = ‖w1‖+ · · ·+‖wk‖ ≤ t1 + · · ·+ tk. If wi = ∅ for some

i, then q1+· · ·+q` ≤ (t1+· · ·+tk)−ti < (t1+· · · tk)−1. If otherwise, we have wi ∈ Iti∪{ti}
for all 1 ≤ i ≤ k, and wj ∈ Itj for at least one j; in such case, either ‖wj‖ ≤ tj− tj

btjc ≤ tj−
1
2

or the dimension of wj is ≥ 2, hence either q1 + . . .+q` ≤ t1 + · · ·+tk−1/2 or ` ≥ k+1. �

As a direct application of Lemma 9.5, we have

Lemma 9.7. Let t1, . . . , tk ∈ (1, q] so that t1 ≤ · · · ≤ tk and t1 + . . .+ tk ≤ q. Let u ∈ Σ∗.

Then

(i)
∏k
j=1 E(X(u)tj ) ≥ m−

∑k
i=1 Tu1 (ti)

∏k
j=1 E(X(σu)tj ).

(ii) There exists a positive constant C ′ (depending on q) such that

k∏
j=1

E(X(u)tj ) ≤m−
∑k
i=1 Tu1 (ti)

k∏
j=1

E(X(σu)tj )

+ C ′ + C ′
∑

(q1,...,q`)∈It1,...,tk

∏̀
j=1

E (X(σu)qj ) .

(9.9)

Proposition 9.8. Let q > 1 such that T (q) > 0. Let η be the Bernoulli product measure

on Σ generated by a probability vector (p′0, . . . , p
′
m−1). Set A := max{1,

∑m−1
i=0 p′im

−Ti(q)}.
Then the following statements hold:

(i) There exists a polynomial fq depending on W and q such that

(9.10) An ≤
∑
u∈Σn

η([u])E(X(u)q) ≤ fq(n)An, ∀n ∈ N.

Moreover, if q ∈ (1, 2] and
∑m−1

i=0 p′im
−Ti(q) < 1, then the polynomial fq can be

replaced by a positive constant.

(ii) More generally, for any t1, . . . , tk ∈ (1, q] with t1 ≤ · · · ≤ tk and t1 + . . .+ tk ≤ q,

there exists a polynomial ft1,...,tk such that

(9.11) 1 ≤
∑
u∈Σn

η([u])
k∏
j=1

E(X(u)tj ) ≤ ft1,...,tk(n)An, ∀n ∈ N.
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Proof. Since q > 1, E(X(u)q) ≥ E(X(u))q = 1 for each u ∈ Σ∗, and thus

(9.12)
∑
u∈Σn

η([u])E(X(u)q) ≥ 1.

Similarly

(9.13)
∑
u∈Σn

η([u])
k∏
j=1

E(X(u)tj ) ≥ 1.

On the other hand, by Lemma 9.5(i),∑
u∈Σn

η([u])E(X(u)q) ≥

(
m−1∑
i=0

p′im
−Ti(q)

) ∑
u∈Σn−1

η([u])E(X(u)q)

≥

(
m−1∑
i=0

p′im
−Ti(q)

)n
E(Y q) ≥

(
m−1∑
i=0

p′im
−Ti(q)

)n
.

(9.14)

Combining (9.14) with (9.12) yields

(9.15)
∑
u∈Σn

η([u])E(X(u)q) ≥ An.

This completes the proof of the first inequality in (9.10).

To show the second inequality in (9.10), let t1, . . . , tk ∈ (1, q] with t1 ≤ · · · ≤ tk and

t1 + . . .+ tk ≤ q. By Lemma 9.3,

(9.16)

m−1∑
j=0

p′jm
−

∑k
i=1 Tj(ti) ≤ A.

This together with Lemma 9.7(ii) yields∑
u∈Σn

η([u])
k∏
j=1

E(X(u)tj ) ≤A
∑

u∈Σn−1

η([u])
k∏
j=1

E(X(u)tj ) + C ′

+ C ′
∑

(q1,...,q`)∈It1,...,tk

∑
u∈Σn−1

η([u])
∏̀
j=1

E (X(u)qj ) ,

(9.17)

Write Sn(t1, . . . , tk) :=
∑

u∈Σn
η([u])

∏k
j=1 E(X(u)tj ). Then (9.17) can be re-written as

Sn(t1, . . . , tk) ≤ASn−1(t1, . . . , tk) + C ′ + C ′
∑

(q1,...,q`)∈It1,...,tk

Sn−1(q1, . . . , q`)(9.18)

for n ∈ N.

We claim that there exists an increasing polynomial function ft1,...,tk such that

(9.19) Sn(t1, . . . , tk) ≤ ft1,...,tk(n)An, ∀n ∈ N.

Clearly the claim is true in the case when It1,...,tk = ∅. Indeed in such case, by (9.18),

Sn(t1, . . . , tk) ≤ A Sn−1(t1, . . . , tk) + C ′, ∀n ∈ N,
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and thus

Sn(t1, . . . , tk) = An S0(t1, . . . , tk) +
n∑
j=1

An−j (Sj(t1, . . . , tk)−A Sj−1(t1, . . . , tk))

≤ An S0(t1, . . . , tk) +

n∑
j=1

C ′An−j ≤ nAn(C ′ + S0(t1, . . . , tk)).

Next we consider the case when It1,...,tk 6= ∅. Suppose that for each (q1, . . . , q`) ∈ It1,...,tk ,

there exists an increasing polynomial function fq1,...,q` such that

Sn(q1, . . . , q`) ≤ fq1,...,q`(n)An, ∀n ∈ N.

Set g = C ′ + C ′
∑

(q1,...,q`)∈It1,...,tk
fq1,...,q` . Then g is an increasing polynomial. By (9.18),

Sn(t1, . . . , tk)−A Sn−1(t1, . . . , tk) ≤ g(n− 1)An−1, ∀n ∈ N.

Therefore

Sn(t1, . . . , tk)−An S0(t1, . . . , tk) =

n∑
j=1

An−j(Sj(t1, . . . , tk)−A Sj−1(t1, . . . , tk))

≤ An−1
n∑
j=1

g(j − 1) ≤ An−1ng(n),

Hence Sn(t1, . . . , tk) is bounded by ft1,...,tk(n)An with ft1,...,tk(x) := xg(x) +S0(t1, . . . , tk).

According to the arguments in the above two paragraphs, if the claim (9.19) is false at

T1 := (t1, . . . , tk), then IT1 6= ∅ and moreover there exists T2 ∈ IT1 such that (9.19) is false

at T2. Repeatedly applying the arguments, we see that there exist

Tn ∈ ITn−1 6= ∅, n = 2, 3, . . .

such that (9.19) is false at Tn. However, by Lemma 9.6, the sequence (‖Tn‖)∞n=1 is non-

increasing and is bounded above by q; and moreover, there are infinitely many n such that

‖Tn‖ ≤ ‖Tn−1‖ − 1/2 (because the dimension of Tn can not keep strictly increasing for q

consecutive integers of n), which leads to a contradiction. This proves the claim (9.19).

Applying (9.19) to the particular case when k = 1, we have∑
u∈Σn

η([u])E(X(u)q) ≤ fq(n)An, ∀n ∈ N

for some polynomial fq. This, together with (9.15), yields (9.10). In the meantime, (9.11)

follows from (9.19) and (9.13).

Finally, assume that q ∈ (1, 2] and
∑m−1

i=0 p′im
−Ti(q) < 1. By the definition (9.7), Iq = ∅.

Hence applying (9.9) yields

(9.20)
∑
u∈Σn

η([u])E(X(u)q) ≤ B
∑

u∈Σn−1

η([u])E(X(u)q) + C ′,
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with B :=
∑m−1

i=0 p′im
−Ti(q) < 1. Iterating (9.20) yields that∑

u∈Σn

η([u])E(X(u)q) ≤ C ′(1 +B +B2 + · · · ) =
C ′

1−B
.

This finishes the proof of the proposition. �

Corollary 9.9. Let q > 1 such that T (q) > 0. Then there exists a polynomial fq depending

on W and q such that

(9.21) m−nmin{τν(q),T (q)} ≤ E
( ∑
u∈Σn

π∗µ([u])q
)
≤ fq(n)m−nmin{τν(q),T (q)}

for all n ∈ N. Furthermore, if q ∈ (1, 2] and τν(q) < T (q), the polynomial fq can be

replaced by a positive constant.

Proof. Let νq denote the Bernoulli product measure on Σ generated by the probability

weight (p′0, . . . , p
′
m−1), where p′i := pqi /

∑m−1
j=0 pqj . Then

(9.22)
∑
u∈Σn

π∗µ([u])q =
∑
u∈Σn

ν([u])qX(u)q = m−nτν(q)
∑
u∈Σn

νq([u])X(u)q.

Set A = max{1,
∑m−1

j=0 p′jm
−Tj(q)}. Then A = max{1,mτv(q)−T (q)}, due to the fact that∑m−1

j=0 p′jm
−Tj(q) = mτν(q)

∑m−1
j=0 pqjm

−Tj(q) = mτν(q)−T (q) (cf. (3.3)).

By Proposition 9.8, there is a polynomial function fq such that

(9.23) An ≤
∑
u∈Σn

νq([u])E(X(u)q) ≤ fq(n)An, ∀n ∈ N.

Now (9.21) follows directly from (9.22) and (9.23). �

Corollary 9.10. Let q > 1 such that T (q) > 0. Then τπ∗µ(q) ≥ min{τν(q), T (q)}.

Proof. This is a direct consequence of Corollary 9.9 and Lemma C.1. �

10. Results for projections of planar Mandelbrot measures

We begin with a general fact on the relation between the increasing part of the Hausdorff

spectrum of a measure obeying the multifractal formalism on Σ and that of its image on

[0, 1]. Indeed, the natural projection form Σ to [0, 1] does not map cylinders to centered

balls, so some care is needed to claim that these spectra do coincide at a given exponent.

Let Π denote the natural from Σ onto [0, 1], namely Π(x) =
∑∞

i=1 xim
−i.

Proposition 10.1. Let ρ be a positive and finite Borel measure on Σ. Let α ∈ [0, τ ′ρ(0+)]

and suppose that there exists a positive and finite Borel measure ρα on Σ such that

ρα(E(ρ, α)) > 0 and dimH(ρα) ≥ τ∗ρ (α) > 0. Then dimH E(ρ̃, α) = τ∗ρ̃ (α), where ρ̃ = Π∗ρ

stands for the natural projection of ρ to [0, 1].
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Proof. It is a simple fact that for all q ≥ 0, τρ(q) = τρ̃(q); hence τ∗ρ and τ∗ρ̃ coincide on

[0, τ ′ρ(0+)].

Setting ρ̃α = Π∗ρα, it is also clear that dimH(ρ̃α) = dimH(ρα), hence dimH(ρ̃α) ≥ τ∗ρ̃ (α).

According to (2.1), for all 0 ≤ α′ < α, dimH E
≤(ρ̃, α′) ≤ τ∗ρ̃ (α′). Moreover, it follows

from the fact that τ∗ρ takes at least one positive value that τ∗ρ = τ∗ρ̃ is strictly increasing

over (−∞, τ ′ρ(0+)] ∩ dom(τ∗ρ ) if this interval is not reduced to a singleton. This implies

that ρ̃α(
⋃

0≤α′<αE
≤(ρ̃, α′)) = 0. Now, let Gα ⊂ Π(E(ρ, α)) of full ρ̃α-positive measure.

Without loss of generality we assume that Gα contains no m-adic number and no element

of
⋃

0≤α′<αE
≤(ρ̃, α′), i.e. dimloc(ρ̃, t) ≥ α for all t ∈ Gα. Fix t ∈ Gα. For n ≥ 1, denote

by In(t) the m-adic interval of generation n which contains t. For all ε > 0, for n large

enough, we have ρ̃(In(t)) ≥ ρ([(Π−1(x))|n]) ≥ mn(α+ε), hence ρ̃(B(t,m−n)) ≥ mn(α+ε).

Consequently, dimloc(ρ̃, t) ≤ α + ε for all ε > 0. Since we also have dimloc(ρ̃, t) ≥ α, we

get Gα ⊂ E(ρ̃, α) hence the desired lower bound dimH E(ρ̃, α) ≥ τ∗ρ̃ (α). �

Now we can state our results for planar Mandelbrot measures. Let π̃ stand for the

orthogonal projections from the Euclidean plane R2 onto its x-axis. Let P be the natural

projection from Σ2 onto [0, 1]2, namely P (x, y) = (Π(x),Π(y)). Let µ be a Mandelbrot

measure on the symbolic space Σ×Σ as in Sections 2 to 9. The measure µ̃ and its support

K̃, obtained as the respective images of µ and K by P , are realizations of the measure and

the set considered in the introduction. This is due to the fact that, with probability 1, µ

assigns zero mass to sets of the form {x} × Σ or Σ× {y} when Π(x) or Π(y) is a m-adic

point (the verification of this fact is left to the reader). Also, the orthogonal projection of

µ̃ to the x-axis, namely π̃∗µ̃, is equal to Π∗(π∗µ), and the expectation of π̃∗µ̃ is equal to

ν̃ = Π∗ν.

The following properties are easily checked: for any w ∈ Σ∗, the equalities π̃∗µ̃(Π([w])) =

π∗µ([w]) and ν̃(Π([w])) = ν([w]) hold. Also, the m-adic intervals can be used to discuss

differentiability properties of measures and computations of Hausdorff dimensions, and

the mapping Π preserves Hausdorff dimension. This implies the following result.

Theorem 10.2. Theorem 3.1, Theorem 3.3 and Corollary 3.5 hold if we replace (µ, π∗µ, ν,K)

therein by (µ̃, π̃∗µ̃, ν̃, K̃) and replace (µ′, π∗µ
′) by (µ̃′, π̃∗µ̃′).

Using Proposition 10.1, we can also transfer to π̃∗µ̃ the multifractal properties of π∗µ.

Theorem 10.3. Theorem 3.7 hold if we replace (µ, π∗µ) therein by (µ̃, π̃∗µ̃).

Finally, we add a general proposition about Lq-spectra. It is certainly not new but

difficult to find explicitly written in the literature, except in the context of multiplica-

tive chaos and statistical mechanics (see [14] for instance), where it signs a glassy phase

transition. This result is used at the beginning of Section 8.
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Proposition 10.4. Let ρ be a positive and finite Borel measure on Σ. Then τρ(q) ≥
q
q′ τρ(q

′) for all q ≥ q′ > 0. As a consequence, if τρ(qc) = τ ′ρ(qc−)qc at some qc > 0, then

τρ(q) = τ ′ρ(qc−)q for all q ≥ qc.

Proof. The first claim follows from writing
∑
|u|=n ρ([u])q =

∑
|u|=n(ρ([u])q

′
)q/q

′
and using

the subbadditivity of x ≥ 0 7→ xq/q
′
. The second claim follows from the concavity of

τρ, which implies that τρ(q) ≤ τ ′ρ(qc−)q for q ≥ qc, while the first claim implies τρ(q) ≥
q
qc
τρ(qc) = τ ′ρ(qc−)q. �

11. Final remarks

As a consequence of our study of the multifractal formalism, we can achieve a part of

the multifractal analysis of the number Nn(x) of cylinders of generation n of the form

[x|n, v], v ∈ Σn, which intersect the support Kn of µn. Specifically, if n ≥ 1 and u ∈ Σn

we set

N(u) = #{v ∈ Σn : Q(u, v) > 0}.

Then Nn(x) = N(x|n). This number measures the overlapping amount over [x|n] when one

projects Kn onto π(K), and equivalently its asymptotic behavior yields the box-counting

dimension of π−1({x}).

Corollary 11.1. (1) Suppose that E(Ni) ≤ 1 for all 0 ≤ i ≤ m− 1 such that E(Ni) >

0. With probability one, conditional on {K 6= ∅}, for all x ∈ π(K) we have

dimB π
−1({x}) = limn→∞

logNn(x)
n = 0.

(2) Suppose that E(Ni) > 1 for at least one 0 ≤ i ≤ m−1. Let ϕ be defined as in (3.6).

Let q0 be the unique point at which ϕ attains its minimum over [0, 1]. Define

(11.1) P : q 7→


log(m) · ϕ(q0) if 0 ≤ q ≤ q0

log(m) · inf{ϕ(q/s) : q ≤ s ≤ 1} if q0 < q ≤ 1

max(logE(N), log(m) · ϕ(q)) if q > 1

.

If q0 < 1 or q0 = 1 and ϕ′(1) = 0, then P is differentiable over R+, analytic

over [0, q0)∪ (q0,∞) and it has a second order phase transition at q0. Specifically,

P ≡ log(m) · ϕ(q0) over [0, q0) and P ≡ log(m) · ϕ over (q0,∞).

If q0 = 1 and ϕ′(1) < 0, then there exists a unique q′0 > 1 such that P (q′0) =

logE(N), and P is analytic over [0, q′0) ∪ (q′0,∞), with P ≡ logE(N) over [0, q′0)

and P ≡ log(m) · ϕ over (q′0,∞). Moreover, P has a first order phase transition

at q′0.

With probability 1, conditional on {π(K) 6= ∅}, for all q ≥ 0 we have

(11.2) lim
n→∞

1

n
log

∑
|u|=n

1{N(u)≥1}N(u)q = P (q).
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(3) If α ∈ {P ′(q−), P ′(q+)} for some q > 0 or α = P ′(0+), then, with probability 1,

conditional on {K 6= ∅},

dimH

{
x ∈ π(K) : dimB π

−1({x}) = lim
n→∞

logNn(x)

n
= α

}
=

1

log(m)
inf{P (q)−αq : q ≥ 0}.

Parts (2)-(3) of this corollary follow from the application of Theorem 3.7 to the branch-

ing measure, i.e. the Mandelbrot measure µ′ associated with

W ′ = (E(N)−11{Wi,j>0})0≤i,j≤m−1.

Indeed, Nn(x) = E(N)nµ′n([xn]) and we can simply use Remark 3.9.

For Part (1), under our assumptions property (11.2) still holds, with P given by (11.1),

for the same reason as in item (2). It is then direct to check that P (q) = logE(N) for all

q ≥ 0. Consequently, conditional on {π(K) 6= ∅}, for any ε > 0, for any q > 0, if n is large

enough,

#{u ∈ Σn : N(u) ≥ mnε} ≤ m−nqε
∑
|u|=n

1{N(u)>0}N(u)q

≤ m−nqεmn(log(E(N))+ε)

= m−n((q−1)ε−logE(N)).

Choosing q > 1 such that (q − 1)ε − logE(N) > 0 yields that for n large enough, #{u ∈
Σn : N(u) ≥ mnε} < 1 so {u ∈ Σn : N(u) ≥ mnε} is empty. Thus lim supn→∞

logNn(x)
n ≤ ε

for all x ∈ π(K). Since ε is arbitrary and Nn(x) ≥ 1, this yields limn→∞
logNn(x)

n = 0 for

all x ∈ π(K).

Appendix A. Basic facts about extinction probabilities

Proposition A.1. The events {µ 6= 0} and {K :=
⋂
n≥1 supp(µn) 6= ∅} coincide up to a

set of probability 0, over which K = supp(µ).

Proof. Recall that we defined N =
∑

1≤i,j≤m−1 1{Wi,j>0} and that our assumptions on W

imply that E(N) > 1. Consequently, the generating function ofN , i.e. f(x) =
∑

n≥0 P(N =

n)xn, has a unique fixed point smaller than 1, which equals the probability of extinction

of the associated Galton-Watson process generated by N , i.e. the probability of the event

{K = ∅} =
⋃
n≥1{Kn = ∅}. Also, since

Y = ‖µ‖ =
∑

1≤i,j≤m−1

Wi,jY (i, j),

where the Y (i, j) are independent copies of Y , and are also independent of W , the probabil-

ity of {µ = 0} is also a fixed point of f . Moreover, by construction, {K = ∅} ⊂ {µ = 0}.
Since P(µ 6= 0) < 1, {K = ∅} and {µ = 0} = {Y = 0} must be equal up to a set of

probability 0.
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On the other hand, we have supp(µ) ⊂ K almost surely. Moreover, by the previous

paragraph and statistical self-similarity, for each n ≥ 1 and each cylinder [u, v] of the n-th

generation, {K∩ [u, v] 6= ∅} coincides with the event {Q(u, v) > 0}∩{Y (u, v) > 0} up to a

set of probability 0. Consequently, with probability 1, for all cylinder [u, v], K ∩ [u, v] 6= ∅
implies µ([u, v]) > 0, that is K ⊂ supp(µ). �

For i = 0, 1, . . . ,m− 1, define polynomial functions fi by

fi(x) =
m∑
`=0

P(Ni = `) x`,

where Ni = #{0 ≤ j ≤ m : Vi,j 6= 0}.

Definition A.2. A Borel measurable function p : Σ→ [0, 1] is called {fi}m−1
i=0 -stationary,

if p satisfies the following condition:

p(i) = fi1(p(σi)), ∀ i = (in)∞n=1 ∈ Σ.

Let ν ′ be a Bernoulli product measure on Σ. Two functions p and p′ on Σ are called

equivalent if p(i) = p′(i) for ν ′-a.e. i; for brevity we write p = p′ a.e. if they are equivalent.

Notice that the constant function 1 on Σ is always {fi}m−1
i=0 -stationary.

Proposition A.3. Assume that there exists at least one i so that P(Ni = 1) < 1; equiv-

alently, there exists i so that fi(x) 6≡ x. Then there exist at most one {fi}m−1
i=0 -stationary

function on Σ which is not equivalent to the constant function 1.

Proof. Let G denote the collection of functions f : [0, 1] → [0, 1] so that f is increasing,

continuous, convex and f(1) = 1. Notice that by convexity, for any 0 < a < 1 and f ∈ G,

sup
0≤x,y≤a

∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ ≤ f(1)− f(a)

1− a
≤ 1

1− a
.

Therefore, G is equicontinuous on [0, a] for any a ∈ (0, 1).

Let I = {i : fi(x) 6≡ x}. By our assumption, I 6= ∅. Notice that by convexity, for each

i ∈ I, either fi(x) > x for any x ∈ [0, 1), or f has exactly one attractive fixed point in

[0, 1). In the first case, fni (x) → 1 uniformly on [0, a] for each 0 < a < 1, whilst in the

second case, fni (x) converges uniformly to the attractive fixed point of fi, on [0, a] for each

0 < a < 1.

Now we consider the following two cases separately: (A) fi(x) > x on [0, 1) for each

i ∈ I; (B) there exists at least one i ∈ I such that f has one fixed point in [0, 1).

First suppose that (A) occurs. Then fi(x) ≥ x for any 0 ≤ i ≤ m− 1. Pick i0 ∈ I and

let 0 ≤ a < 1. Then there exists n ∈ N such that fni0(x) > a for any x ∈ [0, 1]. Let p be
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{fi}m−1
i=0 -stationary. Then for ν ′-a.e. i ∈ Σ, there exists k ∈ N such that σki ∈ [in0 ], and

thus

p(i) = fi1 ◦ . . . ◦ fik ◦ f
n
i0(p(σk+ni)) ≥ fni0(p(σk+ni)) ≥ a.

Since a ∈ [0, 1) is arbitrarily, we see that p(i) = 1 for ν ′-a.e. i.

Next suppose that (B) occurs. Assume that p and p′ are both {fi}m−1
i=0 -stationary, and

not equivalent to the constant function 1. We show below that p = p′ a.e.

First we claim that p(i) < 1 and p′(i) < 1 for ν ′-a.e. i. Without loss of generality

we only prove the first inequality. Suppose on the contrary that p = 1 on a Borel set

A ⊂ Σ with ν ′(A) > 0. By the Poincare recurrence theorem, for ν ′-a.e. i, there exists

k = k(i) ∈ N such that σki ∈ A; and thus

p(i) = fi1 ◦ . . . ◦ fin(p(σni)) = fi1 ◦ . . . ◦ fin(1) = 1.

This contradicts the assumption that p is not equivalent to the constant function 1. Hence

p(i) < 1 for ν ′-a.e. i.

By the above claim, we can pick δ > 0 such that there exists a Borel set A = Aδ ⊂ Σ

with ν ′(A) > 0 such that

p(i) ≤ 1− δ and p′(i) ≤ 1− δ, ∀ i ∈ A.

Pick j0 ∈ I so that fj0 has an attracting point in [0, 1), say, b. Then

lim
n→∞

fnj0([0, 1− δ]) = b,

here and afterwards, fnj0 denotes the n-th iteration of fj0 . Since for each n ∈ N, ν ′([jn0 ] ∩
σ−nA) > 0, by the Poincaré recurrence theorem, for ν ′-a.e. i, there exist k1 < k2 < . . .,

such that

σkni ∈ [jn0 ] ∩ σ−nA.

Clearly limn→∞ p(σ
kni) = limn→∞ p

′(σkni) = b.

Notice that the family of functions

{fi1 ◦ . . . ◦ fikn}n∈N

is a subset of G. Hence it is equi-continuous on [0, a] for any a < 1. By the Arzelà-Ascoli

theorem, there exists a subsequence (t`) of (nk) and a continuous function g on [0, 1) such

that

fi1 ◦ . . . ◦ fit` converges to g uniformly

on any interval [0, a] with a < 1. Since b < 1,

p(i) = lim
`→∞

fi1 ◦ . . . ◦ fit` (p(σ
t`i)) = g(b),

and similarly p′(i) = g(b). Hence p(i) = p′(i). Therefore p = p′ a.e. �
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Appendix B. Basic properties of Mandelbrot martingales in a Bernoulli

environment

Let U = (Ui,j)(i,j)∈Σ1×Σ1
be a non-negative random vector such that

∑m−1
j=0 E(Ui,j) = 1

for each 0 ≤ i ≤ m− 1. Let (U(u, v))(u,v)∈
⋃
n≥0 Σn×Σn be a sequence of independent copies

of U .

For each n ≥ 1 and (u, v) ∈ Σn × Σn let

QU (u, v) =
n∏
k=1

Uuk,vk(uk−1, vk−1)

and

X̃U (u) :=
∑
|v|=n

QU (u, v).

Now for each fixed x ∈ Σ and n ≥ 1 let µ̃xU,n be the measure on Σ whose density with

respect to the measure of maximal entropy is given by mnQU (x|n, v) over any cylinder [v]

of generation n. The sequence (µ̃xU,n)n≥1 almost surely converges to an inhomogeneous

Mandelbrot measure µ̃xU .

Let η be a Bernoulli product on Σ associated with a probability vector (p′0, . . . , p
′
m−1).

Then, for η-almost every x the sequence (µ̃xU,n)n≥1 converges weakly almost surely to a

measure νx as well, and (‖µ̃xU,n‖ = X̃U (x|n) = X̃U,n(x))n≥1 is a Mandelbrot martingale

in the random environment given by η, which almost surely converges to ‖µ̃xU‖, which we

denote by X̃U (x).

By construction, for each n ≥ 0 and J ∈ Σn,

µ̃xU ([J ]) = X̃x|n,J(σnx)

n∏
k=1

Uxk,Jk(x|k−1, J|k−1),

where

X̃
x|n,J

U (σnx) = lim
p→∞

∑
K∈Σp

p∏
`=1

Uxn+`,K`(x|n+`−1, J(K|`−1)).

For 0 ≤ i ≤ m− 1, let

TUi(q) = − logm E
m−1∑
j=0

U qi,j (q ≥ 0).

Suppose that there exists 0 ≤ i ≤ m− 1 such that P({Ui,j ∈ {0, 1} ∀ 0 ≤ j ≤ m− 1}) < 1.

We have the following consequence of a general result by Biggins and Kyprianou [10,

Theorem 7.1].

Theorem B.1. Suppose that P(
∑m−1

j=0 1{Ui,j>0} = 1) < 1 for some 0 ≤ i ≤ m − 1. The

following properties are equivalent:

(i) P⊗ η(X̃U > 0) > 0;
70



(ii) (X̃n)n≥1 is uniformly integrable with respect to P⊗ η;

(iii)
∑m−1

i=0 p′iT
′
Ui

(1−) = −EP⊗ν

(∑m−1
j=0 Ux1,j log(Ux1,j)

)
> 0.

We also have the following useful fact. Let Z be an integrable random variable, and let

(Z(u, v))(u,v)∈Σn, n≥1 be a collection of copies of Z such that for each n ≥ 1 the random

variables Z(u, v), (u, v) ∈ Σn are independent, and independent of σ(U(u′, v′) : |u′| =

|v′| ≤ n− 1).

Let

XU (x|n) =
∑
|v|=n

QU (x|n, v)Z(x|n, v).

Proposition B.2. Let q ∈ (1, 2]. Suppose that E(|Z|q) < ∞, TUi(q) is finite for all

0 ≤ i ≤ m − 1 such that p′i > 0 and
∑m−1

i=0 p′iTUi(q) > 0. Then, P ⊗ η(X̃U > 0) > 0, and

with probability 1, for η-almost every x, limn→∞XU (x|n) = E(Z)X̃U .

Proof. To begin with we notice by concavity of the mappings TUi , the fact that all the

functions TUi vanish at 1 together with the assumption
∑m−1

i=0 p′iTUi(q) > 0 implies that∑m−1
i=0 p′iT

′
Ui

(1) > 0. Consequently, due to Theorem B.1, P⊗ η(X̃U > 0) > 0.

Next, recall the following standard lemma.

Lemma B.3. [2] Let (Lj)j≥1 be a sequence of centered independent real valued random

variables. For every finite I ⊂ N+ and q ∈ (1, 2],

E
(∣∣∣∑

i∈I
Li

∣∣∣q) ≤ 2q−1
∑
i∈I

E(|Li|q).

For all n ≥ 1, we have

XU (x|n+1)− E(Z)X̃U (x|n+1) =
∑
|v|=n

QU (x|n, v)Ũ(x|n, v),

where

Ũ(x|n, v) =

m−1∑
j=0

Ux|n+1,vn+1(x|n, v)
(
Z(x|n+1, vj)− E(Z)

)
.

By construction, conditional on x (recall that we work under P⊗ η) the random variables

Ũ(x|n, v) are i.i.d and centered, and they are also independent of the QU (x|n, v) invoked in

XU (x|n+1)−E(Z)X̃U (x|n+1) (with respect to P). Consequently, conditioning with respect

to the QU (x|n, v) makes it possible to apply Lemma B.3 to {Lv = Ũ(x|n, v)}v∈Σn weighted

by the constants QU (x|n, v) and finally to get, for q ∈ (1, 2]:

(B.1) E(|XU (x|n+1)− E(Z)X̃U (x|n+1)|q) ≤ 2q−1
∑
|v|=n

E(QU (x|n, v)q)E(|Ũ(x|n, v0)|q),

where v0 is any element of Σn.
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The branching property yields E(QU (x|n, v)q) =
∏n
k=1m

−TUxk (q)
, and applying trian-

gular inequality and a convexity inequality yields E(|Ũ(x|n, v0)|q) ≤ 2qE(|Z|q)m−Txn+1 (q),

which is bounded by a constant independent of x since TUi(q) is finite for all 0 ≤ i ≤ m−1

such that p′i > 0. Also, the strong law of large numbers yields

lim
n→∞

n−1 log
n∏
k=1

m
−TUxk (q)

= −
m−1∑
i=0

p′iTUi(q) < 0

for η-almost every x. Consequently, the estimate (B.1) shows that for η-almost every x,∑
n≥1

(
E(|XU (x|n+1)−E(Z)X̃U (x|n+1)|q)

)1/q
<∞ which implies thatXU (x|n+1) converges

P-almost surely to the same limit as E(Z)X̃U (x|n+1), that is E(Z)X̃U (x). �

Appendix C. A useful lemma

Lemma C.1. Let (Zn)n≥1 be a sequence of non-negative random variables on a probability

space (Ω,P). Then almost surely

lim sup
n→∞

logZn
n

≤ lim sup
n→∞

logE(Zn)

n
.

Proof. Let b > a > lim supn→∞
logE(Zn)

n . Then by Markov’s inequality,

P({(1/n) log zn ≥ b}) ≤ E(Zn)e−bn ≤ en(a−b)

when n is large enough. Hence
∑∞

n=1 P{(1/n) log zn ≥ b} <∞. The Borel-Cantelli lemma

implies that lim supn→∞
logZn
n ≤ b almost surely. Letting b tend to lim supn→∞

logE(Zn)
n

yields the desired result. �

Acknowledgements. The authors thank the referee for his numerous suggestions to im-

prove the exposition of this work. The research of both authors was supported in part by

University of Paris 13, the HKRGC GRF grants (projects CUHK401013, CUHK14302415),

and the France/Hong Kong joint research scheme PROCORE (33160RE, F-CUHK402/14).

References

[1] N. Attia, J. Barral, Hausdorff and packing spectra, large deviations, and free energy for branching
random walks in Rd, Comm. Math. Phys., 331 (2014), 139–187.

[2] B. von Bahr, C. G. Esseen, Inequalities for the r-th absolute moment of a sum of random variables,
1 ≤ r ≤ 2, Ann. Math. Stat., 36 (1965), No. 1, 299–303.

[3] F. Bahroun, I. Bhouri, Multifractals and projections, Extracta Math., 21 (2006), 83-91.
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37 (2001), 195–2002.
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