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Show your work!

1. Evaluate each of the following limits, or show that it does not exist.
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2. Show that the following limits do not exist by computing the limits along different paths.
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(Hint: Consider paths of the form (¢) = (¢, mt), t € R, m a constant.)

Solution: Consider (z(t),y(t)) = (¢, mt) (we know that whent — 0, (z(t), y(t)) —
(0,0)), then on this curve,
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Then choose m = 1 and m = 2, the limits are 2 and % respectively. Since the limits
obtained on different curves do not equal to each other, the limit does not exist.
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(Hint: Consider paths of the form v(¢) = (¢, mt) and y(t) = (t*,1),t € R.)

Solution: First, consider (x(t), y(t)) = (¢, mt), then on this curve,
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Then, consider (z(t), y(t)) = (t?,1), then on this curve,
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Since the limits obtained on different curves do not equal to each other, the limit
does not exist.



3. Sandwich Theorem. If h(z,y) < f(z,y) < g(z,y) for all (x,y) # (a,b) in an open
neighborhood of (a, b), and:

lim A(x,y) = lim x,y) =L,
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then lim x,y) = L.
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Evaluate each of the following limits:
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Solution: We know that —1 < sin (

< 1 for any (z, y), therefore,
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As lim (—|zy|)= lim |zy| =0, by Sandwich Theorem, we have
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(Hint: Compare z* + y* with (2% + y?)%)
Solution: As (22 + y?)? = 2% + 22%9* + y* > 2% + 4,
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4. Let f(z,y) = cos(zy?)y/z.

(a) Find % and g—g
Solution:
3f o . 2\ 2 1 2 1
5 = Sy VE + g eos(ey?)
% =-2 sin(:vyz)x%y

(b) Given that f is differentiable at the point Py = (m, 1/2), find an equation in x,y, z
whose graph is the tangent plane to the graph of f at (x,y) = F.
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Then the tangent plane is given by:
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or:



