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Show your work!

1. Show that if an n×n matrix A is invertible, then A−1 is unique. In other words, show that
if there are n × n matrices B and C such that: BA = AB = In, and CA = AC = In,
then B = C.

Proof: Since CA = In and AB = In, we have:

B = InB = (CA)B = C(AB) = CIn = C.

2. Let A,B be n× n matrices. Let C = AB. Without using determinants, show that if B is
non-invertible, then C is non-invertible.

Proof: In class we have proved a theorem which says that a square matrix A is invert-
ible if and only if A~x = ~0 has ~x = ~0 as its unique solution.

Since B is non-invertible, there exists a nonzero vector ~x0 ∈ Rn such that: B~x0 = ~0.
Observe that C~x0 = (AB)~x0 = A(B~x0) = A~0 = ~0. In other words, the equation C~x = ~0
has a nonzero solution ~x = ~x0. By the same theorem just cited we conclude that C is
non-invertible.
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3. Let:

A =

−1 4 −2
0 −3 3
3 −3 −1

 .

Using Gaussian elimination, row reduce the augmented matrix:(
A I

)
to the matrix: (

I A−1
)
,

if possible. (Here, I is the 3× 3 identity matrix.)

Solution:

(A|I) =

−1 4 −2 1 0 0
0 −3 3 0 1 0
3 −3 −1 0 0 1

 .

→ −1 4 −2 1 0 0
0 −3 3 0 1 0
0 0 2 3 3 1

 .

→ −1 4 −2 1 0 0
0 1 0 3

2
7
6

1
2

0 0 1 3
2

3
2

1
2

 .

→ 1 0 0 2 5
3

1
0 1 0 3

2
7
6

1
2

0 0 1 3
2

3
2

1
2

 .
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4. Let A be an m× n matrix, and ~b a nonzero vector in Rm. Suppose A~x = ~b has a unique
solution ~x ∈ Rn, must A~x = ~0 have a unique solution?

Conversely, if A~x = ~0 has a unique solution, must A~x = ~b have a unique solution?

Proof: Suppose A~x = ~b has a unique solution ~v ∈ Rn. Suppose ~x0 is a solution to
A~x = 0, then by the linearity of matrix multiplication the vectors ~x0 + ~v and ~v are two
solutions to A~x = ~b:

A(~x0 + ~v) = A~x0 + A~v = ~0 +~b = ~b.

Hence, by the uniqueness of the solution to A~x = ~b, we have: ~x0+~v = ~v. In other words,
~x0 = ~0. So ~0 is the unique solution to A~x = ~0.
Conversely, suppose A~x = ~0 has ~0 ∈ Rn as its unique solution. Suppose ~x1 and ~x2 are
two solutions to A~x = ~b, then A(~x1 − ~x2) = 0, which implies the ~x1 − ~x2 is a solution
to A~x = ~0. Since by assumption ~0 is the unique solution to A~x = ~0, we conclude that
~x1 = ~x2.
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5. (Optional) LU Decomposition.

Let:

A =

 6 −3 5
12 −5 6
−30 19 −34


(a) Express A as a product A = LU , where L and U are triangular matrices of the form:

L =

 l11 0 0
l21 l22 0
l31 l32 l33

 , U =

 u11 u12 u13

0 u22 u23

0 0 u33

 .

(Hint: Use elementary matrices to transform A to U , then find L.)

Solution: By the row reduction,

R =

6 −3 5
0 1 −4
0 0 7

 = E3E2E1A

where E1, E2, E3 are the following elementary matrices:

E1 =

 1 0 0
−2 1 0
0 0 1



E2 =

1 0 0
0 1 0
5 0 1


E3 =

1 0 0
0 1 0
0 −4 1


Hence,

A = E−1
1 E−1

2 E−1
3 R =

 1 0 0
2 1 0
−5 4 1

6 −3 5
0 1 −4
0 0 7


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(b) Let~b =

 11
29
−41

. Solve:

A~x = L(U~x) = ~b

for ~x ∈ R3, by performing the following steps:

i. Solve L~y = ~b for ~y.
ii. Solve U~x = ~y for ~x.

Remark 1: The point here is that the matrix equations (i), (ii) involve triangular
matrices, so they are relatively easy to solve.
Remark 2: Once the LU decomposition is found, L and U may be used to solve
A~x = ~b for any given ~b, without the need to perform another Gaussian elimination
on
(

A ~b
)

every time a different~b is given.

Solution:

i. Solve L~y = ~b for ~y:  1 0 0
2 1 0
−5 4 1

y1
y2
y3

 =

 11
29
−41


The solution is y1

y2
y3

 =

 11
7
−14


ii. Solve U~x = ~y for ~x: 6 −3 5

0 1 −4
0 0 7

x1

x2

x3

 =

 11
7
−14


The solution is: x1

x2

x3

 =

 3
−1
−2




