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1. Show that:

(a) lim
(x,y)→(0,0)

x2 − y2

x+ y − 3
= 0.

(b) lim
(x,y)→(1,1)

x2 − y2

x− y
= 2.

(c) lim
(x,y)→(1,−1)

x2 − xy − 2y2

x+ y
= 3.

(d) lim
(x,y)→(0,0)

x2 − y2

xy
does not exist.

(e) lim
(x,y)→(0,0)

y

x3 + y
does not exist.

(f) lim
(x,y)→(0,0)

x6

x4 + y2
= 0.

(Hint: Consider using Sandwich Theorem.)

Solution:

(a) lim
(x,y)→(0,0)

sin

(
x2 − y2

x+ y − 3

)
= sin

(
(0)2 − (0)2

(0) + (0)− 3

)
= 0

(b) lim
(x,y)→(1,1)

x2 − y2

x− y
= lim

(x,y)→(1,1)
(x+ y) = (1) + (1) = 2

(c) lim
(x,y)→(1,−1)

x2 − xy − 2y2

x+ y
= lim

(x,y)→(1,−1)

(x+ y)(x− 2y)

x+ y

= lim
(x,y)→(1,−1)

(x− 2y) = (1)− 2(−1) = 3

(d) If the limit exists, then when (x, y) → (0, 0) along any path,
x2 − y2

xy
should con-

verge to the same value.
First, we consider the line (x, y) = (t, 2t), t ∈ R. Along this line, the approach of
(x, y) towards (0, 0) corresponds to the approach of t towards 0. Hence, as (x, y)

approach (0, 0) along this line, the expression
x2 − y2

xy
approaches the limit:

lim
t→0

t2 − (2t)2

t · 2t
= −3

2
.

Now, consider the line (x, y) = (t,−2t), t ∈ R. As (x, y) approaches (0, 0) along

this line, the expression
x2 − y2

xy
approaches the limit:

lim
t→0

t2 − (−2t)2

t(−2t)
=

3

2
.
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Since
x2 − y2

xy
approaches different values as (x, y) approaches (0, 0) along different

paths, the limit lim
(x,y)→(0,0)

x2 − y2

xy
does not exist.

(e) First, we consider the line (x, y) = (t, 0), t ∈ R. The approach of (x, y) towards
(0, 0) corresponds to the approach of t towards 0. Hence, the limit of

y

x3 + y
as

(x, y) approaches (0, 0) along this line is:

lim
t→0

0

t3 + 0
= 0.

On the other hand, as (x, y) approaches (0, 0) along the line (x, y) = (0, t), t ∈ R,
the expression

y

x3 + y
approaches the limit:

lim
t→0

t

03 + t
= 1 6= 0.

We conclude that the limit lim
(x,y)→(0,0)

y

x3 + y
does not exist.

(f) Observe that, for (x, y) 6= 0, we have:

x6

x4 + y2
=

0

y2
= 0 if x = 0,

0 ≤ x6

x4 + y2
≤ x6

x4
= x2 if x 6= 0.

Since lim
(x,y)→(0,0)

x2 = 0, by the Sandwich Theorem we conclude that:

lim
(x,y)→(0,0)

x6

x4 + y2
= 0.

2. (a) Let f(x, y) = 5x7 − 2xy3 + 6. Show that fx(−1, 1) = 33, fy(2, 2) = −48.
∂f

∂x
= 35x6 − 2y3,

∂f

∂y
= −6xy2.

Hence, fx(−1, 1) = 33, fy(2, 2) = −48.

(b) Let f(x, y) =
√
xy − y2. Show that:

∂f

∂x

∣∣∣∣
(x,y)=(3,2)

=
2

2
√
2
.

∂f

∂y

∣∣∣∣
(x,y)=(3,2)

=
−1
2
√
2
.

These identities may be shown to hold by evaluating the following partial derivatives
at (x, y) = (3, 2):

∂f

∂x
=

y

2
√

xy − y2
,

∂f

∂y
=

x− 2y

2
√

xy − y2
.
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(c) Let f(x, y) = logx y, y > 0, x 6= 1. Show that:

∂f

∂x

∣∣∣∣
(x,y)=(e,2)

=
− ln 2

e
.

∂f

∂y

∣∣∣∣
(x,y)=(e,2)

=
1

2
.

We have logx y =
ln y

lnx
, then

∂f

∂x
=
− ln y

x(lnx)2
,

∂f

∂y
=

1

y lnx
.

(d) Let f(x, y) = xy + yx, x, y > 0. Show that:

∂f

∂x

∣∣∣∣
(x,y)=(1,e2)

= e2 + 2e2.

Note that
d

dx
cx = cx ln c for constant c, then

∂f

∂x
= yxy−1 + yx ln y,

∂f

∂y
= xy lnx+ xyx−1.

3. (a) Let f(x, y, z) = xz + y2z + cos(z).
Via explicit computation of second order partial derivatives, show that:

∂2f

∂y∂z
=

∂2f

∂z∂y

We have:
∂f

∂y
= 2yz,

∂f

∂z
= x+ y2 − sin z, hence:

∂2f

∂y∂z
=

∂

∂y

(
∂f

∂z

)
=

∂

∂y
(x+ y2 − sin z) = 2y.

∂2f

∂z∂y
=

∂

∂z

(
∂f

∂y

)
=

∂

∂z
(2yz) = 2y =

∂2f

∂y∂z
.

(b) Let f(x, y, z) = xyz +
√
xz.

Via explicit computation of third order partial derivatives, show that:

fxzy = fyzx

We have:

fx = yz +

√
z

2
√
x
,
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fxz = (fx)z = y +
1

4
√
xz

,

fxzy = (fxz)y = 1.

fy = xz,

fyz = x,

fyzx = 1 = fxzy.

4. Let:

f(x, y) =

{
x2y if x ≥ 0,

0 if x < 0.

Show that:

(a) fx(−1, 2) = 0.

(b) fx(3,−7) = −42.

(c) fx(0, y) = 0, for all y ∈ R.

(d) fxy(0, 0) = 0.

(a), (b) For x 6= 0, we have

fx(x, y) =

{
2xy if x > 0,

0 if x < 0,

Hence, fx(−1, 2) = 0 and fx(3,−7) = −42.

(c) For y ∈ R, by definition of fx(0, y) we have:

fx(0, y) = lim
h→0

f(h, y)− f(0, y)

h
.

Evaluating the left and right limits separately, we have:

lim
h→0−

f(h, y)− f(0, y)

h
= lim

h→0−

0− 02y

h
= 0,

lim
h→0+

f(h, y)− f(0, y)

h
= lim

h→0+

h2y − 02y

h
= 0.

Hence, fx(0, y) = lim
h→0

f(h, y)− f(0, y)

h
= 0.
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(d) From the work done in parts (a), (b) and (c) we see that:

fx(x, y) =

{
2xy if x > 0,

0 if x ≤ 0.

By definition,

fxy(0, 0) = lim
h→0

fx(0, h)− fx(0, 0)

h
.

Evaluating the left and right limits separately, we have:

lim
h→0−

fx(0, h)− fx(0, 0)

h
= lim

h→0−

0− 0

h
= 0

lim
h→0+

fx(0, h)− fx(0, 0)

h
= lim

h→0+

0− 0

h
= 0

Hence, fxy(0, 0) = 0.

(Alternatively, we may compute fxy(0, 0) as follows:

fxy(0, 0) =
d

dy
(fx(0, y))

∣∣∣∣
y=0

=
d

dy
(0)

∣∣∣∣
y=0

= 0.)

5. (Optional) Let g be a continuous function defined on R. Let f(x, y) =
∫ y

xy

g(t) dt. Find

∂f

∂x
and

∂f

∂y
.

By the Fundamental Theorem of Calculus, for a continuous function g and differentiable
functions a, b in one variable, we have:

d

dx

∫ b(x)

a(x)

g(t) dt = g(b(x))b′(x)− g(a(x))a′(x).

Therefore,

∂f

∂x
=

d

dx

∫ y

xy

g(t) dt

= g(y)

(
∂

∂x
y

)
− g(xy)

(
∂

∂x
(xy)

)
= g(y) · 0− g(xy) · y = −yg(xy).

Similarly,

∂f

∂y
=

d

dy

∫ y

xy

g(t) dt

= g(y)

(
∂

∂y
y

)
− g(xy)

(
∂

∂y
(xy)

)
= g(y) · 1− g(xy) · x = g(y)− xg(xy).


