
THE CHINESE UNIVERSITY OF HONG KONG

MATH 1540 Homework Set 1

Due time 6:30 pm Sep 29, 2016

1. (a) Let:

A =





4 10
−7 8
6 −1



 , B =

(

3 −7
10 1

)

, C =

(

9 −2
−3 1

)

.

Verify that:

A(B + C) = AB + AC.

(b) From the definition of matrix addition and multiplication:

(A+ B)ij = Aij + Bij, (AB)ij =
n
∑

k=1

AikBkj,

show that, for any m× n matrix A, and n× l matrices B,C, we have:

A(B + C) = AB + AC.

Solution:

(a) By direct calculation,

B + C =

(

12 −9
7 2

)

A(B + C) =





118 −16
−28 79
65 −56





AB =





112 −18
59 57
8 −43





AC =





6 2
−87 22
57 −13





AB + AC =





118 −16
−28 79
65 −56



 = A(B + C)
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(b) For 1 ≤ i ≤ m, 1 ≤ k ≤ l, we have

(A(B + C))ik =
n
∑

j=1

Aij(B + C)jk

=
n
∑

j=1

(AijBjk + AijCjk)

=
n
∑

j=1

AijBjk +
n
∑

j=1

AijBjk

= ABik + ACik

= (AB + AC)ik

Therefore, we have A(B + C) = AB + AC.

2. Show that, given two m × n matrices A and B, the condition A~v = B~v for all ~v ∈ R
n

implies that A = B, i.e.:

Aij = Bij , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Solution:

We fix 1 ≤ j ≤ n, and take ~v = ~ej =















0
...

1
...

0















(the column vector with the j-th entry equal

to one, other entries equal to zero), then

A~v =







A1j

...

Amj






=







B1j

...

Bmj






= B~v

By comparing each entries of the two vectors, we have Aij = Bij for 1 ≤ i ≤ m.

Since there is no restriction on 1 ≤ j ≤ n (or in other words, j is arbitrary), we have

Aij = Bij for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

3. (a) Let:

A =





1 −1 3 −5
2 0 −1 3
7 9 −4 0



 , B =









0 4
1 5
−3 0
0 −6









,

C =

(

−2 0 3 1
5 −7 0 4

)

.

Verify that (AB)C = A(BC).
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(b) (Optional) Show that for any m× n matrix A, n× l matrix B, and l × r matrix C,

we have:

A(BC) = (AB)C.

Solution:

(a) By direct calculation,

AB =





−10 29
3 −10
21 73





(AB)C =





165 −203 −30 106
−56 70 9 −37
323 −511 63 313





BC =









20 −28 0 16
23 −35 3 21
6 0 −9 −3

−30 42 0 −24









A(BC) =





165 −203 −30 106
−56 70 9 −37
323 −511 63 313





(b) For 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ l, 1 ≤ s ≤ r,

(BC)js =
l
∑

k=1

BjkCks

(A(BC))is =
n
∑

j=1

Aij(BC)js

=
n
∑

j=1

Aij

(

l
∑

k=1

BjkCks

)

=
n
∑

j=1

l
∑

k=1

AijBjkCks
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and

(AB)ik =
n
∑

j=1

AijBjk

((AB)C)is =
l
∑

k=1

(AB)ikCks

=
l
∑

k=1

(

n
∑

j=1

AijBjk

)

Cks

=
n
∑

j=1

l
∑

k=1

AijBjkCks

= (A(BC))is

Therefore, A(BC) = (AB)C.

4. Solve the following system of linear equations by performing Gaussian elimination on

the associated augmented matrix:

x1 − x2 + 5x3 + 7x4 = −23

2x1 + 4x3 − 4x4 = −16

3x2 − 2x4 = 0

5x1 − x4 = 10

Solution:

First, let’s write the augmented matrix.









1 −1 5 7 −23
2 0 4 −4 −16
0 3 0 −2 0
5 0 0 −1 10









For the row reductions (for the sake of space, I compress several operations into one

arrow),
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1 −1 5 7 −23
2 0 4 −4 −16
0 3 0 −2 0
5 0 0 −1 10









−−−−−−−−−−−−−→
r2 − 2× r1 → r2
r4 − 5× r1 → r4









1 −1 5 7 −23
0 2 −6 −18 30
0 3 0 −2 0
0 5 −25 −36 125









−−−−−−−−−→
r2 × 1/2 → r2









1 −1 5 7 −23
0 1 −3 −9 15
0 3 0 −2 0
0 5 −25 −36 125









−−−−−−−−−−−−−→
r1 + r2 → r1

r3 − 3× r2 → r3
r4 − 5× r2 → r4









1 0 2 −2 −8
0 1 −3 −9 15
0 0 9 25 −45
0 0 −10 9 50









−−−−−−−−−→
r3 × 1/9 → r3









1 0 2 −2 −8
0 1 −3 −9 15
0 0 1 25/9 −5
0 0 −10 9 50









−−−−−−−−−−−−→
r4 + 10× r3 → r4









1 0 2 −2 −8
0 1 −3 −9 15
0 0 1 25/9 −5
0 0 0 331/9 0









−−−−−−−−−−−→
r4 × 9/331 → r4









1 0 2 −2 −8
0 1 −3 −9 15
0 0 1 25/9 −5
0 0 0 1 0









−−−−−−−−−−−→
r4 × 9/331 → r4









1 0 2 −2 −8
0 1 −3 −9 15
0 0 1 25/9 −5
0 0 0 1 0









−−−−−−−−−−−−−−−→
r1 + 2× r4 → r1
r2 + 9× r4 → r2

r4 − 25/9× r4 → r3









1 0 2 0 −8
0 1 −3 0 15
0 0 1 0 −5
0 0 0 1 0









−−−−−−−−−−−−−→
r1 − 2× r3 → r1
r2 + 3× r3 → r2









1 0 0 0 2
0 1 0 0 0
0 0 1 0 −5
0 0 0 1 0









Therefore, we have (x1, x2, x3, x4) = (2, 0,−5, 0)

5. Find all solutions ~x ∈ R
4 to the following matrix equation:





5 10 −9 −4
1 2 1 2
−1 −2 3 2



 ~x =





23
−1
−7



 .
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Solution:

First, let’s write the augmented matrix.





5 10 −9 −4 23
1 2 1 2 −1
−1 −2 3 2 −7





For the row reductions (for the sake of space, I compress several operations into one

arrow),





5 10 −9 −4 23
1 2 1 2 −1
−1 −2 3 2 −7





−−−−−−−−−−−−−−−→
exchange r1 and r2





1 2 1 2 −1
5 10 −9 −4 23
−1 −2 3 2 −7





−−−−−−−−−−−−−−−−→
r1 × (−5) + r2 → r2

r1 + r3 → r3





1 2 1 2 −1
0 0 −14 −14 28
0 0 4 4 −8





−−−−−−−−−−−−−→
r2 × (− 1

14
) → r2

r3 − r2 → r3





1 2 1 2 −1
0 0 1 1 −2
0 0 0 0 0





−−−−−−−−→
r1 − r2 → r1





1 2 0 1 1
0 0 1 1 −2
0 0 0 0 0





This augmented matrix corresponds to the linear system:

x1 + 2x2 + x4 = 1

x3 + x4 = −2

There are 4 variables and two pivots (corresponding to x1, x3), so we let x2 and x4 be free

parameters u and v, respectively. Then, x3 = −2 − v and x1 = 1 − 2u − v. Hence, we

have (x1, x2, x3, x4) = (1− 2u− v, u,−2− v, v), u, v ∈ R, or equivalently:

~x =









1
0
−2
0









+ u









−2
1
0
0









+ v









−1
0
−1
1









, u, v ∈ R.

6. For what values of a, b, c ∈ R would the following matrix equation have a unique solution

~x ∈ R
3?









2 0 4
1 1 3
a b c
−1 −5 −7









~x = ~0
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Solution:

Consider the augmented matrix of the system.









2 0 4 0
1 1 3 0
a b c 0
−1 −5 −7 0









−−−−−−−−−−−−−−→
r1 interchange r2
r3 interchange r4









1 1 3 0
2 0 4 0
−1 −5 −7 0
a b c 0









−−−−−−−−−−−−−→
r2 − 2× r1 → r2
r3 + r1 → r3









1 1 3 0
0 −2 −2 0
0 −4 −4 0
a b c 0









−−−−−−−−−−−−→
r2 × 1/(−2) → r2









1 1 3 0
0 1 1 0
0 −4 −4 0
a b c 0









−−−−−−−−−−−−−→
r1 − r2 → r1

r3 + 4× r2 → r3









1 0 2 0
0 1 1 0
0 0 0 0
a b c 0









−−−−−−−−−−−−−→
r4 − a× r1 → r4
r4 − b× r2 → r4









1 0 2 0
0 1 1 0
0 0 0 0
0 0 −2a− b+ c 0









In order to have a unique solution, we need −2a − b + c 6= 0 (or x3 can be any real

number).

7. (Optional) An (undirected) graph consists of two sets of data: A set of points, called

vertices, and a set of unordered pairs of vertices, called edges.

For example, the graph with vertices {V1, V2, V3, V4, V5} and edges

{{V1, V2}, {V1, V3}, {V1, V4}, {V4, V5}}

may be visualized as follows:

The adjacency matrix of a graph with n vertices is an n×n matrix A = (Aij) defined by:

Aij =

{

1 if {Vi, Vj} is an edge of the graph,

0 if there is no edge connecting Vi and Vj.

In the example above, the corresponding adjacency matrix is:

A =













0 1 1 1 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 1
0 0 0 1 0
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V2

V4

V1

V5

V3

A walk in a graph is a sequence of edges linking one vertex to another. The number of

edges in the sequence is called the length of the walk. In the example above, the sequence

{V1, V4}, {V4, V5} is a walk of length two from V1 to V5.

Prove the following theorem:

Theorem. Let A = (Aij) be the adjacency matrix of a graph. Show that, for any integer

n ≥ 1, the number (An)ij (the ij-th entry of An) is equal to the number of walks of length

k from Vi to Vj .

Solution:

We use M.I. to prove the theorem.

When k = 1, it is trivial by the definition of A.

Suppose the statement is true for k = m, then for k = m+ 1,

We have (Am+1)ij =
∑m

l=1
(Am)ilAlj . Observe that (Am)il is equal to the number of

walks of length m from Vi to Vl by the hypothesis, while Alj tells us whether Vl is

connected to Vj by an edge. Therefore, (Am)ilAlj is equal to the number of walks

of length m + 1 from Vi to Vj , with the last edge fixed to be {Vl, Vj}. Therefore,

(Am+1)ij =
∑m

l=1
(Am)ilAlj means the total number of walks of length m + 1 from

Vi to Vj .


